
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Mohamed Maher Abdelrahman

Instance-based Label Smoothing for
Better Classifier Calibration

Master’s Thesis (30 ECTS)

Supervisor: Meelis Kull, PhD

Tartu 2020

Instance-based Label Smoothing for Better Classifier Calibration

Abstract: Binary classification is one of the fundamental tasks in machine learning,
which involves assigning one of two classes to an instance defined by a set of features.
Although accurate predictions are essential in most of the tasks, knowing the model
confidence is indispensable in many of them. Many probabilistic classifiers’ predictions
are not well-calibrated and tend to be overconfident, requiring further calibration as a
post-processing step to the model training.

Logistic calibration is one of the most popular calibration methods, that fits a logis-
tic regression model to map the outputs of a classification model into calibrated class
probabilities. Various regularization methods could be applied to logistic regression
fitting to reduce its overfitting on the training set. Platt scaling is one of these methods,
which applies label smoothing to the class labels and transforms them into target proba-
bilities before fitting the model to reduce its overconfidence. Also, label smoothing is
widely used in classification neural networks. In previous works, it was shown that label
smoothing has a positive calibration and generalization effect on the network predictions.
However, it erases information about the similarity structure of the classes by treating all
incorrect classes as equally probable, which impairs the distillation performance of the
network model.

In this thesis, we aim to find better ways of reducing overconfidence in logistic
regression. Here we derive the formula of a Bayesian approach for the optimal pre-
dicted probabilities in case of knowing the generative model distribution of the dataset.
Later, this formula is approximated by a sampling approach to be applied practically.
Additionally, we propose a new instance-based label smoothing method for logistic
regression fitting. This method motivated us to present a novel label smoothing approach
that enhanced the distillation and calibration performance of neural networks compared
with standard label smoothing.

The evaluation experiments confirmed that the approximated formula for the derived
optimal predictions is significantly outperforming all other regularization methods on
synthetic datasets of known generative model distribution. However, in more realistic
scenarios when this distribution is unknown, our proposed instance-based label smoothing
had a better performance than Platt scaling in most of the synthetic and real-world datasets
in terms of log loss and calibration error. Besides, neural networks trained with instance-
based label smoothing, outperformed the standard label smoothing regarding log loss,
calibration error, and network distillation.
Keywords: Machine Learning, Logistic Regression, Platt Scaling, Label Smoothing,

Probabilistic Classifiers, Bayesian Reasoning, Neural Networks
CERCS: P176 Artificial intelligence

2

Märgendite andmepunktipõhine silumine klassifikaatorite paremaks
kalibreerimiseks
Lühikokkuvõte: Binaarne klassifikatsioon on üks masinõppe peamistest ülesannetest.
See hõlmab endas tunnuste komplekti poolt määratud andmepunktide määramist ühte
kahest klassist. Kuigi täpsed ennustused on enamikes ülesannetes olulised, on väga palju-
del juhtudel oluline ka mudeli enesekindlus. Paljude tõenäosuslike klassifikatsioonide
ennustused pole hästi kalibreeritud ja kipuvad olema liigse enesekindlusega, seetõttu
vajades täiendavat kalibreerimist mudeli treenimise järeltöötluses.

Logistiline kalibreerimine on üks populaarsematest kalibreerimismeetoditest. See
sobitab logistilise regressiooni mudeli klassifikatsiooni mudeli väljunditele, et saada
kalibreeritud tõenäosusjaotus üle kõigi klasside. Treeningandmetele ülesobitamise vä-
hendamiseks saab logistilise regressioonimudeli sobitamisel rakendada mitmeid regulari-
seerimismeetodeid. Platti skaleerimine on üks neist meetoditest ning kasutab märgendite
silumist klasside märgenditel ja muudab nad sihttõenäosusteks enne logistilise regres-
sioonimudeli rakendamist, seekaudu langetades mudeli liigset enesekindlust. Lisaks
sellele kasutatakse märgendite silumist ka klassifikatsiooni teostavates närvivõrkudes.
Eelnev teadustöö on näidanud, et märgendite silumisel on positiivsete efektidega mudelite
kalibreeritusele ja üldistusvõimele. Samas kustutab see informatsiooni klasside sarnasus-
struktuuridest, koheldes kõiki valesid klasse võrdtõenäolisena, seekaudu kahjustades
treenitud võrgu destilleerimisvõimekust.

Antud magistritöös on eesmärk leida paremaid meetodeid logistilise regressiooni
liigse enesekindluse vähendamiseks. Selle jaoks on tuletatud uus Bayesi lähenemisel
baseeruv valem optimaalsete tõenäosusprognooside leidmiseks, eeldusel et generatiivse
mudeli jaotus on teada. Selle valemi rakendamiseks praktikas on leitud ka lähendus-
meetod. Lisaks sellele on välja pakutud uus märgendite andmepunktipõhine silumise
meetod logistilise regressiooni sobitamiseks. Sellest meetodist motiveerituna on esitatud
ka uudne lähenemine närvivõrkude märgendite silumisele, mis täiendas destilleerimis- ja
kalibreerimisvõimekust võrreldes tavalise märgendite silumisega.

Meetodite hindamiseks teostatud eksperimendid kinnitasid, et töös tuletatud optimaal-
sete ennustuste lähendusvalem edestab tulemustelt kõiki teisi regulariseerimismeetodeid
autorite poolt sünteesitud andmestikes, kus on generatiivse mudeli jaotus teada. Seevastu
realistlikumatel juhtudel, kus see jaotus pole teada, näitab uus märgendite andmepunkti-
põhine silumine paremat jõudlust võrreldes Platti skaleerimisega enamikes nii tegelikes
kui sünteesitud andmestikes nii logaritmilise kaofunktsiooni kui ka kalibreerimisvea poo-
lest. Lisaks, märgendite andmepunktipõhine silumine edestas närvivõrkude treenimisel
traditsioonilist märgendite silumist nii logaritmilise kahju, kalibreerimisvea kui ka võrgu
destilleerimise poolest.
Võtmesõnad: masinõpe, logistiline regressioon, Platti skaleerimine, märgendite silumi-
ne, tõenäosuslikud klassifikaatorid, Bayesi statistika, närvivõrgud

CERCS: P176 Tehisintellekt

3

Acknowledgments
I would like to thank my thesis supervisor Dr. Meelis Kull for the guidance, encouragement,

and advice he has provided to me throughout a full academic year. It would have not been
possible for me to defend if it was not with his help and support. He always had the patience
to listen to my ideas, provide fruitful feedback and, steer me in the right direction whenever I
needed it the most. I am also very grateful for the many opportunities he gave me like joining the
Machine Learning group at Institute of computer science, University of Tartu, where I gained
various research skills, learned about many interesting topics in the field of Machine Learning
and enjoyed the interesting discussions among Meelis, and my colleagues in the group.

I would like also to express my profound gratitude to my parents, and my sisters for their love,
endless support, and encouragement throughout all years of my studies. Finally, I dedicate my
work to the memory of Prof. Dr. Sherif Sakr who always believed in my ability to be successful
in the academic arena.

Mohamed Maher
May, 2020

Contents
1 Introduction 8

1.1 Why should we care about calibration? . 8
1.2 Logistic regression and sigmoid calibration 9
1.3 Reducing overconfidence by label smoothing 9
1.4 Thesis structure . 11

2 Background 12
2.1 Types of classifiers . 12

2.1.1 Labeling classifiers . 12
2.1.2 Scoring classifiers . 12

2.2 Classifier calibration . 13
2.2.1 Calibration of linear classifiers scores 13

2.3 Evaluation metrics . 16
2.3.1 Log Loss . 16
2.3.2 Confidence reliability plot . 16
2.3.3 Expected calibration error . 17

2.4 Logistic regression . 18
2.5 Bayesian reasoning in machine learning . 20
2.6 Deep neural networks . 21

2.6.1 Temperature scaling . 22

3 Related work 23
3.1 Using logistic regression in classifiers calibration 23
3.2 Solutions to overfitting in logistic regression 24

3.2.1 Regularization . 25
3.2.2 Bayesian logistic regression . 26
3.2.3 Label smoothing, and Platt scaling . 26

4 Optimal predictions for datasets with known generative models distribution 28
4.1 Bayes-optimal model for a binary classification task with normally distributed

likelihoods . 28
4.2 Derivation of the optimal predictions given a known dataset generative model

and a training set . 30
4.2.1 Practicality Concerns . 34

5 Instance-based label smoothing using kernel density estimation 37
5.1 Disadvantages of the constant factor label smoothing 37
5.2 The intuition behind the instance-based label smoothing 37
5.3 Kernel density estimation . 40
5.4 Methodology . 41

5

6 Label smoothing in classification with neural networks 44
6.1 Standard label smoothing: Fors and Againsts 44
6.2 Instance-based label smoothing in neural networks 45

7 Experimental results 48
7.1 Synthetic datasets experiments . 49

7.1.1 Setup . 49
7.1.2 Results . 51

7.2 Real datasets experiments for logistic regression 57
7.2.1 Setup . 57
7.2.2 Results . 57

7.3 Experiments for label smoothing in neural networks 59
7.3.1 Setup . 60
7.3.2 Results . 60

8 Conclusion 63

References 67

Appendix 68
I. Source Code . 68
II. Licence . 68

6

Abbreviation Definition
pdf Probability density function

KDE Kernel density estimation
MLE Maximum likelihood estimation
MAP Maximum a posteriori
CD Critical Difference diagram

SVM Support vector machines model
LR Logistic regression model

DNN Deep neural networks
ECE Expected calibration error
DNNs Deep Neural Networks
CNNs Convolutional Neural Networks

Table 1. List of abbreviations

Symbol Description
Dtr, Dte Training, and testing datasets
D+, D� Positive, and negative class instances of dataset D
X , Y Features space, and labels space of a particular dataset.
p̂(x) predicted probability of instance x
f̂(z) Estimated probability density of an instance z
Kh(z) Non-negative kernel function of bandwidth h
T Temperature scaling parameter in neural networks

�+; �� Smoothing factor using for positive, and negative classes respectively.
�+Platt; �

�
Platt Platt scaling label smoothing factors for positive, and negative classes respectively.

�0; �1; � Mean of negative, positive classes, and standard deviation of their Gaussian distributions respectively
Dx The probability distribution of a variable x
p� Optimal output predicted probability

�(t� c) Dirac delta function at c
NMC Number of Monte Carlo samples

U(a; b), B(a; b) Uniform, and Beta distributions of parameters a, and b.
N (�; �) Gaussian distribution of mean �, and standard deviation �.

clr Class balance ratio = jD+
trj

jD+
trj+jD

�
trj

.

Table 2. Notation used in mathematical formulas described throughout the thesis.

7

1 Introduction
During the past decade,machine learninghas been used in a wide range of applications. Thanks to
the accelerated research progress in this �eld, machine learningmodelshave been widely utilized
in real-world use cases like healthcare [PSA18], transportation [ADLB19], and agriculture
[JDPS19].

Although these models outperform humans in many tasks and even with signi�cant degrees,
deploying them in more critical tasks that require making decisions that directly impact people's
lives could be quite risky. Naturally, critical decisions are not going to be taken except when
the model has a high degree ofcon�dencein its predictions. The con�dence of a model usually
refers to its estimated output probability or score of an observation belonging to a speci�c
class. However, highly accurate models do not necessarily re�ect correct con�dence levels.
Therefore, taking measures regarding the calibration of model predictions to avoid scenarios
of overcon�dence is an important part of building machine learning models. For instance, a
model that predicts with a 90% con�dence level should have around 90 correct out of every 100
predictions. Despite the continuous advancements in improving the accuracy of models, relying
on these models' predictions requires parallel progress in calibrating their outputs.

1.1 Why should we care about calibration?

Consider a highly accurate machine learning model that was trained and employed in aself-
driving car. Suppose that this model predicts an empty road with con�dence of almost100%
while a pedestrian is crossing the street. Given such a perfect level of con�dence, the model
might take the decision to continue accelerating, which could lead to disastrous consequences.

Second, after the novel Coronavirus (COVID19) has hit the world, the machine learning
research community started to direct their efforts towards offering solutions to this crisis. One
type of these efforts is using machine learning for a fast diagnosis of COVID19. For example, 13
published studies were proposing different machine learning models to detect this viral infection
based on tomography scans [WVCB+ 20]. Although most of these models claim very accurate
results, one needs to know when to rely on the model predictions, or when to ask for a medical
expert con�rmation using other diagnostic tests.

Suppose that two of these diagnostic models were tested over a group of100infected patients.
ModelA has accuracy and con�dence of90%on each of these patients, and ModelB has95%
accuracy but99:9%con�dence. Although the second model has higher accuracy than the �rst, its
erroneous predictions with overcon�dence could be problematic to the patient's physical health
and the whole population. However, Model A iscalibrated, which makes it a more reliable
model.

The above examples and many others show how con�dence in machine learning is a matter
of interest. No doubt that based on the consequences of the made decisions, different tasks
need different levels of con�dence to act upon. However, these levels should be highly accurate,
such that a non-calibrated model is not going to be useful even if it has high con�dence in its
predictions. Thus, using highly calibrated machine learning models, and reducing overcon�dent
predictions could be as crucial as developing highly accurate models in some real-life scenarios.

8

1.2 Logistic regression and sigmoid calibration

Regressionmodels are a broad class of predictive models in machine learning. The aim of using
these models is to �nd the relationship between a group of independent variables(features), and
a numeric dependent variable(target). On the other hand, if the target variable belongs to a
set of discrete values, the task is referred to asclassi�cation. A particular case of classi�cation
tasks is when the set of possible target values includes only two different states. In that case, the
problem is referred to as abinary classi�cationtask. There is no doubt that the set of binary
classi�cation problems widely exists in our real-world tasks, where machine learning solutions
tend to sort items into one out of two classes. The predominance of this particular set of tasks
could be imagined from many examples in various �elds like the prediction of churn or not, spam
or not, illness or not, etc. Moreover, having multiple classes in other tasks could be interpreted as
a prediction of one class versus the remaining ones, which could be achieved by aggregating the
outputs from multiple binary classi�cation models.

Logistic Regression(LR) model is a prevalent probabilistic machine learning model that is
employed in binary classi�cation tasks. Firstly, it can be described by simple equations that
ease its deployment and provide a quanti�ed representation for the relative importance of each
feature to the target variable. Secondly, it squashes the output scores into a range between 0 and
1. Hence, it outputs the probability of belonging to a particular class as a continuous variable.LR
is used for binary classi�cation by employing a decision rule on its estimated output probabilities.
An observation belongs to the positive class if it satis�es that decision rule such that its estimated
probability exceeds a certain threshold. Otherwise, it belongs to the negative class [HJ15].

Many highly accurate binary classi�cation models like decision trees, naive Bayes [ZE01],
and support vector machines (SVM) [Dri01] could lack calibrated con�dence levels. However,
they usually output scores that are linearly related to the target variable. An important use-case for
LRis calibrating classi�ers' output predictions such that a univariateLRmodel is �tted to convert
the output scores of the uncalibrated classi�ers into better-calibrated probabilities. This process
is well known bylogisticor sigmoid calibration, and it is usually bene�cial if the distortion in
the predicted scores has a sigmoid shape. Consequently, better certainty estimates for model
predictions could be obtained. Figure 1 (left) shows an example for the reliability diagram
of an uncalibrated SVM model with average distorted predicted scores similar to a sigmoid
function. In the reliability diagram, the predicted probabilities are divided into ten bins along the
x-axis, and the average score in each bin is plotted against the average model accuracy. After
performing logistic calibration, the model output predictions become very close to that of the
perfect calibrated model. A perfectly calibrated model would be on the diagonal of the diagram.

1.3 Reducing overcon�dence by label smoothing

WhenLRis trained like any other supervised classi�er, the training set is usually not enough to
learn the actual distribution of the dataset. Hence, it is a critical problem that �tting a standard
LRmodel on the training set would suffer from overcon�dence. For example, Figure 1 (right)
shows a standardLR�tted using a training sample of 20 univariate instances drawn from Gaussian
distributions with the same standard deviation, and the means� 2, 2 for negative and positive
classes, respectively. The model is over�tted to the training set with highly overcon�dent

9

predictions compared to the optimalLRmodel given the actual distribution of the dataset.

Figure 1. (a) Effect of logistic calibration on an uncalibrated SVM model with distorted
scores with a Sigmoid shape. (b) Overcon�dent standardLRmodel �tted with a training
sample compared with the optimal model on the testing set distribution.

Few approaches have been proposed to reduce the overcon�dence issues inLR�tting, and
particularly logistic calibration. The most common approach applies an engineering trick for
smoothing the dataset target labels before model �tting, which is named asPlatt scaling[P+ 99].
Applying label smoothing teaches the model not to be very con�dent of the labels of all instances
during training. Although this approach works quite well in some cases, it was shown that the
selected smoothing factor by that approach is not the best one in many other cases. Based on these
�ndings, more questions are raised about how to choose better smoothing factors, and whether
label smoothing is the best way to reduce over�tting or there exist better alternatives [Pä19].

Label smoothing is not only adopted inLR�tting but also widely populated withdeep neural
networks. It helps the networks to take into account the presence of noisy labeled instances in the
training set. This helps in reducing the overcon�dence of the network predictions and improves
its accuracy.

In this thesis, we try to investigate and discuss previous approaches used in reducing over�t-
ting of LRand propose new ones based on our �ndings. To this end, the contribution of this thesis
work is as follows:

• Study the different approaches used in reducing the overcon�dence of theLRmodel.

• Analytical derivation for the optimal output probability predictions if the exact distribution
of the generative model of the dataset is known.

• Demonstration of a new instance-based label smoothing approach using kernel density
estimation to reduce overcon�dence inLR.

10

• A new label smoothing parametric method for neural networks enhances the network
performance in terms of generalization, calibration, and network distillation.

• Empirical evaluation and discussion of the proposed methods on synthetic and real datasets.

1.4 Thesis structure

In the following Section 2, an overview of the types of classi�ers,LRmodel, and classi�ers
calibration are introduced for the background. In Section 3, we discuss theLRovercon�dence
issue, and how it was addressed in the literature. In Section 4, we derive how to �nd the optimal
output probability predictions with prior knowledge of the exact generative distribution of the
considered dataset. A new approach for label smoothing using kernel density estimation forLR
�tting is proposed in Section 5. Next, an instance-based label smoothing approach in neural
networks motivated by our work with logistic calibration is developed and presented in Section
6. Section 7 includes the detailed setup, results, and discussions for the experimental evaluation
of the proposed methods. Finally, the main conclusions of this study, in addition to the possible
future research directions, are addressed in Section 8. Figure 2 shows a summary of the thesis
content with an overview of its �ow and organization.

Figure 2. A high-level overview of the thesis �ow and organization in the following
sections.

11

2 Background
In the following sections, we start by introducing the notation being used in our study, and an
overview of the necessary background information, including different classi�ers types and the
calibration process. Then, we introduce the logistic regression (LR) model and discuss how it is
being trained and used in calibrating linear classi�ers. After that, Bayesian inference in machine
learning is shortly introduced. Finally, we present a brief overview of deep neural networks and
examples of their types.

2.1 Types of classi�ers

A classi�er is a category of learning algorithms that implements a function to solve a classi�cation
task such that it takes an input of several features, and it outputs the predicted class label out of
a set of �nite discrete classes. Labeling classi�ers are the ones that output the �nal predicted
class labels. However, to obtain a con�dence level associated with the class prediction, scoring
classi�ers are needed. Next, we introduce these different types of classi�ers, along with their
notation.

2.1.1 Labeling classi�ers

A labeling classi�er is a predictive model functionf : X �! Y that computes the predicted
class denoted byyi of an instancei , given its features vector values denoted byxi . The set
of all possible values of features is referred to as feature spaceX , and the set of different
classes values is denoted byY such thatxi 2 X , andyi 2 Y . In this study, we focus on the
binary classi�cation tasks whereY = f 0; 1g such that0 represents a negative class, and1
represents a positive class. A datasetD = D + [D � is a collection of positive class instances
D + = f (x i ; yi) j i 2 f 1; 2; :::; ng; yi = 1 ; x i 2 X g and negative class instancesD � =
f (x i ; yi) j i 2 f 1; 2; :::; ng; yi = 0 ; x i 2 X g wheren = jD j is the total number of instances in
the datasetD [Fla12].

2.1.2 Scoring classi�ers

A scoring classi�erŜ : X �! RK is a function which performs a mapping from the instance space
X to a K -dimensional vector of real numbersŜ(x) = (ŝ0(x); :::; ŝK � 1(x)) representing how
likely that the instancex belongs to the different possible classes, whereK is the total number of
classes inY. Most of the learning classi�er algorithms can be used to output scores instead of
labels only. For example, thenearest neighborsalgorithm returns the ratio of positive neighbors
to the total number of neighbors, andsupport vector machinesreturns the signed distance of an
instance away from the decision boundary between classes [Fla12].

A probabilisticclassi�er P̂ : X �! [0; 1]K is a special case of the scoring classi�ers such that
the output scores represent probabilities that the instancex belongs to the different classes. The
predicted probabilities vector̂P(x) should add up to1,

P K � 1
k=0 P̂k (x) = 1 . In binary classi�cation

tasks (K = 2), the probability vector̂P(x) = (P̂0(x); P̂1(x)) shows how likely that the instance

12

x belongs to the negative, and positive classes respectively. The probability thatx belongs to the
positive class is shortly denoted asP̂ whereP̂ = P̂1 = 1 � P̂0.

Following adecision rule, scoring classi�ers can predict the �nal predicted class labelŷ
using a thresholdt. For example, an instancex is labelled as positive when̂P > t , and negative
otherwise [HOFR11]. Scoring classi�ers can be easily converted into probabilistic classi�ers by
ensuring that their scores are positive, then normalizing each class's score by the total summation
of output scores. However, these derived class probabilities are usually termed asuncalibrated
scores.

2.2 Classi�er calibration

A probabilistic classi�er must have an output of the estimated classes' probabilities. The more
the predicted class probability goes into an extreme (i.e.,0 or 1), the more con�dent the model
is, and vice versa. These probabilities are not usually calibrated, which means that they do not
re�ect the model's true uncertainty levels. Hence, there is a need for con�dence calibration of
classi�ers to make their predictions more reliable [CG04].

The calibration process maps the model's output of estimated probabilities into new values
in a way that makes the con�dence of these new calibrated predictions match the actual class
distribution as much as possible. For instance, 90 out of 100 patients were accurately diagnosed
as infected with a disease by a perfect calibrated model with a probability ofP̂1 = 0 :9 for every
patient. The con�dence levels of the perfectly calibrated model match exactly with the accuracy
of its predictions during inference. So, it is almost impractical to achieve perfect calibration
in the test phase. The decision rule thresholdt used to predict the �nal class label should be
set to1

2 for a well-calibrated probabilistic model of a binary classi�cation task, assuming equal
class distribution and misclassi�cation costs. Thus, an instancex is classi�ed as positive when
P̂1 > P̂0 (i.e. positive class probability > negative class probability). This can be simply derived
as follows:

P̂1 > P̂0

P̂1 > 1 � P̂1

2P̂1 > 1
P̂1 > 1

2 :

2.2.1 Calibration of linear classi�ers scores

Calibration of linear classi�ers scores, is the process of converting model output scores represented
by the signed distance from the decision boundary into calibrated probabilities. The geometric
interpretation behind these scores can be shown in Figure 3. The output of any linear models can
be formulated aŝs(xi) = w � xi � t , wheret is the perpendicular distance from the origin to the
decision boundary. The dot product of an instancexi , and coef�cient vectorw of the decision
boundary represents the projection ofxi on w. Using a thresholdt = 0 , the �nal class label is
determined based on the sign ofŝ(xi).

Having suf�ciently many instances as identically distributed independent random variables
in both classes, the central limit theorem [LC86] can be used to show that it is reasonable, and

13

Figure 3. Geometric interpretation of linear classi�ers predicted scores.

often not far from the truth to assume that the distances of each class instances are approximately
normally distributed with a mean of�s+ = w � � + � t , or �s� = w � � � � t for the positive and
negative classes respectively, where� + = 1

jD + j

P jD j
i;y i =1 xi , and� � = 1

jD � j

P jD j
i;y i =0 xi [Fla12].

Hence, the density function of the distance scores can be written as follows, assuming that the
normal distributions for both classes have the same standard deviation� :

p(S = s(x)jy = 1) = 1p
2��

exp � (s� �s+)2

2� 2 ;

p(S = s(x)jy = 0) = 1p
2��

exp � (s� �s�)2

2� 2 :
(1)

Using the previously concluded density functions, we can predict probabilities instead of
scores using Bayes' rule as follows:

P(y = 1 jS = s(x)) = p(S= s(x)jy=1) P (y=1)
p(S= s(x)jy=1) P (y=1)+ p(S= s(x)jy=0) P (y=0)

= 1
1+ P (y =0)

P (y =1) � p(S = s(x) j y =0)
p(S = s(x) j y =1)

: (2)

Assuming that the probabilities of both classes are equal,P(y = 1) = P(y = 0) , and

14

substituting (1) in (2):

p(S= s(x)jy=0)
p(S= s(x)jy=1) = exp

�
(s(x)� �s+)2

� (s(x)� �s�)2

2� 2

�

= exp
�

(�s� � �s+)
� 2 s(x) + (�s+2 � �s� 2)

2� 2

�
= exp (� (a s(x) + b))

) P(y = 1 js(x)) = 1
1+exp(� (a s(x)+ b)) , wherea = (�s+ � �s�)

� 2 ; b = (�s� 2 � �s+2)
2� 2 :

(3)

Finally, from Equation 3, it is shown that converting distance scores into probabilities can be
done by mapping all the scores using a sigmoid function (a.k.a logistic function) with a slope
of a, and shift ofb. Examples of sigmoid functions with different slopes can be viewed in Figure 4.

Figure 4. Univariate sigmoid functions with variable slope, and zero shift (red, green,
blue); sigmoid with weighted averageslope coef�cientsof other two sigmoids (cyan);
the weighted average of the outputs of two sigmoids functionsoutput values(black).

15

2.3 Evaluation metrics

Next, we discuss different visualization and quantitative evaluation methods of the model over-
con�dence and calibration error.

2.3.1 Log Loss

The log loss is a prevalent loss function for measuring the quality of probabilistic models (a.k.a
cross-entropy, or negative log-likelihood loss) [HTF09]. It is considered as a special form of
Kullback-Leibler divergence(KLD) [KL51]. KLDcomputes the relative entropy between two
probability distributions as a measurement of how they diverge from each other as shown in
the following equation wherey andP̂ are the target and predicted probability distributions
respectively, andK is the number of classes:

L KLD (y; P̂) =
KX

k=1

yk log
yk

P̂k
:

Log loss in multi-classi�cation tasks is a special case ofKLDwhen the target class distribution
is 1 for the true class label, and0 for all other classes. Thus, log loss can be written as follows:

L log(y; P̂) = �
KX

k=1

yk log(P̂k):

In binary classi�cation tasks, this formula can be reduced as follows, wherey1; P̂1 are the
target, and predicted probabilities of the positive class, respectively:

L log(y; P̂) = � y1 log(P̂1) � y0 log(P̂0) = � y1 log(P̂1) � (1 � y1) log(1 � P̂1):

To get the intuition behind how the log loss penalizes prediction errors, Figure 5 illustrates
the loss value against different predicted probabilities for the correct class label. This loss value
reaches its minimum at a predicted probability of1:0 (matching target probability), representing
correct and con�dent prediction. However, it starts to increase as we go far from that value
gradually until suddenly, the lossovergrowsfor a predicted probability ranging from0:5 to 0:0,
where the loss tends to1 . Hence, log loss measures the uncertainty of the predicted probabilities
compared with the correct labels. The loss function gives more penalty forwrong and con�dent
predictions than less con�dent ones.

2.3.2 Con�dence reliability plot

The con�dence reliability plot is a visualization method for the model calibration error in binary
classi�ers [NMC05]. It shows the relationship between the average output estimated probability
(model con�dence) on the x-axis, and the corresponding model accuracy on the y-axis. Figure 6
shows an example of a con�dence reliability diagram for an uncalibrated model with error bars in
red between the model calibration line, and a perfect-calibrated model (diagonal line).

16

Figure 5. Cross-entropy value at different predicted probabilities of true class.

To draw the con�dence reliability plot, the possible output probabilities[0; 1] are binned into
equally spacedN bins such that a binbn has a prediction probability lies into an intervalI n =
(n� 1

N ; n
N]; n 2 1; 2; :::; N . Then, the average of the model output estimated probabilities located

inside each binconf idence(bn) is plotted on the x-axis against the proportion of accurately
classi�ed instancesaccuracy(bn) inside the same bin on the y-axis. Thus, each binbn is
represented by a bar with a height equal toaccuracy(bn). The model calibration curve is
represented by the connection between these plotted points together:

conf idence(bn) = 1
jbn j

P
i 2 bn

P̂i

accuracy(bn) = 1
jbn j

P
i 2 bn

1(yi = ŷi)
where1(a = b) equals1 whena = b, and0 otherwise:

A perfect calibrated model is characterized by having equal con�dence and accuracy values
for all bins,conf idence(bn) = accuracy(bn)jn 2 N . A model is usually said to be calibrated
when its output predictions on the testing set are calibrated. Hence, it is almost impractical to
have a perfect-calibrated model as it is dif�cult to learn the exact testing set distribution from a
sample of instances of the training set.

2.3.3 Expected calibration error

Since the reliability plot shows only a visualization for con�dence behavior, it still lacks a
numerical representation to ease the evaluation of different calibration approaches. Additionally,
there is no information related to the number of instances inside each bin in the reliability plot.
For instance, the model may have most of its probability estimations lying inside one or two bins
that are not calibrated like the other bins. Consequently, this can mistakenly lead to some wrong
conclusions about the overall calibration behavior of the model.

17

Figure 6. An example of the con�dence reliability diagram for an uncalibrated SVM
model trained on a randomly generated 2-class dataset using Python Scikit-learn
make_classification function1.

The Expected Calibration Error (ECE) is a measure for the overall expected error between
the model accuracy and con�dence across all the bins. In the following equation, the ECE is
calculated as the weighted average of the calibration error which takes into account the number
of instances inside each bin too [NCH15]:

ECE =
NX

n=1

jbn j

P N
j =1 jbj j

� j accuracy(bn) � conf idence(bn)j

!

:

2.4 Logistic regression

Logistic calibration is one of the widely used calibration methods for binary scoring classi�ers.
In logistic calibration, a univariate logistic regression (LR) model is �tted to convert the output
scores of the uncalibrated classi�ers into better-calibrated probabilities. Here we introduce theLR
model, how it is being �tted to a dataset, and discuss its use cases.

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classi�cation.html

18

LRis one of the commonly used linear classi�cation models that �nds the best �ttinglogistic
curve (Figure 4) on binary class datasets. In contrast with the other linear classi�ers which
require further post-processing step for calibrating their predictions,LRhas the advantage that,
on average, its estimated probabilities are calibrated on the training set as an integral part of the
model �tting [KDG+ 02]. TheLRmodel is given by the following equation, wherew represents
the coef�cients vector for every feature dimension in the features vectorx:

P̂ (x) =
ew�x� t

ew�x� t + 1
=

1
1 + e� (w�x� t)

:

In case of univariate tasks (i.e.x = [x], w = [w]), w is termed as the slope of the sigmoid
function.

Given that the class labels are 0, and 1 for the negative, and positive classes respectively, the
conditional likelihood probability of the class label given a particular instancei can be de�ned as
a Bernoulli distribution as follows:

P(Y = yi jX = xi) = P̂ (xi)
yi (1 � P̂ (xi))

1� yi :

Then, the model is �tted by maximizing the conditional log-likelihood function over all the
training dataset instances as follows:

w; t = argmax
w;t

Y

i

P(yi jxi) = argmax
w;t

Y

i

�
P̂ (xi)

yi (1 � P̂ (xi))
1� yi

�

= argmax
w;t

log

Y

i

�
P̂ (xi)

yi (1 � P̂ (xi))
1� yi

�
!

= argmax
w;t

X

i

�
yi log P̂ (xi) + (1 � yi) log(1 � P̂ (xi))

�

= argmax
w;t

X

i;y i =1

log P̂ (xi) +
X

i;y i =0

log(1 � P̂ (xi))

= argmin
w;t

X

i;y i =1

� log P̂ (xi) +
X

i;y i =0

� log(1 � P̂ (xi)) :

Maximizing the log-conditional likelihood for the model parametersw, and thresholdt can
be shown to be a convex optimization problem, which means that their partial derivatives should
be set to zero as shown in the following equations:

@
@t

0

@
X

i;y i =1

log P̂ (xi) +
X

i;y i =0

log(1 � P̂ (xi))

1

A = 0

5 w

0

@
X

i;y i =1

log P̂ (xi) +
X

i;y i =0

log(1 � P̂ (xi))

1

A = 0 :

However, these equations can not be solved analytically, and require numerical optimization
algorithms to �nd the optimal point. Hence, solving the previous equation fort:

19

If the target class is positiveyi = 1 :
@
@tlog P̂ (x) = � 1 � @

@tlog
�
ew�x� t + 1

�

= � 1 � 1
ew�x� t +1 ew�x� t (� 1)

= P̂ (x) � 1.

If the target class is negativeyi = 0 :
@
@tlog(1 � P̂ (x)) = @

@t � log
�
ew�x� t + 1

�

= � 1
ew�x� t +1 ew�x� t (� 1)

= P̂ (x).

) @
@t

0

@
X

i;y i =1

log P̂ (xi) +
X

i;y i =0

log(1 � P̂ (xi))

1

A =
X

i;y i =1

(P̂ (x) � 1) +
X

i;y i =0

P̂ (x)

=
X

i

(P̂ (x) � yi) = 0 :
(4)

Finally, Equation 4 shows that the solution for this partial derivative satis�es that the average
of the predicted estimated probabilities

P
i P̂ (xi) is equal to the ratio of positive class instancesP

i yi
n , wheren is the size of the dataset. This condition is a necessary but not suf�cient one for

the classi�er models to be calibrated on the training set, as discussed in Section 2.2.

2.5 Bayesian reasoning in machine learning

In this study, a BayesianLRmodel is discussed as an approach to reduce the overcon�dence of
theLRpredictions [GJP+ 08]. Additionally, we use a Bayesian approach to derive the optimal
probability predictions of binary classi�cation datasets given the exact distribution of their
generative models in Section 4. Thus, next, we explain the concept of Bayesian reasoning, how it
is being used in machine learning, and compare it with the frequentist approach.

The Bayesian reasoning approach uses statistics in a way that refers to the future and is
considered as a measure for a prior belief. The main critique of Bayesian reasoning is that there
is no single method for choosing the prior. So, different people will come up with different priors
subjectively. Consequently, they may arrive at different posteriors and different conclusions.
Hence, in the following Bayes rule (Equation 5), the Bayesian reasoning should start with a
prior p(A). Then, the collected data is used to represent the likelihoodp(B jA) of such events to
happen, and it is used in updating the prior belief to produce the posterior informationp(AjB).
This process is repeated whenever new data is obtained.

p(AjB) =
p(B jA) � p(A)

p(B)
: (5)

In machine learning, Bayesian reasoning is used to infer the model coef�cients (A = w) from
the data (B = Data). Substituting back into Bayes rule (Equation 5), the model coef�cients
are interpreted as the prior information that, in many cases, we have beliefs about what values
those coef�cients could be. The likelihood probabilityP(Data jw) represents how likely that the
current data could be obtained given the model parameters. The posterior probabilityP(wjData)
is the probability distribution over different model coef�cients that we end up with, taking into
account both the prior beliefs and data. Later, the coef�cients of the maximum estimated posterior
probability could be used for the model. This approach is calledmaximum a posteriori estimation

20

(MAP). The strengths of Bayesian reasoning in machine learning can be viewed in embedding the
domain knowledge into the learning process in the form of the prior. However, a huge amount of
data is needed to learn the true model if a wrong prior was mistakenly chosen. Consequently,
as a rule of thumb, priors are usually set to include a wide range of values to avoid such cases
[Bar12]. Using the Bayesian reasoning in �tting theLRby de�ning a proper prior distribution
for the model coef�cients could act as aregularizationmechanism that reduces overcon�dence
problem [GJP+ 08].

On the other hand, thefrequentistapproach follows a more objective paradigm by referring to
the data we have from past events without any dependence on prior beliefs [BB04]. In classical
machine learning, themaximum likelihood estimation (MLE)is usually followed, where the
likelihood probability is used only to evaluate different models. Therefore, the model with a
higher likelihood of the data is considered the best one without taking any prior information into
account. When a uniform prior distribution is used over possible values of model coef�cients, the
MLE is equivalent to the MAP.

2.6 Deep neural networks

Although this thesis is focusing on using label smoothing to reduce the model overcon�dence
in binary classi�cation tasks, label smoothing is also widely used with deep neural networks
(DNNs). Besides, DNNs have achieved outstanding performance in many �elds like image
classi�cation, image segmentation, and neural machine translation with a vast amount of research
in the last few years [Den15]. Hence, it would be interesting to apply our �ndings to enhance the
standard label smoothing approach in DNNs and overcome its shortcomings. Next, we introduce
DNNs, discuss their most important applications, and how their predictions are calibrated.

DNNs are an important branch of machine learning, which targets the problem of automatic
learning of good representation for the input data. The smallest building unit of a neural network is
called a neuron, which takes different inputs, adds them up with different weights, and passes the
output to other nodes. These neurons are grouped into layers based on the network architecture,
and their weights are learned during the training process. Simple representations can be obtained
from the �rst layers of the network, while the complexity of these representations increases as it
goes through the deeper layers. A wide range of network types and thousands of architectures
have been proposed during the last few years like convolutional neural networks that are suitable
for computer vision tasks, and recurrent neural networks for time-series analysis [GBC16].

Convolutional neural networks (CNNs) are one type of network architectures that use a
grid-like topology of sequential �lters for image processing. Each �lter is considered as a 2-
dimensional grid of pixels that slide over the input image spatially and compute dot-products
with pixel values, and added together to construct the feature maps [L+ 89]. During the past
decade, several advancements have occurred in CNN architectures which lead to a substantial
improvement in image classi�cation accuracy that even outperforms humans like CNNs with
residual connections (ResNet) [HZRS16], CNNs with dense blocks that take identity mapping as
input from all the previous layers (DenseNet) [HLVDMW17], and CNNs with inception modules
that approximates a sparse CNN with a dense construction, and uses residual connections in
addition to batch normalization layers (InceptionV4) [SIVA17]

21

	Dedication
	Introduction
	Why should we care about calibration?
	Logistic regression and sigmoid calibration
	Reducing overconfidence by label smoothing
	Thesis structure

	Background
	Types of classifiers
	Labeling classifiers
	Scoring classifiers

	Classifier calibration
	Calibration of linear classifiers scores

	Evaluation metrics
	Log Loss
	Confidence reliability plot
	Expected calibration error

	Logistic regression
	Bayesian reasoning in machine learning
	Deep neural networks
	Temperature scaling

	Related work
	Using logistic regression in classifiers calibration
	Solutions to overfitting in logistic regression
	Regularization
	Bayesian logistic regression
	Label smoothing, and Platt scaling

	Optimal predictions for datasets with known generative models distribution
	Bayes-optimal model for a binary classification task with normally distributed likelihoods
	Derivation of the optimal predictions given a known dataset generative model and a training set
	Practicality Concerns

	Instance-based label smoothing using kernel density estimation
	Disadvantages of the constant factor label smoothing
	The intuition behind the instance-based label smoothing
	Kernel density estimation
	Methodology

	Label smoothing in classification with neural networks
	Standard label smoothing: Fors and Againsts
	Instance-based label smoothing in neural networks

	Experimental results
	Synthetic datasets experiments
	Setup
	Results

	Real datasets experiments for logistic regression
	Setup
	Results

	Experiments for label smoothing in neural networks
	Setup
	Results

	Conclusion
	References
	Appendix
	I. Source Code
	II. Licence

