arvutiteaduse instituudi lõputööde teemade register


Machine learning models for map element detections
Organisatsiooni nimiBolt
KokkuvõteMaps are the key ingredient for all our services at Bolt. Their data is used in many applications - be it visualizing a trip in a rider’s invoice, routing from A to B, or estimating the time of arrival for the yummy dinner of that Mexican place you ordered. It is, therefore, critical to keep our maps as up to date as possible. For this, we can use GPS tracking data of our ride hailing drivers to detect e.g. longer waiting times or uni-directional driving patterns to indicate map elements such as traffic lights or one ways.

In this project, you will research, design and test a machine learning model (e.g. LightGBM, GNN or HMM) that can detect missing map elements from our ride hailing tracking data. This could be detecting and assigning new turn restrictions, one ways, and traffic lights, or finding missing roads.
Lõputöö kaitsmise aasta2022-2023
JuhendajaSophie Laturnus
Suhtlemiskeel(ed)inglise keel
Nõuded kandideerijale
Tase Magister
Märksõnad #machine_learning #GPS_tracking
Kandideerimise kontakt
Nimi Sophie Laturnus
Tel
E-mail sophie.laturnus@bolt.eu


ati.study@lists.ut.ee