
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Computer Science

Software Engineering Curriculum

Hashika Dhananjanie Agalakepu Watthegedara Marasinghe

Few-Shot Prompt-Tuning of Language Mod-
els for App Review Classification: An Evalua-

tion Study
Master’s Thesis (30 ECTS)

Supervisor: Faiz Ali Shah, PhD

Institute of Computer Science

University of Tartu

Tartu 2024

2

Few-Shot Prompt-Tuning of Language Models for App Review Classifi-

cation: An Evaluation Study

Abstract:

App reviews serve as valuable sources of feedback for application developers, offering in-

sights into the needs and preferences of the user. However, the large volume of user reviews

received each day makes manual analysis infeasible, requiring automated solutions to detect

information in user reviews relevant for developers to improve software quality. Recent

strategies for detecting developer-relevant information in app reviews involve fine-tuning

pretrained language models (PLMs) for the review classification task using labelled data.

Due to the high cost of labelling data and the continuous emergence of new apps and cate-

gories in app marketplaces, it is crucial to evaluate recent techniques like pre-train and

prompt-tuning, which has demonstrated success in scenarios with limited data. Pre-train and

prompt-tuning strategy allows models to adapt to different tasks independently by leverag-

ing domain knowledge introduced through prompts. The main objective of this study is to

assess the effectiveness of few-shot prompt-tuning of language models (LMs) for detecting

developer relevant information in app reviews. To achieve this objective, the first research

question of this study compares the performance of prompt-tuning with traditional fine-tun-

ing of language model RoBERTa under data constrained situation on three labelled review

datasets. The second research question explores the impact of prompt-tuning performance

for classifying review information on the selection of LMs (T5 and GPT-2) and its architec-

ture. The third and last research question assess the impact of prompt template design and

verbalizer design on the performance of prompt-tuning when classifying review infor-

mation. The findings of this study reveal that the prompt-tuning approach has the potential

to outperform traditional fine-tuning strategy in scenarios with limited labelled data availa-

bility. Additionally, this study observed variation in model performance across different

review datasets, highlighting the importance of model selection, verbalizer design and

prompt template design. These insights provide valuable guidance for leveraging prompt-

tuning techniques within the app review domain, particularly in contexts characterized by

limited availability of labelled data.

Keywords:

App reviews, User reviews, Prompt-tuning, Prompt-learning, Few-shot, Prompt templates,

Verbalizers, OpenPrompt

CERCS: P170 - Computer science, numerical analysis, systems, control

3

Keelesuurmudelite väheste näidete põhine häälestamine rakenduste ar-

vustuste klassifitseerimiseks: hindamisuuring

Lühikokkuvõte:

Rakenduste arvustused on väärtuslikud tagasisideallikad rakenduste arendajatele, pakkudes

ülevaateid kasutajate vajadustest ja eelistustest. Siiski teeb suur päevane kasutajaarvustuste

hulk käsitsi analüüsi teostamise ebareaalseks, vajades automatiseeritud lahendusi, et tu-

vastada kasutajaarvustustest arendajatele olulist teavet tarkvara kvaliteedi parandamiseks.

Viimased strateegiad arendajatele olulise teabe tuvastamiseks rakenduste arvustustes

hõlmavad eelhäälestatud keelemudelite (PLMide) täppishäälestamist arvustuste klassi-

fitseerimise ülesandeks, kasutades märgendatud andmeid. Andmete märgendamise kõrge

kulu ja uute rakenduste ja kategooriate pideva ilmumise tõttu rakendusturgudel on ülioluline

hinnata hiljutisi tehnikaid nagu eelhäälestamine ja prompt-häälestamine, mis on näidanud

edu piiratud andmete olukordades. Eelhäälestamise ja prompt-häälestamise strateegia

võimaldab mudelitel iseseisvalt erinevatele ülesannetele kohaneda, kasutades promptide

kaudu tutvustatud domeeniteadmisi. Selle uuringu peamine eesmärk on hinnata

keelemudelite (LMide) väheste näidete põhise prompt-häälestamise tõhusust arendajatele

olulise teabe tuvastamisel rakenduste arvustustes. Selle eesmärgi saavutamiseks võrdleb

uuringu esimene uurimisküsimus prompt-häälestamise ja traditsioonilise keelemudeli RoB-

ERTa täppishäälestamise tulemuslikkust andmekitsikuse olukorras kolmel märgendatud ar-

vustuse andmestikul. Teine uurimisküsimus uurib prompt-häälestamise tulemuslikkuse

mõju arvustuste teabe klassifitseerimisel keelemudelite (T5 ja GPT-2) valiku ja nende

arhitektuuri põhjal. Kolmas ja viimane uurimisküsimus hindab prompti mallide disaini ja

verbalisaatori disaini mõju prompt-häälestamise tulemuslikkusele arvustuste teabe klassi-

fitseerimisel. Selle uuringu tulemused näitavad, et prompt-häälestamise lähenemine võib

piiratud märgendatud andmete olemasolu korral ületada traditsioonilise täppishäälestamise

strateegia. Lisaks täheldati uuringus mudelite tulemuslikkuse varieerumist erinevate ar-

vustuse andmestike vahel, rõhutades mudelivaliku, verbalisaatori disaini ja prompti mallide

disaini tähtsust. Need teadmised pakuvad väärtuslikku juhendit prompt-häälestamise tehni-

kate kasutamiseks rakenduste arvustuste valdkonnas, eriti kontekstides, kus märgendatud

andmeid on vähe.

Võtmesõnad:

Rakenduste arvustused, Kasutajaarvustused, Prompt-häälestamine, Prompt-õppimine,

Vähesed näited, Prompt-mallid, Verbalisaatorid, OpenPrompt

CERCS: P170 - Arvutiteadus, arvutusmeetodid, susteemid, juhtimine (automaatjuhtimiste-

ooria)

4

Table of Contents

List of Abbreviations ... 6

1 Introduction ... 7

2 Background ... 9

2.1 User reviews/ App reviews ... 9

2.2 Language Models (LMs) .. 9

2.3 Prompt-Based Learning .. 11

2.3.1 Fixed-prompt language model tuning strategy (Few-shot) 12

2.3.2 Prompt templates ... 12

2.3.3 Verbalizers .. 12

2.4 Evaluation Metrics .. 13

2.4.1 Precision .. 13

2.4.2 Recall ... 13

2.4.3 F1 Score .. 13

2.4.4 Accuracy ... 13

3 Methodology ... 14

3.1 Experimental Setup .. 14

3.1.1 Labelled review datasets ... 14

3.1.2 Data Pre-processing .. 16

3.1.3 Training, validation, and test sets .. 17

3.1.4 Language Models .. 18

3.1.5 Prompt Templates ... 19

3.1.6 Verbalizers .. 20

3.1.7 Hyperparameters ... 23

3.2 Experiments .. 25

3.2.1 RQ1 Experiments .. 25

3.2.2 RQ2 Experiments .. 25

3.2.3 RQ3 Experiments .. 26

4 Results ... 28

4.1 RQ1 ... 28

4.2 RQ2 ... 31

4.3 RQ3 ... 34

5 Discussion ... 36

6 Conclusion ... 43

Acknowledgement ... 44

5

References ... 45

Appendix ... 48

I. RQ1 Results ... 48

II. RQ2 Results .. 49

III. RQ3 Results .. 55

IV. Scalabrino VB3 design using ChatGPT ... 57

V. Maalej VB3 design using ChatGPT ... 59

VI. Pan VB3 design using ChatGPT .. 61

VII. Writing Assistance .. 63

VIII. License .. 64

6

List of Abbreviations

Abbreviation Definition

FN False Negative

FP False Positive

FSL Few-shot Learning

LM Language Model

ML Machine Learning

NLP Natural Language Processing

PLM Pre-trained Language Model

RQ Research Question

TN True Negative

TP True Positive

Thesis specific Abbreviations

Abbreviation Definition

DS Data Set

EX Experiment

MD Model

PT Prompt Template

VB Verbalizer

7

1 Introduction

In today's app marketplaces like Apple’s App Store and Google’s Play Store, users have the

platform to submit feedback, which contains valuable insights such as feature requests, bug

reports and non-functional attributes which are crucial for improving app quality. The im-

portance of classifying and understanding user reviews to enhance and sustain the quality

of applications has been widely recognized, prompting researchers to explore various meth-

odologies for extracting developer-relevant information from these reviews. User feedback

plays a pivotal role in shaping app visibility, credibility, and overall quality. When it comes

to improving the quality, app developers should be able to extract the details they need from

user reviews to satisfy the users' expectations. The manual analysis becomes impractical

because software vendors often receive thousands of feedback entries daily [1]. Conse-

quently, researchers have investigated methods ranging from traditional machine learning

to deep learning paradigms [1, 2] and the pre-train & fine-tune approach [3] to automate the

classification of crucial insights from user reviews. However, these methods typically rely

on large volumes of labelled data for effective model training. Labelling data needs to be

performed by domain experts, and this process is both time-consuming and costly [1, 4],

particularly in domains such as app reviews, where app marketplaces offer millions of apps

belonging to different categories like games, social networking platforms, and entertainment

apps posing significant challenges. Moreover, labelling data for these unseen apps becomes

increasingly difficult and expensive with the continuous introduction of new app categories.

A comparative study [1] evaluating traditional machine learning and deep learning methods

in classifying user feedback concluded that traditional machine learning could yield satis-

factory results within their experimental setting compared to deep learning approaches. Nev-

ertheless, given the dependence of machine learning on extensive training datasets, there is

a growing need to explore approaches that either require minimal labelled data (few-shot)

or no data (zero-shot).

While prompt-tuning has emerged as a promising technique in natural language processing

[3], its application in the app review domain remains largely unexplored, with no published

work available for reference. Therefore, this study holds significance for application devel-

opers and future researchers seeking to harness the potential of prompt-learning in the con-

text of the app review domain.

Motivated by this need, this study systematically evaluates the effectiveness of few-shot

prompt-tuning approach that requires minimal labelled data for fine-tuning pre-trained mod-

els for classifying app reviews.

This study aims to answer the following research questions:

RQ1: How does the performance of few-shot prompt-tuning compare with traditional fine-

tuning when classifying developer-relevant information from app reviews?

RQ1 aims to evaluate the performance of few-shot prompt-tuning in classifying app reviews

into categories such as feature requests, bug reports (functional), excessive energy consump-

tion reports, performance problem reports, security issue reports, usability improvement re-

quests, etc. The experiments pertaining to the first research question assess the performance

of prompt-tuning in comparison to traditional fine-tuning under data-constrained scenarios.

Pre-trained language model RoBERTa serves as the model for both approaches, with one

verbalizer and one prompt template utilized as additional settings for prompt-tuning. These

experiments are conducted across four different proportions of few-shot samples, ranging

8

from 70% to 2%, to gauge performance under varying levels of data availability. Verbalizer

and prompt template used in RQ1, alongside the outcomes of all these experiments, will

serve as the foundational benchmarks for subsequent research inquiries. The insights

gleaned from addressing this research question provide perspectives on the performance of

prompt-tuning under data-constrained conditions compared to traditional fine-tuning meth-

odologies.

RQ2: How does the performance of few-shot prompt-tuning vary when using different lan-

guage model architectures and sizes in classifying developer-relevant information in app

reviews?

RQ2 explores the comparative performance of few-shot prompt-tuning in classifying app

reviews using two additional language models from distinct architectural backgrounds.

While the language models differ, all other experimental settings from RQ1 are maintained

in RQ2. The findings from this inquiry provide valuable insights into the impact of employ-

ing diverse language model architectures in few-shot prompt-tuning on performance. Fur-

thermore, upon completion of this investigation, the identification of the most effective lan-

guage model for each dataset with 2% training data allows for their targeted utilization in

subsequent RQ3 experiments.

RQ3: How do the prompt template design and verbalizer design affect the performance in

classifying developer-relevant information in app reviews?

RQ3 is specifically designed to investigate how variations in the prompt template and ver-

balizer designs influence the performance of prompt-tuning. Leveraging the most successful

models identified in RQ1 and RQ2 for each dataset with 2% training data, this inquiry in-

troduces two verbalizers and three distinct prompt templates.

9

2 Background

Initially, this section introduces the significance of app reviews in facilitating software de-

velopment activities. Then, it provides knowledge concerning Language Models (LMs) and

prompt-based learning, relevant to this study.

2.1 User reviews/ App reviews

App shops such as Google Play and Apple AppStore offer over 3 million apps that cover

almost every type of software and service. These apps are downloaded, used, and reviewed

by billions of users on a regular basis. Recent studies have demonstrated that user evalua-

tions are a valuable source of information for app vendors and developers, as they contain

information about issues, ideas for future features, and documentation of released function-

ality [5]. The majority of the reviews, however, are pretty non-informative, simply praising

the app and repeating the star ratings in words. App stores, such as Google Play and the

Apple Store, allow users to submit feedback on apps by leaving review comments and star

ratings. These platforms provide an effective electronic means for application developers

and consumers to exchange app-related information. It was discovered by previous research

that user input includes usage scenarios, problem reports, and feature requests, which can

assist app developers with software maintenance and evolution responsibilities [1].

Due to the rapid expansion and intense competition in the mobile application (app) market,

app developers must not only provide consumers with appealing new features but also care-

fully maintain and improve existing features based on user feedback. User reviews reveal a

rich source of information for planning such feature maintenance operations, and developers

may benefit greatly from evaluating and magnifying the value of certain features to the

overall success of their apps.

2.2 Language Models (LMs)

A Language Model is an advanced neural network algorithm capable of performing a wide

range of natural language processing (NLP) tasks. These models, built upon transformer

architectures, are trained on extensive datasets, allowing them to comprehend, translate,

predict, and generate textual or other forms of content1. In other words, an LM is a computer

program trained on numerous examples to understand and interpret human language or com-

plex data [6].

A transformer model, comprising an encoder and a decoder, stands as the prevailing archi-

tecture for language models. This model operates by tokenizing input data and performing

concurrent mathematical operations to discover connections between tokens. This helps the

computer identify patterns similar to how a person would when given the same query1.

Transformer models can be categorized based on their architectural design2.

Encoder-Only Architecture:

In this architecture, only the encoder component is utilized. It generates contextualized rep-

resentations of input text, which can be used for various downstream tasks such as text clas-

sification, sentiment analysis and named entity recognition.

1 https://www.elastic.co/what-is/large-language-models
2 https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder

https://www.elastic.co/what-is/large-language-models
https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder

10

Encoder-Decoder Architecture:

This architecture consists of separate encoder and decoder components. The encoder pro-

cesses input sequences, while the decoder generates output sequences based on the encoded

representations. It is commonly used for tasks like sequence-to-sequence learning and text

generation.

Decoder-Only Architecture:

In this architecture, only the decoder component is used. It generates text sequences based

on learned patterns and inputs, making it suitable for tasks such as text generation, language

translation, and dialogue systems.

Architecture Models

Encoder-Only BERT, RoBERTa

Encoder-Decoder BART, T5

Decoder-Only GPT-2, GPT-3

Table 1: Language models

Below are detailed descriptions of language models3.

• BERT (Bidirectional Encoder Representations from Transformers): BERT has

gained significant attention for its ability to understand the context and nuances of

language. It’s been employed in NLP tasks such as sentiment analysis, named entity

recognition, and question-answering systems.

• RoBERTa (A Robustly Optimized BERT Pretraining Approach): This variant of

BERT addresses the limitations of its predecessor and has achieved state-of-the-art

performance on various language tasks.

• T5: T5 is an encoder-decoder model that translates all natural language processing

difficulties to text. It is trained utilizing instructor coercion. This means that during

training, there is always an input sequence and a target sequence. The input sequence

is fed into the model via input_ids. Kale and Rastogi's paper suggests a pre-train +

fine-tune technique for data-to-text jobs. Their experiments show that text-to-text

pre-training, such as T5, allows simple, end-to-end transformer-based models to out-

perform pipelined neural architectures designed for data-to-text generation, as well

as alternative language model-based pre-training techniques like BERT and GPT-2.

Importantly, they determined that T5 pre-training leads to stronger generalization,

as indicated by significant improvements in out-of-domain test sets [7].

• GPT-2: OpenAI's Generative Pre-trained Transformer 2 (GPT-2) is a big language

model and the second in the basic series of GPT models. GPT-2 is a huge language

model trained using a massive dataset of text and code.

• GPT-3: OpenAI’s Generative Pre-trained Transformer 3 is one of the most remark-

able language models to date. At the time of its release, the GPT-3 model comprised

an unprecedented 175 billion parameters.

3 https://www.algolia.com/blog/ai/examples-of-best-large-language-models/

https://www.algolia.com/blog/ai/examples-of-best-large-language-models/

11

• GPT-4: The largest model in OpenAI’s GPT series, Generative Pre-trained Trans-

former 4 was released in 2023. Like other LMs, it’s a transformer-based model. The

key differentiator is that its parameter count is more than 170 trillion.

Language models (LMs) are gaining prominence in academia and industry because of their

superior performance in a variety of applications. As LMs continue to play an important

role in both research and daily use, their evaluation becomes more important, not only at the

task level but also at the societal level, in order to have a better understanding of their pos-

sible hazards. Over the last few years, major attempts have been undertaken to explore LMs

from numerous angles [6]. LMs have recently exhibited amazing capabilities in a variety of

natural language processing applications, such as language translation, text production, and

question-answering. Furthermore, LMs are a novel and important component of computer-

ized language processing, with the ability to recognize complicated speech patterns and pro-

vide coherent and suitable responses in a given environment [8].

2.3 Prompt-Based Learning

Prompt-based learning is an emerging group of ML model training methods. It’s a strategy

that machine learning engineers can use to train LMs so the same model can be used for

different tasks without re-training, which makes it a promising alternative to traditional fine-

tuning methods. In prompting, users directly specify the task they want to be completed in

natural language for the pre-trained language model to interpret and complete.

For example, when recognizing the emotion of a social media post, “I missed the bus today,”

we may continue with a prompt “I felt so ____” and ask the LM to fill the blank with an

emotion-bearing word. Or if we choose the prompt “English: I missed the bus today. French:

____”), then an LM may be able to fill in the blank with a French translation [3].

There are different prompting strategies such as zero-shot, one-shot and few-shot. Zero-shot

learning is a model's ability to be able to complete a task without having received or used

any training examples. It is capable of generating answers without modifying the parameters

of pre-trained LMs, using only a prompt [9].

According to Mayer et al. their study looks into the possibilities of automated classification

employing prompt-based learning methodologies with transformer models (huge language

models learned unsupervised) for a domain-specific classification job. Prompt-based learn-

ing with zero or few shots has the ability to (1) utilize artificial intelligence without advanced

programming abilities and (2) use artificial intelligence without fine-tuning models with

vast volumes of labelled training data. They used this unique strategy to conduct an experi-

ment with zero-shot classification as a baseline model and a few-shot classification ap-

proach. For comparison, they fine-tuned a language model on the supplied classification job

and conducted a second independent human evaluation to compare it to the given human

ratings from the first study [10].

The prompt-based learning paradigm bridges the gap between pre-training and fine-tuning,

and it performs well in the few-shot context [11]. This study focuses on investigating few-

shot prompt-tuning strategy.

12

2.3.1 Fixed-prompt language model tuning strategy (Few-shot)

Few-shot learning involves tuning the parameters of the pre-trained LM, similar to the tra-

ditional pre-train and fine-tune paradigm. However, it distinguishes itself by incorporating

fixed prompts to define the model's behaviour [9].

With increased privacy controls on personal devices, data is frequently prohibited from leav-

ing these devices and reaching central servers, where crucial operations are performed to

improve research and model training. It is critical to improve such data and optimize the

performance of current machine learning models. Machine learning has been extremely suc-

cessful in data-intensive applications, but it suffers when the data set is limited [12]. Re-

cently, Few-shot Learning has been proposed to address this issue. Using prior knowledge,

FSL can quickly generalize to new tasks with only a few samples and supervised infor-

mation [13].

2.3.2 Prompt templates

The prompt template is a piece of natural language text that uses masked areas to elicit

knowledge from a PLM [14]. Recently, prompt-based tuning has emerged as an effective

method for few-shot learning, bridging the gap between the pre-training and downstream

task stages.

Prompt-based tuning involves wrapping input texts with task-specific templates, transform-

ing the original assignment into a cloze-style problem. For example, in a topic classification

task, we can use the template "<text>. This topic is about [MASK]", where <text> represents

input sentences. PLMs infer words to fill in [MASK], which are then transferred to matching

labels using a verbalizer (e.g., "sports" for "Sports") [15]. Studies have been done to learn

how prompt templates can cause accuracy to vary with the choice of the template. According

to these studies, it was identified that generating a proper prompt template has a large effect

on the accuracy of the model [2, 16].

2.3.3 Verbalizers

The verbalizer, one of the most significant modules in prompt-learning, converts the original

labels into a collection of label words. In classification, verbalizers are mappings from labels

to words in a language model's vocabulary. The verbalizer, which maps label words to class

labels, is a critical component of prompt-tuning. These verbalizers guide the model’s under-

standing of a specific task.

A verbalizer projects label words into class labels, such as "fix" into "Bug Report" class. To

classify the line "I can't install it on my Samsung note iii please fix it" into the class "Bug

Report", it must first wrap it in a prompt template such as "I can't install it on my Samsung

note iii please fix it. This review is about a: [MASK]" before feeding it into the PLM. If the

likelihood of correctly guessing the label word "fix" in the "[MASK]" place above a certain

threshold, classify the sentence as "Bug Report" [14]. Recent studies show the effect of

verbalizers in prompt-learning and how important it is to design the verbalizers carefully to

achieve optimal performance [17].

13

2.4 Evaluation Metrics

2.4.1 Precision

Precision is a metric that gives you the proportion of true positives to the number of total

positives that the model predicts. It answers the question, “Out of all the positive predictions

we made, how many were true?” Precision is defined as the number of correct positive pre-

dictions (TP) divided by the total number of positive predictions (TP + FP). The best accu-

racy is 1.0, while the worst is 0.0 [18].

Precision = TP / (TP + FP)

2.4.2 Recall

Recall focuses on how good the model is at finding all the positives. Recall is also called

true positive rate and answers the question, “Out of all the data points that should be pre-

dicted as true, how many did we correctly predict as true?” Recall is measured by dividing

the number of accurate positive predictions (TP) by the total number of positives (P). The

best TP rate is 1.0, while the worst is 0.0 [18].

Recall = TP / (TP + FN)

2.4.3 F1 Score

F1 Score is a measure that combines Recall and Precision. This measure represents the av-

erage Recall and Precision levels. As we have seen, there is a trade-off between Precision

and Recall. F1 can, therefore, be used to measure how effectively our models make that

trade-off.

F1-score = 2 (precision * recall) / (precision + recall)

2.4.4 Accuracy

The accuracy metric calculates the ratio of correct predictions to the total number of cases

assessed. Accuracy is calculated by adding two accurate predictions (TP + TN) and dividing

by the entire number of data sets (P + N). The highest accuracy is 1.0, while the lowest is

0.00 [18].

Accuracy = (TP + TN) / (TP + TN + FP + FN)

14

3 Methodology

This section describes the methodologies employed to fulfil the objectives outlined in the

thesis. It comprises two main subsections: Experimental Setup and the Experiments.

The Experimental Setup explains the datasets utilized, the data pre-processing methodolo-

gies employed, the data splitting strategies, the language models utilized, and the designs of

prompt-tuning verbalizers and prompt templates, alongside the hyperparameter configura-

tions of the experiments.

The subsequent section provides a detailed explanation of the experiments conducted for

each research question. The experimental process comprised several sequential steps, com-

mencing with the establishment of baseline performances using the RoBERTa model for

traditional fine-tuning and prompt-tuning and subsequently exploring variations in perfor-

mance when employing models from diverse language model architectures. The third re-

search question investigated how alterations in prompt-tuning verbalizers and prompt tem-

plates impact performance.

The OpenPrompt4 library was employed for all prompt-learning experiments across RQ1,

RQ2, and RQ3. OpenPrompt is a unified, easy-to-use toolkit to conduct prompt-learning

over pre-trained language models (PLM), renowned for its flexibility and extensibility, fa-

cilitates the deployment of prompt-learning pipelines without the need to implement from

scratch. Leveraging the OpenPrompt library enables the utilization of various language

models and facilitates the design of bespoke prompt-learning workflows [19].

3.1 Experimental Setup

3.1.1 Labelled review datasets

This section describes the datasets utilized in the experiments conducted within this study.

Three manually labelled datasets, namely Scalabrino [5], Maalej5, and Pan5, were employed

to assess the efficacy of app review classification employing prompt-tuning methodologies.

The Scalabrino dataset facilitates analysis across seven distinct classes, whereas the Maalej

and Pan datasets comprise four classes each. Notably, the feature request and bug report

classes were consistently present across all three datasets. Each labelled dataset is described

in following subsections.

3.1.1.1 Scalabrino Dataset (DS1)

The Scalabrino dataset [20] utilized in this study comprise a collection of 3000 user reviews

that were manually categorized into seven classes by two authors. These reviews were

sourced from a diverse array of 705 Android apps spanning categories such as games, books,

education, communication, health, sports, travel, weather, and more. Below are the class

details of this dataset.

4 https://github.com/thunlp/OpenPrompt
5 https://data.mendeley.com/datasets/5fk732vkwr/2

https://github.com/thunlp/OpenPrompt
https://data.mendeley.com/datasets/5fk732vkwr/2

15

Class name Class definition No. of records

Bug Functional bug report 764

Energy Report of excessive energy consumption 106

Feature Suggestion for new feature 333

Other Non-informative reviews 1505

Performance Report of performance problems 135

Security Report of security issues 50

Usability Request for usability improvements 107

Table 2: Class distribution in Scalabrino dataset

The dataset was obtained through the replication package6 provided in the corresponding

paper [21].

3.1.1.2 Maalej Dataset (DS2)

The second dataset employed in this study was a truth set prepared for the experiments of a

study on the automatic classification of app reviews [22]. This dataset contains 3691 reviews

from various apps available in Play Store and App Store. Each review underwent manual

analysis and labelling into four distinct classes: bug reports, feature requests, user experi-

ences, and ratings. Bug reports describe issues within the application that necessitated rec-

tification, such as crashes, erroneous behaviour, and performance shortcomings. Feature re-

quests encompass user demands for additional functionalities or content, accompanied by

suggestions for app enhancements. User experiences narrative detailed users' experiences

with the application. Ratings encompass of non-informative reviews expressing praise or

criticisms.

Class name No. of records

Feature Request 252

Problem Discovery/ Bug Report 370

Rating 2462

User Experience 607

Table 3: Class distribution in Maalej dataset

This dataset was sourced from a publicly available repository1 [23].

6 https://zenodo.org/records/5733504

https://zenodo.org/records/5733504

16

3.1.1.3 Pan Dataset (DS3)

The third dataset utilized in this study was a truth set employed in a study on classifying

user reviews for software maintenance and evolution [4]. Comprising 1390 reviews from

prominent apps like Angry Birds, Dropbox, Evernote, TripAdvisor, PicsArt, Pinterest, and

WhatsApp, available in both App Store and Play Store, this dataset underwent manual la-

belling by two authors into four distinct classes: feature requests, information giving, infor-

mation seeking, and problem discovery/ bug reports. Feature requests encapsulate reviews

containing ideas, suggestions, or needs for enhancing app functionalities. Information giv-

ing reviews aim to inform users or developers about various aspects related to the app. In-

formation seeking reviews depict the reviews which attempt to obtain information or assis-

tance from other users or developers. Problem discovery class describe issues and unex-

pected behaviours encountered within the app.

Class name No. of records

Feature Request 192

Information Giving 603

Information Seeking 101

Problem Discovery 494

Table 4: Class distribution in Pan dataset

This dataset was also sourced from a publicly available repository1 [23].

3.1.2 Data Pre-processing

In the pre-processing phase of this study, a series of steps were undertaken to ensure the

quality and consistency of the datasets utilised. The pre-processing pipeline included several

key steps aimed at standardising the textual data across all three datasets; Scalabrino, Maalej

and Pan. The pre-processing phase employed a two-step approach to handle common text-

processing tasks:

Expansion of contractions: Contractions, such as "don't" or "can't", were expanded to their

full forms (e.g., "do not" or "cannot") to maintain uniformity and improve readability. This

ensured the contractions were consistent in all the review texts.

Text cleaning: Various cleaning operations were applied to remove unwanted elements

from the text. This involved eliminating special characters, such as punctuation marks and

symbols, and replacing them with spaces. Additionally, redundant whitespaces were re-

moved to streamline the text. Finally, any non-ASCII characters, including emojis, were

stripped from the text to ensure compatibility with downstream tasks.

By implementing these pre-processing steps consistently across all datasets, the textual data

were standardised and prepared for subsequent analyses, including model training and eval-

uation. This pre-processing approach aimed to mitigate potential noise and inconsistencies

in the review texts, ultimately enhancing the quality and reliability of the experimental re-

sults obtained in this study.

17

3.1.3 Training, validation, and test sets

In this study, the data splitting approach served as a pivotal component in evaluating the

performance of prompt-tuning under data-constrained scenarios within the app review do-

main. Four distinct data splitting strategies were employed to comprehensively investigate

the efficacy of prompt-tuning compared to traditional fine-tuning, particularly when labelled

data availability was limited.

The initial splitting approach designated a standard training dataset size of 70%, validation

dataset size of 15%, and test dataset size of 15%, allowing for an assessment of traditional

fine-tuning performance under conditions of ample labelled data availability. Subsequent to

this baseline evaluation, three additional data splitting strategies were implemented, each

featuring significantly reduced training and validation dataset sizes of 5%, 3%, and 2% de-

rived from the initial training dataset and validation dataset. These diminished training da-

taset sizes were chosen deliberately to mirror scenarios of limited labelled data availability,

thereby facilitating an examination of prompt-tuning performance in data-scarce environ-

ments.

It is noteworthy that the training dataset sizes of 5%, 3%, and 2% were aligned with the

corresponding validation set sizes, ensuring a consistent evaluation framework across the

experiments. This alignment enabled a focused analysis of prompt-tuning performance in

scenarios characterised by constrained labelled data availability. Conversely, the test set

sizes remained consistent across all splitting approaches, ensuring fair and equitable perfor-

mance comparisons between traditional fine-tuning and prompt-tuning methodologies.

Stratification was employed to ensure that the class proportions remained consistent across

the training, validation and test sets, a crucial aspect in maintaining the integrity of the ex-

perimental design.

Overall, the employed data splitting approaches were meticulously designed to systemati-

cally evaluate the performance of prompt-tuning across varying degrees of labelled data

scarcity, thereby facilitating nuanced insights into its efficacy for app review classification

tasks. Below is a detailed view of data splitting strategies used in this study.

Training set size Validation set size Test set size Reference

70% 15% 15% EX1

5% of EX1 5% of EX1 15% EX2

3% of EX1 3% of EX1 15% EX3

2% of EX1 2% of EX1 15% EX4

Table 5: Data splitting strategy

18

Dataset Data split

strategy

Training sample size Validation sample

size

Test sample

size

DS1

(3000)

EX1 2100 450 450

EX2 105 22 450

EX3 63 13 450

EX4 42 9 450

DS2

(3691)

EX1 2584 553 554

EX2 129 27 554

EX3 77 16 554

EX4 51 11 554

DS3

(1390)

EX1 973 208 209

EX2 48 10 209

EX3 29 6 209

EX4 19 4 209

Table 6: Sample sizes

3.1.4 Language Models

This section describes the pre-trained language models used in the experiments based on

traditional fine-tuning and prompt-tuning. In this study, three models were employed from

three distinct language model architectures to investigate the performance of traditional

fine-tuning and prompt-tuning in classifying developer-relevant information within app re-

views. Each architecture represents a unique approach to natural language processing,

providing valuable insights into the effectiveness of prompt-tuning across different model

designs.

3.1.4.1 Encoder-only Model: RoBERTa (MD1)

RoBERTa, a variant of the BERT (Bidirectional Encoder Representations from Transform-

ers) architecture, falls under the category of encoder-only models. This architecture pro-

cesses text inputs by a stack of transformer encoder layers, enabling efficient representation

learning from unidirectional context. RoBERTa enhances BERT's pre-training procedure

by incorporating additional training data and fine-tuning strategies, leading to improve per-

formance in downstream tasks [24]. This widely used transformer-based model is renowned

for its robust performance in various NLP tasks.

Model variant Details of the model

roberta-base 12-layer, 768-hidden, 12-heads, 125M parameters

RoBERTa using the BERT-base architecture

Table 7: RoBERTa model details

19

3.1.4.2 Encoder-decoder model: T5 (MD2)

T5 (Text-To-Text Transfer Transformer) is an encoder-decoder model that operates on the

principle of transforming input text into output text. Unlike encoder-only models, T5 em-

ploys both encoder and decoder components. The encoder processes input sequences, while

the decoder generates target sequences based on the learned representations. T5's unified

text-to-text framework enables seamless handling of diverse natural language understanding

and generation tasks, facilitating effective transfer learning and task adaptation [25].

Model variant Details of the model

t5-base ~220M parameters with 12-layers, 768-hidden-state,

3072 feed-forward hidden-state, 12-heads, Trained on

English text: The Colossal Clean Crawled Corpus (C4)

Table 8: T5 model details

3.1.4.3 Decoder-only models: GPT-2 (MD3)

GPT-2 (Generative Pre-trained Transformer 2), developed by OpenAI, belongs to the cate-

gory of decoder-only models. In this architecture, text generation is performed autoregres-

sively, where each token in the output sequence is generated based on preceding tokens.

GPT-2 utilises a stack of transformer decoder layers to capture dependencies and generate

coherent text sequences. While decoder-only models are primarily used for text generation

tasks, they can also be adapted for various other NLP tasks through fine-tuning [26].

Model variant Details of the model

gpt2-medium 24-layer, 1024-hidden, 16-heads, 345M parameters.

OpenAI’s Medium-sized GPT-2 English model

Table 9: GPT-2 model details

These models were obtained from the Hugging Face model hub7, a comprehensive reposi-

tory of pre-trained language models and associated resources.

3.1.5 Prompt Templates

Prompt templates serve as modifiers of the original input text and play a crucial role in the

prompt-learning framework. This study focused on understanding how the performance of

classifying app reviews varies when different prompt templates are employed. Four distinct

prompt templates were utilized for the experiments conducted in this study.

7 https://huggingface.co/models

https://huggingface.co/models

20

While various techniques exist for deriving effective prompt templates, such as manual tem-

plate engineering and automated template learning engineering [2] this study opted for hand-

crafted templates. The templates were crafted by the researcher, drawing inspiration from

similar studies in the literature [2, 9].

The objective of this study was not to identify the optimal templates but rather to investigate

the impact of different templates on app review classification performance. Therefore, the

selected templates were chosen to represent a diverse range of approaches commonly used

in prompt-learning frameworks. By examining how the performance varies across different

templates, insights can be gained into the relative effectiveness of different prompt template

designs in the context of classifying app reviews.

Prompt templates used in this study are shown in the table below.

Template# Prompt Template Reference

Template 1 '{"review_text "} Classify this review: {"mask"}' PT1

Template 2 '{"review_text"} This review is about a {"mask"}' PT2

Template 3 '{"review_text"} This belongs to class {"mask"}' PT3

Template 4 '{"review_text"} This user review belongs to class {"mask"}' PT4

Table 10: Prompt templates

3.1.6 Verbalizers

The verbalizer serves as an essential part of the prompt-learning pipeline, mapping the

outputs of the language model into the necessary labels or categories. This section de-

scribes the verbalizers employed in the experiments conducted within this study. Three

distinct verbalizers were utilised, each contributing to the classification process in unique

ways.

The first verbalizer leveraged logistic regression techniques tailored to the characteristics

of each dataset, extracting keywords associated with individual classes to inform the clas-

sification process. In contrast, the second verbalizer adopted a straightforward approach by

utilising the class names themselves as keywords, simplifying the mapping process. The

third verbalizer was constructed utilising insights derived from the OpenAI ChatGPT 3.5

model8. This method involved giving the language model a prompt that described the da-

tasets and their classes, prompting it to identify keywords representing each class.

Subsequent sections delve into the details of each verbalizer design, describing the meth-

odologies followed when designing the verbalizers. Through an exploration of these ver-

balizer strategies, a comprehensive understanding of their impact on classification perfor-

mance within the context of app review analysis is attained.

8 https://chat.openai.com/

https://chat.openai.com/

21

3.1.6.1 Verbalizer 1 (VB1)

The initial step in the design of the first verbalizer entailed the application of logistic regres-

sion models to each of the three datasets individually, aiming to discern keywords pertinent

to each class within the datasets. Subsequently, the extracted keywords underwent a metic-

ulous manual analysis and cleaning process to ascertain each class's most salient and repre-

sentative set. During this iterative process, the researcher and the research supervisor col-

laborated to individually analyse and identify potential keywords for each class.

Following this individual analysis, a discussion ensued, during which deliberated upon the

identified sets of keywords. A final set of keywords was curated through mutual agreement

and consensus, capturing the essence of each class across the datasets. Notably, as the bug

report/problem discovery and feature request classes were prevalent across all three datasets,

and the ratings/other class was prevalent across two datasets, the identified keywords from

each dataset were merged to form a comprehensive set.

This methodical approach ensured that the selected keywords were robust and reflective of

the distinctive characteristics of each class, thereby enhancing the effectiveness of the ver-

balizer in accurately mapping language model outputs to the corresponding class labels.

Dataset Class Keywords

DS1 Bug freeze, fix, bug, error, crash, stuck, issue, problem, fail

Energy battery, drain

Feature feature, add, wish, improve, lack, miss, need, suggest

Other best, useful, love, awesome, fantastic, excellent, rub-

bish, useless, wow, superb, addict, nice

Performance slow, lag, glitch, performance

Security virus, hack, permission, secure

Usability difficult, ad, annoy, interface, gui, button

DS2 Feature Request feature, add, wish, improve, lack, miss, need, suggest

Problem Discovery freeze, fix, bug, error, crash, stuck, issue, problem, fail

Rating best, useful, love, awesome, fantastic, excellent, rub-

bish, useless, wow, superb, addict, nice

User Experience ui, easy, graphic

DS3 Feature Request feature, add, wish, improve, lack, miss, need, suggest

Information Giving recommend, best, great, idea, check

Information Seeking why, how, what, where, who

Problem Discovery freeze, fix, bug, error, crash, stuck, issue, problem, fail

Table 11: Verbalizer design 1

22

3.1.6.2 Verbalizer 2 (VB2)

Verbalizer 2 adopts a simplistic yet effective approach by utilizing the class names them-

selves as keywords. This design strategy draws inspiration from a previous study conducted

by Luo [9], wherein one of the verbalizers employed the words from the original intention

labels initially established within the dataset. In alignment with this approach, Verbalizer 2

in the current study leverages the class names directly as keywords.

By directly associating the class names with the corresponding labels, this verbalizer design

simplifies the mapping process between language model outputs and class categories. This

straightforward approach not only streamlines the verbalizer creation process but also en-

sures clarity and transparency in the interpretation of model predictions.

3.1.6.3 Verbalizer 3 (VB3)

Verbalizer 3 adopts an approach by leveraging the human-like capabilities of ChatGPT [6],

to generate relevant keywords for each class in the dataset. This design methodology in-

volved providing specific prompts to ChatGPT, outlining details about the dataset, the clas-

ses within it, and the role of verbalizers in prompt-learning. Additionally, examples from

the OpenPrompt library illustrating the definition of verbalizers for different classes were

provided to offer context. The purpose of utilizing ChatGPT in generating verbalizers was

to lessen the dependency on domain experts for verbalizer creation.

Separate prompts tailored to each dataset were utilized, ensuring that the characteristics and

nuances of each dataset were accurately conveyed to ChatGPT. By presenting dataset-spe-

cific information, the aim was to elicit keywords that were contextually relevant and reflec-

tive of the user reviews typically associated with each class.

Unlike Verbalizer 1, which involved manual analysis and curation of keywords, Verbalizer

3 relied on the raw output generated by ChatGPT without further analysis or cleaning. This

approach aimed to capture a broad spectrum of keywords that users might use when provid-

ing reviews related to each class in the dataset. Through this method, Verbalizer 3 sought to

leverage the natural language understanding capabilities of ChatGPT to enhance the rele-

vance and diversity of the generated keywords. The prompts provided to ChatGPT and the

corresponding results can be referenced in the appendix.

Dataset Class Keywords

DS1 Bug crash, error, bug, glitch, malfunction, issue, problem

Energy battery drain, energy consumption, power usage, en-

ergy efficiency, drain, resource-intensive

Feature feature, improvement, addition, suggestion, enhance-

ment, request

Other praise, criticism, feedback, opinion, irrelevant, off-

topic

Performance slow, lag, performance, speed, efficiency, bottleneck

Security security, vulnerability, breach, hack, exploit, threat

23

Usability usability, interface, user experience, navigation, in-

tuitive, user-friendly

DS2 Feature Request suggest, add, feature, improvement, enhancement,

request, update, new functionality, missing feature,

wish

Problem Discovery crash, error, issue, bug, freeze, glitch, performance

problem, malfunction, software problem, application

crash

Rating good, great, excellent, fantastic, amazing, poor, terri-

ble, disappointing, satisfactory, exceptional

User Experience usability, user-friendly, experience, intuitive, naviga-

tion, interface, convenience, ease of use, helpful,

smooth

DS3 Feature Request suggest, idea, improve, enhance, functionality, re-

quest, wish, addition, enhancement, new feature

Information Giving update, inform, news, announcement, change log, re-

lease notes, release, version, details, notification

Information Seeking help, question, query, seek, assistance, support, ad-

vice, guidance, clarification, answer

Problem Discovery issue, problem, bug, glitch, error, malfunction, crash,

problem-solving, troubleshooting, unexpected be-

havior

Table 12: Verbalizer design 3

3.1.7 Hyperparameters

The experimental setup utilized for traditional fine-tuning and prompt-tuning involved a

specific configuration of hyperparameters to ensure consistency and reproducibility of the

results. These hyperparameters were selected to balance computational efficiency with

model performance and stability during training. The below sections elaborate on the exper-

imental setup used in this study.

3.1.7.1 Environmental Setup

Setup Values

Platform pegasus2.hpc.ut.ee (Rocket server - OpenStack)

Machine Type 2x AMD EPYC 7713 64-Core Processors (256 cores

total), 2 TB RAM, 15 TB of local SSD storage

GPUs 8 x Tesla a100 with 80GB vRAM each

24

Network Infiniband with 9 x 100Gb connections

Python Version 3.9.12

OpenPrompt Version 1.0.1

Table 10: Environmental setup

3.1.7.2 Traditional fine-tuning & Prompt-tuning setup

Below is a breakdown of each hyperparameter used in this setup and its purpose in the train-

ing process:

Batch Size: Determines the number of samples processed before the model's parameters are

updated. A larger batch size can lead to faster training but requires more memory.

Number of Epochs: Specifies the number of times the entire dataset is passed forward and

backward through the neural network. Increasing the number of epochs can improve the

model's performance, but too many epochs may lead to overfitting.

Random Seed: Sets the initial random state for reproducibility. By fixing the random seed,

the same sequence of random numbers will be generated each time the code is run, ensuring

consistent results.

Patience: Determines the number of epochs to wait for improvement in the validation loss

before terminating the training process. It helps prevent overfitting by stopping training

when the model's performance no longer improves on the validation set.

Configuration Configured Values

Batch Size 8

No of Epochs 10

Random Seed 2022

Patience 3

Table 11: Traditional fine-tuning & Prompt-tuning setup

25

3.2 Experiments

Following sections describe the experiments executed to answer the three research questions

in this study.

3.2.1 RQ1 Experiments

The methodology employed for RQ1 involved conducting a series of experiments to com-

pare the performance of traditional fine-tuning and prompt-tuning approaches in classifying

app reviews into predefined classes. Specifically, the experiments utilized the RoBERTa

model, verbalizer 1, and prompt template 1 across three datasets (DS1, DS2, DS3).

To initiate the experiments, pre-processing logic was applied to each dataset to ensure con-

sistency and readiness for model training. A total of twelve experiments were conducted for

RQ1, encompassing various data splitting strategies, including 70%, 5%, 3%, and 2% of the

training dataset size. The same samples of training, validation and test datasets were used

across both the traditional fine-tuning and prompt-tuning experiments in each scenario to

ensure equitable exposure to the data and facilitate fair comparisons between traditional

fine-tuning and prompt-tuning methodologies.

The RoBERTa model, obtained from Hugging Face, served as the backbone for both ap-

proaches. The experiments were trained over ten epochs with an early stopping criterion set

to a patience of three to ensure optimal convergence.

The outcomes of these experiments formed the foundation for subsequent research ques-

tions, providing insights into the baseline performance of prompt-tuning compared to tradi-

tional fine-tuning under varying data constraints. After execution, a performance report was

obtained for each experiment with Precision, Recall, F1 score and Accuracy values.

Datasets Model Data split Prompt template Verbalizer

Scalabrino RoBERTa 70% PT1 VB1

Maalej 5%

Pan 3%

 2%

Table 12: RQ1 experimental setup

3.2.2 RQ2 Experiments

RQ2 aimed to investigate the impact of utilizing different models from distinct language

model architectures on the classification performance of app review classes. In contrast to

RQ1, which focused on utilizing the RoBERTa model from the encoder-only architecture,

RQ2 expanded the scope by incorporating models from diverse architectures.

For this research question, two additional models were introduced: T5 from the encoder-

decoder architecture and GPT-2 from the decoder-only architecture. The objective was to

26

compare the performance of these models with the baseline established in RQ1 using RoB-

ERTa, while keeping all other experimental variables constant. This approach allows for a

comprehensive understanding of how different language model architectures influence

prompt-tuning classification outcomes.

Similar to RQ1, the experiments in RQ2 retained the same experimental setup, including

the use of OpenPrompt library, consistent pre-processing logic, and identical data splitting

strategies across datasets. Training, validation, and testing datasets remained unchanged to

ensure fair comparisons between the different models.

The experiments were conducted over 10 epochs with an early stopping criterion set to a

patience of 3, maintaining consistency with the methodology established in RQ1. This ap-

proach facilitates a direct comparison of model performances across different architectures

under similar training conditions.

The insights gained from RQ2 experiments provided valuable information on the relative

strengths and weaknesses of models from various language model architectures in classify-

ing app review classes, contributing to a deeper understanding of the prompt-tuning para-

digm in data-constrained scenarios.

Datasets Models Data split Prompt template Verbalizer

Scalabrino T5 70% PT1 VB1

Maalej GPT-2 5%

Pan 3%

 2%

Table 13: RQ2 experimental setup

3.2.3 RQ3 Experiments

RQ3 focused on the examination of how variations in prompt templates and verbalizers

impact the performance of classifying app reviews using prompt-tuning. The objective of

this research question was to discern the influence of different prompt template designs and

verbalizer designs on classification outcomes.

Given the focus on evaluating prompt-tuning performance under data-scarce conditions, the

experiments in RQ3 were exclusively conducted using 2% of the training datasets. To es-

tablish the baseline for RQ3 experiments, the top-performing experiments from RQ1 and

RQ2, conducted with a minimum training dataset percentage of 2%, were selected for each

dataset. These experiments, which demonstrated optimal performance in prompt-tuning,

served as the foundation for subsequent investigations. For the Scalabrino dataset, the GPT-

2 model exhibited superior performance, while the T5 model performed well for the Maalej

and Pan datasets. Consequently, these models were utilized in the RQ3 experiments,

wherein prompt template and verbalizer modifications were implemented.

In the initial set of experiments for RQ3, the verbalizer (VB1) remained constant while the

prompt templates were varied across different iterations. This approach enabled the assess-

ment of how performance fluctuated in response to changes in prompt template designs.

27

Subsequently, the prompt template (PT1) was held constant, and the verbalizers were altered

to observe the variations in performance attributable to different verbalizer designs.

Consistency was maintained with previous experiments, employing OpenPrompt, standard-

ized pre-processing procedures, and identical numbers of epochs and patience values as in

the RQ1 and RQ2 experiments.

Through systematic experimentation and analysis, RQ3 aimed to find the impact of prompt

template designs and verbalizer designs on the classification performance of app reviews,

providing valuable insights into the effectiveness of prompt-tuning methodologies in data-

constrained scenarios.

Datasets Models Data split Prompt templates Verbalizers

Scalabrino T5 2% PT2 VB2

Maalej GPT-2 PT3 VB3

Pan PT4

Table 14: RQ3 experimental setup

28

4 Results

4.1 RQ1

RQ1 endeavours to assess the efficacy of prompt-tuning in contrast to traditional fine-tuning

methodologies across three distinct datasets. The experiments were conducted employing

the RoBERTa model, encompassing varying proportions of training data at 70%, 5%, 3%,

and 2%. Within the context of prompt-tuning experiments, a baseline configuration was

established utilizing the VB1 and PT1 settings, serving as the foundation for subsequent

analyses. To enhance readability, only the overall performance is summarized here; for de-

tailed class-wise performance, refer to the appendix.

Figure 1: Comparison of RoBERTA model performance between traditional fine-tuning

and prompt-tuning on Scalabrino dataset

Figure 1 shows the results produced by the first set of experiments, conducted using the

Scalabrino dataset. At a 70% training dataset size, when there’s adequate labelled data avail-

able, traditional fine-tuning achieved an accuracy of 87.11%. The 5%, 3%, and 2% experi-

ments intended to explore the efficacy of prompt-tuning in scenarios characterized by con-

strained data availability. At 5% training dataset availability, prompt-tuning achieved an

accuracy of 80%, surpassing the accuracy of 73.78% attained by traditional fine-tuning,

resulting in a difference of 6.22%. At 3% training data size traditional fine-tuning demon-

strated higher accuracy of 74.89%, while prompt-tuning achieved 73.77% accuracy, result-

ing in a difference of 1.12%. Further reductions to 2% training dataset size showcased the

superiority of prompt-tuning, with accuracies of 74.67%, compared to 63.78% for tradi-

tional fine-tuning. This performance exhibited a difference of 10.89% compared to tradi-

tional fine-tuning methodology, highlighting the effectiveness of prompt-tuning in data-

constrained scenarios.

29

The findings revealed interesting insights into the comparative performance of traditional

fine-tuning and prompt-tuning across various training dataset sizes. In the scenario where

the training dataset size is limited to 2%, indicating a scarcity of training data, prompt-tuning

demonstrated superior performance compared to traditional fine-tuning methodology.

Figure 2: Comparison of RoBERTA model performance between traditional fine-tuning

and prompt-tuning on Maalej dataset

Figure 2 shows the results produced by the second set of experiments, conducted using the

manually labelled Maalej dataset. At a 70% training dataset size, traditional fine-tuning ex-

hibited an accuracy of 70.4%. At 5% training data availability, prompt-tuning demonstrated

a higher accuracy of 68.95% compared to the accuracy of 66.61% achieved by traditional

fine-tuning, resulting in a difference of 2.34%. At the 3% training dataset size, traditional

fine-tuning achieved an accuracy of 66.61%, slightly surpassing prompt-tuning's accuracy

of 65.88%, resulting in a difference of 0.73%. Prompt-tuning exceeded traditional fine-tun-

ing at the 2% dataset size, with an accuracy of 68.05% as compared to 66.61% accuracy of

traditional fine-tuning, resulting in a difference of 1.44%.

30

Figure 3: Comparison of RoBERTA model performance between traditional fine-tuning

and prompt-tuning on Pan dataset

Figure 3 shows the results of third set of RQ1 experiments, conducted using the manually

labelled app review dataset Pan, aimed to evaluate the performance of traditional fine-tuning

and prompt-tuning approaches in classifying app reviews into distinct categories. In the in-

itial experiment utilizing 70% of the dataset, traditional fine-tuning yielded an accuracy of

76.08%. At a data availability of 5%, prompt-tuning exhibited an accuracy of 35.41%, con-

trasting with the 61.24% accuracy achieved by traditional fine-tuning, resulting in a differ-

ence of 25.83%. With the 3% dataset size, both traditional fine-tuning and prompt-tuning

yielded identical accuracies of 43.54%. The results indicated that at a dataset size of 2%,

prompt-tuning notably surpassed traditional fine-tuning, achieving an accuracy of 59.81%

compared to 53.59%, having a difference of 6.22%.

In all the scenarios with limited annotated data, specifically at the lowest of 2% training data

size of RQ1, prompt-tuning showcased strengths in accuracy compared to traditional fine-

tuning. These results underscore the effectiveness of prompt-tuning, particularly in scenar-

ios with limited data, showcasing its potential for superior performance compared to tradi-

tional fine-tuning methods.

When using only 2% of the training data, prompt-tuning has improved the classification

accuracy over traditional fine-tuning by 10%, 1%, and 6% on the Scalabrino, Maalej,

and Pan labelled review datasets, respectively.

31

4.2 RQ2

RQ2 seeks to evaluate the comparative effectiveness of prompt-tuning against traditional

fine-tuning techniques, under the identical experimental parameters as those described in

RQ1. However, in this context, the experiments were extended to incorporate T5 and GPT-

2 models, with the aim of illuminating the subtle variations in performance attributable to

different language model architectures. To enhance readability, only the overall perfor-

mance is summarized here; for detailed class-wise performance, refer to the appendix.

Figure 4: Scalabrino Dataset - Prompt-Tuning Results - RoBERTa vs T5 vs GPT-2

Figure 4 is a comparative analysis of prompt-tuning performance of the Scalabrino dataset

across three different language models used in RQ1 and RQ2 - RoBERTa, T5, and GPT-2.

This provides valuable insights into the effectiveness of each model in classifying devel-

oper-relevant information in app reviews under data-constrained conditions.

When utilizing RoBERTa as the language model, prompt-tuning achieved an accuracy of

74.67% at a 2% training dataset size. Despite exhibiting slightly lower accuracy compared

to T5 and GPT-2, RoBERTa's accuracy levels remained above 70% across all dataset sizes.

Prompt-tuning with the T5 model yielded an accuracy of 80.22% at a 2% training dataset

size, showcasing its effectiveness in app review classification tasks. T5 demonstrated a no-

table improvement in accuracy compared to RoBERTa, which suggests that T5's enhanced

capability in understanding and generating natural language representations contributes to

its superior performance in capturing developer-relevant information.

32

At a 2% training dataset size, GPT-2 achieved an accuracy of 81.56%, surpassing both RoB-

ERTa and T5 in accuracy. GPT-2's strong performance underscores its efficacy in under-

standing context and generating coherent text representations, which are crucial for accurate

classification of app reviews.

Figure 5: Maalej Dataset - Prompt-Tuning Results - RoBERTa vs T5 vs GPT-2

Figure 5 depicts the comparison of prompt-tuning performance of the Maalej dataset across

three different language models RoBERTa, T5, and GPT-2 along with VB1 and PT1 under

data-constrained conditions.

RoBERTa achieved an accuracy of 68.05% at a 2% training dataset size. T5 model yielded

an accuracy of 70.94% at a 2% training dataset size, slight improvements in accuracy com-

pared to RoBERTa and GPT-2. GPT-2 achieved an accuracy of 70.4% at a 2% training

dataset size.

33

Figure 6: Pan Dataset - Prompt-Tuning Results - RoBERTa vs T5 vs GPT-2

The comparison of prompt-tuning performance using 2% training data from the Pan dataset

across three different language models RoBERTa, T5, and GPT-2 along with VB1 and PT1

which depicts in Figure 6 offers valuable insights into the effectiveness of each model in

classifying developer-relevant information in app reviews under data-constrained condi-

tions.

RoBERTa achieved an accuracy of 59.81% at a 2% training dataset size, demonstrating

moderate performance compared to T5 and GPT-2.

T5 model yielded the highest accuracy of 73.21% at a 2% training dataset size, showcasing

its effectiveness in app review classification tasks. T5 consistently outperformed RoBERTa

and GPT-2 across all training dataset sizes, indicating its superior ability to understand and

generate natural language representations for accurate classification of developer-relevant

information in app reviews.

GPT-2 exhibited competitive performance in prompt-tuning experiments, achieving an ac-

curacy of 65.07% at a 2% training dataset size.

At 2% training data availability, GPT-2 performed well for the Scalabrino dataset by 6%,

while T5 excelled for the Maalej and Pan datasets by 2%, and 13%, in prompt-tuning, re-

spectively.

34

4.3 RQ3

RQ3 investigates how the performance of prompt-tuning models is influenced by variations

in prompt template design and verbalizer design. By altering these components inde-

pendently, insights into their respective impacts on the classification of developer-relevant

information in app reviews are gained. For the experiments of RQ3, the best settings in RQ1

and RQ2, which produced a higher performance for each dataset at 2% training dataset size,

were picked. To enhance readability, only the overall performance is summarized here; for

detailed class-wise performance, refer to the appendix.

Figure 7: Impact of verbalizers and prompt templates on prompt-tuning performance

Prompt Template Variation:

In the experiments where the prompt template was varied while keeping the verbalizer con-

stant (VB1), several observations could be made:

- For the Scalabrino dataset with a 2% training dataset size and GPT-2 model, prompt tem-

plate PT3 achieved the highest accuracy of 80.44%, out of PT2 and PT4 but couldn’t out-

perform the baseline of 81.56% of PT1. This suggests that PT1 is the most effective prompt

template for Scalabrino in eliciting relevant information from app reviews.

- In the Maalej dataset with a 2% training dataset size and T5 model, prompt template PT3

also exhibited the highest accuracy of 73.29%, surpassing the baseline accuracy of 70.94%.

This indicates that PT3 is the best prompt template for Maalej dataset.

35

- Similarly, in the Pan dataset with a 2% training dataset size and T5 model, prompt template

PT2 achieved the highest accuracy of 75.12%, showcasing its superiority over the baseline

accuracy of 73.21%.

Verbalizer Variation:

When the verbalizer was varied while keeping the prompt template constant (PT1), the fol-

lowing observations were made:

- In the Scalabrino dataset with a 2% training dataset size and GPT-2 model, verbalizer VB3

resulted in an accuracy of 77.33%, surpassing the performance of VB2, but still lower than

the baseline accuracy of 81.56%. This suggests that VB1 is effective in classifying app re-

views in Scalabrino dataset.

- In the Maalej dataset with a 2% training dataset size and T5 model, verbalizer VB3

achieved an accuracy of 72.56%, higher than the baseline accuracy of 70.94%. This indi-

cates that VB3 offer improvements in projecting labels to label words compared to VB1.

- However, in the Pan dataset with a 2% training dataset size and T5 model, verbalizer VB2

resulted in an accuracy of 63.64%, substantially lower than the baseline accuracy of 73.21%.

This suggests that VB1 is more suitable for this dataset.

These results illustrate the impact of prompt templates and verbalizers on the performance

of prompt-tuning.

- Variations in prompt templates caused changes in accuracy of 8% for GPT-2 in the

Scalabrino dataset, and 3%, 5% for T5 in the Maalej and Pan datasets, respectively.

- Variations in verbalizers resulted in changes in accuracy of 10% for GPT-2, in the Sca-

labrino dataset, and 4%, 14% for T5 in the Maalej and Pan datasets, respectively.

36

5 Discussion

This section delves into the important findings of this study.

Prompt-tuning performance of RoBERTa at 3% training size

The performance of RoBERTa at a 3% training dataset size is interesting, as it exhibits lower

performance compared to the 2% dataset. This discrepancy in performance could be at-

tributed to the quality of data available for the 3% training size, which may not have been

as robust as that of the 2% dataset. This potentially introduced noise and inconsistencies

into the training process, thereby making it more challenging for the model to discern rele-

vant patterns effectively. Additionally, the examples presented for prediction may have dif-

fered from those encountered during training, further impacting the model's ability to gen-

eralize accurately.

Comparison of Traditional fine-tuning vs Prompt-tuning

Figure 8: Overall Performance - Traditional fine-tuning vs Prompt-tuning - at 2%

The comparison between traditional fine-tuning and prompt-tuning at a 2% training dataset

size illuminates the effectiveness of prompt-tuning in data-constrained scenarios across var-

ious datasets. For this comparison, the experiments that yielded the best performance for

each dataset in traditional fine-tuning and prompt-tuning were selected, respectively.

For the Scalabrino dataset, traditional fine-tuning with RoBERTa achieved an accuracy of

63.78%, while prompt-tuning with GPT-2, using the VB1 and PT1, attained a significantly

higher accuracy of 81.56%. This substantial performance gap highlights the advantage of

prompt-tuning in effectively utilizing limited labelled data.

37

Similarly, in the Maalej dataset, traditional fine-tuning with RoBERTa yielded an accuracy

of 66.61%, whereas prompt-tuning with T5 and the VB1 and PT3, achieved a higher accu-

racy of 73.29%. This also demonstrates the superior performance of prompt-tuning over

traditional fine-tuning, even with minimal labelled data.

In the case of the Pan dataset, traditional fine-tuning with RoBERTa achieved an accuracy

of 53.59%, whereas prompt-tuning with T5 and the VB1 and PT2 achieved a notably higher

accuracy of 75.12%. Once again, prompt-tuning showcased its effectiveness in leveraging

limited labelled data to achieve superior classification performance compared to traditional

fine-tuning.

Overall, these results underscore the significance of prompt-tuning as a viable approach for

classifying developer-relevant information in app reviews, particularly when faced with

constraints on labelled data availability.

Figure 9: Overall Performance - Traditional fine-tuning (70%) vs Prompt-tuning (2%)

The comparison between the highest performances of traditional fine-tuning with 70% train-

ing data and prompt-tuning with 2% training data offers valuable insights into the effective-

ness of prompt-tuning in achieving performance levels comparable to traditional fine-tuning

with significantly less labelled data.

In the Scalabrino dataset, traditional fine-tuning with T5 at 70% training data achieved an

accuracy of 87.33%, while prompt-tuning with GPT-2, using the VB1 prompt template, at

2% training data attained an accuracy of 81.56%. Despite the substantial difference in the

amount of labelled data used, prompt-tuning managed to achieve a performance close to

traditional fine-tuning, demonstrating its effectiveness in leveraging limited labelled data

efficiently.

38

Similarly, within the Maalej dataset, traditional fine-tuning utilizing RoBERTa at 70% train-

ing data yielded an accuracy of 70.4%. Conversely, prompt-tuning employing T5 with the

VB1 prompt template at 2% training data achieved a notably higher accuracy of 73.29%

compared to traditional fine-tuning. This underscores the capability of prompt-tuning to out-

perform traditional fine-tuning, even with a mere 2% of the available training data.

In the case of the Pan dataset, traditional fine-tuning with RoBERTa at 70% training data

achieved an accuracy of 76.08%, while prompt-tuning with T5 and the VB1 prompt tem-

plate at 2% training data achieved a slightly lower accuracy of 75.12%. Nevertheless, the

performance achieved by prompt-tuning with a fraction of the labelled data approaches that

of traditional fine-tuning with a significantly larger dataset, showcasing the efficacy of

prompt-tuning in maximizing performance with limited labelled data.

Overall, these results underscore the potential of prompt-tuning as a viable approach for

achieving performance levels comparable to traditional fine-tuning with substantially less

labelled data, thereby offering practical implications for applications where labelled data

availability is limited.

Prompt-tuning class-wise performances

Figure 10: Scalabrino - Prompt-tuning class-wise Performance

This chart provides a snapshot of the class-wise performance of prompt-tuning when only

2% of training data is available. It illustrates the extent of performance achievable even in

situations of limited data availability. Among all the few-shot prompt-tuning experiments

conducted in RQ1, RQ2, and RQ3 for the Scalabrino dataset, the experiment utilizing the

GPT-2 model with VB1 and PT1 settings achieved the highest performance at 2% data. This

specific experiment is highlighted here to showcase the class-wise performance.

39

In the Scalabrino dataset, prompt-tuning achieved impressive performance across various

classes. The "Other" class exhibited the highest F1 score of 89.09%, suggesting effective

classification of miscellaneous reports. Similarly, the "Other" class achieved a F1 score of

88.43%, indicating the model's ability to accurately identify bug-related reports. "Energy",

"Feature" and "Performance" classes achieved 76.92%, 60.5% and 56.25% of F1 scores

respectively. However, the "Usability" class exhibited 0% F1 score, indicating potential

challenges in accurately identifying usability-related issues with limited labelled data for

this dataset.

By looking at some examples of test dataset, it can be assumed that model struggled to

accurately classify reviews related to usability issues due to the language used in the reviews

is similar to reviews belonging to other classes, such as Bug, Other or Feature classes, and

because of the extremely low labelled examples in the training data of Usability class, lead-

ing to difficulties in learning distinguishing features and patterns for this class.

Below are few examples of prompt-tuning predictions with the predicted labels and actual

labels for the above described scenario.

Review Actual label Predicted label

nice app this app is too good Other Other

fix this game needs some fixing it causes my phone

to shut on and off plus it freezes my phone

Bug Bug

cannot show amount of free internal phone memory

on desire some monitoring tool

Feature Feature

my battery seems to be draining faster since update-

was one of my favorite apps what happened please fix

thanks

Energy Energy

slow very slow on my symphony w10 Performance Performance

do not download this is a virus appdo not download Security Security

the same pop up ad keeps popping up it is very an-

noying

Usability Bug

difficult to use this app Usability Other

Table 15: Scalabrino dataset - Prompt-tuning predictions

40

Figure 11: Maalej dataset - Prompt-tuning class-wise Performance

Among the few-shot prompt-tuning experiments carried out across RQ1, RQ2, and RQ3 for

the Maalej dataset, the experiment employed the T5 model with VB1 and PT3 settings

demonstrated the best performance at a 2% data availability. This particular experiment is

emphasized here to illustrate the class-wise performance.

Moving to the Maalej dataset, prompt-tuning demonstrated varying levels of performance

across different classes. The "Rating" class achieved the highest F1 score of 85.01%, indi-

cating successful identification of user reviews of non-informative reviews such as praise,

dispraise etc. "Problem Discovery" and "User Experience" classes scored 60.43% and

38.62% F1 scores respectively. However, the "Feature Request" class exhibited lower F1

score, suggesting potential difficulties in accurately categorizing feature-related requests

with limited labelled data for Maalej dataset. The reason for the lower F1 scores for the

"Feature Request" and "User Experience" classes could stem from the ambiguity in lan-

guage, as reviews may not always explicitly convey the intended class.

Below are few examples of prompt-tuning predictions of Maalej dataset.

Review Actual label Predicted label

Great for vacations and tours Love the app Rating Rating

Brilliant app but crashes on iPad and iPhone Problem Dis-

covery

Problem Dis-

covery

I love this app Easy to navigate and easy to post to

One of my favorites

User Experi-

ence

User Experi-

ence

It is almost 2011 Where is the multitasking Feature Re-

quest

Feature Request

41

This would easily be a 5 star app Best idea ever But

it loses 2 stars just because I have to download one

photo at a time This is a huge inconvenience

Feature Re-

quest

Problem Dis-

covery

Great way to keep up on your crossfit progress User Experi-

ence

Rating

Table 16: Maalej dataset - Prompt-tuning predictions

Figure 12: Pan dataset - Prompt-tuning class-wise Performance

Across the few-shot prompt-tuning experiments conducted throughout RQ1, RQ2, and RQ3

for the Pan dataset, the experiment utilizing the T5 model with VB1 and PT2 settings show-

cased the most superior performance with only a 2% data availability. This particular ex-

periment is used here to illustrate the class-wise performance of Pan dataset.

In the Pan dataset, prompt-tuning showcased mixed performance across different classes.

The "Problem Discovery" class exhibited the highest F1 score of 81.44%, indicating effec-

tive identification of issues or problems with the app. "Information Giving" and "Feature

Request" classes achieved 79.56% and 57.69% of F1 scores respectively. However, the "In-

formation Seeking" class achieved lower F1 score, suggesting challenges in accurately cat-

egorizing information-seeking reviews in this dataset. By looking at some examples of "In-

formation Seeking" class, it can be assumed that the lower F1 score might be attributed to

the inherent difficulty in distinguishing between requests for information and offers of in-

formation based solely on the language used in the reviews.

Below are few examples of prompt-tuning predictions of Pan dataset.

42

Review Actual label Predicted label

I love this site but the app crashes every time I use it Problem Dis-

covery

Problem Dis-

covery

I planned my daughters entire baby shower using Pin-

terest

Information

Giving

Information

Giving

I just wish that you could have more secret boards Feature Re-

quest

Feature Request

How do these things get out of the gate Information

Seeking

Information

Seeking

Is there a way I can leave messages to other pinners Information

Seeking

Information

Giving

Which one gets you to the list of categories the home

magnifying glass plus sign or person

Information

Seeking

Information

Giving

Can t figure out how to clean up my boards Information

Seeking

Problem Dis-

covery

Table 17: Pan dataset - Prompt-tuning predictions

Overall, the class-wise performance analysis highlights the potential of prompt-tuning in

effectively classifying developer-relevant information across various categories, even with

a limited amount of labelled data. However, it also underscores the importance of further

research and optimization to address challenges in accurately identifying certain classes,

particularly those with lower F1 scores.

43

6 Conclusion

This study explores the effectiveness of prompt-tuning methodologies for classifying devel-

oper-relevant information in app reviews, particularly in scenarios with limited labelled

data. Through three research questions, prompt-tuning was systematically compared with

traditional fine-tuning across various datasets and experimental conditions.

In RQ1, prompt-tuning's performance was assessed against traditional fine-tuning across

different datasets and training dataset sizes. Prompt-tuning consistently outperformed tradi-

tional methods, particularly when labelled data was scarce, achieving notable improvements

in classification accuracy across all datasets examined. Expanding upon the insights gained

from RQ1, RQ2 compared prompt-tuning across different language model architectures,

reaffirming its superior performance, particularly with T5 and GPT-2 models. RQ3 provided

insights into the impact of prompt template design and verbalizer design on prompt-tuning's

performance. The findings revealed that both prompt templates and verbalizers play crucial

roles in influencing the effectiveness of prompt-tuning, with certain settings yielding supe-

rior classification performance across different datasets.

In summary, few-shot prompt-tuning emerges as a practical solution for effectively classi-

fying developer-relevant information in app reviews, particularly in scenarios with limited

labelled data. The consistent performance improvements across various datasets and exper-

imental conditions highlight the potential of prompt-tuning for real-world applications

where labelled data is scarce. In the ever-evolving app marketplace, where new categories

continuously emerge and labelled data for these new apps is limited, few-shot prompt-tuning

methods offer a promising approach to classify app reviews effectively. By fine-tuning lan-

guage models with carefully designed prompt templates and verbalizers, few-shot prompt-

tuning facilitates efficient categorization of app reviews into distinct classes, even in sce-

narios with limited labelled data.

Future research in app review classification using prompt-tuning could focus on optimizing

performance by exploring these key areas:

1. Continuous Prompting: Investigate the effectiveness of continuous prompting ap-

proaches, which involve training the model on a continuous stream of prompts with

ongoing updates and adjustments.

2. Tuning-Free Prompting: Evaluating tuning-free prompting strategy and compare

its performance over few-shot prompt-tuning.

3. Automatic Prompt Template Design: Apply techniques for automatic prompt tem-

plate design and eliminate the dependency of human effort in prompt template de-

sign.

By advancing research in these areas, the efficiency and effectiveness of prompt-tuning

methodologies can be achieved for app review classification, ultimately enabling better ex-

traction of insights from app review data.

Code related to this study is publicly available at

https://github.com/hashikadhananjanie/few-shot-prompting-app-review-classification

44

Acknowledgement

First and foremost, I extend my heartfelt thanks to my supervisor, Faiz Ali Shah, for his

invaluable support, guidance, and encouragement throughout the journey and for being flex-

ible with the arrangements. His expertise and mentorship have been instrumental in shaping

the direction of my study.

I am deeply thankful to the University of Tartu for providing me with the necessary re-

sources and facilities to conduct this study. The research environment has greatly facilitated

my work and enabled to achieve my objectives.

Furthermore, I extend my appreciation to all the lecturers at University of Tartu for sharing

their knowledge through these two years.

Lastly, I express my gratitude to my family, cousins, friends, and colleagues for their unwa-

vering support throughout the duration of this endeavour.

Thank you to everyone who has played a part, no matter how big or small, in the realization

of this study.

45

References

[1] F. Rustam, A. Mehmood, M. Ahmad, S. Ullah, D. M. Khan, and G. S. Choi,

“Classification of shopify app user reviews using novel multi text features,” IEEE

Access, vol. 8, pp. 30234–30244, 2020.

[2] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, Prompt,

and Predict: A Systematic Survey of Prompting Methods in Natural Language

Processing,” ACM Comput. Surv., vol. 55, no. 9, pp. 1–35, Sep. 2023, doi:

10.1145/3560815.

[3] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C.

Gall, “ARdoc: app reviews development oriented classifier,” in Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, Seattle WA USA: ACM, Nov. 2016, pp. 1023–1027. doi:

10.1145/2950290.2983938.

[4] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C.

Gall, “How can i improve my app? classifying user reviews for software

maintenance and evolution,” in 2015 IEEE international conference on software

maintenance and evolution (ICSME), IEEE, 2015, pp. 281–290.

[5] E. Guzman and W. Maalej, “How do users like this feature? a fine grained

sentiment analysis of app reviews,” in 2014 IEEE 22nd international requirements

engineering conference (RE), Ieee, 2014, pp. 153–162.

[6] Y. Chang et al., “A Survey on Evaluation of Large Language Models,” ACM

Trans. Intell. Syst. Technol., vol. 15, no. 3, pp. 1–45, Jun. 2024, doi:

10.1145/3641289.

[7] M. Kale and A. Rastogi, “Text-to-Text Pre-Training for Data-to-Text Tasks.”

arXiv, Jul. 08, 2021.

[8] C. Garbacea, S. Carton, S. Yan, and Q. Mei, “Judge the Judges: A Large-Scale

Evaluation Study of Neural Language Models for Online Review Generation.”

arXiv, Sep. 05, 2019.

[9] H. Luo, “Prompt-learning and Zero-shot Text Classification with Domain-specific

Textual Data.” 2023.

[10] C. W. F. Mayer, S. Ludwig, and S. Brandt, “Prompt text classifications with

transformer models! An exemplary introduction to prompt-based learning with

large language models,” J. Res. Technol. Educ., vol. 55, no. 1, pp. 125–141, Jan.

2023, doi: 10.1080/15391523.2022.2142872.

[11] W. Jin, Y. Cheng, Y. Shen, W. Chen, and X. Ren, “A Good Prompt Is Worth

Millions of Parameters: Low-resource Prompt-based Learning for Vision-

Language Models.” arXiv, Mar. 14, 2022.

[12] Y. Ge, Y. Guo, Y.-C. Yang, M. A. Al-Garadi, and A. Sarker, “Few-shot learning

for medical text: A systematic review.” arXiv, Apr. 21, 2022.

[13] A. Parnami and M. Lee, “Learning from Few Examples: A Summary of

Approaches to Few-Shot Learning.” arXiv, Mar. 07, 2022.

46

[14] Y. Ma, S. Luo, Y.-M. Shang, Z. Li, and Y. Liu, “A novel prompt-tuning method:

Incorporating scenario-specific concepts into a verbalizer,” Expert Syst. Appl., vol.

247, p. 123204, Aug. 2024, doi: 10.1016/j.eswa.2024.123204.

[15] G. Cui, S. Hu, N. Ding, L. Huang, and Z. Liu, “Prototypical Verbalizer for

Prompt-based Few-shot Tuning,” in Proceedings of the 60th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), S.

Muresan, P. Nakov, and A. Villavicencio, Eds., Dublin, Ireland: Association for

Computational Linguistics, May 2022, pp. 7014–7024. doi: 10.18653/v1/2022.acl-

long.483.

[16] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein and Sameer Singh, “Calibrate

Before Use: Improving Few-Shot Performance of Language Models”,

https://doi.org/10.48550/arXiv.2102.09690

[17] Flor Miriam Plaza-del-arco, Debora Nozza, and Dirk Hovy, “Respectful or

Toxic? Using Zero-Shot Learning with Language Models to Detect Hate

Speech. ”

In The 7th Workshop on Online Abuse and Harms (WOAH), pages 60–68,

Toronto, Canada. Association for Computational Linguistics, 2023

[18] Ž. Vujović, “Classification model evaluation metrics,” Int. J. Adv. Comput. Sci.

Appl., vol. 12, no. 6, pp. 599–606, 2021.

[19] Ding, Ning, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao

Zheng, and Maosong Sun (2021). “OpenPrompt: An Open-source Framework for

Prompt-learning”, https://doi.org/10.48550/arXiv.2111.01998

[20] S. Scalabrino, G. Bavota, B. Russo, M. D. Penta and R. Oliveto, "Listening to the

Crowd for the Release Planning of Mobile Apps," in IEEE Transactions on

Software Engineering, vol. 45, no. 1, pp. 68-86, 1 Jan. 2019, doi:

10.1109/TSE.2017.2759112.

[21] P. Devine, Y. S. Koh, and K. Blincoe, “Evaluating software user feedback

classifier performance on unseen apps, datasets, and metadata,” Empir. Softw.

Eng., vol. 28, no. 2, p. 26, Mar. 2023, doi: 10.1007/s10664-022-10254-y.

[22] Maalej, W., Kurtanović, Z., Nabil, H. et al. "On the automatic classification of app

reviews. " Requirements Eng 21, 311–331 (2016). https://doi.org/10.1007/s00766-

016-0251-9

[23] Al-hawari, assem (2019), “A dataset of Mobile application reviews for classifying

reviews into software Engineering's maintenance tasks using data mining

techniques”, Mendeley Data, V2, doi: 10.17632/5fk732vkwr.2

[24] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019).

"Roberta: A robustly optimized bert pretraining approach." arXiv preprint

arXiv:1907.11692.

[25] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P.

J. (2020). "Exploring the limits of transfer learning with a unified text-to-text

transformer." Journal of machine learning research, 21(140), 1-67.

https://aclanthology.org/2023.woah-1.6
https://aclanthology.org/2023.woah-1.6
https://aclanthology.org/2023.woah-1.6

47

[26] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

"Language models are unsupervised multitask learners." OpenAI blog, 1(8), 9.

48

Appendix

I. RQ1 Results

Experiment Class Traditional fine-tuning results Prompt-tuning results

Prec Rec F1 Acc Prec Rec F1 Acc

RQ1_MD1_DS1_VB1_PT1_EX1

Bug 85.95 90.43 88.14

87.11

90 86.09 88

86

Energy 93.75 93.75 93.75 62.5 93.75 75

Feature 78.72 74 76.29 70.91 78 74.29

Other 91.77 93.81 92.78 91.63 92.04 91.83

Performance 80 60 68.57 81.82 45 58.06

Security 75 85.71 80 87.5 100 93.33

Usability 50 37.5 42.86 66.67 62.5 64.52

RQ1_MD1_DS1_VB1_PT1_EX2

Bug 84.68 81.74 83.19

73.78

77.94 92.17 84.46

80

Energy 100 18.75 31.58 85.71 75 80

Feature 38.46 50 43.48 65.62 42 51.22

Other 77.41 92.48 84.27 82.07 91.15 86.37

Performance 100 5 9.52 88.89 40 55.17

Security 0 0 0 100 57.14 72.73

Usability 0 0 0 75 18.75 30

RQ1_MD1_DS1_VB1_PT1_EX3

Bug 67.74 91.3 77.78

74.89

61.4 91.3 73.43

73.33

Energy 0 0 0 100 31.25 47.62

Feature 61.36 54 57.45 60 36 45

Other 81.67 90.71 85.95 82.5 87.61 84.98

Performance 0 0 0 100 20 33.33

Security 0 0 0 0 0 0

Usability 0 0 0 0 0 0

RQ1_MD1_DS1_VB1_PT1_EX4

Bug 64.35 64.35 64.35

63.78

79.82 75.65 77.68

74.67

Energy 0 0 0 100 81.25 89.66

Feature 0 0 0 48.89 44 46.32

Other 63.58 94.25 75.94 79.3 89.82 84.23

Performance 0 0 0 31.82 35 33.33

Security 0 0 0 75 42.86 54.55

Usability 0 0 0 100 6.25 11.76

RQ1_MD1_DS2_VB1_PT1_EX1

Feature Request 33.33 21.05 25.81

70.4

0 0 0

66.61
Problem Discovery 51.76 78.57 62.41 0 0 0

Rating 81.7 83.47 82.57 66.61 100 79.96

User Experience 44.12 32.97 37.74 0 0 0

RQ1_MD1_DS2_VB1_PT1_EX2

Feature Request 0 0 0

66.61

30.23 34.21 32.1

68.95
Problem Discovery 63.64 25 35.9 75 5.36 10

Rating 79.61 87.8 83.51 75.72 92.14 83.13

User Experience 24.8 34.07 28.7 44.83 28.57 34.9

RQ1_MD1_DS2_VB1_PT1_EX3

Feature Request 0 0 0

66.61

0 0 0

65.88
Problem Discovery 0 0 0 8.33 1.79 2.94

Rating 66.61 100 79.96 67.28 98.64 80

User Experience 0 0 0 0 0 0

RQ1_MD1_DS2_VB1_PT1_EX4

Feature Request 0 0 0

66.61

0 0 0

68.05
Problem Discovery 0 0 0 46.88 26.79 34.09

Rating 66.61 100 79.96 69.62 98.1 81.44

User Experience 0 0 0 0 0 0

RQ1_MD1_DS3_VB1_PT1_EX1

Feature Request 59.09 44.83 50.98

76.08

62.5 17.24 27.03

73.68
Information Giving 76.47 85.71 80.83 70.27 85.71 77.23

Information Seeking 83.33 33.33 47.62 77.78 46.67 58.33

Problem Discovery 79.75 85.14 82.35 79.01 86.49 82.58

RQ1_MD1_DS3_VB1_PT1_EX2

Feature Request 0 0 0

61.24

0 0 0

35.41
Information Giving 68 74.73 71.2 0 0 0

Information Seeking 0 0 0 0 0 0

Problem Discovery 55.05 81.08 65.57 35.41 100 52.3

RQ1_MD1_DS3_VB1_PT1_EX3

Feature Request 0 0 0

43.54

0 0 0

43.54
Information Giving 43.54 100 60.67 43.54 100 60.67

Information Seeking 0 0 0 0 0 0

Problem Discovery 0 0 0 0 0 0

RQ1_MD1_DS3_VB1_PT1_EX4

Feature Request 0 0 0

53.59

18.18 6.9 10

59.81
Information Giving 54.26 76.92 63.64 56.93 85.71 68.42

Information Seeking 0 0 0 0 0 0

Problem Discovery 52.5 56.76 54.55 75 60.81 67.16

Table 18: RQ1 results

49

II. RQ2 Results

 Experiment Class Traditional fine-tuning results Prompt-tuning results

 Prec Rec F1 Acc Prec Rec F1 Acc

RQ2_MD2_DS1_VB1_PT1_EX1

 Bug 88.89 90.43 89.66

 87.33

 86.4 93.91 90

 86.22

 Energy 88.24 93.75 90.91 88.24 93.75 90.91

 Feature 73.58 78 75.73 78.57 66 71.74

 Other 90.38 95.58 92.9 88.61 92.92 90.71

 Performance 91.67 55 68.75 78.57 55 64.71

 Security 100 57.14 72.73 77.78 100 87.5

 Usability 50 25 33.33 66.67 25 36.36

RQ2_MD2_DS1_VB1_PT1_EX2

 Bug 30 2.61 4.8

 50.44

 83.08 93.91 88.16

 84.22

 Energy 0 0 0 93.75 93.75 93.75

 Feature 0 0 0 64 64 64

 Other 50.91 99.12 67.27 89.32 92.48 90.87

 Performance 0 0 0 77.78 35 48.28

 Security 0 0 0 71.43 71.43 71.43

 Usability 0 0 0 75 18.75 30

RQ2_MD2_DS1_VB1_PT1_EX3

 Bug 29.73 19.13 23.28

 50.44

 83.74 89.57 86.55

 81.56

 Energy 0 0 0 60 93.75 73.17

 Feature 0 0 0 62 62 62

 Other 54.52 90.71 68.11 87.39 88.94 88.16

 Performance 0 0 0 88.89 40 55.17

 Security 0 0 0 77.78 100 87.5

 Usability 0 0 0 50 12.5 20

RQ2_MD2_DS1_VB1_PT1_EX4

 Bug 22.86 48.7 31.11

 35.56

 84.82 82.61 83.7

 80.22

 Energy 0 0 0 100 81.25 89.66

 Feature 0 0 0 50 62 55.36

 Other 51.74 46.02 48.71 85.54 91.59 88.46

 Performance 0 0 0 88.89 40 55.17

 Security 0 0 0 83.33 71.43 76.92

 Usability 0 0 0 33.33 12.5 18.18

RQ2_MD2_DS2_VB1_PT1_EX1

 Feature Request 0 0 0

 70.04

 50 7.89 13.64

 70.94
 Problem Discovery 50.67 67.86 58.02 62.22 50 55.45

 Rating 77.44 90.24 83.35 72.75 96.21 82.85

 User Experience 36.17 18.68 24.64 46.67 7.69 13.21

RQ2_MD2_DS2_VB1_PT1_EX2

 Feature Request 0 0 0

 66.61

 30.77 21.05 25

 68.23
 Problem Discovery 0 0 0 53.52 67.86 59.84

 Rating 66.61 100 79.96 80 83.47 81.7

 User Experience 0 0 0 33.33 26.37 29.45

RQ2_MD2_DS2_VB1_PT1_EX3

 Feature Request 0 0 0

 66.61

 50 5.26 9.52

 70.58
 Problem Discovery 0 0 0 55.36 55.36 55.36

 Rating 66.61 100 79.96 77.04 94.58 84.91

 User Experience 0 0 0 21.95 9.89 13.64

RQ2_MD2_DS2_VB1_PT1_EX4

 Feature Request 0 0 0

 66.61

 40 5.26 9.3

 70.94
 Problem Discovery 0 0 0 52.94 64.29 58.06

 Rating 66.61 100 79.96 75.75 95.66 84.55

 User Experience 0 0 0 13.33 2.2 3.77

RQ2_MD2_DS3_VB1_PT1_EX1

 Feature Request 66.67 55.17 60.38

 75.6

 58.97 79.31 67.65

 79.43
 Information Giving 71.68 89.01 79.41 86.9 80.22 83.43

 Information Seeking 83.33 33.33 47.62 88.89 53.33 66.67

 Problem Discovery 84.85 75.68 80 80.52 83.78 82.12

RQ2_MD2_DS3_VB1_PT1_EX2 Feature Request 0 0 0 44.98 55.88 65.52 60.32 75.6

50

 Information Giving 44.22 96.7 60.69 81.82 79.12 80.45

 Information Seeking 0 0 0 66.67 13.33 22.22

 Problem Discovery 60 8.11 14.29 77.38 87.84 82.28

RQ2_MD2_DS3_VB1_PT1_EX3

 Feature Request 0 0 0

 44.02

 71.43 17.24 27.78

 66.51
 Information Giving 43.84 97.8 60.54 85.33 70.33 77.11

 Information Seeking 0 0 0 0 0 0

 Problem Discovery 60 4.05 7.59 55.12 94.59 69.65

RQ2_MD2_DS3_VB1_PT1_EX4

 Feature Request 4.76 3.45 4

 38.76

 69.23 31.03 42.86

 73.21
 Information Giving 42.08 84.62 56.2 77.08 81.32 79.14

 Information Seeking 0 0 0 50 6.67 11.76

 Problem Discovery 60 4.05 7.59 70.41 93.24 80.23

RQ2_MD3_DS1_VB1_PT1_EX1

 Bug 87.18 88.7 87.93

 85.11

 92.38 84.35 88.18

 83.78

 Energy 100 87.5 93.33 86.67 81.25 83.87

 Feature 63.16 72 67.29 62.71 74 67.89

 Other 88.66 93.36 90.95 85.26 94.69 89.73

 Performance 84.62 55 66.67 100 30 46.15

 Security 100 57.14 72.73 85.71 85.71 85.71

 Usability 71.43 31.25 43.48 57.14 25 34.78

RQ2_MD3_DS1_VB1_PT1_EX2

 Bug 61.06 60 60.53

 60.67

 85.37 91.3 88.24

 83.56

 Energy 0 0 0 100 81.25 89.66

 Feature 24.62 32 27.83 57.14 72 63.72

 Other 69.37 83.19 75.65 90.13 88.94 89.53

 Performance 0 0 0 71.43 50 58.82

 Security 0 0 0 83.33 71.43 76.92

 Usability 0 0 0 75 37.5 50

RQ2_MD3_DS1_VB1_PT1_EX3

 Bug 65.31 55.65 60.09

 59.56

 82.68 91.3 86.78

 80.67

 Energy 0 0 0 90.91 62.5 74.07

 Feature 18.75 12 14.63 67.74 42 51.85

 Other 62.07 87.61 72.66 84.02 90.71 87.23

 Performance 0 0 0 60.87 70 65.12

 Security 0 0 0 83.33 71.43 76.92

 Usability 0 0 0 37.5 18.75 25

RQ2_MD3_DS1_VB1_PT1_EX4

 Bug 62.16 60 61.06

 60.67

 84.25 93.04 88.43

 81.56

 Energy 0 0 0 65.22 93.75 76.92

 Feature 10.53 4 5.8 52.17 72 60.5

 Other 63.32 89.38 74.13 91.59 86.73 89.09

 Performance 0 0 0 75 45 56.25

 Security 0 0 0 80 57.14 66.67

 Usability 0 0 0 0 0 0

RQ2_MD3_DS2_VB1_PT1_EX1

 Feature Request 50 5.26 9.52

 67.87

 0 0 0

 71.48
 Problem Discovery 45.16 75 56.38 56.67 60.71 58.62

 Rating 78.64 84.82 81.62 78.93 88.35 83.38

 User Experience 32.2 20.88 25.33 45 39.56 42.11

RQ2_MD3_DS2_VB1_PT1_EX2

 Feature Request 20 15.79 17.65

 61.19

 25 7.89 12

 70.4
 Problem Discovery 20 1.79 3.28 46.32 78.57 58.28

 Rating 70.13 85.91 77.22 80.9 87.26 83.96

 User Experience 22.39 16.48 18.99 42.86 23.08 30

RQ2_MD3_DS2_VB1_PT1_EX3

 Feature Request 13.21 18.42 15.38

 57.94

 0 0 0

 70.94
 Problem Discovery 16.67 1.79 3.23 47.06 71.43 56.74

 Rating 69.28 81.3 74.81 76.82 94.31 84.67

 User Experience 20.97 14.29 16.99 31.25 5.49 9.35

RQ2_MD3_DS2_VB1_PT1_EX4

 Feature Request 11.7 28.95 16.67

 53.97

 0 0 0

 70.4 Problem Discovery 0 0 0 71.88 41.07 52.27

 Rating 67.38 76.69 71.74 72.69 95.93 82.71

51

 User Experience 14.29 5.49 7.94 38.24 14.29 20.8

RQ2_MD3_DS3_VB1_PT1_EX1

 Feature Request 50 27.59 35.56

 68.9

 75 31.03 43.9

 72.25
 Information Giving 77.27 74.73 75.98 63.78 89.01 74.31

 Information Seeking 75 40 52.17 80 26.67 40

 Problem Discovery 63.92 83.78 72.51 87.69 77.03 82.01

RQ2_MD3_DS3_VB1_PT1_EX2

 Feature Request 25 34.48 28.99

 35.89

 100 10.34 18.75

 71.77
 Information Giving 50.77 36.26 42.31 82.02 80.22 81.11

 Information Seeking 10.71 20 13.95 66.67 26.67 38.1

 Problem Discovery 38.16 39.19 38.67 63.06 94.59 75.68

RQ2_MD3_DS3_VB1_PT1_EX3

 Feature Request 19.18 48.28 27.45

 20.1

 50 10.34 17.14

 64.59
 Information Giving 40 2.2 4.17 61.02 79.12 68.9

 Information Seeking 3.9 20 6.52 50 6.67 11.76

 Problem Discovery 42.59 31.08 35.94 71.08 79.73 75.16

RQ2_MD3_DS3_VB1_PT1_EX4

 Feature Request 18.42 48.28 26.67

 16.27

 50 3.45 6.45

 65.07
 Information Giving 0 0 0 60.32 83.52 70.05

 Information Seeking 5.68 33.33 9.71 50 20 28.57

 Problem Discovery 33.33 20.27 25.21 74.67 75.68 75.17

Table 19: RQ2 results

Figure 13: Comparison of T5 model performance between traditional fine-tuning and

prompt-tuning on Scalabrino dataset

52

Figure 14: Comparison of T5 model performance between traditional fine-tuning and

prompt-tuning on Maalej dataset

Figure 15: Comparison of T5 model performance between traditional fine-tuning and

prompt-tuning on Pan dataset

53

Figure 16: Comparison of GPT-2 model performance between traditional fine-tuning and

prompt-tuning on Scalabrino dataset

Figure 17: Comparison of GPT-2 model performance between traditional fine-tuning and

prompt-tuning on Maalej dataset

54

Figure 18: Comparison of GPT-2 model performance between traditional fine-tuning and

prompt-tuning on Pan dataset

55

III. RQ3 Results

Experiment Class Prompt-tuning results

Prec Rec F1 Acc

RQ3_MD2_DS2_VB1_PT2_EX4

Feature Request 28.21 28.95 28.57

69.49
Problem Discovery 58.33 50 53.85

Rating 78.85 88.89 83.57

User Experience 35.29 19.78 25.35

RQ3_MD2_DS2_VB1_PT3_EX4

Feature Request 58.33 18.42 28

73.29
Problem Discovery 50.6 75 60.43

Rating 81.23 89.16 85.01

User Experience 51.85 30.77 38.62

RQ3_MD2_DS2_VB1_PT4_EX4

Feature Request 20 2.63 4.65

70.76
Problem Discovery 57.63 60.71 59.13

Rating 75.97 95.12 84.48

User Experience 21.43 6.59 10.08

RQ3_MD2_DS2_VB2_PT1_EX4

Feature Request 57.14 10.53 17.78

69.13
Problem Discovery 65.52 33.93 44.71

Rating 75.5 91.87 82.89

User Experience 30.43 23.08 26.25

RQ3_MD2_DS2_VB3_PT1_EX4

Feature Request 33.33 5.26 9.09

72.56
Problem Discovery 62.5 53.57 57.69

Rating 76.2 94.58 84.4

User Experience 50 23.08 31.58

RQ3_MD2_DS3_VB1_PT2_EX4

Feature Request 65.22 51.72 57.69

75.12
Information Giving 80 79.12 79.56

Information Seeking 66.67 13.33 22.22

Problem Discovery 73.12 91.89 81.44

RQ3_MD2_DS3_VB1_PT3_EX4

Feature Request 90 31.03 46.15

74.16
Information Giving 75 85.71 80

Information Seeking 0 0 0

Problem Discovery 71.58 91.89 80.47

RQ3_MD2_DS3_VB1_PT4_EX4

Feature Request 100 3.45 6.67

69.38
Information Giving 70.09 82.42 75.76

Information Seeking 100 6.67 12.5

Problem Discovery 68 91.89 78.16

RQ3_MD2_DS3_VB2_PT1_EX4

Feature Request 50 10.34 17.14

63.64
Information Giving 65.38 74.73 69.74

Information Seeking 0 0 0

Problem Discovery 62.63 83.78 71.68

RQ3_MD2_DS3_VB3_PT1_EX4

Feature Request 0 0 0

60.77
Information Giving 65.59 67.03 66.3

Information Seeking 33.33 6.67 11.11

Problem Discovery 64.36 87.84 74.29

RQ3_MD3_DS1_VB1_PT2_EX4

Bug 86.96 69.57 77.29

73.56

Energy 78.57 68.75 73.33

Feature 41.03 64 50

Other 78.46 85.4 81.78

Performance 69.23 45 54.55

Security 80 57.14 66.67

Usability 100 12.5 22.22

RQ3_MD3_DS1_VB1_PT3_EX4

Bug 80.95 88.7 84.65

80.44

Energy 81.25 81.25 81.25

Feature 47.83 66 55.46

Other 89.24 88.05 88.64

Performance 100 35 51.85

Security 85.71 85.71 85.71

Usability 100 12.5 22.22

RQ3_MD3_DS1_VB1_PT4_EX4

Bug 93.68 77.39 84.76

78.89

Energy 100 62.5 76.92

Feature 50 70 58.33

Other 81.42 91.15 86.01

Performance 60 45 51.43

Security 66.67 28.57 40

Usability 100 25 40

RQ3_MD3_DS1_VB2_PT1_EX4

Bug 96.97 55.65 70.72

71.56 Energy 83.33 31.25 45.45

Feature 53.33 64 58.18

56

Other 70.37 92.48 79.92

Performance 71.43 50 58.82

Security 66.67 28.57 40

Usability 0 0 0

RQ3_MD3_DS1_VB3_PT1_EX4

Bug 80.77 91.3 85.71

77.33

Energy 100 43.75 60.87

Feature 75 18 29.03

Other 76.33 95.58 84.87

Performance 75 45 56.25

Security 50 14.29 22.22

Usability 25 6.25 10

Table 20: RQ3 results

57

IV. Scalabrino VB3 design using ChatGPT

Prompt:

I'm doing a research on 'Few-Shot Prompt-Tuning of Language Models for App Review

Classification: An Evaluation Study'. I'm using OpenPrompt library in this research. When

using this library there's a step to define a Verbalizer. Below is the example they've provided

in the documentation.

Step: Define a Verbalizer

A Verbalizer is another important (but not necessary) in prompt-learning, which projects

the original labels (we have defined them as classes) to a set of label words. Here is an

example that we project the negative class to the word bad, and project the positive class to

the words good, wonderful, great.

eg:

from openprompt.prompts import ManualVerbalizer

promptVerbalizer = ManualVerbalizer (

classes = classes,

label_words = {"negative": ["bad"],

 "positive": ["good", "wonderful", "great"]},

tokenizer = tokenizer)

I need to define label_words according to the classes that I have in the dataset I use in my

research. This app review dataset has 3000 user reviews, randomly selected from 705 dif-

ferent Android apps. This was manually labelled by two people by independently analyzing

the 3,000 reviews and assigning each of them to a category (class) among the seven. Below

are the details of the seven categories.

In total, of the considered 3,000 reviews we labeled 764 as functional bug report, 333 as

suggestion for new feature, 50 as report of security issues, 135 as report of performance

problems, 107 as request for usability improvements, 106 as report of excessive energy con-

sumption and 1505 as other (other - i.e., non-informative reviews like praise or dispraise, a

distractive critique, or a dissuasion).

Could you please suggest the most relevant keywords that a user might use when providing

reviews related to above seven classes.

Result:

Certainly! Here are some suggestions for relevant keywords that users might use when

providing reviews related to the seven classes/categories in your dataset:

1. Functional Bug Report:

crash, error, bug, glitch, malfunction, issue, problem

2. Suggestion for New Feature:

feature, improvement, addition, suggestion, enhancement, request

58

3. Report of Security Issues:

security, vulnerability, breach, hack, exploit, threat

4. Report of Performance Problems:

slow, lag, performance, speed, efficiency, bottleneck

5. Request for Usability Improvements:

usability, interface, user experience, navigation, intuitive, user-friendly

6.Report of Excessive Energy Consumption:

battery drain, energy consumption, power usage, energy efficiency, drain, resource-inten-

sive

7. Other (Non-informative Reviews):

praise, criticism, feedback, opinion, irrelevant, off-topic

These keywords should help in defining the label words for your Verbalizer in a way that

accurately captures the essence of each class based on user-provided reviews. Adjust them

as necessary based on the specific characteristics and terminology of your dataset.

59

V. Maalej VB3 design using ChatGPT

Prompt:

I'm doing a research on 'Few-Shot Prompt-Tuning of Language Models for App Review

Classification: An Evaluation Study'. I'm using OpenPrompt library in this research. When

using this library there's a step to define a Verbalizer. Below is the example they've provided

in the documentation.

Step: Define a Verbalizer

A Verbalizer is another important (but not necessary) in prompt-learning, which projects

the original labels (we have defined them as classes) to a set of label words. Here is an

example that we project the negative class to the word bad, and project the positive class to

the words good, wonderful, great.

eg:

from openprompt.prompts import ManualVerbalizer

promptVerbalizer = ManualVerbalizer (

classes = classes,

label_words = {"negative": ["bad"],

 "positive": ["good", "wonderful", "great"]},

tokenizer = tokenizer)

I need to define label_words according to the classes that I have in the dataset I use in my

research. This app review dataset has 3691 user reviews, manually labelled by assigning

each of them to a category (class) among four. Below are the details of the four categories.

Bug reports describe problems with the app which should be corrected, such as a crash, an

erroneous behavior, or a performance issue. In feature requests, users ask for missing func-

tionality (e.g., provided by other apps) or missing content (e.g., in catalogs and games) and

share ideas on how to improve the app in future releases by adding or changing features.

User experiences document the experience of users with the app and how it helped in certain

situations. They can be seen as documentation of the app, its requirements, and features.

Finally, ratings are simple text reflections of the numeric star rating. Ratings are less in-

formative as they only include praise, dispraise, a distractive critique, or a dissuasion.

Could you please suggest the most relevant keywords that a user might use when providing

reviews related to above four classes (Bug reports, Feature requests, User experience, Rat-

ings)

Result:

Certainly! Here are some relevant keywords that users might use when providing reviews

related to the four classes:

1. Bug Reports:

crash, error, issue, bug, freeze, glitch, performance problem, malfunction, software problem,

application crash

60

2. Feature Requests:

suggest, add, feature, improvement, enhancement, request, update, new functionality, miss-

ing feature, wish

3. User Experience:

usability, user-friendly, experience, intuitive, navigation, interface, convenience, ease of

use, helpful, smooth

4. Ratings:

good, great, excellent, fantastic, amazing, poor, terrible, disappointing, satisfactory, excep-

tional

These keywords capture the essence of each class and are commonly used by users when

providing reviews related to app experiences. Feel free to adjust or expand the list based on

the specific characteristics of your dataset and the classes you're interested in.

61

VI. Pan VB3 design using ChatGPT

Prompt:

I'm doing a research on 'Few-Shot Prompt-Tuning of Language Models for App Review

Classification: An Evaluation Study'. I'm using OpenPrompt library in this research. When

using this library there's a step to define a Verbalizer. Below is the example they've provided

in the documentation.

Step: Define a Verbalizer

A Verbalizer is another important (but not necessary) in prompt-learning, which projects

the original labels (we have defined them as classes) to a set of label words. Here is an

example that we project the negative class to the word bad, and project the positive class to

the words good, wonderful, great.

eg:

from openprompt.prompts import ManualVerbalizer

promptVerbalizer = ManualVerbalizer (

classes = classes,

label_words = {"negative": ["bad"],

 "positive": ["good", "wonderful", "great"]},

tokenizer = tokenizer)

I need to define label_words according to the classes that I have in the dataset I use in my

research. This app review dataset has 1390 user reviews, which contains reviews of the

AngryBirds, Dropbox and Evernote apps available in Apple’s App Store and reviews from

the apps TripAdvisor, PicsArt, Pinterest and Whatsapp available in Android’s Google Play

store. These were manually labelled by assigning each of them to a category (class) among

four. Below are the details of the four categories.

- Information Giving: sentences that inform or update users or developers about an aspect

related to the app.

- Information Seeking: sentences related to attempts to obtain information or help from other

users or developers.

- Feature Request: sentences expressing ideas, suggestions or needs for improving or en-

hancing the app or its functionalities.

- Problem Discovery: sentences describing issues with the app or unexpected behaviors.

Could you please suggest the most relevant keywords that a user might use when provid-

ing reviews related to above four classes (Bug reports, Feature requests, User experience,

Ratings)

Results:

Certainly! Here are some relevant keywords that users might use when providing reviews

related to the four classes in your dataset:

62

1. Information Giving:

update, inform, news, announcement, change log, release notes, release, version, details,

notification

2. Information Seeking:

help, question, query, seek, assistance, support, advice, guidance, clarification, answer

3. Feature Request:

suggest, idea, improve, enhance, functionality, request, wish, addition, enhancement, new

feature

4. Problem Discovery:

issue, problem, bug, glitch, error, malfunction, crash, problem-solving, troubleshooting, un-

expected behavior

These keywords are tailored to capture the essence of each class based on the descriptions

provided. However, you may need to adjust or expand the list based on the specific charac-

teristics of your dataset and the context of the reviews from the selected apps.

63

VII. Writing Assistance

Grammarly and ChatGPT were employed to enhance the writing process of this thesis, ad-

dressing grammar errors and refining the writing style.

64

VIII. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Hashika Dhananjanie Agalakepu Watthegedara Marasinghe,

1. grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the

purpose of preservation, including for adding to the DSpace digital archives until the expiry

of the term of copyright, my thesis

Few-Shot Prompt-Tuning of Language Models for App Review Classification: An

Evaluation Study

supervised by Faiz Ali Shah.

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available

to the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 4.0, which allows, by

giving appropriate credit to the author, to reproduce, distribute the work and communicate

it to the public, and prohibits the creation of derivative works and any commercial use of

the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’ intel-

lectual property rights or rights arising from the personal data protection legislation.

Hashika Dhananjanie Agalakepu Watthegedara Marasinghe

15/05/2024

