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Collecting and Using a Labeled Dataset of NATO Mission Task Sym-
bols to Improve and Benchmark Detection Models

Abstract:
Neural networks are commonly used for object detection tasks but require immense

amounts of data to train. For the task of North Atlantic Treaty Organization (NATO)
mission task symbol detection using object detection neural networks, it is not possible
to meet the data requirements. Additionally, labeling mission task symbols is very
time-consuming and costly.

This thesis aims to collect and label a dataset of NATO mission task symbols, propose
a part of it as a benchmark for our solutions and future solutions, and finally propose
different methods to use a part of the scarce collected data to improve the performance of
our object detection models. YOLOv5 neural network is selected and used to experiment
with different ways of using the scarce collected data. As a result, 113 images were
collected and labeled. Five performance metrics are proposed for the benchmark. Finally,
it was discovered that when dataset size is limited, extracting information from the
dataset and using it to generate artificial data improves performance compared to directly
introducing the scarce dataset to symbol detection models.

Keywords:
Machine learning, deep learning, computer vision, object detection, symbol detection,
image processing, benchmark

CERCS: P170 - Computer science, numerical analysis, systems, control, P176 - Artificial
intelligence, T111 Imaging, image processing

NATO lahingutoimingute sümbolite märgendatud andmestiku kogu-
mine ja kasutamine tuvastusmudelite täiustamiseks ja võrdlemiseks

Lühikokkuvõte:
Tehisnärvivõrke kasutatakse laialdaselt objektide tuvastamiseks piltidelt, kuid nende

treenimiseks on vaja väga palju andmeid. Põhja-Atlandi Lepingu Organisatsiooni
(NATO) lahingutoimingute sümbolite tuvastamiseks objektituvastuse närvivõrkude abil
ei ole neid nõudmisi andmehulgale võimalik täita. Lisaks oleks lahingutoimingute
sümbolite märgendamine päris andmetel väga aeganõudev ja kulukas.

Selle lõputöö eesmärk on koguda ja märgendada NATO lahingutoimingute sümbolite
andmestik, pakkuda osa sellest meie lahenduste ja tulevaste lahenduste võrdlusaluseks
ning lisaks pakkuda välja erinevad meetodid, kuidas kasutada osa nappidest kogutud and-
metest meie mudelite võimekuse parandamiseks. Valisime objektituvastuseks YOLOv5
närvivõrgu ja kasutasime seda andmete erinevate kasutusviisidega katsetamiseks. Töö
tulemusena kogusime ja märgendasime 113 pilti. Välja pakutud võrdlusaluse jaoks
valisime välja viis mõõdikut. Lisaks leidsime, et kui andmestiku suurus on piiratud, on
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andmekogumist teabe eraldamine ja selle kasutamine kunstlike andmete genereerimiseks
efektiivsem võrreldes napi andmestiku otsese kasutuselevõtuga treeningandmepunkti-
dena.

Võtmesõnad:
Masinõpe, sügavõpe, masinnägemine, objektituvastus, sümbolituvastus, pilditöötlus,
võrdlusalus

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuh-
timisteooria), P176 - Tehisintellekt, T111 Pilditehnika
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1 Introduction
In military operations, correct assessment of plans and the decision-making speed are
very important. Establishing a common language that all users clearly understand in
joint military operations is imperative. To achieve this, members of the North Atlantic
Treaty Organization (NATO) use a joint symbology [app11] for military plans. For
example, the joint symbology allows the military tactical plans drawn by an Estonian to
be understandable to a Frenchman.

Most of the time, military operations need a lot of information. Different kinds
of information, like friendly planned actions, enemy unit locations, etc., are drawn to
different transparent films to be overlaid on a map. Putting many films with different
content in the right location on a large map is time-consuming but necessary to obtain
an overview of the situation. To reduce time consumed on this process, "Kaitseväe
olukorra- ja lahinguteadlikkuse süsteem"(KOLT), or in English, "The situational and
combat awareness system of the Defense Forces" was created. This system allows plans
to be drawn on a digital map, and once the plans have been digitized, they will never
need to be aligned with the map again. KOLT also allows analyzing digitilized plans to
be more convenient. One can zoom in or out and change the information type displayed
with a button click. Even though KOLT helps save time by not having to align plans
to the map, the information on the plans must still be entered into the system, which
is also time-consuming. For an officer on the front line, drawing plans by hand is still
faster than entering them directly into the digital system. That is why, currently, original
plans are made on film and they are only digitized in the headquarters using KOLT. To
investigate the possibility of automatizing and speeding up the digitalization process,
Estonian National Defence College/ Kaitseväe Akadeemia has started a collaboration
project with the University of Tartu Institute of Computer Science (ICS) for the automatic
detection of a certain type of symbols. This task comes down to acquiring a high-quality
image of the plan, determining the transformation matrix between the image’s pixels
and the digital map’s coordinate system, localizing and identifying the symbols, and
detecting their poses.

The ICS research team decided to tackle this problem by acquiring a high-quality
image of the plan with the help of a lightboard, detecting the location markers on the
plan, aligning the image with the digital map, localizing and identifying the symbols with
the YOLO (You Only Look Once) object detection neural network, and finally detect the
poses of the symbols which is a subject of a concurrent thesis (this process can be seen in
Figure 1.). However, modern object detection approaches need thousands of data points
per object class. For example, creators of a recent YOLO version recommend using
more than 10,000 instances of each object type in the data [ea21]. Labeling thousands of
images and tens of thousands of symbols is very labor-intensive. In our experience, it
took one day to label approximately 24 images/156 symbols. Some professional labeling
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services1 charge up to 5 euros per hour, and freelancers offer services with prices starting
from 4 euros and going up to 15 euros2, but even with these services, quality is not
guaranteed. In addition, labeling military plans is not a trivial task. Identifying symbols,
in some cases, is very challenging, even for a human. The challenging and sensitive
nature of the military plans makes trusting a third party to label military plans unreliable.
Moreover, there are not that many plans the military academy can share with us.

(a) First, a photograph of the
film is acquired by placing it
on lightboard.

(b) Then, the image is bina-
rized and the location mark-
ers are identified. Intersec-
tion points of the marker lines
are determined. The transfor-
mation matrix between pixel
and geographical space is cal-
culated using the real geograph-
ical locations for the points.

(c) Finally, YOLO network
identifies symbols on the bina-
rized image. The geographi-
cal locations for these symbols
are determined using the pre-
viously calculated transforma-
tion matrix.

Figure 1. Proposed plan of digitizing military plans.

To achieve sufficient data for training object detection networks, a generator was
created by the ICS team. However, it is unable to produce real-like data, and it only
imitates real data to a certain degree. To know how good models trained on this generated
data are on real data, one needs a labeled test dataset of real data, which is the first
contribution of the thesis. Secondly, to help generalize the models to the real data, it may
be useful to use a part of the scarce labeled data in the training process to expose the
model to its distribution. The second contribution of this thesis is testing obvious methods
and inventing non-obvious ways of using relatively few real examples to increase the

1Abelling labeling service. https://abelling.ai/ Accessed on 25.04.2023
2Search conducted on https://www.fiverr.com/ on 25.04.2023
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robustness of our models on real data. The proposed dataset, alongside baseline models
and evaluation metrics, forms a benchmark. With the labeled real dataset, baseline model
code, and the data generator made publicly available, other scientists from other countries
(hopefully NATO member countries) can create similar and improved solutions.

1.1 Contributions
This thesis aims to:

• Collect and label a dataset of hand-drawn military plans for detecting NATO
mission task symbols.

• A methodology to integrate a part of the collected dataset into object detection
algorithm training.

• Propose metrics and a subset of the collected dataset as a benchmark.

1.2 Outline
The thesis is organized as follows: Section 2 provides background information on
benchmarks, object detection, data generation approaches and discusses related work
on symbol detection. Section 3 presents the methods used here for collecting data and
creating a benchmark. It also covers how to use an object detection algorithm and
different ways of incorporating real data to improve generalization to its distribution.
Section 4 presents the collected dataset as one of the results of this thesis and proposes a
part of it as a benchmark. In addition, the conducted experiment results are presented
and discussed. Section 5 concludes the thesis by summarizing the findings and their
implications and proposing future directions for research.
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2 Background
In this section, the object detection task is explained, then a literature review on sym-
bol detection and techniques for dealing with scarce data are presented. Additionally,
background on benchmarking is covered.

2.1 Object Detection
Object detection is a computer vision task that involves identifying and localizing objects
within an image or a video stream. The goal of object detection is to detect all instances
of objects of interest within an image and to provide a bounding box around each object
along with a classification label indicating the category of the object (see Figure 2)
[AFG20, LMB+14].

Figure 2. YOLOv5 output visualized. Output includes object class and bounding box
information.[ea21]

.

Object detection is an important task in computer vision, with many applications
such as surveillance, autonomous driving, and robotics [ZCS+23]. The development
of accurate and efficient object detection models is an active area of research with
increasing interest, and benchmark datasets such as COCO [LMB+14], and Pascal
VOC [EVGW+09] are widely used to evaluate the performance of different models and
techniques [ZCS+23].

Neural networks have been helpful in tackling object detection datasets. Girshick et
al. [GDDM14] proposed Region with Convolutional Neural Network features(RCNN)
for object detection and semantic segmentation tasks, and from there, many different
methods were created and used. YOLO [RDGF15] is another neural network designed
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for object detection tasks. YOLO outperformed RCNNs in terms of accuracy and speed
[ZCS+23]. For this thesis, we used YOLOv5, the fifth iteration of the architecture. The
choice of using the YOLO neural network and the fifth iteration of it was a team decision.

The spatial correctness of a predicted bounding box around the object is counted with
the help of the intersection over union (IoU) metric. This metric measures the degree of
overlap between the ground truth bounding box and the predicted bounding box. The
formula for IoU can be seen on the Figure 3. Depending on the task, different spatial
precision can be needed, so a threshold for IoU is selected. Only if the IoU between the
object and the detection exceeds this threshold, the prediction is counted as correct, i.e.
as true positive[PNDS20]. Figure 4 shows a simple example of this.

Figure 3. Formula of IoU visualized3. Figure 4. IoU threshold of 0.5 determining the
correctness of the detection3.

When the IoU value of the predicted bounding box with the ground truth bounding
box exceeds the threshold set, and the predicted class matches with the ground truth, then
that detection is counted as true positive(TP). If any of these conditions is not satisfied,
that detection is counted as a false positive(FP). When an object is not detected at all, or
the detected object class does not match with the ground truth, or the predicted bounding
box and the ground truth cannot be matched with sufficient IoU, then a false negative(FN)
is counted.

The performance of object detection models is typically evaluated using various
metrics such as precision, recall, and average precision (AP). Precision measures the
fraction of correctly detected objects out of all detected objects for a class , while recall
measures the fraction of correctly detected objects out of all actual objects in the image for
a class. Equations 1 and 1 show the formulas of precision and recall. In object detection,
average precision (AP) is defined as the area under the curve of the precision-recall plot.
The formula for AP can be seen in Equation 3

3Figures taken from https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-
5956f1bfa9e2 Accessed on 04.05.2023
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Precision(P ) =
TP

FP + TP
(1)

Recall(R) =
TP

FN + TP
(2)

AveragePrecision(AP ) =

∫ 1

0

P (R) dR (3)

The AP metric was originally introduced in Pascal Visual Object Classes (Pascal
VOC) challenge [EVGW+09]and was proposed to be used with the IoU threshold of 0.5.
The AP@0.5 (AP at 0.5 IoU threshold) was very commonly used. To get an overview
of the model, they also used mean average precision(mAP), which is the mean of APs
over all classes, resulting in the still commonly used metric referred to as mAP@0.5.
Additionally, the COCO challenge introduced mAP@0.5-0.95, which means they also
averaged the APs at different IoU thresholds between 0.5 and 0.95 [ZCS+23]. This
metric is stricter compared to mAP@0.5 for the accuracy of the localization. Today,
mAP@0.5-0.95 is a very commonly used metric in object detection tasks.

2.2 Symbol Detection
Here, the data we use is very different from natural images. Our task is to detect and
localize symbols, more specifically NATO mission task symbols, drawn on a white
background, whereas typical object detection tasks deal with photos of real-world objects.
For instance, popular object detection datasets like COCO focus on detecting everyday
objects in the real world, such as persons, vehicles, and animals, rather than handwritten
symbols. Therefore, this sub-section looks more specifically into symbol detection on
data types with symbols drawn on a white background.

Elyan et al. [EJAG20] researched detecting symbols on 2D engineering drawings
that contain shapes, symbols, lines, and text drawn on a white background. They used
YOLO to detect a set of these engineering symbols. They reported 94.9% accuracy on
their test set. However, handwritten symbols are more challenging to detect because
they are more variable than printed, standard engineering symbols. Figure 5 shows
an excellent example of the difference between hand and digitally drawn or printed
symbols. Many factors, like different writing instruments, used surface, and haste while
drawing, may cause the variation between hand and digitally drawn symbols. A symbol
drawn by someone may differ significantly from another person’s drawing of the same
symbol [PSP+19]. Other work similar to symbol detection is done by Pizarro et al.
[PHSS22] and by Ziran et al. [ZM18] on 2D floor plans that contain text and shapes
representing furniture on white background. Pizarro et al. reported that 30% of their data
was not drawn compliant with a standard rule, which made detection difficult. Ziran et al.
reported 0.31 mAP@0.5 on a scarce test set which was diverse and non-standard. The
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low performance on floor plans compared to engineering drawings exemplifies clearly
the additional difficulty that hand-writing introduces.

(a) Digitally drawn ambush symbol. (b) Hand-drawn ambush symbol from the la-
beled data set from this thesis.

Figure 5. Hand drawn symbol. Comparison of hand and digitally drawn symbols.

Today, it is common in the military academy to draw military plans onto transparent
plastic films using markers. The transparency of the plastic films later allows them to
be overlaid on the maps. To create military plans, officers use the NATO Joint Military
symbology and use the symbols defined there [app11]. Mission task symbols are a
subtype of the symbol group control measure symbols. Control measure symbols aim to
provide operational information [app11]. All the symbols are hand-drawn, sometimes
with the use of a ruler, and may have irregular shapes (see Figure 6). In addition, their
poses and rotations might vary.

(a) Digitally drawn support by fire symbol tem-
plate

(b) Hand drawn "support by fire" symbol which
has irregular shape

Figure 6. Irregular symbol shapes. Comparison between symbol template and irregular
symbol shapes are shown.

The quantity of information on the film varies, and a variety of other symbols beyond
mission task symbols can be present, some of which can be similar in shape and size to
the symbols we wish to detect. In conclusion, the task is more complicated than many
commonly studied symbol detection tasks as the handwritings vary strongly, different
poses and all rotations can exist, and symbols are not placed in standard locations as in
handwritten text where letters follow each other in a line.
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2.3 Dealing with Scarce Data
Obtaining high-quality data can be difficult in certain fields due to privacy concerns,
limited access, or the high cost of labeling data. Data augmentations aim to extract
more information from the original dataset and increase variation. For images, flipping
and rotating the data is a widely known method to increase the dataset size [SK19]. In
[JSA+20], authors augment their dataset of limited size by first creating horizontally
flipped copies and then rotating all images with increments of 20 degrees to increase the
dataset size significantly. However, not all types of data can be augmented by flipping.
For example, text would lose its meaning when flipped, and because of that, it cannot
be flipped [LHY21]. In object detection, robustness to object position is vital because
objects can appear in any part of an image. Translation augmentations can reduce position
bias by translating the image to the left, right, top, or bottom[SK19]. There are many
types of other augmentation techniques aiming to reduce different kinds of biases that
the original dataset can cause, many of which are discussed by Shorten et al.[SK19]

Another solution to combat data scarcity is to use artificial data, which can be
generated using different methods. For example, Thambawita et al. [TSS+22] used
Generative Adversarial Networks (GANs) to generate synthetic data for medical image
segmentation, which can be used to reduce the time and cost associated with data
acquisition. GANs are a machine learning architecture that can generate new data by
learning from an existing unlabeled dataset [GPAM+14]. In autonomous driving, Ghosh
et al. [GBC16] also use GANs to generate synthetic data to cover a wider range of
situations and conditions not present in their natural dataset. Artificial data can be a
valuable tool for addressing data scarcity or lack of variation, allowing researchers to
generate new larger datasets that can improve the performance of machine learning
models.

For tackling the task of symbol detection, we opted to use generating artificial data by
a rule-based generator, which places augmented and rotated symbols on a white canvas.
Further augmentation is performed during training by the YOLOv5’s default training
pipeline. Exact details are discussed in Section 3.

2.4 Benchmark
A benchmark is a standard or a reference point against which other solutions can be
measured or compared. Scientifically, it is a set of tests, metrics, or procedures used to
evaluate the performance of different systems, algorithms, or machine learning models.

In artificial intelligence(AI) and machine learning, a benchmark is used to standardize
a set of tasks, metrics, and data so that everyone can evaluate and compare the perfor-
mance of different models and algorithms on an equal basis. The metrics and data vary
from task to task. Researchers are creating and using benchmarks for the tasks in their
respective fields. Some examples of these benchmarks are;
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• Image classification - ImageNet [DDS+09]

• Object detection - Common Objects in Context (COCO) [LMB+14]

• Semantic segmentation - Cityscapes dataset [COR+16]

• Speech recognition - Libri Light benchmark [KRZ+19]

Creating a good benchmark can be challenging. A benchmark should have a clear
objective defined, a task representative of real-world problems. Appropriate metrics
should be selected; the metrics should be relevant, reliable, and interpretable to capture the
performance of the solutions using them. A benchmark should include a representative
dataset, representing the real-world problem the benchmark is trying to address.

In object detection, various metrics like precision, recall, mAP@0.5, and mAP@0.5-
0.95 may be reported because one metric cannot capture the performance alone. Most
commonly in recent benchmarks, mAP@0.5-0.95 is chosen as a main metric [ZCS+23].
A benchmark should consider the goal of the task and the end user when choosing the
metric or metrics. For example, if the goal/end-user likely requires high classification and
localization precisions, the benchmark metrics should reflect this. As a second example,
if the end-user needs good performance in all object classes, average metrics do not
suffice and the minimum over classes should be reported. In case the user intention is
unclear, the benchmarks may report a variety of metrics.

14



3 Methods
This thesis aims to improve symbol detection models’ performance using scarce real data
and propose a benchmark to evaluate these models. Therefore this section describes the
methods used to train object detection neural networks. The generator used is described,
and real data collection and labeling methods are explained, then methods used to sort
the data are described. Additionally, methods for using the scarce collected dataset
to improve symbol detection models are presented. Finally, the selected metrics for
evaluation and, experiment setup are described.

3.1 You Only Look Once (YOLO)
You Only Look Once (YOLO) is an object detection neural network architecture heavily
influenced by the human ability to glance at an image and instantly know what objects
are in it, where they are, and how they interact. Humans can do this process very fast
and accurately, and the creators of YOLO aimed to achieve fast and accurate detection of
objects in an image [RDGF15].

YOLO uses convolutional neural networks(CNNs) to detect and locate objects within
an image. It takes an image as input and processes it through a series of convolutional
layers to extract features, then these features are used to generate a set of bounding boxes
and corresponding class probabilities as output, which indicate the location and class of
the objects within the image. Later versions of YOLO architecture can detect more than
9000 object categories and still run in real-time [RF16].

YOLO is a supervised learning object detection neural network. Because of this, it
needs labeled data. The labels for objects should include the bounding box information
for the object. The creators of YOLO implemented their scripts in a way that requires
labels as class index, the center x and y coordinates, and the width and height of the
bounding box in pixels. The labels for objects should be in the form of the following;

< objectclass >< x >< y >< width >< height >

Except for the object class index, all of the bounding box information must be relative
to the image and normalized with the width and height of the image (see Figure 7)
[PNDS20]. This way, the bounding boxes can still be used when the images are resized.
However, it is important to note that the actual YOLO implementation used in this thesis
does not use this labeling notation as input or output. The YOLOv5 implementation
uses non-normalized coordinates of the top left and bottom right corners of the bounding
boxes instead of normalized center x and y coordinates and width and height. The
conversion is done internally by the YOLO scripts.

For this thesis, we used YOLOv5, the fifth iteration of the architecture [ea21]. The
choice of using the YOLO neural network and the fifth iteration of it was a team decision.
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Figure 7. Normalized input labels of YOLOv5 visualized. Objects are labeled in the
form of class, X, Y, Width, Height [ea21]

.

For training a YOLOv5 model, fully labeled datasets are required. There should be
at least two different datasets: training and validation sets. The training set is used to
train the model and the validation set is used to validate the training after every epoch.
After completing an epoch, YOLOv5 saves the current weights of the model by creating
a checkpoint. This checkpoint is overridden after every epoch. Additionally, it saves the
best checkpoint by comparing the mAP@0.5 and mAP@0.5-95 scores of the validation
set on the last created checkpoint and the previous best checkpoint. The user needs to set
the number of epochs the model should train. However, if the validation set scores do
not improve for a set number of epochs, the training will early stop and not complete the
number of epochs set..

According to the recommendations provided by the creators of YOLOv5, a training
dataset should ideally consist of more than 1,500 images and 10,000 object instances per
class [ea21]. For instance, if there are three object classes, the training dataset should
have 30,000 objects labeled in approximately 4,500 images. The dataset must accurately
represent the target environment where the solution will be deployed, reflecting real-
world scenarios where the object detection model will be used. It should also maintain
consistency, ensuring that all instances of all classes in all images are labeled, and the
bounding boxes of the objects should closely enclose the objects. Additionally, the
creators of YOLOv5 suggest including background images in the dataset to reduce
possible false positive detections [ea21]. Background images refer to images without
any objects, which can help the model better understand the absence of objects in certain
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situations, thus enhancing its performance in real-world deployment scenarios.

3.2 Generator
The main data for training YOLO for our mission task symbol detection task comes
from a generator specifically designed by Mihkel Lepson to generate NATO mission task
symbols on an empty canvas alongside other required military markings like texts and
other kinds of symbols that can appear on the studied plastic films.

First, Mihkel drew sets of NATO mission task symbols with different drawing styles
(see Figure 8). The generator uses these symbol sets as templates to generate data. The
templates are binarized, so the leftmost, rightmost, topmost, and bottommost black pixels
of a rotated template image always determine the bounding box of the symbol.

Figure 8. Two sets of template symbols used by the generator.

To create an example input, the generator randomly picks mission task symbols with
uniform distribution, picks a random realization of these symbols in the aforementioned
set of templates, randomly rotates and distorts the picked symbol, and places it in random
location on the canvas. The type and bounding box information of the symbol is recorded
in the label file. Other elements such as phase lines, map location markers and certain
texts are added to make the generated “film” look closer to the real data.
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The generator will create images at a resolution of 4624 by 3468 because it is the
resolution at which the templates for symbols were digitized. After creating the image,
the generator can resize the image to any desired dimension.

The biggest limitation of this generator is that it cannot place the symbols to achieve
an overall plan layout that would make military sense (see Figures 9, 10). It is unfeasible
to define the rules that can create realistic military plans. Therefore, the symbol placement
distribution of the generated and the real data will always differ. On the other hand,
a model that can detect non-sensically randomly placed symbols, should generalize
reasonably well to any systematic spatial pattern of symbols, i.e. the real distribution is
contained within the random placement.

Figure 9. Random symbol placements in generated data. (Symbols are marked in red
boxes.)

Figure 10. Symbol placements in real data. (Symbols are marked in red boxes.) The
symbols are placed in a way that makes military sense.
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3.3 Collecting Labeled Real Data
To create a benchmark, a dataset needs to be collected. However, due to the uniqueness
of the data, it needs to be first digitized and then labeled. The existing labeling tools are
insufficient to create a fully labeled dataset. Although pose detection for the symbols is
not a part of this thesis, it is required for digitizing the military plans completely. For
object detection labeling the identity and bounding boxes of objects would be enough.
However, the rotations of the NATO mission task symbols must also be labeled to create
a fully labeled dataset.

3.3.1 Digitizing the Data

The data we get from the military academy is in its physical form, on plastic films, and
hand-drawn. It needs to be digitized by photographing or scanning to process the data
further. Acquiring images by photographing is chosen over scanning because of the
reasons of convenience for the collaboration partners. Scanners are not very user-friendly
for remote locations when the plan size is bigger than the A4 size. Different methods for
acquiring images were analyzed thoroughly in a report co-authored by the author of this
thesis and submitted to the collaboration partners, and acquiring images by photographing
was preferred. Therefore, for this thesis, we used the method of photographing.

Photographing military plans is not always straightforward. The provided data is not
always preserved in the best conditions. Some films may be folded or rolled, making it
hard to lay them on the ground flat. Getting the best quality photographs required fixing
these issues, which is a time-consuming task.

To ensure high-quality data, plastic films should be photographed in a way that mini-
mizes reflections, as they are highly reflective by nature. In addition, the obtained images
should be binarized because the models trained expect binarized input. Thresholding
techniques can be used for this, but achieving perfect binarization can be challenging
due to the difficulty of uniformly lighting the film. To address this issue, we utilized a
lightboard to illuminate the films from underneath evenly and photographed them in a
dark room without direct lighting on the films. This method allows for applying OTSU
thresholding [Ots79], which yields the desired binarized version of the photograph. The
author of this thesis previously implemented the process of photographing and binarizing
the data during an internship with the research team.

3.3.2 Labeling and Sorting the Data

Labeling data, in general, is a difficult and time-consuming task, but labeling the data
we collected is more difficult that labeling natural images. For example, determining
common objects like cars or animals is not much of a challenge because we see them in
our daily lives and are accustomed to them, however, determining the symbol type on a
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military plan is difficult. The difficulty comes from many different factors. Hand-drawn
symbols may have missing elements, like arrowheads or characters (see Figure 11a).
Some symbols may be drawn very similarly to other symbols. Overlapping symbols may
make it hard to recognize a symbol (see Figure 11b). In these cases, confirmation from
a person who is more knowledgeable of these symbols and understands the idea of the
overall plan, may be required to label them correctly. All this increases the time and
effort it takes to label military plans and makes it difficult to outsource them.

(a) Examples of hand-drawn symbols which
have missing elements can be seen on the right
and what they should look like can be seen on
the left.

(b) Military plan with densely placed symbols.
Symbols are marked with red boxes

Figure 11. Symbols that are hard to identify in the real data.

In our pipeline of data labeling, we start by labeling the identity of the symbols and
their bounding boxes. We used a tool called Labelimg [Tzu15]. With the help of this
tool, we labeled every symbol in every photographed and binarized image available to
us with one-pixel precision. This process can be seen in Figure 12. As the output, each
image is associated with a file containing the symbols’ identities, locations, and sizes.

The final subtask of digitizing NATO mission task symbols is detecting their poses.
After detecting the object, it is also necessary to detect its rotation/pose. The mission
task symbols can be drawn in plans in any rotation. Although we have not worked on
detecting the rotations of the symbols in this thesis, rotations still need to be labeled to
form a dataset allowing to solve the problem fully.

Because of this problem’s uniqueness, no tool was found to help label the rotations
of objects and we needed to create this tool ourselves as part of this thesis. This tool
overlays a template of the symbol on top of the symbol to be rotation-labeled using
the identity and bounding box information available for the Labelimg-labeled images.
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Figure 12. "Labelimg" tool. It is used to label bounding boxes of symbols.

The user can then rotate the template image starting from zero rotation until its rotation
matches the symbol to be labeled (see Figure 14). For all symbols, the zero default
rotation must be defined. For some symbols, this choice can be made arbitrarily or is
obvious. For the symbols that can have irregular shapes/trajectories (see Figure 13), the
zero rotation is defined as the rotation that results in the symbol “starting” (e.g., the tail
of the arrow) from the bottom center of the bounding box.

Figure 13. "Attack" symbols with complex trajectories.

Figure 14. Rotation labeling tool. The red template symbol rotation is matched with the
underlying symbol to label the rotation.

Defining rotation is insufficient to capture the entire pose for symbols like “attack”(see
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Figure 13). Labeling the entire trajectory will be extremely time-consuming and will
likely require developing further tools. This will not fit into the time frame of this thesis.
Detection of these complex poses is part of a concurrent thesis, and the solutions are not
yet fixed.

The identity, location, and rotation labeled data acquired were divided into two sets.
One is intended for training symbol detection models, and the other is to benchmark them.
The data was sorted by the quality of its contents. Higher-quality data was used as the
test set, and lower-quality data was used as the training set. The following contributing
factors determined the quality:

1. Readability of the symbols in the data, influenced by the density of other symbols
and handwriting

2. The visibility of the lines that create the symbols.

The readability of symbols in the data refers to the clarity of the symbol shapes
without any clutter or distortion within or near them. Additionally, the strength of the
lines used to create the symbols is important, as lines that are inconsistent or have gaps
can negatively impact the ability of the model to detect the symbol. For example, in the
case of drawings on plastic films, which do not absorb ink as paper does, lines may appear
empty or have uneven coverage, leading to lower-quality semi-transparent lines. A line
with consistent darkness and width is considered to be of higher quality. An illustration
of a low-quality line is shown in Figure 15. With this selection method, we reflect
the military’s own concurrent goal of producing films with less unnecessary content
(adhering to so-called minimal military requirements) and with more up-to-standard
handwriting with prescribed 0.6mm markers. Supposedly, during future deployment, the
handwritten films will be more likely similar to our test set, not the training part of the
digitized data.

Figure 15. Low-quality line in a symbol. The symbol is extracted from the collected real
data and the low-quality line is marked with a red box.
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Additionally, some symbols were erased from the images in the test split due to being
highly irregular and not up to military standards, i.e. our collaboration partner assumes
they will not produce such low quality in the future and does not expect solutions to
detect these symbols. These symbols were either missing a vital part of the symbol or
drawn very irregularly. Examples of erased symbols can be seen in Figure 16.

(a) Correctly drawn "ambush" symbol. (b) The "Ambush" symbol is drawn with the
missing arrow.

(c) Correctly drawn "screen" symbol. (d) The "Screen" symbol drawn in an irreg-
ular way.

Figure 16. Erased symbols from the test split. Examples of erased irregular symbols
from the test split and their correct counterparts are shown.

Another vital factor for splitting the data was the symbol instance distribution. Be-
cause the data is limited and does not include all symbol classes, creating a split with
perfectly equal distribution is impossible. However, the split was created to have sim-
ilar distributions in training and test sets. In summary, the train and test split is done
considering data quality and data balance.

3.4 Bridging the Gap Between Generated and Real Data
Using a generator to provide data for training the YOLO object detection model has
proven to be a necessary and fruitful approach. Its main limitation of not capturing the
real data distribution can be remedied by using our collected real data in different ways
during the training. Combining real and generated data has been used in different fields
like autonomous driving [GBC16]. For symbol detection, more specifically, mission task
symbol detection, we propose a number of different ways of using scarce real data to
improve symbol detection performance on the test set.
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3.4.1 Using Real Data as is

The most straightforward and trivial way of using the data collected is using the labeled
images as data points in training. The number of labeled collected real images is
insufficient on its own, and it is only feasible to combine it with generated data. In
particular, after augmenting, we have 312 images. These 312 images are added to 39,688.
Though the labeled collected real data is scarce, including it with augmentations in
training will introduce its distribution to the model, which should help make the model
be more robust than when using only generated data.

3.4.2 Using Real Backgrounds

The creators of YOLOv5 recommend including background images in training to lower
the number of false positives [ea21]. An image classifies as a background image when
it does not have any objects to be detected. Some of the data provided by the military
academy fits this description by not having any mission task symbols that need detecting
(see Figure 17). However, these no-symbol images are very few, and we need more
images like this.

Figure 17. Background image without any mission task symbol. This military plan is
drawn originally without any mission task symbols.

Additionally, we created a script to remove all mission task symbols from the military
plans, i.e., we separate the signal from the background. Given the images and the labels,
it removes the symbols by deleting everything within their bounding boxes (leaving
white boxes) and only leaves the background.
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Using this script, we increased the number of background images. However, this still
results only in a small number of backgrounds, and to make them have more impact on
the training, we use the augmentations methods discussed in the Methods section. We
flip the backgrounds horizontally, vertically, and both ways, resulting in four times as
many data points.

In the implementation, the YOLOv5 code recognizes background images if they do
not have corresponding label files. Therefore, if we add the backgrounds created to the
training set without any associated label files, YOLO will recognize them as background
images.

In this case, the training set consists of 39,688 images generated with the generator,
plus 312 (real) background images with no labels.

3.4.3 Using Real Backgrounds in the Generator

Backgrounds can serve a purpose beyond their use in the training as no-object examples.
We can generate real-looking images with a range of symbol placements by inserting
randomly picked symbols into the original symbol locations on the background images
(see Figure 18). Using these kinds of images would expose the model to a diverse range
of imitated real data, which can improve its ability to distinguish the difference between
symbols and background.

(a) Original Collected data. (b) Background image created
by removing the original sym-
bols.

(c) Generated image by in-
serting different symbols into
original symbol spaces.

Figure 18. Process of generating images with real backgrounds.

To accomplish this, we use the label files associated with these images, which
contain bounding box information for the removed symbols. In place of the original
symbols from the real images, a generated symbol with a random scale and a rotation is
placed. However, the backgrounds may come in different dimensions, such as when they
are cropped, resulting in varying resolutions compared to the other generated images.
Although YOLO can resize the inputs, ensuring consistency in the data dimensions
across the dataset is necessary. To preserve the integrity of the generated data, we
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adjust the generated data with the backgrounds’ resolution to match the generator’s
base resolution by either padding smaller images or scaling down larger ones. We
implemented this method of using real backgrounds in the generator. The number of
images the generator produces with real backgrounds can be modified with a parameter.
For example, if we wish to generate 40,000 images and want 30% of it to be generated
using real background images as the canvas, then the dataset generated would contain
12,000 images generated using real background images, and 28,000 images would be
generated with normal canvases (white background and limited set of other elements like
phase lines and location markers).

3.4.4 Using Real Symbols in the Generator

One limitation of the generator is that it lacks symbol variety. The symbols in real data
have a huge variety that we cannot sufficiently imitate even when using dozens of sets of
templates and augmentations. This variety comes from different drawing styles, markers
used to draw the symbols, and noise that can appear in the real data (see Figure 19).
Including symbols extracted from the real data in the generation process may help the
models achieve higher robustness.

Figure 19. Symbols extracted from the real data. The symbol are noisy and their variety
is high.

We can extract the symbols from the real data and use them in the generator to
increase the symbol variety. However, these extracted symbols are not clean, meaning
they have many background clutter included in the bounding box. We include the
background clutter because they are a natural occurrence that is present in the real data
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and we wish not to remove it. Additionally, we would want to rotate these symbols as
well in order to get more variations of them. However, after rotating them, the bounding
box of the symbol will change, and the background clutter may prevent the generator
from calculating the correct bounding box (see Figure 20). The generator needs two
sets of extracted symbols to fix this issue. The original one and one with all background
clutter erased. Versions with erased clutter are used for calculating the correct bounding
box after rotation, the found box is then taken from the original cluttered versions and
placed on the images.

(a) Original bounding box of the
extracted real symbol.

(b) The rotated version
of the symbol bounding
box calculated wrong
because of the back-
ground clutter.

(c) Rotated version of
the symbol with correct
bounding box.

Figure 20. Extracted "ambush" symbol. The symbol is extracted from collected real data
and bounding boxes of it are drawn with red rectangles.

To summarize, for including real symbols, we created a script to extract these symbols
and implemented a way for the generator to include them in the data generation process.
We also created cleaned versions of the extracted symbols as the implementation requires
it for rotating these real symbols. Because of the scarcity of real symbols and their noisy
nature, we may not want to use them always. The ratio of real symbols and author-created
templates used by the generator can be modified via a parameter.

3.5 Evaluation
The metrics reported are very important for evaluating the performance of any solution.
Metrics like mAP@0.5 and mAP@0.5-0.95 are used in object detection. The mAP is the
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mean of AP for all classes, which is

mAP = 1/N ×
N∑

i=N

APi, (4)

with APi being ith class and N is the total number of classes evaluated. mAP@0.5 means
the Equation 4 was applied at 0.5 IoU threshold, while mAP@0.5-95 also averages mAP
over the range of 0.5-0.95 IoU thresholds.

Selecting the right IoU threshold depends on the task. We believe detection of mission
task symbols requires high precision in localization accuracy, therefore we selected 0.8
IoU threshold for the benchmark and report all metrics at 0.8 IoU threshold. This means
that we report mAP@0.8 and mAP@0.8-0.95, which should give stricter results in
localization accuracy.

However, due to the scarcity of data and class imbalance in the benchmark dataset,
traditional mAP calculation methods may not accurately reflect the overall performance
of the model. These traditional methods use macro averaging, which calculates the
average precision (AP) individually for classes and then takes the mean to report mAP.
This puts equal weight to APs of classes with 1 instance and 19 instances, resulting in the
final number being not very representative of the performance we observe and would want
to rank models by. Instead, with imbalanced data micro averaging should be preferred.
Micro-averaged metrics are calculated by using statistics per instance instead of per class.
For example, instead of calculating precisions for each class and averaging this to get
overall precision for all classes, micro-averaging calculates precision by combining FP
and FN counts for all classes. This approach provides a more comprehensive evaluation
of the model’s performance, considering the challenges of data scarcity and imbalance.
Therefore, this study uses micro-averaging for all of the metrics reported. Micro-averaged
statistics computation was implemented and added to our branch of YOLOv5 by the
author.

Additionally, we introduce and report micro-averaged precision at 0.8 recall(P@R(80))
at 0.8 IoU threshold and micro-averaged recall at 0.8 precision(R@P(80)) at 0.8 IoU
threshold. In principle, these metrics find the confidence threshold that yields the highest
possible precision(recall) while also satisfying the condition 0.8<recall (precision). The
code to find these values was implemented by the author. We include these metrics
because they reflect the ideas “if we want high precision, what recall can we get?” and
“if we want high recall, what precision can we get?”, which we believe are more intuitive
and informative than mAP for non-experts.

The F1 score is another performance metric for classification tasks. It is calculated
by taking the harmonic mean of precision and recall. As it is an important performance
metric for classification tasks, we also report the max F1 score that can be obtained at
IoU 0.8 threshold.

To summarize, we are reporting the following micro-averaged (instance-level) metrics:
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mAP@0.8, mAP@0.8-95, P@R(80), R@P(80), and max F1 score. We believe that these
metrics enable us to describe the performance of different models thoroughly and in a
manner useful for the end-users.

3.6 Experiments
During training, YOLOv5 applies several augmentations to the input images, including
random flipping, brightness adjustments through changes in hue, saturation, and value
channels, scaling, translation, and creating mosaics. Mosaic augmentation involves
stitching together four cropped images to create a new training image. These augmenta-
tions are enabled by default, as the creators of YOLOv5 recommend them to improve
model learning [ea21]. Although some of these augmentations can be helpful for the
model to learn better, some are not necessary because of the nature of the data we are
using. Specifically, since the data we are using will always be binarized and will not
have varying brightness levels, hue, saturation, and value channel augmentations have
been disabled. All other augmentations remain enabled during training. The main focus
of this thesis is to improve the performance of symbol detection via the use of real data.
To fairly compare data usage schemes, the experiment setup and hyperparameters of the
training are fixed. To fix them at useful values, some preliminary experimentation is
done. Different network sizes, image sizes, weights (pre-trained and randomly initialized
weights), and mosaic settings (enabled and disabled) are tried to get the best experiment
setup and hyperparameters.

The final experiments were conducted using the large YOLOv5 model architecture
with pre-trained weights of yolov5l6.pt4 and an image size of 1280 by 1280 pixels.
40,000 images with approximately 6,000 symbol instances per class were used as the
primary data source. For validation and early stopping, 10,000 generated images with real
backgrounds were used. 50% of the symbols in the validation set were symbols extracted
from the collected real data, and the rest was template symbols. Notice that for all data
usage schemes, the same validation set was used in order for the performance differences
not to emerge from the early stopping. Early stopping with the patience of 25 epochs and
a 0.0001 improvement threshold was applied. YOLOv5 default augmentations were used
for the training set, including translate with 10% probability, scale with 50% probability,
horizontal flipping with 50% probability, and mosaic with 100% probability. For the
validation set, no augmentations were applied by YOLOv5.

As one of the main contributions of the thesis, the following different ways of
including real data in training were compared:

1. Baseline - No real data was included in generating the data and only generated
data was used. 40,000 images without any inclusion of real data were used.

4Pre-trained weights downloaded from YOLOv5 GitHub repository.
https://github.com/ultralytics/yolov5 Accessed on 25.04.2023
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2. Generated Data + Real Data - Real images augmented with horizontal, vertical
and both vertical and horizontal flipping were used alongside the generated data.
As a result, 39,688 images without any inclusion of real data and 312 real images
were used.

3. Generated Data + Empty Backgrounds - Real background images extracted from
the real data, augmented with horizontal, vertical and both vertical and horizontal
flipping, were used additionally to the generated data. As a result, 39,688 images
without any inclusion of real data and 312 real background images were used.

4. Generated Symbols on Real backgrounds - Generated data had template symbols
placed in the original symbols positions of real backgrounds created from the
collected data, augmented with horizontal, vertical and both vertical and horizontal
flipping. For the model reported in the Results section, 30% of the data (12,000
images) were generated using real backgrounds, and the rest (28,000 images)
used the default generation process with generated canvases with a limited set of
background items.

5. Real Symbols in Generated Data - Real symbols extracted from the real data
were used in the generator. No real backgrounds were used. The ratio indicates
the percentage of real symbols that appear in generated data. Different ratios were
initially tested, but only the most promising ratio was finally re-trained and is
reported in the Results. For the reported model, 50% of the symbols generated
were real symbols from real data.

6. Real Symbols + Real Backgrounds in Generated Data - Both real symbols
extracted from the collected dataset and real backgrounds created from the collected
data, augmented with flipping and with symbols placed in the original symbol
positions, were used in the generator, but separately. This means no real symbols
were generated in the real backgrounds. 30% of the generated data (12,000 images)
is generated using real backgrounds and template symbols, for the other 28,000
images, the default generation process with limited background elements was used.
For those images, 50% of the symbols generated were symbols extracted from the
real data. In total, 40,000 images were used.

7. Real Symbols in Real Backgrounds in Generated Data - Both real symbols
extracted from the collected dataset and real background images extracted from the
collected data, augmented with flipping and with symbols placed in the original
symbol positions, were used in the generator and might appear together. This
means real symbols can appear in the real background images. For this data type,
two different experiments are done;
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• Real Symbols in Real Backgrounds in Generated Data with 30% real back-
grounds usage with 50% real symbols usage. In total 12,000 images were
generated using real backgrounds, and 28,000 using white canvases. 50% of
the symbols generated were from real data in both cases.

• Real Symbols in Real Backgrounds in Generated Data with 20% real back-
grounds usage with 25% real symbol usage. In total 8,000 images were
generated using real backgrounds, and 32,000 used generated canvases. 25%
of the symbols generated were from real data.

Only the best result is reported for every data usage scheme among the above list of 7
approaches.

3.7 Tools
All the scripts and tools the author of this thesis created are in Python 3.10 programming
language. The images of the plastic films were acquired using the Xiaomi Mi 11 Lite
phone camera and an A3 size lightboard5. The acquired images were partially labeled
using Labelimg [Tzu15]. Additionally, the language model ChatGPT and Grammarly
were used to enhance the readability and style of the thesis. It should be noted that
ChatGPT was solely used for style and grammar correction and not for content creation.

5Used lightboard can be found at this site: https://shop.kl24.ee/bulb-pirn-lamppu-
LED/0/readmore/27489 Accessed on 04.05.2023
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4 Results
The thesis comprises three parts: collecting a dataset, presenting a benchmark, and
using the collected dataset to enhance object detection models’ performance in detecting
NATO mission task symbols. The collected dataset includes 113 digitized and labeled
images, encompassing 23 symbol classes and 789 symbols. The sorting and digitization
of images took 5 hours, and 40 hours were spent labeling the data at an average of 20
minutes per image and 2 minutes per symbol. The images were divided into training and
benchmark datasets, with 20 images and 297 symbols excluded as they were deemed
low quality or unrepresentative by the military academy. In this section, we present the
benchmark dataset, the selection of performance metrics for the benchmark, and the
results of experiments using different approaches to incorporate real data in improving
the model performance.

4.1 Collected Dataset
The collected data set was divided into training and benchmark sets. The former contains
originally 78 images, but is further processed into 78 natural background images (all
symbols removed) and 395 symbols from 17 different symbol classes. The benchmark
set includes 15 images and 97 symbols within 18 different symbol classes. Individual
symbol counts are shown in Figure 21.

Figure 21. Symbol distribution of the collected real data.

Figure 21 shows that the collected datasets are very imbalanced. Because of the
imbalance, we chose to report micro-averaged metrics for the benchmark evaluation.
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4.2 Defining a Benchmark
We define a benchmark based on the 15 labeled images and 97 symbols. We are aware
this data set is clearly too small to capture the ability of solutions to cope with all the
diversity contained in the real data. However, the number of labeled images can easily be
expanded, whenever more military plans become available. The size of the benchmark
dataset is small due to external factors (unavailability of the raw data), not the willingness
of the author to label the data.

Any model evaluated on this benchmark must make predictions and return identity,
location and confidence in the format YOLOv5 does, based on which our code can
compute the following metrics:

• P@R(80)

• R@P(80)

• mAP@0.8

• mAP@0.8-0.95

• maxF1

All of the metrics are calculated using micro-averaged statistics and at IoU 0.8
threshold, which means the benchmark assumes failing in rarely encountered symbol
types is acceptable if over all instances of all classes the performance is good. A model
can be better than another model according to one, many, or all metrics. Different metrics
capture slightly different aspects of usefulness and aim to form a complete and intuitive
picture of the performance of the models compared.

Experiment P@R(80) R@P(80) mAP@0.8 mAP@0.8-0.95 maxF1
Experiment 1 0 0.66 0.699 0.644 0.746
Experiment 2 0 0.64 0.727 0.683 0.73

Table 1. Example table. The experiments and results are placeholder values.

From looking at Table 1 we can say that Experiment 1 has slightly better results
in P@R(80) and maxF1 but it has lower scores in mAP@0.8 and mAP@0.8-95 than
Experiment 2. Our benchmark does not say which model is better and in this case, the
user should decide if more recall or localization precision is preferred or required.
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4.3 Results of Experiments
Seven different experiments were conducted to analyze the effects of different ways
of using real data in training. One experiment did not include any real data during its
training and was used as a baseline model. The rest of the experiments incorporated
the methods in Section 4.3 of different ways to include real data. The experiment “Real
Symbols in Real Backgrounds in Generated Data” presented in this section had 30% of
its data consisting of real backgrounds and 50% real symbols. Finally, the experiments
are evaluated on the proposed benchmark dataset with proposed metrics of P@R(80),
R@P(80), mAP@0.8, mAP@0.8-0.9, and max F1 score. All of the metrics reported used
the IoU threshold of 0.8 except mAP@0.8-0.95. Due to the imbalance of the benchmark
dataset, all the reported metrics are micro-averaged, meaning they are calculated using
instance-based statistics and not class-based.

Figure 22. Plot of validation mAP@0.5-0.95 on training for experiments.

During the training by default, YOLOv5 calculates macro averaged mAP@0.5-0.95
on the validation set after every epoch (notice it is 0.5 and not 0.8). The graph of
validation mAP@0.5-0.95 - epoch in Figure 22 gives a good feel for the performance of
different experiments. Analyzing macro averaged statistics was an appropriate approach
in this instance, given the balanced distribution of symbols across all classes in the
validation set. The experiment “Real Symbols In Real Backgrounds” seemed to give
more promising results on the validation set compared to other experiments. However,
notice that the validation set consists of generated data, not real data. Secondly, notice
that our benchmark assumes higher spatial precision is needed and does not report
mAP@0.5-0.95. The test results (benchmark results) are presented in Table 2 and are
discussed below.

Table 2 demonstrate that all of the methods described in Sections 4.3 and 4.5 per-
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Experiment P@R(80) R@P(80) mAP@0.8 mAP@0.8-0.95 maxF1
Baseline 0 0.125 0.301 0.265 0.403

Generated Data
+

Empty Backgrounds
0 0.186 0.417 0.344 0.398

Generated Symbols
on

Real backgrounds
0 0.309 0.47 0.42 0.564

Real Symbols
in

Generated Data
0 0.495 0.565 0.504 0.635

Generated Data
+

Real Data
0 0.66 0.699 0.644 0.746

Real Symbols + Real Backgrounds
in

Generated Data
0 0.649 0.702 0.661 0.718

Real Symbols in Real Backgrounds
in

Generated Data
0 0.66 0.727 0.683 0.75

Table 2. Experiment results on benchmark set. The best scores on each metric are
highlighted in bold.

formed better than the "Baseline" experiment, which lacked real data in training. Notably,
all experiments had a P@R(80) metric of 0, indicating that achieving 0.8 recall was
impossible with all models, no matter how lenient the confidence threshold would be.
This means there are a significant amount of symbols in the benchmark that are very hard
to correctly detect or localize. Upon comparing the rest of the metrics, the "Real Symbols
in Real Backgrounds in Generated Data" experiment stands out with the best results
across all metrics. It is closely followed by the "Generated Data + Real Data" experiment,
which has equal performance on R@P(80) but lower numbers in other metrics.

Table 2 also shows us that using real backgrounds as no-object examples led to
improved scores on R@P(80), mAP@0.8, and mAP@0.8-0.95, in comparison to the
"Baseline" approach. This is logical if we assume that using background images lowers
the false positive rate, boosting precision. An increase in R@P(80) suggests that at lower
confidence thresholds, we are still able to maintain high (>0.8) precision, meaning the
number of false positives remains low. As we lower the confidence threshold, the model
becomes more inclusive, increasing recall as more relevant predictions(true positives)
are captured. Additionally, an increase in mAP@0.8 indicates lower false positives and
higher relevant predictions overall, while an increase in mAP@0.8-0.95 suggests an
increase in the spatial precision of the detections.

Furthermore, generating template symbols on real backgrounds improved all metrics
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scores compared to the simpler approaches, as seen in the "Generated Symbols on Real
backgrounds" experiment results. The best performance was achieved by introducing real
symbols extracted from the collected dataset to the mix, as demonstrated by the results
of the "Real Symbols in Real Backgrounds in Generated Data" experiment. This trend of
improvement is logical because the models are iteratively introduced to different parts of
the real data, culminating in the best results when combined. However, this result was
not trivial, introducing too much complexity via mixing everything could have hindered
the training by making the task impossible or too difficult to solve. We could not be sure
the most complex data usage scheme is the most optimal before experimenting.

4.4 Visually Comparing Model Errors
While metric scores provide insights into the performance of different experiments,
they do not reveal the types of errors made by each model. In order to gain a better
understanding of these errors, we must examine the results in more detail. In this section,
we will provide examples of the mistakes that were removed through the use of more
advanced data usage techniques. We will also identify the types of errors that still remain
even with the most capable models. By identifying these failure cases, we can emphasize
addressing them in the future.

When we look at detections visually, we can see that introducing real backgrounds as
no object examples makes the model less confident in the predictions and conditions it
to predict less overall. However, because of this, it also makes fewer mistakes meaning
fewer false positives. This trend continues with the experiment “Generated Symbols
on Real Backgrounds”. In Figure 23 we can see an example where the use of real
backgrounds decreases the background false positive count.

(a) Baseline model predictions. (b) "Generated Data + Empty Back-
grounds" model predictions.

(c) "Generated Symbols on Real
Backgrounds" model predictions.

Figure 23. Different model predictions on a benchmark image with false positives
bounding boxes filled with transparent pink color.

36



Some of the false and missed detections in the experiment "Real Symbols in Real
Backgrounds in Generated Data" can be explained by looking at them visually. In Figure
24a we can see that the model confuses the crossing point of two withdraw symbols for a
withdraw symbol that does not exist. Figure 24b shows these withdraw symbols’ ground
truth bounding boxes. It is important to note that these withdraw symbols are drawn in
irregular shapes, and the model only trained on more regularly shaped withdraw symbols
which can be seen in Figure 24c.

(a) "Real Symbols in Real Back-
grounds in Generated Data" ex-
periment false positive detection
bounding box of withdraw symbol
marked with pink overlay by form
the benchmark dataset.

(b) Ground truth bounding boxes
of withdraw symbols drawn with
red.

(c) A regularly shaped
withdraw symbol.

Figure 24. Irregular "withdraw" symbols. False and missed detections of the experiment
"Real Symbols in Real Backgrounds in Generated Data" compared with the ground truth
bounding boxes and a regular symbol of the same type.

Additionally, the best-performing experiment, "Real Symbols in Real Backgrounds
in Generated Data", still fails to detect symbols when the background elements are very
dense near a symbol. Figure 25 shows an example of a densely filled area. The model
misses all of the symbols shown in this figure (false negatives).

Figure 25. A dense area of mission task symbols with many background elements from
the benchmark dataset. Mission task symbols are marked with red boxes.
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One common false detection that most trained models (i.e., all models except “Gener-
ated Data + Real Data” and “Generated Data + Empty Backgrounds”) make is confusing
the circular background symbols seen in Figure 26a with mission task symbol “secure”.
The shape of these background symbols resembles the shape of the mission task symbol
“secure” closely (see Figure 26b).

(a) False detection of background symbols overlaid with
transparent pink color.

(b) "Hand-drawn mission task
symbol "secure" template.

Figure 26. "Secure" symbol false positive detection. False positive detection of "secure"
by the model "Real Backgrounds in Generated Data" on the benchmark dataset and a
hand-drawn "secure" symbol is shown.

Another common mistake all models make is confusing the mission task symbols
“guard” and “screen” on the benchmark. These symbols resemble each other significantly,
with the only difference being the letter that the symbol contains. The “Guard” symbol
has a lowercase or uppercase “G” in it, and the “screen” symbol has a “S” instead.
However, because of the small size of the symbol on the image, in some instances, “S”
can resemble a lowercase “G”. Figure 27c shows an example of a “screen” symbol
detected as a “guard” by all models.

(a) Guard Symbol. (b) Screen Symbol. (c) A screen symbol
from the benchmark.

Figure 27. Misclassified screen symbol. Examples of guard and screen symbols and an
example of a screen symbol from the benchmark which is confused as a guard symbol.
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Finally, when comparing the two best-scoring models, "Generated Data + Real Data"
and "Real Symbols in Real Backgrounds in Generated Data", we observe that the former
achieves high scores on all metrics due to not falsely classifying the "secure" symbols(see
Figure 26a), whereas the latter does falsely classify it. However, the "Real Symbols
in Real Backgrounds in Generated Data" experiment detected more symbols correctly
in most cases. For example, in Figure 28, "Generated Data + Real Data" missed some
symbols, while "Real Symbols in Real Backgrounds in Generated Data" detected all
symbols successfully.

(a) "Generated Data + Real Data" model
predictions.

(b) "Real Symbols in Real Backgrounds in
Generated Data" model predictions.

Figure 28. Comparison of detections between the two best models. The true positive
predictions of models the "Generated Data + Real Data" and "Real Symbols in Real
Backgrounds in Generated Data" are shown.

4.5 Discussion
The methods described in Section 4.3 affect the performance of symbol detection in
various ways. Many factors may cause these effects. First, the vanilla generator-generated
images differed from the real data in their overall layout and background. Secondly,
even though we used a variety of templates, it turned out that real symbols were from a
much wider distribution with messy backgrounds and handwriting, so we concluded that
imitating real data requires using real data. With the methods in sections 4.3.3 and 4.3.4,
we introduced ways to include real data in the generator to address the limitations of the
initial generator implementation.

In section 4.3.3, we introduced a way to use backgrounds from real data as a canvas
for the generator to generate symbols. This method addresses the limitation of the
image canvas being too empty and unrealistic compared to the real data (a comparison
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between generated data on an empty canvas and real data can be seen in Figure 29). The
results showed that generating data using real backgrounds enabled the model to learn to
distinguish symbols from backgrounds and produce fewer false positives.

(a) Example of generated data on an empty can-
vas.

(b) Example of real data from the training set.

Figure 29. Comparison between generated data and real data. (Symbols are marked in
red boxes.) Generated data is generated on an empty canvas, and real data is created to
have a military sense.

In section 4.3.4, we introduced a way to use symbols extracted from the real data
in the generator. This method addresses the limited symbol variability within used
templates compared to the real data. Real symbols are highly variable, with irregular
shapes and high levels of noise. By introducing real symbols to the models, we observe
that R@P(80) metric increased in all cases compared to approaches where the model
never saw any real symbols. This indicates that using real symbols in the generator helps
to overcome the symbol variability limitation and leads to better generalization.

These methods are designed to introduce real data distribution to the training, and
using them separately in the generator already achieves this, but by combining them, we
got more diversity in the training, which in turn improved the performance of the trained
models.

Real data includes real symbols and real backgrounds, even though with a limited
number of images and variability, which means it is one of the most difficult data types.
However, it was still surprising that “Real Data + Generated Data” performed almost as
well as "Real Symbols in Real Backgrounds in Generated Data". There could be several
explanations for this performance. For example, "Real Symbols in Real Backgrounds
in Generated Data" may be overfitting to the real backgrounds, as a unique background
is used multiple times. In contrast, "Real Data + Generated Data" is exposed to each
unique real background only once. Another possible explanation is that "Real Data +
Generated Data" avoiding false positive detections of the "secure" symbol, as discussed
in the previous section, either by luck or by not overfitting to the real symbols that
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"Real Symbols in Real Backgrounds in Generated Data" is using. Finally, for the "Real
Symbols in Real Backgrounds in Generated Data" model, the training and validation sets
are generated using the same real backgrounds, which may cause the model to overfit
not only to the training set, but also the validation set. As the model overfits to these
backgrounds, the validation metrics keep improving and early stopping does not trigger.
However, on the unseen benchmark set this leads to weaker generalization.

Another curious result is the P@R(80) scores of the experiments. None of the
experiments achieved a recall greater than 0.8 at however low confidence threshold value,
resulting in a score of 0 for this metric. While this surely reveals the weakness of our
current models, it does not make tracking this metric useless in the long run when models
gradually improve. The set of metrics in the benchmark was chosen to align with the
requirements of our collaboration partner and remains relevant.

In summary, we see using real data in a trivial way helps to improve performance.
If sufficient data exists, it will be possible to get the desired performance. However, in
our case, using real backgrounds and real symbols in the generator still gives a benefit
because of the scarcity of the data.
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5 Conclusion and Future Work
The creators of YOLOv5 recommend that the training data for the model should represent
the deployment environment. By applying the techniques described in this thesis, we
aimed to train the modes on images more similar to what the military actually draws and
hence improve the symbol detection on real data. The results of the experiments show
that the proposed methods achieve this goal to some extent. Especially extracting the
backgrounds and symbols from the collected dataset and using these to generate data
with more variations in rotations and placements is a very promising method.

Although the methods used gave promising results, there are still limitations in using
real data in the generator. The usage of real backgrounds in the generator is limited to only
inserting symbols to the original places of the removed symbols. The implementation
can be expanded by defining rules to find other spaces to place additional symbols or
placing them randomly in any place on real backgrounds. This may create a challenging
dataset and improve the performance of symbol detection.

395 symbols and 78 images from the collected dataset were used in training. This
dataset can be increased when more data is made available. The model will be exposed
more to real-life distribution, with more varieties of real data, which should improve
its performance. Additionally, the proposed benchmark currently has 15 images with
97 symbols. To evaluate the symbol detection models more accurately and publish the
benchmark, the dataset size should be improved in the future.

More in-depth analysis can be made to understand the generalization degree of
models when using real data in the generator. With this analysis, real data usage can be
optimized to give better results.

In summary, the thesis goal of collecting and using a labeled dataset of NATO mission
task symbols to improve symbol detection models and proposing a benchmark for it is
achieved. When real data availability is limited, symbol detection performance can be
improved by using a relatively small real dataset in different ways. While our current
results may not have fully met the desired requirements to be successfully deployed, we
view this as an opportunity for future work to further improve the performance of our
solutions as data size and quality improve.
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Appendix

I. Code Repository
The implementation of the methods described and trained object detection models
are available at https://github.com/aralacikalin/NatoSymbols. This GitHub repository
contains the combined work of the ICS team. The modified scripts for evaluating
YOLOv5 models are in the folder “yolov5”. The tool created for labeling rotations of the
symbols is in the folder “RotationLabeler”. The generator is in the folder “generator”.
The collected real data is not publicly available.
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