arvutiteaduse instituudi lõputööderegister


Kogemuslik masinõppealgoritmide võrdlus EEG andmete põhjal
Nimi Madis Masso
Kokkuvõte Selle töö eesmärgiks on võrrelda erinevaid masinõppealgoritme ning üritada leida nende hulgast parim EEG andmete klassifitseerimise jaoks. Selle saavutamiseks klassifitseeriti 10 inimese andmeid 10 masinõppealgoritmi poolt. Algoritme võrreldi kolmel viisil: esiteks võrreldi neid kolme erineva jõudlust iseloomustava näitaja alusel, teiseks kasutati klasteranalüüsi meetodeid ja dendrogramme ning viimaks kasutati selleks korrelatsioonimaatrikseid. Saadud võrdluse tulemused näitavad, et optimeerimata parameetrite korral on logistilise regressiooni mudel kõige efektiivsem algoritm EEG andmete klassifitseerimisel. Optimeeritud parameetrite korral on kõige efektiivsemaks algoritmiks juhumets.
Lõputöö keel inglise
Lõputöö tüüp Bakalaureus - Informaatika
Juhendaja(d) Ilya Kuzovkin ja Kristjan Korjus
Kaitsmise aasta 2016
PDF