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Few-Shot Prompt-Tuning of Language Models for App Review Classifi-

cation: An Evaluation Study 

Abstract: 

App reviews serve as valuable sources of feedback for application developers, offering in-

sights into the needs and preferences of the user. However, the large volume of user reviews 

received each day makes manual analysis infeasible, requiring automated solutions to detect 

information in user reviews relevant for developers to improve software quality. Recent 

strategies for detecting developer-relevant information in app reviews involve fine-tuning 

pretrained language models (PLMs) for the review classification task using labelled data. 

Due to the high cost of labelling data and the continuous emergence of new apps and cate-

gories in app marketplaces, it is crucial to evaluate recent techniques like pre-train and 

prompt-tuning, which has demonstrated success in scenarios with limited data. Pre-train and 

prompt-tuning strategy allows models to adapt to different tasks independently by leverag-

ing domain knowledge introduced through prompts. The main objective of this study is to 

assess the effectiveness of few-shot prompt-tuning of language models (LMs) for detecting 

developer relevant information in app reviews. To achieve this objective, the first research 

question of this study compares the performance of prompt-tuning with traditional fine-tun-

ing of language model RoBERTa under data constrained situation on three labelled review 

datasets. The second research question explores the impact of prompt-tuning performance 

for classifying review information on the selection of LMs (T5 and GPT-2) and its architec-

ture. The third and last research question assess the impact of prompt template design and 

verbalizer design on the performance of prompt-tuning when classifying review infor-

mation. The findings of this study reveal that the prompt-tuning approach has the potential 

to outperform traditional fine-tuning strategy in scenarios with limited labelled data availa-

bility. Additionally, this study observed variation in model performance across different 

review datasets, highlighting the importance of model selection, verbalizer design and 

prompt template design. These insights provide valuable guidance for leveraging prompt-

tuning techniques within the app review domain, particularly in contexts characterized by 

limited availability of labelled data. 
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Keelesuurmudelite väheste näidete põhine häälestamine rakenduste ar-

vustuste klassifitseerimiseks: hindamisuuring 

Lühikokkuvõte: 

Rakenduste arvustused on väärtuslikud tagasisideallikad rakenduste arendajatele, pakkudes 

ülevaateid kasutajate vajadustest ja eelistustest. Siiski teeb suur päevane kasutajaarvustuste 

hulk käsitsi analüüsi teostamise ebareaalseks, vajades automatiseeritud lahendusi, et tu-

vastada kasutajaarvustustest arendajatele olulist teavet tarkvara kvaliteedi parandamiseks. 

Viimased strateegiad arendajatele olulise teabe tuvastamiseks rakenduste arvustustes 

hõlmavad eelhäälestatud keelemudelite (PLMide) täppishäälestamist arvustuste klassi-

fitseerimise ülesandeks, kasutades märgendatud andmeid. Andmete märgendamise kõrge 

kulu ja uute rakenduste ja kategooriate pideva ilmumise tõttu rakendusturgudel on ülioluline 

hinnata hiljutisi tehnikaid nagu eelhäälestamine ja prompt-häälestamine, mis on näidanud 

edu piiratud andmete olukordades. Eelhäälestamise ja prompt-häälestamise strateegia 

võimaldab mudelitel iseseisvalt erinevatele ülesannetele kohaneda, kasutades promptide 

kaudu tutvustatud domeeniteadmisi. Selle uuringu peamine eesmärk on hinnata 

keelemudelite (LMide) väheste näidete põhise prompt-häälestamise tõhusust arendajatele 

olulise teabe tuvastamisel rakenduste arvustustes. Selle eesmärgi saavutamiseks võrdleb 

uuringu esimene uurimisküsimus prompt-häälestamise ja traditsioonilise keelemudeli RoB-

ERTa täppishäälestamise tulemuslikkust andmekitsikuse olukorras kolmel märgendatud ar-

vustuse andmestikul. Teine uurimisküsimus uurib prompt-häälestamise tulemuslikkuse 

mõju arvustuste teabe klassifitseerimisel keelemudelite (T5 ja GPT-2) valiku ja nende 

arhitektuuri põhjal. Kolmas ja viimane uurimisküsimus hindab prompti mallide disaini ja 

verbalisaatori disaini mõju prompt-häälestamise tulemuslikkusele arvustuste teabe klassi-

fitseerimisel. Selle uuringu tulemused näitavad, et prompt-häälestamise lähenemine võib 

piiratud märgendatud andmete olemasolu korral ületada traditsioonilise täppishäälestamise 

strateegia. Lisaks täheldati uuringus mudelite tulemuslikkuse varieerumist erinevate ar-

vustuse andmestike vahel, rõhutades mudelivaliku, verbalisaatori disaini ja prompti mallide 

disaini tähtsust. Need teadmised pakuvad väärtuslikku juhendit prompt-häälestamise tehni-

kate kasutamiseks rakenduste arvustuste valdkonnas, eriti kontekstides, kus märgendatud 

andmeid on vähe. 

Võtmesõnad: 

Rakenduste arvustused, Kasutajaarvustused, Prompt-häälestamine, Prompt-õppimine, 

Vähesed näited, Prompt-mallid, Verbalisaatorid, OpenPrompt 

CERCS: P170 - Arvutiteadus, arvutusmeetodid, susteemid, juhtimine (automaatjuhtimiste-

ooria) 
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1 Introduction 

 

In today's app marketplaces like Apple’s App Store and Google’s Play Store, users have the 

platform to submit feedback, which contains valuable insights such as feature requests, bug 

reports and non-functional attributes which are crucial for improving app quality. The im-

portance of classifying and understanding user reviews to enhance and sustain the quality 

of applications has been widely recognized, prompting researchers to explore various meth-

odologies for extracting developer-relevant information from these reviews. User feedback 

plays a pivotal role in shaping app visibility, credibility, and overall quality. When it comes 

to improving the quality, app developers should be able to extract the details they need from 

user reviews to satisfy the users' expectations. The manual analysis becomes impractical 

because software vendors often receive thousands of feedback entries daily [1]. Conse-

quently, researchers have investigated methods ranging from traditional machine learning 

to deep learning paradigms [1, 2] and the pre-train & fine-tune approach [3] to automate the 

classification of crucial insights from user reviews. However, these methods typically rely 

on large volumes of labelled data for effective model training. Labelling data needs to be 

performed by domain experts, and this process is both time-consuming and costly [1, 4], 

particularly in domains such as app reviews, where app marketplaces offer millions of apps 

belonging to different categories like games, social networking platforms, and entertainment 

apps posing significant challenges. Moreover, labelling data for these unseen apps becomes 

increasingly difficult and expensive with the continuous introduction of new app categories.  

A comparative study [1] evaluating traditional machine learning and deep learning methods 

in classifying user feedback concluded that traditional machine learning could yield satis-

factory results within their experimental setting compared to deep learning approaches. Nev-

ertheless, given the dependence of machine learning on extensive training datasets, there is 

a growing need to explore approaches that either require minimal labelled data (few-shot) 

or no data (zero-shot).  

While prompt-tuning has emerged as a promising technique in natural language processing 

[3], its application in the app review domain remains largely unexplored, with no published 

work available for reference. Therefore, this study holds significance for application devel-

opers and future researchers seeking to harness the potential of prompt-learning in the con-

text of the app review domain. 

Motivated by this need, this study systematically evaluates the effectiveness of few-shot 

prompt-tuning approach that requires minimal labelled data for fine-tuning pre-trained mod-

els for classifying app reviews. 

This study aims to answer the following research questions: 

RQ1: How does the performance of few-shot prompt-tuning compare with traditional fine-

tuning when classifying developer-relevant information from app reviews? 

RQ1 aims to evaluate the performance of few-shot prompt-tuning in classifying app reviews 

into categories such as feature requests, bug reports (functional), excessive energy consump-

tion reports, performance problem reports, security issue reports, usability improvement re-

quests, etc. The experiments pertaining to the first research question assess the performance 

of prompt-tuning in comparison to traditional fine-tuning under data-constrained scenarios. 

Pre-trained language model RoBERTa serves as the model for both approaches, with one 

verbalizer and one prompt template utilized as additional settings for prompt-tuning. These 

experiments are conducted across four different proportions of few-shot samples, ranging 
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from 70% to 2%, to gauge performance under varying levels of data availability. Verbalizer 

and prompt template used in RQ1, alongside the outcomes of all these experiments, will 

serve as the foundational benchmarks for subsequent research inquiries. The insights 

gleaned from addressing this research question provide perspectives on the performance of 

prompt-tuning under data-constrained conditions compared to traditional fine-tuning meth-

odologies. 

 

RQ2: How does the performance of few-shot prompt-tuning vary when using different lan-

guage model architectures and sizes in classifying developer-relevant information in app 

reviews? 

RQ2 explores the comparative performance of few-shot prompt-tuning in classifying app 

reviews using two additional language models from distinct architectural backgrounds. 

While the language models differ, all other experimental settings from RQ1 are maintained 

in RQ2. The findings from this inquiry provide valuable insights into the impact of employ-

ing diverse language model architectures in few-shot prompt-tuning on performance. Fur-

thermore, upon completion of this investigation, the identification of the most effective lan-

guage model for each dataset with 2% training data allows for their targeted utilization in 

subsequent RQ3 experiments. 

 

RQ3: How do the prompt template design and verbalizer design affect the performance in 

classifying developer-relevant information in app reviews? 

RQ3 is specifically designed to investigate how variations in the prompt template and ver-

balizer designs influence the performance of prompt-tuning. Leveraging the most successful 

models identified in RQ1 and RQ2 for each dataset with 2% training data, this inquiry in-

troduces two verbalizers and three distinct prompt templates. 
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2 Background 

 

Initially, this section introduces the significance of app reviews in facilitating software de-

velopment activities. Then, it provides knowledge concerning Language Models (LMs) and 

prompt-based learning, relevant to this study. 

2.1 User reviews/ App reviews 

App shops such as Google Play and Apple AppStore offer over 3 million apps that cover 

almost every type of software and service. These apps are downloaded, used, and reviewed 

by billions of users on a regular basis. Recent studies have demonstrated that user evalua-

tions are a valuable source of information for app vendors and developers, as they contain 

information about issues, ideas for future features, and documentation of released function-

ality [5]. The majority of the reviews, however, are pretty non-informative, simply praising 

the app and repeating the star ratings in words. App stores, such as Google Play and the 

Apple Store, allow users to submit feedback on apps by leaving review comments and star 

ratings. These platforms provide an effective electronic means for application developers 

and consumers to exchange app-related information. It was discovered by previous research 

that user input includes usage scenarios, problem reports, and feature requests, which can 

assist app developers with software maintenance and evolution responsibilities [1].  

Due to the rapid expansion and intense competition in the mobile application (app) market, 

app developers must not only provide consumers with appealing new features but also care-

fully maintain and improve existing features based on user feedback. User reviews reveal a 

rich source of information for planning such feature maintenance operations, and developers 

may benefit greatly from evaluating and magnifying the value of certain features to the 

overall success of their apps. 

 

2.2 Language Models (LMs) 

A Language Model is an advanced neural network algorithm capable of performing a wide 

range of natural language processing (NLP) tasks. These models, built upon transformer 

architectures, are trained on extensive datasets, allowing them to comprehend, translate, 

predict, and generate textual or other forms of content1. In other words, an LM is a computer 

program trained on numerous examples to understand and interpret human language or com-

plex data [6]. 

A transformer model, comprising an encoder and a decoder, stands as the prevailing archi-

tecture for language models. This model operates by tokenizing input data and performing 

concurrent mathematical operations to discover connections between tokens. This helps the 

computer identify patterns similar to how a person would when given the same query1. 

Transformer models can be categorized based on their architectural design2. 

Encoder-Only Architecture: 

In this architecture, only the encoder component is utilized. It generates contextualized rep-

resentations of input text, which can be used for various downstream tasks such as text clas-

sification, sentiment analysis and named entity recognition.  

                                                 
1 https://www.elastic.co/what-is/large-language-models 
2 https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder 

https://www.elastic.co/what-is/large-language-models
https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder


10 

 

Encoder-Decoder Architecture:  

This architecture consists of separate encoder and decoder components. The encoder pro-

cesses input sequences, while the decoder generates output sequences based on the encoded 

representations. It is commonly used for tasks like sequence-to-sequence learning and text 

generation. 

Decoder-Only Architecture: 

In this architecture, only the decoder component is used. It generates text sequences based 

on learned patterns and inputs, making it suitable for tasks such as text generation, language 

translation, and dialogue systems. 

 

Architecture Models 

Encoder-Only BERT, RoBERTa 

Encoder-Decoder BART, T5 

Decoder-Only GPT-2, GPT-3 

 

Table 1: Language models 

 

Below are detailed descriptions of language models3. 

• BERT (Bidirectional Encoder Representations from Transformers): BERT has 

gained significant attention for its ability to understand the context and nuances of 

language. It’s been employed in NLP tasks such as sentiment analysis, named entity 

recognition, and question-answering systems. 

• RoBERTa (A Robustly Optimized BERT Pretraining Approach): This variant of 

BERT addresses the limitations of its predecessor and has achieved state-of-the-art 

performance on various language tasks. 

• T5: T5 is an encoder-decoder model that translates all natural language processing 

difficulties to text. It is trained utilizing instructor coercion. This means that during 

training, there is always an input sequence and a target sequence. The input sequence 

is fed into the model via input_ids. Kale and Rastogi's paper suggests a pre-train + 

fine-tune technique for data-to-text jobs. Their experiments show that text-to-text 

pre-training, such as T5, allows simple, end-to-end transformer-based models to out-

perform pipelined neural architectures designed for data-to-text generation, as well 

as alternative language model-based pre-training techniques like BERT and GPT-2. 

Importantly, they determined that T5 pre-training leads to stronger generalization, 

as indicated by significant improvements in out-of-domain test sets [7]. 

• GPT-2: OpenAI's Generative Pre-trained Transformer 2 (GPT-2) is a big language 

model and the second in the basic series of GPT models. GPT-2 is a huge language 

model trained using a massive dataset of text and code. 

• GPT-3: OpenAI’s Generative Pre-trained Transformer 3 is one of the most remark-

able language models to date. At the time of its release, the GPT-3 model comprised 

an unprecedented 175 billion parameters. 

                                                 
3 https://www.algolia.com/blog/ai/examples-of-best-large-language-models/ 

https://www.algolia.com/blog/ai/examples-of-best-large-language-models/
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• GPT-4: The largest model in OpenAI’s GPT series, Generative Pre-trained Trans-

former 4 was released in 2023. Like other LMs, it’s a transformer-based model. The 

key differentiator is that its parameter count is more than 170 trillion. 

Language models (LMs) are gaining prominence in academia and industry because of their 

superior performance in a variety of applications. As LMs continue to play an important 

role in both research and daily use, their evaluation becomes more important, not only at the 

task level but also at the societal level, in order to have a better understanding of their pos-

sible hazards. Over the last few years, major attempts have been undertaken to explore LMs 

from numerous angles [6]. LMs have recently exhibited amazing capabilities in a variety of 

natural language processing applications, such as language translation, text production, and 

question-answering. Furthermore, LMs are a novel and important component of computer-

ized language processing, with the ability to recognize complicated speech patterns and pro-

vide coherent and suitable responses in a given environment [8]. 

 

2.3 Prompt-Based Learning 

Prompt-based learning is an emerging group of ML model training methods. It’s a strategy 

that machine learning engineers can use to train LMs so the same model can be used for 

different tasks without re-training, which makes it a promising alternative to traditional fine-

tuning methods. In prompting, users directly specify the task they want to be completed in 

natural language for the pre-trained language model to interpret and complete. 

For example, when recognizing the emotion of a social media post, “I missed the bus today,” 

we may continue with a prompt “I felt so ____” and ask the LM to fill the blank with an 

emotion-bearing word. Or if we choose the prompt “English: I missed the bus today. French: 

____”), then an LM may be able to fill in the blank with a French translation [3].  

There are different prompting strategies such as zero-shot, one-shot and few-shot. Zero-shot 

learning is a model's ability to be able to complete a task without having received or used 

any training examples. It is capable of generating answers without modifying the parameters 

of pre-trained LMs, using only a prompt [9]. 

According to Mayer et al. their study looks into the possibilities of automated classification 

employing prompt-based learning methodologies with transformer models (huge language 

models learned unsupervised) for a domain-specific classification job. Prompt-based learn-

ing with zero or few shots has the ability to (1) utilize artificial intelligence without advanced 

programming abilities and (2) use artificial intelligence without fine-tuning models with 

vast volumes of labelled training data. They used this unique strategy to conduct an experi-

ment with zero-shot classification as a baseline model and a few-shot classification ap-

proach. For comparison, they fine-tuned a language model on the supplied classification job 

and conducted a second independent human evaluation to compare it to the given human 

ratings from the first study [10].  

The prompt-based learning paradigm bridges the gap between pre-training and fine-tuning, 

and it performs well in the few-shot context [11]. This study focuses on investigating few-

shot prompt-tuning strategy. 

 



12 

 

2.3.1 Fixed-prompt language model tuning strategy (Few-shot) 

Few-shot learning involves tuning the parameters of the pre-trained LM, similar to the tra-

ditional pre-train and fine-tune paradigm. However, it distinguishes itself by incorporating 

fixed prompts to define the model's behaviour [9]. 

With increased privacy controls on personal devices, data is frequently prohibited from leav-

ing these devices and reaching central servers, where crucial operations are performed to 

improve research and model training. It is critical to improve such data and optimize the 

performance of current machine learning models. Machine learning has been extremely suc-

cessful in data-intensive applications, but it suffers when the data set is limited [12]. Re-

cently, Few-shot Learning has been proposed to address this issue. Using prior knowledge, 

FSL can quickly generalize to new tasks with only a few samples and supervised infor-

mation [13]. 

 

2.3.2 Prompt templates 

The prompt template is a piece of natural language text that uses masked areas to elicit 

knowledge from a PLM [14]. Recently, prompt-based tuning has emerged as an effective 

method for few-shot learning, bridging the gap between the pre-training and downstream 

task stages.  

Prompt-based tuning involves wrapping input texts with task-specific templates, transform-

ing the original assignment into a cloze-style problem. For example, in a topic classification 

task, we can use the template "<text>. This topic is about [MASK]", where <text> represents 

input sentences. PLMs infer words to fill in [MASK], which are then transferred to matching 

labels using a verbalizer (e.g., "sports" for "Sports") [15]. Studies have been done to learn 

how prompt templates can cause accuracy to vary with the choice of the template. According 

to these studies, it was identified that generating a proper prompt template has a large effect 

on the accuracy of the model [2, 16]. 

 

2.3.3 Verbalizers  

The verbalizer, one of the most significant modules in prompt-learning, converts the original 

labels into a collection of label words. In classification, verbalizers are mappings from labels 

to words in a language model's vocabulary. The verbalizer, which maps label words to class 

labels, is a critical component of prompt-tuning. These verbalizers guide the model’s under-

standing of a specific task.  

A verbalizer projects label words into class labels, such as "fix" into "Bug Report" class. To 

classify the line "I can't install it on my Samsung note iii please fix it" into the class "Bug 

Report", it must first wrap it in a prompt template such as "I can't install it on my Samsung 

note iii please fix it. This review is about a: [MASK]" before feeding it into the PLM. If the 

likelihood of correctly guessing the label word "fix" in the "[MASK]" place above a certain 

threshold, classify the sentence as "Bug Report" [14]. Recent studies show the effect of 

verbalizers in prompt-learning and how important it is to design the verbalizers carefully to 

achieve optimal performance [17]. 
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2.4 Evaluation Metrics 

 

2.4.1 Precision 

Precision is a metric that gives you the proportion of true positives to the number of total 

positives that the model predicts. It answers the question, “Out of all the positive predictions 

we made, how many were true?” Precision is defined as the number of correct positive pre-

dictions (TP) divided by the total number of positive predictions (TP + FP). The best accu-

racy is 1.0, while the worst is 0.0 [18]. 

Precision = TP / (TP + FP) 

 

2.4.2 Recall 

Recall focuses on how good the model is at finding all the positives. Recall is also called 

true positive rate and answers the question, “Out of all the data points that should be pre-

dicted as true, how many did we correctly predict as true?”  Recall is measured by dividing 

the number of accurate positive predictions (TP) by the total number of positives (P). The 

best TP rate is 1.0, while the worst is 0.0 [18]. 

Recall = TP / (TP + FN) 

 

2.4.3 F1 Score 

F1 Score is a measure that combines Recall and Precision. This measure represents the av-

erage Recall and Precision levels. As we have seen, there is a trade-off between Precision 

and Recall. F1 can, therefore, be used to measure how effectively our models make that 

trade-off.  

F1-score = 2 (precision * recall) / (precision + recall) 

 

2.4.4 Accuracy  

The accuracy metric calculates the ratio of correct predictions to the total number of cases 

assessed. Accuracy is calculated by adding two accurate predictions (TP + TN) and dividing 

by the entire number of data sets (P + N). The highest accuracy is 1.0, while the lowest is 

0.00 [18]. 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 
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3 Methodology  

 

This section describes the methodologies employed to fulfil the objectives outlined in the 

thesis. It comprises two main subsections: Experimental Setup and the Experiments. 

The Experimental Setup explains the datasets utilized, the data pre-processing methodolo-

gies employed, the data splitting strategies, the language models utilized, and the designs of 

prompt-tuning verbalizers and prompt templates, alongside the hyperparameter configura-

tions of the experiments. 

The subsequent section provides a detailed explanation of the experiments conducted for 

each research question. The experimental process comprised several sequential steps, com-

mencing with the establishment of baseline performances using the RoBERTa model for 

traditional fine-tuning and prompt-tuning and subsequently exploring variations in perfor-

mance when employing models from diverse language model architectures. The third re-

search question investigated how alterations in prompt-tuning verbalizers and prompt tem-

plates impact performance. 

The OpenPrompt4 library was employed for all prompt-learning experiments across RQ1, 

RQ2, and RQ3. OpenPrompt is a unified, easy-to-use toolkit to conduct prompt-learning 

over pre-trained language models (PLM), renowned for its flexibility and extensibility, fa-

cilitates the deployment of prompt-learning pipelines without the need to implement from 

scratch. Leveraging the OpenPrompt library enables the utilization of various language 

models and facilitates the design of bespoke prompt-learning workflows [19].  

 

3.1 Experimental Setup 

 

3.1.1 Labelled review datasets 

This section describes the datasets utilized in the experiments conducted within this study. 

Three manually labelled datasets, namely Scalabrino [5], Maalej5, and Pan5, were employed 

to assess the efficacy of app review classification employing prompt-tuning methodologies. 

The Scalabrino dataset facilitates analysis across seven distinct classes, whereas the Maalej 

and Pan datasets comprise four classes each. Notably, the feature request and bug report 

classes were consistently present across all three datasets. Each labelled dataset is described 

in following subsections. 

 

3.1.1.1 Scalabrino Dataset (DS1) 

The Scalabrino dataset [20] utilized in this study comprise a collection of 3000 user reviews 

that were manually categorized into seven classes by two authors. These reviews were 

sourced from a diverse array of 705 Android apps spanning categories such as games, books, 

education, communication, health, sports, travel, weather, and more. Below are the class 

details of this dataset. 

 

                                                 
4 https://github.com/thunlp/OpenPrompt 
5 https://data.mendeley.com/datasets/5fk732vkwr/2 

https://github.com/thunlp/OpenPrompt
https://data.mendeley.com/datasets/5fk732vkwr/2
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Class name Class definition No. of records 

Bug  Functional bug report 764 

Energy  Report of excessive energy consumption 106 

Feature  Suggestion for new feature 333 

Other  Non-informative reviews 1505 

Performance  Report of performance problems 135 

Security  Report of security issues 50 

Usability  Request for usability improvements 107 

 

Table 2: Class distribution in Scalabrino dataset 

 

The dataset was obtained through the replication package6 provided in the corresponding 

paper [21]. 

 

3.1.1.2 Maalej Dataset (DS2) 

The second dataset employed in this study was a truth set prepared for the experiments of a 

study on the automatic classification of app reviews [22]. This dataset contains 3691 reviews 

from various apps available in Play Store and App Store. Each review underwent manual 

analysis and labelling into four distinct classes: bug reports, feature requests, user experi-

ences, and ratings. Bug reports describe issues within the application that necessitated rec-

tification, such as crashes, erroneous behaviour, and performance shortcomings. Feature re-

quests encompass user demands for additional functionalities or content, accompanied by 

suggestions for app enhancements. User experiences narrative detailed users' experiences 

with the application. Ratings encompass of non-informative reviews expressing praise or 

criticisms. 

 

Class name No. of records 

Feature Request 252 

Problem Discovery/ Bug Report 370 

Rating 2462 

User Experience 607 

 

Table 3: Class distribution in Maalej dataset 

This dataset was sourced from a publicly available repository1 [23]. 

                                                 
6 https://zenodo.org/records/5733504 

https://zenodo.org/records/5733504
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3.1.1.3 Pan Dataset (DS3) 

The third dataset utilized in this study was a truth set employed in a study on classifying 

user reviews for software maintenance and evolution [4]. Comprising 1390 reviews from 

prominent apps like Angry Birds, Dropbox, Evernote, TripAdvisor, PicsArt, Pinterest, and 

WhatsApp, available in both App Store and Play Store, this dataset underwent manual la-

belling by two authors into four distinct classes: feature requests, information giving, infor-

mation seeking, and problem discovery/ bug reports. Feature requests encapsulate reviews 

containing ideas, suggestions, or needs for enhancing app functionalities. Information giv-

ing reviews aim to inform users or developers about various aspects related to the app. In-

formation seeking reviews depict the reviews which attempt to obtain information or assis-

tance from other users or developers. Problem discovery class describe issues and unex-

pected behaviours encountered within the app.  

 

Class name No. of records 

Feature Request 192 

Information Giving 603 

Information Seeking 101 

Problem Discovery 494 

 

Table 4: Class distribution in Pan dataset 

This dataset was also sourced from a publicly available repository1 [23]. 

 

3.1.2 Data Pre-processing 

In the pre-processing phase of this study, a series of steps were undertaken to ensure the 

quality and consistency of the datasets utilised. The pre-processing pipeline included several 

key steps aimed at standardising the textual data across all three datasets; Scalabrino, Maalej 

and Pan. The pre-processing phase employed a two-step approach to handle common text-

processing tasks:  

Expansion of contractions: Contractions, such as "don't" or "can't", were expanded to their 

full forms (e.g., "do not" or "cannot") to maintain uniformity and improve readability. This 

ensured the contractions were consistent in all the review texts. 

Text cleaning: Various cleaning operations were applied to remove unwanted elements 

from the text. This involved eliminating special characters, such as punctuation marks and 

symbols, and replacing them with spaces. Additionally, redundant whitespaces were re-

moved to streamline the text. Finally, any non-ASCII characters, including emojis, were 

stripped from the text to ensure compatibility with downstream tasks. 

By implementing these pre-processing steps consistently across all datasets, the textual data 

were standardised and prepared for subsequent analyses, including model training and eval-

uation. This pre-processing approach aimed to mitigate potential noise and inconsistencies 

in the review texts, ultimately enhancing the quality and reliability of the experimental re-

sults obtained in this study. 
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3.1.3 Training, validation, and test sets 

In this study, the data splitting approach served as a pivotal component in evaluating the 

performance of prompt-tuning under data-constrained scenarios within the app review do-

main. Four distinct data splitting strategies were employed to comprehensively investigate 

the efficacy of prompt-tuning compared to traditional fine-tuning, particularly when labelled 

data availability was limited. 

The initial splitting approach designated a standard training dataset size of 70%, validation 

dataset size of 15%, and test dataset size of 15%, allowing for an assessment of traditional 

fine-tuning performance under conditions of ample labelled data availability. Subsequent to 

this baseline evaluation, three additional data splitting strategies were implemented, each 

featuring significantly reduced training and validation dataset sizes of 5%, 3%, and 2% de-

rived from the initial training dataset and validation dataset. These diminished training da-

taset sizes were chosen deliberately to mirror scenarios of limited labelled data availability, 

thereby facilitating an examination of prompt-tuning performance in data-scarce environ-

ments. 

It is noteworthy that the training dataset sizes of 5%, 3%, and 2% were aligned with the 

corresponding validation set sizes, ensuring a consistent evaluation framework across the 

experiments. This alignment enabled a focused analysis of prompt-tuning performance in 

scenarios characterised by constrained labelled data availability. Conversely, the test set 

sizes remained consistent across all splitting approaches, ensuring fair and equitable perfor-

mance comparisons between traditional fine-tuning and prompt-tuning methodologies. 

Stratification was employed to ensure that the class proportions remained consistent across 

the training, validation and test sets, a crucial aspect in maintaining the integrity of the ex-

perimental design. 

Overall, the employed data splitting approaches were meticulously designed to systemati-

cally evaluate the performance of prompt-tuning across varying degrees of labelled data 

scarcity, thereby facilitating nuanced insights into its efficacy for app review classification 

tasks. Below is a detailed view of data splitting strategies used in this study. 

 

Training set size Validation set size Test set size Reference 

70% 15% 15% EX1 

5% of EX1 5% of EX1 15% EX2 

3% of EX1 3% of EX1 15% EX3 

2% of EX1 2% of EX1 15% EX4 

 

Table 5: Data splitting strategy 
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Dataset Data split 

strategy 

Training sample size Validation sample 

size 

Test sample 

size 

DS1 

(3000) 

EX1 2100 450 450 

EX2 105 22 450 

EX3 63 13 450 

EX4 42 9 450 

DS2 

(3691) 

EX1 2584 553 554 

EX2 129 27 554 

EX3 77 16 554 

EX4 51 11 554 

DS3 

(1390) 

EX1 973 208 209 

EX2 48 10 209 

EX3 29 6 209 

EX4 19 4 209 

 

Table 6: Sample sizes 

 

3.1.4 Language Models 

This section describes the pre-trained language models used in the experiments based on 

traditional fine-tuning and prompt-tuning. In this study, three models were employed from 

three distinct language model architectures to investigate the performance of traditional 

fine-tuning and prompt-tuning in classifying developer-relevant information within app re-

views. Each architecture represents a unique approach to natural language processing, 

providing valuable insights into the effectiveness of prompt-tuning across different model 

designs. 

 

3.1.4.1 Encoder-only Model: RoBERTa (MD1) 

RoBERTa, a variant of the BERT (Bidirectional Encoder Representations from Transform-

ers) architecture, falls under the category of encoder-only models. This architecture pro-

cesses text inputs by a stack of transformer encoder layers, enabling efficient representation 

learning from unidirectional context. RoBERTa enhances BERT's pre-training procedure 

by incorporating additional training data and fine-tuning strategies, leading to improve per-

formance in downstream tasks [24]. This widely used transformer-based model is renowned 

for its robust performance in various NLP tasks. 

 

Model variant Details of the model  

roberta-base 12-layer, 768-hidden, 12-heads, 125M parameters 

RoBERTa using the BERT-base architecture 

 

Table 7: RoBERTa model details 
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3.1.4.2 Encoder-decoder model: T5 (MD2) 

T5 (Text-To-Text Transfer Transformer) is an encoder-decoder model that operates on the 

principle of transforming input text into output text. Unlike encoder-only models, T5 em-

ploys both encoder and decoder components. The encoder processes input sequences, while 

the decoder generates target sequences based on the learned representations. T5's unified 

text-to-text framework enables seamless handling of diverse natural language understanding 

and generation tasks, facilitating effective transfer learning and task adaptation [25]. 

 

Model variant Details of the model  

t5-base ~220M parameters with 12-layers, 768-hidden-state, 

3072 feed-forward hidden-state, 12-heads, Trained on 

English text: The Colossal Clean Crawled Corpus (C4) 

 

Table 8: T5 model details 

 

3.1.4.3 Decoder-only models: GPT-2 (MD3) 

GPT-2 (Generative Pre-trained Transformer 2), developed by OpenAI, belongs to the cate-

gory of decoder-only models. In this architecture, text generation is performed autoregres-

sively, where each token in the output sequence is generated based on preceding tokens. 

GPT-2 utilises a stack of transformer decoder layers to capture dependencies and generate 

coherent text sequences. While decoder-only models are primarily used for text generation 

tasks, they can also be adapted for various other NLP tasks through fine-tuning [26]. 

 

Model variant Details of the model  

gpt2-medium 24-layer, 1024-hidden, 16-heads, 345M parameters. 

OpenAI’s Medium-sized GPT-2 English model 

 

Table 9: GPT-2 model details 

 

These models were obtained from the Hugging Face model hub7, a comprehensive reposi-

tory of pre-trained language models and associated resources. 

 

3.1.5 Prompt Templates 

Prompt templates serve as modifiers of the original input text and play a crucial role in the 

prompt-learning framework. This study focused on understanding how the performance of 

classifying app reviews varies when different prompt templates are employed. Four distinct 

prompt templates were utilized for the experiments conducted in this study. 

                                                 
7 https://huggingface.co/models 

https://huggingface.co/models
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While various techniques exist for deriving effective prompt templates, such as manual tem-

plate engineering and automated template learning engineering [2] this study opted for hand-

crafted templates. The templates were crafted by the researcher, drawing inspiration from 

similar studies in the literature [2, 9]. 

The objective of this study was not to identify the optimal templates but rather to investigate 

the impact of different templates on app review classification performance. Therefore, the 

selected templates were chosen to represent a diverse range of approaches commonly used 

in prompt-learning frameworks. By examining how the performance varies across different 

templates, insights can be gained into the relative effectiveness of different prompt template 

designs in the context of classifying app reviews. 

Prompt templates used in this study are shown in the table below. 

 

Template# Prompt Template Reference 

Template 1 '{"review_text "} Classify this review: {"mask"}' PT1 

Template 2 '{"review_text"} This review is about a {"mask"}' PT2 

Template 3 '{"review_text"} This belongs to class {"mask"}' PT3 

Template 4 '{"review_text"} This user review belongs to class {"mask"}' PT4 

 

Table 10: Prompt templates 

 

3.1.6 Verbalizers 

The verbalizer serves as an essential part of the prompt-learning pipeline, mapping the 

outputs of the language model into the necessary labels or categories. This section de-

scribes the verbalizers employed in the experiments conducted within this study. Three 

distinct verbalizers were utilised, each contributing to the classification process in unique 

ways.  

 

The first verbalizer leveraged logistic regression techniques tailored to the characteristics 

of each dataset, extracting keywords associated with individual classes to inform the clas-

sification process. In contrast, the second verbalizer adopted a straightforward approach by 

utilising the class names themselves as keywords, simplifying the mapping process. The 

third verbalizer was constructed utilising insights derived from the OpenAI ChatGPT 3.5 

model8. This method involved giving the language model a prompt that described the da-

tasets and their classes, prompting it to identify keywords representing each class. 

 

Subsequent sections delve into the details of each verbalizer design, describing the meth-

odologies followed when designing the verbalizers. Through an exploration of these ver-

balizer strategies, a comprehensive understanding of their impact on classification perfor-

mance within the context of app review analysis is attained. 

                                                 
8 https://chat.openai.com/ 

https://chat.openai.com/
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3.1.6.1 Verbalizer 1 (VB1) 

The initial step in the design of the first verbalizer entailed the application of logistic regres-

sion models to each of the three datasets individually, aiming to discern keywords pertinent 

to each class within the datasets. Subsequently, the extracted keywords underwent a metic-

ulous manual analysis and cleaning process to ascertain each class's most salient and repre-

sentative set. During this iterative process, the researcher and the research supervisor col-

laborated to individually analyse and identify potential keywords for each class. 

Following this individual analysis, a discussion ensued, during which deliberated upon the 

identified sets of keywords. A final set of keywords was curated through mutual agreement 

and consensus, capturing the essence of each class across the datasets. Notably, as the bug 

report/problem discovery and feature request classes were prevalent across all three datasets, 

and the ratings/other class was prevalent across two datasets, the identified keywords from 

each dataset were merged to form a comprehensive set. 

This methodical approach ensured that the selected keywords were robust and reflective of 

the distinctive characteristics of each class, thereby enhancing the effectiveness of the ver-

balizer in accurately mapping language model outputs to the corresponding class labels. 

 

Dataset Class Keywords 

DS1 Bug freeze, fix, bug, error, crash, stuck, issue, problem, fail 

Energy battery, drain 

Feature feature, add, wish, improve, lack, miss, need, suggest 

Other best, useful, love, awesome, fantastic, excellent, rub-

bish, useless, wow, superb, addict, nice 

Performance slow, lag, glitch, performance 

Security virus, hack, permission, secure 

Usability difficult, ad, annoy, interface, gui, button 

DS2 Feature Request feature, add, wish, improve, lack, miss, need, suggest 

Problem Discovery freeze, fix, bug, error, crash, stuck, issue, problem, fail 

Rating best, useful, love, awesome, fantastic, excellent, rub-

bish, useless, wow, superb, addict, nice 

User Experience ui, easy, graphic 

DS3 Feature Request feature, add, wish, improve, lack, miss, need, suggest 

Information Giving recommend, best, great, idea, check 

Information Seeking why, how, what, where, who 

Problem Discovery freeze, fix, bug, error, crash, stuck, issue, problem, fail 

 

Table 11: Verbalizer design 1 
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3.1.6.2 Verbalizer 2 (VB2) 

Verbalizer 2 adopts a simplistic yet effective approach by utilizing the class names them-

selves as keywords. This design strategy draws inspiration from a previous study conducted 

by Luo [9], wherein one of the verbalizers employed the words from the original intention 

labels initially established within the dataset. In alignment with this approach, Verbalizer 2 

in the current study leverages the class names directly as keywords. 

By directly associating the class names with the corresponding labels, this verbalizer design 

simplifies the mapping process between language model outputs and class categories. This 

straightforward approach not only streamlines the verbalizer creation process but also en-

sures clarity and transparency in the interpretation of model predictions. 

 

3.1.6.3 Verbalizer 3 (VB3) 

Verbalizer 3 adopts an approach by leveraging the human-like capabilities of ChatGPT [6], 

to generate relevant keywords for each class in the dataset. This design methodology in-

volved providing specific prompts to ChatGPT, outlining details about the dataset, the clas-

ses within it, and the role of verbalizers in prompt-learning. Additionally, examples from 

the OpenPrompt library illustrating the definition of verbalizers for different classes were 

provided to offer context. The purpose of utilizing ChatGPT in generating verbalizers was 

to lessen the dependency on domain experts for verbalizer creation. 

Separate prompts tailored to each dataset were utilized, ensuring that the characteristics and 

nuances of each dataset were accurately conveyed to ChatGPT. By presenting dataset-spe-

cific information, the aim was to elicit keywords that were contextually relevant and reflec-

tive of the user reviews typically associated with each class. 

Unlike Verbalizer 1, which involved manual analysis and curation of keywords, Verbalizer 

3 relied on the raw output generated by ChatGPT without further analysis or cleaning. This 

approach aimed to capture a broad spectrum of keywords that users might use when provid-

ing reviews related to each class in the dataset. Through this method, Verbalizer 3 sought to 

leverage the natural language understanding capabilities of ChatGPT to enhance the rele-

vance and diversity of the generated keywords. The prompts provided to ChatGPT and the 

corresponding results can be referenced in the appendix. 

 

Dataset Class Keywords 

DS1 Bug crash, error, bug, glitch, malfunction, issue, problem 

Energy battery drain, energy consumption, power usage, en-

ergy efficiency, drain, resource-intensive 

Feature feature, improvement, addition, suggestion, enhance-

ment, request 

Other praise, criticism, feedback, opinion, irrelevant, off-

topic 

Performance slow, lag, performance, speed, efficiency, bottleneck 

Security security, vulnerability, breach, hack, exploit, threat 
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Usability usability, interface, user experience, navigation, in-

tuitive, user-friendly 

DS2 Feature Request suggest, add, feature, improvement, enhancement, 

request, update, new functionality, missing feature, 

wish 

Problem Discovery crash, error, issue, bug, freeze, glitch, performance 

problem, malfunction, software problem, application 

crash 

Rating good, great, excellent, fantastic, amazing, poor, terri-

ble, disappointing, satisfactory, exceptional 

User Experience usability, user-friendly, experience, intuitive, naviga-

tion, interface, convenience, ease of use, helpful, 

smooth 

DS3 Feature Request suggest, idea, improve, enhance, functionality, re-

quest, wish, addition, enhancement, new feature 

Information Giving update, inform, news, announcement, change log, re-

lease notes, release, version, details, notification 

Information Seeking help, question, query, seek, assistance, support, ad-

vice, guidance, clarification, answer 

Problem Discovery issue, problem, bug, glitch, error, malfunction, crash, 

problem-solving, troubleshooting, unexpected be-

havior 

 

Table 12: Verbalizer design 3 

 

3.1.7 Hyperparameters 

The experimental setup utilized for traditional fine-tuning and prompt-tuning involved a 

specific configuration of hyperparameters to ensure consistency and reproducibility of the 

results. These hyperparameters were selected to balance computational efficiency with 

model performance and stability during training. The below sections elaborate on the exper-

imental setup used in this study. 

 

3.1.7.1 Environmental Setup 

 

Setup Values 

Platform pegasus2.hpc.ut.ee (Rocket server - OpenStack) 

Machine Type 2x AMD EPYC 7713 64-Core Processors (256 cores 

total), 2 TB RAM, 15 TB of local SSD storage 

GPUs 8 x Tesla a100 with 80GB vRAM each 
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Network Infiniband with 9 x 100Gb connections 

Python Version 3.9.12 

OpenPrompt Version 1.0.1 

 

Table 10: Environmental setup 

 

3.1.7.2 Traditional fine-tuning & Prompt-tuning setup 

 

Below is a breakdown of each hyperparameter used in this setup and its purpose in the train-

ing process: 

Batch Size: Determines the number of samples processed before the model's parameters are 

updated. A larger batch size can lead to faster training but requires more memory. 

Number of Epochs: Specifies the number of times the entire dataset is passed forward and 

backward through the neural network. Increasing the number of epochs can improve the 

model's performance, but too many epochs may lead to overfitting. 

Random Seed: Sets the initial random state for reproducibility. By fixing the random seed, 

the same sequence of random numbers will be generated each time the code is run, ensuring 

consistent results. 

Patience: Determines the number of epochs to wait for improvement in the validation loss 

before terminating the training process. It helps prevent overfitting by stopping training 

when the model's performance no longer improves on the validation set. 

 

Configuration Configured Values 

Batch Size 8 

No of Epochs 10 

Random Seed 2022 

Patience 3 

 

Table 11: Traditional fine-tuning & Prompt-tuning setup 
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3.2 Experiments 

 

Following sections describe the experiments executed to answer the three research questions 

in this study. 

 

3.2.1 RQ1 Experiments 

The methodology employed for RQ1 involved conducting a series of experiments to com-

pare the performance of traditional fine-tuning and prompt-tuning approaches in classifying 

app reviews into predefined classes. Specifically, the experiments utilized the RoBERTa 

model, verbalizer 1, and prompt template 1 across three datasets (DS1, DS2, DS3). 

To initiate the experiments, pre-processing logic was applied to each dataset to ensure con-

sistency and readiness for model training. A total of twelve experiments were conducted for 

RQ1, encompassing various data splitting strategies, including 70%, 5%, 3%, and 2% of the 

training dataset size. The same samples of training, validation and test datasets were used 

across both the traditional fine-tuning and prompt-tuning experiments in each scenario to 

ensure equitable exposure to the data and facilitate fair comparisons between traditional 

fine-tuning and prompt-tuning methodologies. 

The RoBERTa model, obtained from Hugging Face, served as the backbone for both ap-

proaches. The experiments were trained over ten epochs with an early stopping criterion set 

to a patience of three to ensure optimal convergence. 

The outcomes of these experiments formed the foundation for subsequent research ques-

tions, providing insights into the baseline performance of prompt-tuning compared to tradi-

tional fine-tuning under varying data constraints. After execution, a performance report was 

obtained for each experiment with Precision, Recall, F1 score and Accuracy values. 

 

Datasets Model Data split Prompt template Verbalizer 

Scalabrino RoBERTa 70% PT1 VB1 

Maalej  5%   

Pan  3%   

  2%   

 

Table 12: RQ1 experimental setup 

 

3.2.2 RQ2 Experiments 

RQ2 aimed to investigate the impact of utilizing different models from distinct language 

model architectures on the classification performance of app review classes. In contrast to 

RQ1, which focused on utilizing the RoBERTa model from the encoder-only architecture, 

RQ2 expanded the scope by incorporating models from diverse architectures. 

For this research question, two additional models were introduced: T5 from the encoder-

decoder architecture and GPT-2 from the decoder-only architecture. The objective was to 
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compare the performance of these models with the baseline established in RQ1 using RoB-

ERTa, while keeping all other experimental variables constant. This approach allows for a 

comprehensive understanding of how different language model architectures influence 

prompt-tuning classification outcomes. 

Similar to RQ1, the experiments in RQ2 retained the same experimental setup, including 

the use of OpenPrompt library, consistent pre-processing logic, and identical data splitting 

strategies across datasets. Training, validation, and testing datasets remained unchanged to 

ensure fair comparisons between the different models. 

The experiments were conducted over 10 epochs with an early stopping criterion set to a 

patience of 3, maintaining consistency with the methodology established in RQ1. This ap-

proach facilitates a direct comparison of model performances across different architectures 

under similar training conditions. 

The insights gained from RQ2 experiments provided valuable information on the relative 

strengths and weaknesses of models from various language model architectures in classify-

ing app review classes, contributing to a deeper understanding of the prompt-tuning para-

digm in data-constrained scenarios. 

 

Datasets Models Data split Prompt template Verbalizer 

Scalabrino T5 70% PT1 VB1 

Maalej GPT-2 5%   

Pan  3%   

  2%   

 

Table 13: RQ2 experimental setup 

 

3.2.3 RQ3 Experiments 

RQ3 focused on the examination of how variations in prompt templates and verbalizers 

impact the performance of classifying app reviews using prompt-tuning. The objective of 

this research question was to discern the influence of different prompt template designs and 

verbalizer designs on classification outcomes. 

Given the focus on evaluating prompt-tuning performance under data-scarce conditions, the 

experiments in RQ3 were exclusively conducted using 2% of the training datasets. To es-

tablish the baseline for RQ3 experiments, the top-performing experiments from RQ1 and 

RQ2, conducted with a minimum training dataset percentage of 2%, were selected for each 

dataset. These experiments, which demonstrated optimal performance in prompt-tuning, 

served as the foundation for subsequent investigations. For the Scalabrino dataset, the GPT-

2 model exhibited superior performance, while the T5 model performed well for the Maalej 

and Pan datasets. Consequently, these models were utilized in the RQ3 experiments, 

wherein prompt template and verbalizer modifications were implemented. 

In the initial set of experiments for RQ3, the verbalizer (VB1) remained constant while the 

prompt templates were varied across different iterations. This approach enabled the assess-

ment of how performance fluctuated in response to changes in prompt template designs. 
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Subsequently, the prompt template (PT1) was held constant, and the verbalizers were altered 

to observe the variations in performance attributable to different verbalizer designs. 

Consistency was maintained with previous experiments, employing OpenPrompt, standard-

ized pre-processing procedures, and identical numbers of epochs and patience values as in 

the RQ1 and RQ2 experiments. 

Through systematic experimentation and analysis, RQ3 aimed to find the impact of prompt 

template designs and verbalizer designs on the classification performance of app reviews, 

providing valuable insights into the effectiveness of prompt-tuning methodologies in data-

constrained scenarios. 

 

Datasets Models Data split Prompt templates Verbalizers 

Scalabrino T5 2% PT2 VB2 

Maalej GPT-2  PT3 VB3 

Pan   PT4  

     

 

Table 14: RQ3 experimental setup 
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4 Results 

 

4.1 RQ1  

RQ1 endeavours to assess the efficacy of prompt-tuning in contrast to traditional fine-tuning 

methodologies across three distinct datasets. The experiments were conducted employing 

the RoBERTa model, encompassing varying proportions of training data at 70%, 5%, 3%, 

and 2%. Within the context of prompt-tuning experiments, a baseline configuration was 

established utilizing the VB1 and PT1 settings, serving as the foundation for subsequent 

analyses. To enhance readability, only the overall performance is summarized here; for de-

tailed class-wise performance, refer to the appendix. 

Figure 1: Comparison of RoBERTA model performance between traditional fine-tuning 

and prompt-tuning on Scalabrino dataset 

 

Figure 1 shows the results produced by the first set of experiments, conducted using the 

Scalabrino dataset. At a 70% training dataset size, when there’s adequate labelled data avail-

able, traditional fine-tuning achieved an accuracy of 87.11%. The 5%, 3%, and 2% experi-

ments intended to explore the efficacy of prompt-tuning in scenarios characterized by con-

strained data availability. At 5% training dataset availability, prompt-tuning achieved an 

accuracy of 80%, surpassing the accuracy of 73.78% attained by traditional fine-tuning, 

resulting in a difference of 6.22%. At 3% training data size traditional fine-tuning demon-

strated higher accuracy of 74.89%, while prompt-tuning achieved 73.77% accuracy, result-

ing in a difference of 1.12%.  Further reductions to 2% training dataset size showcased the 

superiority of prompt-tuning, with accuracies of 74.67%, compared to 63.78% for tradi-

tional fine-tuning. This performance exhibited a difference of 10.89% compared to tradi-

tional fine-tuning methodology, highlighting the effectiveness of prompt-tuning in data-

constrained scenarios. 
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The findings revealed interesting insights into the comparative performance of traditional 

fine-tuning and prompt-tuning across various training dataset sizes. In the scenario where 

the training dataset size is limited to 2%, indicating a scarcity of training data, prompt-tuning 

demonstrated superior performance compared to traditional fine-tuning methodology. 

 

 

Figure 2: Comparison of RoBERTA model performance between traditional fine-tuning 

and prompt-tuning on Maalej dataset 

 

Figure 2 shows the results produced by the second set of experiments, conducted using the 

manually labelled Maalej dataset. At a 70% training dataset size, traditional fine-tuning ex-

hibited an accuracy of 70.4%. At 5% training data availability, prompt-tuning demonstrated 

a higher accuracy of 68.95% compared to the accuracy of 66.61% achieved by traditional 

fine-tuning, resulting in a difference of 2.34%. At the 3% training dataset size, traditional 

fine-tuning achieved an accuracy of 66.61%, slightly surpassing prompt-tuning's accuracy 

of 65.88%, resulting in a difference of 0.73%. Prompt-tuning exceeded traditional fine-tun-

ing at the 2% dataset size, with an accuracy of 68.05% as compared to 66.61% accuracy of 

traditional fine-tuning, resulting in a difference of 1.44%.  
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Figure 3: Comparison of RoBERTA model performance between traditional fine-tuning 

and prompt-tuning on Pan dataset 

 

Figure 3 shows the results of third set of RQ1 experiments, conducted using the manually 

labelled app review dataset Pan, aimed to evaluate the performance of traditional fine-tuning 

and prompt-tuning approaches in classifying app reviews into distinct categories. In the in-

itial experiment utilizing 70% of the dataset, traditional fine-tuning yielded an accuracy of 

76.08%. At a data availability of 5%, prompt-tuning exhibited an accuracy of 35.41%, con-

trasting with the 61.24% accuracy achieved by traditional fine-tuning, resulting in a differ-

ence of 25.83%. With the 3% dataset size, both traditional fine-tuning and prompt-tuning 

yielded identical accuracies of 43.54%. The results indicated that at a dataset size of 2%, 

prompt-tuning notably surpassed traditional fine-tuning, achieving an accuracy of 59.81% 

compared to 53.59%, having a difference of 6.22%.  

In all the scenarios with limited annotated data, specifically at the lowest of 2% training data 

size of RQ1, prompt-tuning showcased strengths in accuracy compared to traditional fine-

tuning. These results underscore the effectiveness of prompt-tuning, particularly in scenar-

ios with limited data, showcasing its potential for superior performance compared to tradi-

tional fine-tuning methods. 

 

 

 

 

 

 

When using only 2% of the training data, prompt-tuning has improved the classification 

accuracy over traditional fine-tuning by 10%, 1%, and 6% on the Scalabrino, Maalej, 

and Pan labelled review datasets, respectively. 
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4.2 RQ2  

 

RQ2 seeks to evaluate the comparative effectiveness of prompt-tuning against traditional 

fine-tuning techniques, under the identical experimental parameters as those described in 

RQ1. However, in this context, the experiments were extended to incorporate T5 and GPT-

2 models, with the aim of illuminating the subtle variations in performance attributable to 

different language model architectures. To enhance readability, only the overall perfor-

mance is summarized here; for detailed class-wise performance, refer to the appendix. 

 

 

Figure 4: Scalabrino Dataset - Prompt-Tuning Results - RoBERTa vs T5 vs GPT-2 

 

Figure 4 is a comparative analysis of prompt-tuning performance of the Scalabrino dataset 

across three different language models used in RQ1 and RQ2 - RoBERTa, T5, and GPT-2. 

This provides valuable insights into the effectiveness of each model in classifying devel-

oper-relevant information in app reviews under data-constrained conditions. 

When utilizing RoBERTa as the language model, prompt-tuning achieved an accuracy of 

74.67% at a 2% training dataset size. Despite exhibiting slightly lower accuracy compared 

to T5 and GPT-2, RoBERTa's accuracy levels remained above 70% across all dataset sizes. 

Prompt-tuning with the T5 model yielded an accuracy of 80.22% at a 2% training dataset 

size, showcasing its effectiveness in app review classification tasks. T5 demonstrated a no-

table improvement in accuracy compared to RoBERTa, which suggests that T5's enhanced 

capability in understanding and generating natural language representations contributes to 

its superior performance in capturing developer-relevant information. 
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At a 2% training dataset size, GPT-2 achieved an accuracy of 81.56%, surpassing both RoB-

ERTa and T5 in accuracy. GPT-2's strong performance underscores its efficacy in under-

standing context and generating coherent text representations, which are crucial for accurate 

classification of app reviews. 

 

Figure 5: Maalej Dataset - Prompt-Tuning Results - RoBERTa vs T5 vs GPT-2 

 

Figure 5 depicts the comparison of prompt-tuning performance of the Maalej dataset across 

three different language models RoBERTa, T5, and GPT-2 along with VB1 and PT1 under 

data-constrained conditions. 

RoBERTa achieved an accuracy of 68.05% at a 2% training dataset size. T5 model yielded 

an accuracy of 70.94% at a 2% training dataset size, slight improvements in accuracy com-

pared to RoBERTa and GPT-2. GPT-2 achieved an accuracy of 70.4% at a 2% training 

dataset size. 
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Figure 6: Pan Dataset - Prompt-Tuning Results - RoBERTa vs T5 vs GPT-2 

 

The comparison of prompt-tuning performance using 2% training data from the Pan dataset 

across three different language models RoBERTa, T5, and GPT-2 along with VB1 and PT1 

which depicts in Figure 6 offers valuable insights into the effectiveness of each model in 

classifying developer-relevant information in app reviews under data-constrained condi-

tions. 

RoBERTa achieved an accuracy of 59.81% at a 2% training dataset size, demonstrating 

moderate performance compared to T5 and GPT-2. 

T5 model yielded the highest accuracy of 73.21% at a 2% training dataset size, showcasing 

its effectiveness in app review classification tasks. T5 consistently outperformed RoBERTa 

and GPT-2 across all training dataset sizes, indicating its superior ability to understand and 

generate natural language representations for accurate classification of developer-relevant 

information in app reviews. 

GPT-2 exhibited competitive performance in prompt-tuning experiments, achieving an ac-

curacy of 65.07% at a 2% training dataset size.  

 

 

 

 

 

 

 

 

At 2% training data availability, GPT-2 performed well for the Scalabrino dataset by 6%, 

while T5 excelled for the Maalej and Pan datasets by 2%, and 13%, in prompt-tuning, re-

spectively. 
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4.3 RQ3  

 

RQ3 investigates how the performance of prompt-tuning models is influenced by variations 

in prompt template design and verbalizer design. By altering these components inde-

pendently, insights into their respective impacts on the classification of developer-relevant 

information in app reviews are gained. For the experiments of RQ3, the best settings in RQ1 

and RQ2, which produced a higher performance for each dataset at 2% training dataset size, 

were picked. To enhance readability, only the overall performance is summarized here; for 

detailed class-wise performance, refer to the appendix. 

 

Figure 7: Impact of verbalizers and prompt templates on prompt-tuning performance 

 

Prompt Template Variation: 

In the experiments where the prompt template was varied while keeping the verbalizer con-

stant (VB1), several observations could be made: 

- For the Scalabrino dataset with a 2% training dataset size and GPT-2 model, prompt tem-

plate PT3 achieved the highest accuracy of 80.44%, out of PT2 and PT4 but couldn’t out-

perform the baseline of 81.56% of PT1. This suggests that PT1 is the most effective prompt 

template for Scalabrino in eliciting relevant information from app reviews. 

- In the Maalej dataset with a 2% training dataset size and T5 model, prompt template PT3 

also exhibited the highest accuracy of 73.29%, surpassing the baseline accuracy of 70.94%. 

This indicates that PT3 is the best prompt template for Maalej dataset. 
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- Similarly, in the Pan dataset with a 2% training dataset size and T5 model, prompt template 

PT2 achieved the highest accuracy of 75.12%, showcasing its superiority over the baseline 

accuracy of 73.21%.  

 

Verbalizer Variation: 

When the verbalizer was varied while keeping the prompt template constant (PT1), the fol-

lowing observations were made: 

- In the Scalabrino dataset with a 2% training dataset size and GPT-2 model, verbalizer VB3 

resulted in an accuracy of 77.33%, surpassing the performance of VB2, but still lower than 

the baseline accuracy of 81.56%. This suggests that VB1 is effective in classifying app re-

views in Scalabrino dataset. 

- In the Maalej dataset with a 2% training dataset size and T5 model, verbalizer VB3 

achieved an accuracy of 72.56%, higher than the baseline accuracy of 70.94%. This indi-

cates that VB3 offer improvements in projecting labels to label words compared to VB1. 

- However, in the Pan dataset with a 2% training dataset size and T5 model, verbalizer VB2 

resulted in an accuracy of 63.64%, substantially lower than the baseline accuracy of 73.21%. 

This suggests that VB1 is more suitable for this dataset. 

These results illustrate the impact of prompt templates and verbalizers on the performance 

of prompt-tuning. 

 

 

 

 

 

 

 

 

 

 

 

 

- Variations in prompt templates caused changes in accuracy of 8% for GPT-2 in the 

Scalabrino dataset, and 3%, 5% for T5 in the Maalej and Pan datasets, respectively. 

- Variations in verbalizers resulted in changes in accuracy of 10% for GPT-2, in the Sca-

labrino dataset, and 4%, 14% for T5 in the Maalej and Pan datasets, respectively. 
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5 Discussion 

 

This section delves into the important findings of this study.  

 

Prompt-tuning performance of RoBERTa at 3% training size 

The performance of RoBERTa at a 3% training dataset size is interesting, as it exhibits lower 

performance compared to the 2% dataset. This discrepancy in performance could be at-

tributed to the quality of data available for the 3% training size, which may not have been 

as robust as that of the 2% dataset. This potentially introduced noise and inconsistencies 

into the training process, thereby making it more challenging for the model to discern rele-

vant patterns effectively. Additionally, the examples presented for prediction may have dif-

fered from those encountered during training, further impacting the model's ability to gen-

eralize accurately. 

 

Comparison of Traditional fine-tuning vs Prompt-tuning 

 

Figure 8: Overall Performance - Traditional fine-tuning vs Prompt-tuning - at 2% 

 

The comparison between traditional fine-tuning and prompt-tuning at a 2% training dataset 

size illuminates the effectiveness of prompt-tuning in data-constrained scenarios across var-

ious datasets. For this comparison, the experiments that yielded the best performance for 

each dataset in traditional fine-tuning and prompt-tuning were selected, respectively. 

For the Scalabrino dataset, traditional fine-tuning with RoBERTa achieved an accuracy of 

63.78%, while prompt-tuning with GPT-2, using the VB1 and PT1, attained a significantly 

higher accuracy of 81.56%. This substantial performance gap highlights the advantage of 

prompt-tuning in effectively utilizing limited labelled data. 
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Similarly, in the Maalej dataset, traditional fine-tuning with RoBERTa yielded an accuracy 

of 66.61%, whereas prompt-tuning with T5 and the VB1 and PT3, achieved a higher accu-

racy of 73.29%. This also demonstrates the superior performance of prompt-tuning over 

traditional fine-tuning, even with minimal labelled data. 

In the case of the Pan dataset, traditional fine-tuning with RoBERTa achieved an accuracy 

of 53.59%, whereas prompt-tuning with T5 and the VB1 and PT2 achieved a notably higher 

accuracy of 75.12%. Once again, prompt-tuning showcased its effectiveness in leveraging 

limited labelled data to achieve superior classification performance compared to traditional 

fine-tuning. 

Overall, these results underscore the significance of prompt-tuning as a viable approach for 

classifying developer-relevant information in app reviews, particularly when faced with 

constraints on labelled data availability. 

 

 

 

Figure 9: Overall Performance - Traditional fine-tuning (70%) vs Prompt-tuning (2%) 

 

The comparison between the highest performances of traditional fine-tuning with 70% train-

ing data and prompt-tuning with 2% training data offers valuable insights into the effective-

ness of prompt-tuning in achieving performance levels comparable to traditional fine-tuning 

with significantly less labelled data. 

In the Scalabrino dataset, traditional fine-tuning with T5 at 70% training data achieved an 

accuracy of 87.33%, while prompt-tuning with GPT-2, using the VB1 prompt template, at 

2% training data attained an accuracy of 81.56%. Despite the substantial difference in the 

amount of labelled data used, prompt-tuning managed to achieve a performance close to 

traditional fine-tuning, demonstrating its effectiveness in leveraging limited labelled data 

efficiently.  
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Similarly, within the Maalej dataset, traditional fine-tuning utilizing RoBERTa at 70% train-

ing data yielded an accuracy of 70.4%. Conversely, prompt-tuning employing T5 with the 

VB1 prompt template at 2% training data achieved a notably higher accuracy of 73.29% 

compared to traditional fine-tuning. This underscores the capability of prompt-tuning to out-

perform traditional fine-tuning, even with a mere 2% of the available training data. 

In the case of the Pan dataset, traditional fine-tuning with RoBERTa at 70% training data 

achieved an accuracy of 76.08%, while prompt-tuning with T5 and the VB1 prompt tem-

plate at 2% training data achieved a slightly lower accuracy of 75.12%. Nevertheless, the 

performance achieved by prompt-tuning with a fraction of the labelled data approaches that 

of traditional fine-tuning with a significantly larger dataset, showcasing the efficacy of 

prompt-tuning in maximizing performance with limited labelled data. 

Overall, these results underscore the potential of prompt-tuning as a viable approach for 

achieving performance levels comparable to traditional fine-tuning with substantially less 

labelled data, thereby offering practical implications for applications where labelled data 

availability is limited. 

 

Prompt-tuning class-wise performances 

 

Figure 10: Scalabrino - Prompt-tuning class-wise Performance 

 

This chart provides a snapshot of the class-wise performance of prompt-tuning when only 

2% of training data is available. It illustrates the extent of performance achievable even in 

situations of limited data availability. Among all the few-shot prompt-tuning experiments 

conducted in RQ1, RQ2, and RQ3 for the Scalabrino dataset, the experiment utilizing the 

GPT-2 model with VB1 and PT1 settings achieved the highest performance at 2% data. This 

specific experiment is highlighted here to showcase the class-wise performance. 



39 

 

In the Scalabrino dataset, prompt-tuning achieved impressive performance across various 

classes. The "Other" class exhibited the highest F1 score of 89.09%, suggesting effective 

classification of miscellaneous reports. Similarly, the "Other" class achieved a F1 score of 

88.43%, indicating the model's ability to accurately identify bug-related reports. "Energy", 

"Feature" and "Performance" classes achieved 76.92%, 60.5% and 56.25% of F1 scores 

respectively. However, the "Usability" class exhibited 0% F1 score, indicating potential 

challenges in accurately identifying usability-related issues with limited labelled data for 

this dataset.  

By looking at some examples of test dataset, it can be assumed that model struggled to 

accurately classify reviews related to usability issues due to the language used in the reviews 

is similar to reviews belonging to other classes, such as Bug, Other or Feature classes, and 

because of the extremely low labelled examples in the training data of Usability class, lead-

ing to difficulties in learning distinguishing features and patterns for this class. 

Below are few examples of prompt-tuning predictions with the predicted labels and actual 

labels for the above described scenario.  

 

Review Actual label Predicted label 

nice app this app is too good Other Other 

fix this game needs some fixing it causes my phone 

to shut on and off plus it freezes my phone 

Bug Bug 

cannot show amount of free internal phone memory 

on desire some monitoring tool 

Feature Feature 

my battery seems to be draining faster since update-

was one of my favorite apps what happened please fix 

thanks 

Energy Energy 

slow very slow on my symphony w10 Performance Performance 

do not download this is a virus appdo not download Security Security 

the same pop up ad keeps popping up it is very an-

noying 

Usability Bug 

difficult to use this app Usability Other 

 

Table 15: Scalabrino dataset - Prompt-tuning predictions 
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Figure 11: Maalej dataset - Prompt-tuning class-wise Performance 

Among the few-shot prompt-tuning experiments carried out across RQ1, RQ2, and RQ3 for 

the Maalej dataset, the experiment employed the T5 model with VB1 and PT3 settings 

demonstrated the best performance at a 2% data availability. This particular experiment is 

emphasized here to illustrate the class-wise performance. 

Moving to the Maalej dataset, prompt-tuning demonstrated varying levels of performance 

across different classes. The "Rating" class achieved the highest F1 score of 85.01%, indi-

cating successful identification of user reviews of non-informative reviews such as praise, 

dispraise etc. "Problem Discovery" and "User Experience" classes scored 60.43% and 

38.62% F1 scores respectively. However, the "Feature Request" class exhibited lower F1 

score, suggesting potential difficulties in accurately categorizing feature-related requests 

with limited labelled data for Maalej dataset. The reason for the lower F1 scores for the 

"Feature Request" and "User Experience" classes could stem from the ambiguity in lan-

guage, as reviews may not always explicitly convey the intended class. 

Below are few examples of prompt-tuning predictions of Maalej dataset. 

 

Review Actual label Predicted label 

Great for vacations and tours Love the app Rating Rating 

Brilliant app but crashes on iPad and iPhone Problem Dis-

covery 

Problem Dis-

covery 

I love this app Easy to navigate and easy to post to 

One of my favorites 

User Experi-

ence 

User Experi-

ence 

It is almost 2011 Where is the multitasking Feature Re-

quest 

Feature Request 
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This would easily be a 5 star app Best idea ever But 

it loses 2 stars just because I have to download one 

photo at a time This is a huge inconvenience 

Feature Re-

quest 

Problem Dis-

covery 

Great way to keep up on your crossfit progress User Experi-

ence 

Rating 

 

Table 16: Maalej dataset - Prompt-tuning predictions 

 

Figure 12: Pan dataset - Prompt-tuning class-wise Performance 

 

Across the few-shot prompt-tuning experiments conducted throughout RQ1, RQ2, and RQ3 

for the Pan dataset, the experiment utilizing the T5 model with VB1 and PT2 settings show-

cased the most superior performance with only a 2% data availability. This particular ex-

periment is used here to illustrate the class-wise performance of Pan dataset. 

In the Pan dataset, prompt-tuning showcased mixed performance across different classes. 

The "Problem Discovery" class exhibited the highest F1 score of 81.44%, indicating effec-

tive identification of issues or problems with the app. "Information Giving" and "Feature 

Request" classes achieved 79.56% and 57.69% of F1 scores respectively. However, the "In-

formation Seeking" class achieved lower F1 score, suggesting challenges in accurately cat-

egorizing information-seeking reviews in this dataset. By looking at some examples of  "In-

formation Seeking" class, it can be assumed that the lower F1 score might be attributed to 

the inherent difficulty in distinguishing between requests for information and offers of in-

formation based solely on the language used in the reviews. 

Below are few examples of prompt-tuning predictions of Pan dataset. 
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Review Actual label Predicted label 

I love this site but the app crashes every time I use it Problem Dis-

covery 

Problem Dis-

covery 

I planned my daughters entire baby shower using Pin-

terest 

Information 

Giving 

Information 

Giving 

I just wish that you could have more secret boards Feature Re-

quest 

Feature Request 

How do these things get out of the gate Information 

Seeking 

Information 

Seeking 

Is there a way I can leave messages to other pinners Information 

Seeking 

Information 

Giving 

Which one gets you to the list of categories the home 

magnifying glass plus sign or person 

Information 

Seeking 

Information 

Giving 

Can t figure out how to clean up my boards Information 

Seeking 

Problem Dis-

covery 

 

Table 17: Pan dataset - Prompt-tuning predictions 

 

Overall, the class-wise performance analysis highlights the potential of prompt-tuning in 

effectively classifying developer-relevant information across various categories, even with 

a limited amount of labelled data. However, it also underscores the importance of further 

research and optimization to address challenges in accurately identifying certain classes, 

particularly those with lower F1 scores. 
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6 Conclusion 

 

This study explores the effectiveness of prompt-tuning methodologies for classifying devel-

oper-relevant information in app reviews, particularly in scenarios with limited labelled 

data. Through three research questions, prompt-tuning was systematically compared with 

traditional fine-tuning across various datasets and experimental conditions.  

In RQ1, prompt-tuning's performance was assessed against traditional fine-tuning across 

different datasets and training dataset sizes. Prompt-tuning consistently outperformed tradi-

tional methods, particularly when labelled data was scarce, achieving notable improvements 

in classification accuracy across all datasets examined. Expanding upon the insights gained 

from RQ1, RQ2 compared prompt-tuning across different language model architectures, 

reaffirming its superior performance, particularly with T5 and GPT-2 models. RQ3 provided 

insights into the impact of prompt template design and verbalizer design on prompt-tuning's 

performance. The findings revealed that both prompt templates and verbalizers play crucial 

roles in influencing the effectiveness of prompt-tuning, with certain settings yielding supe-

rior classification performance across different datasets. 

In summary, few-shot prompt-tuning emerges as a practical solution for effectively classi-

fying developer-relevant information in app reviews, particularly in scenarios with limited 

labelled data. The consistent performance improvements across various datasets and exper-

imental conditions highlight the potential of prompt-tuning for real-world applications 

where labelled data is scarce. In the ever-evolving app marketplace, where new categories 

continuously emerge and labelled data for these new apps is limited, few-shot prompt-tuning 

methods offer a promising approach to classify app reviews effectively. By fine-tuning lan-

guage models with carefully designed prompt templates and verbalizers, few-shot prompt-

tuning facilitates efficient categorization of app reviews into distinct classes, even in sce-

narios with limited labelled data. 

Future research in app review classification using prompt-tuning could focus on optimizing 

performance by exploring these key areas: 

1. Continuous Prompting: Investigate the effectiveness of continuous prompting ap-

proaches, which involve training the model on a continuous stream of prompts with 

ongoing updates and adjustments. 

2. Tuning-Free Prompting: Evaluating tuning-free prompting strategy and compare 

its performance over few-shot prompt-tuning. 

3. Automatic Prompt Template Design: Apply techniques for automatic prompt tem-

plate design and eliminate the dependency of human effort in prompt template de-

sign.  

By advancing research in these areas, the efficiency and effectiveness of prompt-tuning 

methodologies can be achieved for app review classification, ultimately enabling better ex-

traction of insights from app review data. 

Code related to this study is publicly available at  

https://github.com/hashikadhananjanie/few-shot-prompting-app-review-classification 
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Appendix 

I. RQ1 Results 

Experiment  Class Traditional fine-tuning results Prompt-tuning results 

Prec Rec F1 Acc Prec Rec F1 Acc 

RQ1_MD1_DS1_VB1_PT1_EX1 

Bug 85.95 90.43 88.14 

87.11 

90 86.09 88 

86 

Energy 93.75 93.75 93.75 62.5 93.75 75 

Feature 78.72 74 76.29 70.91 78 74.29 

Other 91.77 93.81 92.78 91.63 92.04 91.83 

Performance 80 60 68.57 81.82 45 58.06 

Security 75 85.71 80 87.5 100 93.33 

Usability 50 37.5 42.86 66.67 62.5 64.52 

RQ1_MD1_DS1_VB1_PT1_EX2 

Bug 84.68 81.74 83.19 

73.78 

77.94 92.17 84.46 

80 

Energy 100 18.75 31.58 85.71 75 80 

Feature 38.46 50 43.48 65.62 42 51.22 

Other 77.41 92.48 84.27 82.07 91.15 86.37 

Performance 100 5 9.52 88.89 40 55.17 

Security 0 0 0 100 57.14 72.73 

Usability 0 0 0 75 18.75 30 

RQ1_MD1_DS1_VB1_PT1_EX3 

 

Bug 67.74 91.3 77.78 

74.89 

61.4 91.3 73.43 

73.33 

Energy 0 0 0 100 31.25 47.62 

Feature 61.36 54 57.45 60 36 45 

Other 81.67 90.71 85.95 82.5 87.61 84.98 

Performance 0 0 0 100 20 33.33 

Security 0 0 0 0 0 0 

Usability 0 0 0 0 0 0 

RQ1_MD1_DS1_VB1_PT1_EX4 

 

Bug 64.35 64.35 64.35 

63.78 

79.82 75.65 77.68 

74.67 

Energy 0 0 0 100 81.25 89.66 

Feature 0 0 0 48.89 44 46.32 

Other 63.58 94.25 75.94 79.3 89.82 84.23 

Performance 0 0 0 31.82 35 33.33 

Security 0 0 0 75 42.86 54.55 

Usability 0 0 0 100 6.25 11.76 

RQ1_MD1_DS2_VB1_PT1_EX1 

Feature Request 33.33 21.05 25.81 

70.4 

0 0 0 

66.61 
Problem Discovery 51.76 78.57 62.41 0 0 0 

Rating 81.7 83.47 82.57 66.61 100 79.96 

User Experience 44.12 32.97 37.74 0 0 0 

RQ1_MD1_DS2_VB1_PT1_EX2 

Feature Request 0 0 0 

66.61 

30.23 34.21 32.1 

68.95 
Problem Discovery 63.64 25 35.9 75 5.36 10 

Rating 79.61 87.8 83.51 75.72 92.14 83.13 

User Experience 24.8 34.07 28.7 44.83 28.57 34.9 

RQ1_MD1_DS2_VB1_PT1_EX3 

Feature Request 0 0 0 

66.61 

0 0 0 

65.88 
Problem Discovery 0 0 0 8.33 1.79 2.94 

Rating 66.61 100 79.96 67.28 98.64 80 

User Experience 0 0 0 0 0 0 

RQ1_MD1_DS2_VB1_PT1_EX4 

Feature Request 0 0 0 

66.61 

0 0 0 

68.05 
Problem Discovery 0 0 0 46.88 26.79 34.09 

Rating 66.61 100 79.96 69.62 98.1 81.44 

User Experience 0 0 0 0 0 0 

RQ1_MD1_DS3_VB1_PT1_EX1 

Feature Request 59.09 44.83 50.98 

76.08 

62.5 17.24 27.03 

73.68 
Information Giving 76.47 85.71 80.83 70.27 85.71 77.23 

Information Seeking 83.33 33.33 47.62 77.78 46.67 58.33 

Problem Discovery 79.75 85.14 82.35 79.01 86.49 82.58 

RQ1_MD1_DS3_VB1_PT1_EX2 

Feature Request 0 0 0 

61.24 

0 0 0 

35.41 
Information Giving 68 74.73 71.2 0 0 0 

Information Seeking 0 0 0 0 0 0 

Problem Discovery 55.05 81.08 65.57 35.41 100 52.3 

RQ1_MD1_DS3_VB1_PT1_EX3 

Feature Request 0 0 0 

43.54 

0 0 0 

43.54 
Information Giving 43.54 100 60.67 43.54 100 60.67 

Information Seeking 0 0 0 0 0 0 

Problem Discovery 0 0 0 0 0 0 

RQ1_MD1_DS3_VB1_PT1_EX4 

Feature Request 0 0 0 

53.59 

18.18 6.9 10 

59.81 
Information Giving 54.26 76.92 63.64 56.93 85.71 68.42 

Information Seeking 0 0 0 0 0 0 

Problem Discovery 52.5 56.76 54.55 75 60.81 67.16 

 

Table 18: RQ1 results 
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II. RQ2 Results 

 

  Experiment   Class  Traditional fine-tuning results  Prompt-tuning results 

 Prec  Rec  F1  Acc  Prec  Rec  F1  Acc 

RQ2_MD2_DS1_VB1_PT1_EX1 

  Bug  88.89  90.43  89.66 

 87.33 

 86.4  93.91  90 

 86.22 

  Energy  88.24  93.75  90.91  88.24  93.75  90.91 

  Feature  73.58  78  75.73  78.57  66  71.74 

  Other  90.38  95.58  92.9  88.61  92.92  90.71 

  Performance  91.67  55  68.75  78.57  55  64.71 

  Security  100  57.14  72.73  77.78  100  87.5 

  Usability  50  25  33.33  66.67  25  36.36 

RQ2_MD2_DS1_VB1_PT1_EX2 

  Bug  30  2.61  4.8 

 50.44 

 83.08  93.91  88.16 

 84.22 

  Energy  0  0  0  93.75  93.75  93.75 

  Feature  0  0  0  64  64  64 

  Other  50.91  99.12  67.27  89.32  92.48  90.87 

  Performance  0  0  0  77.78  35  48.28 

  Security  0  0  0  71.43  71.43  71.43 

  Usability  0  0  0  75  18.75  30 

RQ2_MD2_DS1_VB1_PT1_EX3 

  Bug  29.73  19.13  23.28 

 50.44 

 83.74  89.57  86.55 

 81.56 

  Energy  0  0  0  60  93.75  73.17 

  Feature  0  0  0  62  62  62 

  Other  54.52  90.71  68.11  87.39  88.94  88.16 

  Performance  0  0  0  88.89  40  55.17 

  Security  0  0  0  77.78  100  87.5 

  Usability  0  0  0  50  12.5  20 

RQ2_MD2_DS1_VB1_PT1_EX4 

  Bug  22.86  48.7  31.11 

 35.56 

 84.82  82.61  83.7 

 80.22 

  Energy  0  0  0  100  81.25  89.66 

  Feature  0  0  0  50  62  55.36 

  Other  51.74  46.02  48.71  85.54  91.59  88.46  

  Performance  0  0  0  88.89  40  55.17 

  Security  0  0  0  83.33  71.43  76.92 

  Usability  0  0  0  33.33  12.5  18.18 

RQ2_MD2_DS2_VB1_PT1_EX1 

  Feature Request  0  0  0 

 70.04 

 50  7.89  13.64 

 70.94 
  Problem Discovery  50.67  67.86  58.02  62.22  50  55.45 

  Rating  77.44  90.24  83.35  72.75  96.21  82.85 

  User Experience  36.17  18.68  24.64  46.67  7.69  13.21 

RQ2_MD2_DS2_VB1_PT1_EX2 

  Feature Request  0  0  0 

 66.61 

 30.77  21.05  25 

 68.23 
  Problem Discovery  0  0  0  53.52  67.86  59.84 

  Rating  66.61  100  79.96  80  83.47  81.7 

  User Experience  0  0  0  33.33  26.37  29.45 

RQ2_MD2_DS2_VB1_PT1_EX3 

  Feature Request  0  0  0 

 66.61 

 50  5.26  9.52 

 70.58 
  Problem Discovery  0  0  0  55.36  55.36  55.36 

  Rating  66.61  100  79.96  77.04  94.58  84.91 

  User Experience  0  0  0  21.95  9.89  13.64 

RQ2_MD2_DS2_VB1_PT1_EX4 

  Feature Request  0  0  0 

 66.61 

 40  5.26  9.3 

 70.94 
  Problem Discovery  0  0  0  52.94  64.29  58.06 

  Rating  66.61  100  79.96  75.75  95.66  84.55 

  User Experience  0  0  0  13.33  2.2  3.77 

RQ2_MD2_DS3_VB1_PT1_EX1 

  Feature Request  66.67  55.17  60.38 

 75.6 

 58.97  79.31  67.65 

 79.43 
  Information Giving  71.68  89.01  79.41  86.9  80.22  83.43 

  Information Seeking  83.33  33.33  47.62  88.89  53.33  66.67 

  Problem Discovery  84.85  75.68  80  80.52  83.78  82.12 

RQ2_MD2_DS3_VB1_PT1_EX2   Feature Request  0  0  0  44.98  55.88  65.52  60.32  75.6 
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  Information Giving  44.22  96.7  60.69  81.82  79.12  80.45 

  Information Seeking  0  0  0  66.67  13.33  22.22 

  Problem Discovery  60  8.11  14.29  77.38  87.84  82.28 

RQ2_MD2_DS3_VB1_PT1_EX3 

  Feature Request  0  0  0 

 44.02 

 71.43  17.24  27.78 

 66.51 
  Information Giving  43.84  97.8  60.54  85.33  70.33  77.11 

  Information Seeking  0  0  0  0  0  0 

  Problem Discovery  60  4.05  7.59  55.12  94.59  69.65 

RQ2_MD2_DS3_VB1_PT1_EX4 

  Feature Request  4.76  3.45  4 

 38.76 

 69.23  31.03  42.86 

 73.21 
  Information Giving  42.08  84.62  56.2  77.08  81.32  79.14 

  Information Seeking  0  0  0  50  6.67  11.76 

  Problem Discovery  60  4.05  7.59  70.41  93.24  80.23 

RQ2_MD3_DS1_VB1_PT1_EX1 

  Bug  87.18  88.7  87.93 

 85.11 

 92.38  84.35  88.18 

 83.78 

  Energy  100  87.5  93.33  86.67  81.25  83.87 

  Feature  63.16  72  67.29  62.71  74  67.89 

  Other  88.66  93.36  90.95  85.26  94.69  89.73 

  Performance  84.62  55  66.67  100  30  46.15 

  Security  100  57.14  72.73  85.71  85.71  85.71 

  Usability  71.43  31.25  43.48  57.14  25  34.78 

RQ2_MD3_DS1_VB1_PT1_EX2 

  Bug  61.06  60  60.53 

 60.67 

 85.37  91.3  88.24 

 83.56 

  Energy  0  0  0  100  81.25  89.66 

  Feature  24.62  32  27.83  57.14  72  63.72 

  Other  69.37  83.19  75.65  90.13  88.94  89.53 

  Performance  0  0  0  71.43  50  58.82 

  Security  0  0  0  83.33  71.43  76.92 

  Usability  0  0  0  75  37.5  50 

RQ2_MD3_DS1_VB1_PT1_EX3 

  Bug  65.31  55.65  60.09 

 59.56 

 82.68  91.3  86.78 

 80.67 

  Energy  0  0  0  90.91  62.5  74.07 

  Feature  18.75  12  14.63  67.74  42  51.85 

  Other  62.07  87.61  72.66  84.02  90.71  87.23 

  Performance  0  0  0  60.87  70  65.12 

  Security  0  0  0  83.33  71.43  76.92 

  Usability  0  0  0  37.5  18.75  25 

RQ2_MD3_DS1_VB1_PT1_EX4 

  Bug  62.16  60  61.06 

 60.67 

 84.25  93.04  88.43 

 81.56 

  Energy  0  0  0  65.22  93.75  76.92 

  Feature  10.53  4  5.8  52.17  72  60.5 

  Other  63.32  89.38  74.13  91.59  86.73  89.09 

  Performance  0  0  0  75  45  56.25 

  Security  0  0  0  80  57.14  66.67 

  Usability  0  0  0  0  0  0 

RQ2_MD3_DS2_VB1_PT1_EX1 

  Feature Request  50  5.26  9.52 

 67.87 

 0  0  0 

 71.48 
  Problem Discovery  45.16  75  56.38  56.67  60.71  58.62 

  Rating  78.64  84.82  81.62  78.93  88.35  83.38 

  User Experience  32.2  20.88  25.33  45  39.56  42.11 

RQ2_MD3_DS2_VB1_PT1_EX2 

  Feature Request  20  15.79  17.65 

 61.19 

 25  7.89  12 

 70.4 
  Problem Discovery  20  1.79  3.28  46.32  78.57  58.28 

  Rating  70.13  85.91  77.22  80.9  87.26  83.96 

  User Experience  22.39  16.48  18.99  42.86  23.08  30 

RQ2_MD3_DS2_VB1_PT1_EX3 

  Feature Request  13.21  18.42  15.38 

 57.94 

 0  0  0 

 70.94 
  Problem Discovery  16.67  1.79  3.23  47.06  71.43  56.74 

  Rating  69.28  81.3  74.81  76.82  94.31  84.67 

  User Experience  20.97  14.29  16.99  31.25  5.49  9.35 

RQ2_MD3_DS2_VB1_PT1_EX4 

  Feature Request  11.7  28.95  16.67 

 53.97 

 0  0  0 

 70.4   Problem Discovery  0  0  0  71.88  41.07  52.27 

  Rating  67.38  76.69  71.74  72.69  95.93  82.71 
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  User Experience  14.29  5.49  7.94  38.24  14.29  20.8 

RQ2_MD3_DS3_VB1_PT1_EX1 

  Feature Request  50  27.59  35.56 

 68.9 

 75  31.03  43.9 

 72.25 
  Information Giving  77.27  74.73  75.98  63.78  89.01  74.31 

  Information Seeking  75  40  52.17  80  26.67  40 

  Problem Discovery  63.92  83.78  72.51  87.69  77.03  82.01 

RQ2_MD3_DS3_VB1_PT1_EX2 

  Feature Request  25  34.48  28.99 

 35.89 

 100  10.34  18.75 

 71.77 
  Information Giving  50.77  36.26  42.31  82.02  80.22  81.11 

  Information Seeking  10.71  20  13.95  66.67  26.67  38.1 

  Problem Discovery  38.16  39.19  38.67  63.06  94.59  75.68 

RQ2_MD3_DS3_VB1_PT1_EX3 

  Feature Request  19.18  48.28  27.45 

 20.1 

 50  10.34  17.14 

 64.59 
  Information Giving  40  2.2  4.17  61.02  79.12  68.9 

  Information Seeking  3.9  20  6.52  50  6.67  11.76 

  Problem Discovery  42.59  31.08  35.94  71.08  79.73  75.16 

RQ2_MD3_DS3_VB1_PT1_EX4 

  Feature Request  18.42  48.28  26.67 

 16.27 

 50  3.45  6.45 

 65.07 
  Information Giving  0  0  0  60.32  83.52  70.05 

  Information Seeking  5.68  33.33  9.71  50  20  28.57 

  Problem Discovery  33.33  20.27  25.21  74.67  75.68  75.17 

 

Table 19: RQ2 results 

 

 

Figure 13: Comparison of T5 model performance between traditional fine-tuning and 

prompt-tuning on Scalabrino dataset 
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Figure 14: Comparison of T5 model performance between traditional fine-tuning and 

prompt-tuning on Maalej dataset 

 

 

Figure 15: Comparison of T5 model performance between traditional fine-tuning and 

prompt-tuning on Pan dataset 
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Figure 16: Comparison of GPT-2 model performance between traditional fine-tuning and 

prompt-tuning on Scalabrino dataset 

 

 

Figure 17: Comparison of GPT-2 model performance between traditional fine-tuning and 

prompt-tuning on Maalej dataset 
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Figure 18: Comparison of GPT-2 model performance between traditional fine-tuning and 

prompt-tuning on Pan dataset 
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III. RQ3 Results 

 

Experiment  Class Prompt-tuning results 

Prec Rec F1 Acc 

RQ3_MD2_DS2_VB1_PT2_EX4 

Feature Request 28.21 28.95 28.57 

69.49 
Problem Discovery 58.33 50 53.85 

Rating 78.85 88.89 83.57 

User Experience 35.29 19.78 25.35 

RQ3_MD2_DS2_VB1_PT3_EX4 

Feature Request 58.33 18.42 28 

73.29 
Problem Discovery 50.6 75 60.43 

Rating 81.23 89.16 85.01 

User Experience 51.85 30.77 38.62 

RQ3_MD2_DS2_VB1_PT4_EX4 

Feature Request 20 2.63 4.65 

70.76 
Problem Discovery 57.63 60.71 59.13 

Rating 75.97 95.12 84.48 

User Experience 21.43 6.59 10.08 

RQ3_MD2_DS2_VB2_PT1_EX4 

Feature Request 57.14 10.53 17.78 

69.13 
Problem Discovery 65.52 33.93 44.71 

Rating 75.5 91.87 82.89 

User Experience 30.43 23.08 26.25 

RQ3_MD2_DS2_VB3_PT1_EX4 

Feature Request 33.33 5.26 9.09 

72.56 
Problem Discovery 62.5 53.57 57.69 

Rating 76.2 94.58 84.4 

User Experience 50 23.08 31.58 

RQ3_MD2_DS3_VB1_PT2_EX4 

Feature Request 65.22 51.72 57.69 

75.12 
Information Giving 80 79.12 79.56 

Information Seeking 66.67 13.33 22.22 

Problem Discovery 73.12 91.89 81.44 

RQ3_MD2_DS3_VB1_PT3_EX4 

Feature Request 90 31.03 46.15 

74.16 
Information Giving 75 85.71 80 

Information Seeking 0 0 0 

Problem Discovery 71.58 91.89 80.47 

RQ3_MD2_DS3_VB1_PT4_EX4 

Feature Request 100 3.45 6.67 

69.38 
Information Giving 70.09 82.42 75.76 

Information Seeking 100 6.67 12.5 

Problem Discovery 68 91.89 78.16 

RQ3_MD2_DS3_VB2_PT1_EX4 

Feature Request 50 10.34 17.14 

63.64 
Information Giving 65.38 74.73 69.74 

Information Seeking 0 0 0 

Problem Discovery 62.63 83.78 71.68 

RQ3_MD2_DS3_VB3_PT1_EX4 

Feature Request 0 0 0 

60.77 
Information Giving 65.59 67.03 66.3 

Information Seeking 33.33 6.67 11.11 

Problem Discovery 64.36 87.84 74.29 

RQ3_MD3_DS1_VB1_PT2_EX4 

Bug 86.96 69.57 77.29 

73.56 

Energy 78.57 68.75 73.33 

Feature 41.03 64 50 

Other 78.46 85.4 81.78 

Performance 69.23 45 54.55 

Security 80 57.14 66.67 

Usability 100 12.5 22.22 

RQ3_MD3_DS1_VB1_PT3_EX4 

Bug 80.95 88.7 84.65 

80.44 

Energy 81.25 81.25 81.25 

Feature 47.83 66 55.46 

Other 89.24 88.05 88.64 

Performance 100 35 51.85 

Security 85.71 85.71 85.71 

Usability 100 12.5 22.22 

RQ3_MD3_DS1_VB1_PT4_EX4 

Bug 93.68 77.39 84.76 

78.89 

Energy 100 62.5 76.92 

Feature 50 70 58.33 

Other 81.42 91.15 86.01 

Performance 60 45 51.43 

Security 66.67 28.57 40 

Usability 100 25 40 

RQ3_MD3_DS1_VB2_PT1_EX4 

Bug 96.97 55.65 70.72 

71.56 Energy 83.33 31.25 45.45 

Feature 53.33 64 58.18 
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Other 70.37 92.48 79.92 

Performance 71.43 50 58.82 

Security 66.67 28.57 40 

Usability 0 0 0 

RQ3_MD3_DS1_VB3_PT1_EX4 

Bug 80.77 91.3 85.71 

77.33 

Energy 100 43.75 60.87 

Feature 75 18 29.03 

Other 76.33 95.58 84.87 

Performance 75 45 56.25 

Security 50 14.29 22.22 

Usability 25 6.25 10 

 

Table 20: RQ3 results 
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IV. Scalabrino VB3 design using ChatGPT 

 

Prompt: 

I'm doing a research on 'Few-Shot Prompt-Tuning of Language Models for App Review 

Classification: An Evaluation Study'. I'm using OpenPrompt library in this research. When 

using this library there's a step to define a Verbalizer. Below is the example they've provided 

in the documentation. 

Step: Define a Verbalizer  

A Verbalizer is another important (but not necessary) in prompt-learning, which projects 

the original labels (we have defined them as classes) to a set of label words. Here is an 

example that we project the negative class to the word bad, and project the positive class to 

the words good, wonderful, great.  

eg: 

from openprompt.prompts import ManualVerbalizer 

promptVerbalizer = ManualVerbalizer ( 

classes = classes,  

label_words = {"negative": ["bad"],  

  "positive": ["good", "wonderful", "great"]}, 

tokenizer = tokenizer) 

 

I need to define label_words according to the classes that I have in the dataset I use in my 

research. This app review dataset has 3000 user reviews, randomly selected from 705 dif-

ferent Android apps. This was manually labelled by two people by independently analyzing 

the 3,000 reviews and assigning each of them to a category (class) among the seven. Below 

are the details of the seven categories. 

In total, of the considered 3,000 reviews we labeled 764 as functional bug report, 333 as 

suggestion for new feature, 50 as report of security issues, 135 as report of performance 

problems, 107 as request for usability improvements, 106 as report of excessive energy con-

sumption and 1505 as other (other - i.e., non-informative reviews like praise or dispraise, a 

distractive critique, or a dissuasion). 

Could you please suggest the most relevant keywords that a user might use when providing 

reviews related to above seven classes. 

 

Result: 

Certainly! Here are some suggestions for relevant keywords that users might use when 

providing reviews related to the seven classes/categories in your dataset: 

1. Functional Bug Report: 

crash, error, bug, glitch, malfunction, issue, problem 

2. Suggestion for New Feature: 

feature, improvement, addition, suggestion, enhancement, request 
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3. Report of Security Issues: 

security, vulnerability, breach, hack, exploit, threat 

4. Report of Performance Problems: 

slow, lag, performance, speed, efficiency, bottleneck 

5. Request for Usability Improvements: 

usability, interface, user experience, navigation, intuitive, user-friendly 

6.Report of Excessive Energy Consumption: 

battery drain, energy consumption, power usage, energy efficiency, drain, resource-inten-

sive 

7. Other (Non-informative Reviews): 

praise, criticism, feedback, opinion, irrelevant, off-topic 

These keywords should help in defining the label words for your Verbalizer in a way that 

accurately captures the essence of each class based on user-provided reviews. Adjust them 

as necessary based on the specific characteristics and terminology of your dataset. 
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V. Maalej VB3 design using ChatGPT 

 

Prompt: 

I'm doing a research on 'Few-Shot Prompt-Tuning of Language Models for App Review 

Classification: An Evaluation Study'. I'm using OpenPrompt library in this research. When 

using this library there's a step to define a Verbalizer. Below is the example they've provided 

in the documentation. 

Step: Define a Verbalizer  

A Verbalizer is another important (but not necessary) in prompt-learning, which projects 

the original labels (we have defined them as classes) to a set of label words. Here is an 

example that we project the negative class to the word bad, and project the positive class to 

the words good, wonderful, great.  

eg: 

from openprompt.prompts import ManualVerbalizer 

promptVerbalizer = ManualVerbalizer ( 

classes = classes,  

label_words = {"negative": ["bad"],  

  "positive": ["good", "wonderful", "great"]}, 

tokenizer = tokenizer) 

 

I need to define label_words according to the classes that I have in the dataset I use in my 

research. This app review dataset has 3691 user reviews, manually labelled by assigning 

each of them to a category (class) among four. Below are the details of the four categories. 

Bug reports describe problems with the app which should be corrected, such as a crash, an 

erroneous behavior, or a performance issue. In feature requests, users ask for missing func-

tionality (e.g., provided by other apps) or missing content (e.g., in catalogs and games) and 

share ideas on how to improve the app in future releases by adding or changing features. 

User experiences document the experience of users with the app and how it helped in certain 

situations. They can be seen as documentation of the app, its requirements, and features. 

Finally, ratings are simple text reflections of the numeric star rating. Ratings are less in-

formative as they only include praise, dispraise, a distractive critique, or a dissuasion. 

Could you please suggest the most relevant keywords that a user might use when providing 

reviews related to above four classes (Bug reports, Feature requests, User experience, Rat-

ings) 

 

Result: 

Certainly! Here are some relevant keywords that users might use when providing reviews 

related to the four classes: 

1. Bug Reports: 

crash, error, issue, bug, freeze, glitch, performance problem, malfunction, software problem, 

application crash 
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2. Feature Requests:  

suggest, add, feature, improvement, enhancement, request, update, new functionality, miss-

ing feature, wish 

3. User Experience: 

usability, user-friendly, experience, intuitive, navigation, interface, convenience, ease of 

use, helpful, smooth 

4. Ratings: 

good, great, excellent, fantastic, amazing, poor, terrible, disappointing, satisfactory, excep-

tional 

These keywords capture the essence of each class and are commonly used by users when 

providing reviews related to app experiences. Feel free to adjust or expand the list based on 

the specific characteristics of your dataset and the classes you're interested in. 
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VI. Pan VB3 design using ChatGPT 

 

Prompt: 

I'm doing a research on 'Few-Shot Prompt-Tuning of Language Models for App Review 

Classification: An Evaluation Study'. I'm using OpenPrompt library in this research. When 

using this library there's a step to define a Verbalizer. Below is the example they've provided 

in the documentation. 

Step: Define a Verbalizer  

A Verbalizer is another important (but not necessary) in prompt-learning, which projects 

the original labels (we have defined them as classes) to a set of label words. Here is an 

example that we project the negative class to the word bad, and project the positive class to 

the words good, wonderful, great.  

eg: 

from openprompt.prompts import ManualVerbalizer 

promptVerbalizer = ManualVerbalizer ( 

classes = classes,  

label_words = {"negative": ["bad"],  

  "positive": ["good", "wonderful", "great"]}, 

tokenizer = tokenizer) 

 

I need to define label_words according to the classes that I have in the dataset I use in my 

research. This app review dataset has 1390 user reviews, which contains reviews of the 

AngryBirds, Dropbox and Evernote apps available in Apple’s App Store and reviews from 

the apps TripAdvisor, PicsArt, Pinterest and Whatsapp available in Android’s Google Play 

store. These were manually labelled by assigning each of them to a category (class) among 

four. Below are the details of the four categories. 

- Information Giving: sentences that inform or update users or developers about an aspect  

related to the app.  

- Information Seeking: sentences related to attempts to obtain information or help from other 

users or developers.  

- Feature Request: sentences expressing ideas, suggestions or needs for improving or en-

hancing the app or its functionalities.  

- Problem Discovery: sentences describing issues with the app or unexpected behaviors. 

Could you please suggest the most relevant keywords that a user might use when provid-

ing reviews related to above four classes (Bug reports, Feature requests, User experience, 

Ratings) 

 

Results: 

Certainly! Here are some relevant keywords that users might use when providing reviews 

related to the four classes in your dataset: 
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1. Information Giving:  

update, inform, news, announcement, change log, release notes, release, version, details, 

notification 

2. Information Seeking:  

help, question, query, seek, assistance, support, advice, guidance, clarification, answer 

3. Feature Request:  

suggest, idea, improve, enhance, functionality, request, wish, addition, enhancement, new 

feature 

4. Problem Discovery:  

issue, problem, bug, glitch, error, malfunction, crash, problem-solving, troubleshooting, un-

expected behavior 

These keywords are tailored to capture the essence of each class based on the descriptions 

provided. However, you may need to adjust or expand the list based on the specific charac-

teristics of your dataset and the context of the reviews from the selected apps. 
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