
UNIVERSITY OF TARTU
Institute of Computer Science

Software Engineering Curriculum

Daichi Ando

An approach for Designing
Microservice-Based Applications

using a Domain-Driven Design Approach
and Clean Architecture Principles

Master’s Thesis (30 ECTS)

Supervisor(s): Mohamad Gharib

Tartu 2023

I have written this master’s thesis independently. All attitudes of other authors, literary
sources, and data from elsewhere used for writing this paper have been referenced.

2

Acknowledgment:
I wish to extend my heartfelt appreciation to all those who provided their invaluable
support throughout my time at the University of Tartu. I am particularly grateful to my
supervisor, Mr. Mohamad Gharib, whose unwavering dedication and valuable guidance
have been instrumental from the initial discussion of my thesis proposal to the final
stages of my dissertation.

I am profoundly grateful to my family for their steadfast support and encouragement
throughout my academic journey at the University of Tartu. I am especially thankful
for my wonderful girlfriend, Maryam. With her enchanting presence, every challenge
turned into an opportunity, and every moment became a cherished memory. Additionally,
I express my sincere appreciation to all the interviewees for generously dedicating their
time to participate in the research.

3

Contents
1 Introduction 9

1.1 Motivation . 9
1.2 Research Questions . 10
1.3 Contribution . 11
1.4 Structure of the Thesis . 11

2 Background 12
2.1 System architecture . 12

2.1.1 Monolithic architecture . 12
2.1.2 Service-oriented architecture (SOA) 13
2.1.3 Micro-service architecture (MSA) 15

2.2 Clean architecture principle . 17
2.2.1 SOLID Principles . 17
2.2.2 Clean Architecture . 18

2.3 Domain-Driven Design (DDD) . 20
2.3.1 Strategic design . 21
2.3.2 Tactical design . 22

3 Proposed Approach 24
3.1 Domain design . 25

3.1.1 Step 1. Identify sub-domains based on key business processes . 26
3.1.2 Step 2. Distill objects from user stories 27
3.1.3 Step 3. Examine business logic 28
3.1.4 Step 4. Completion of each sub-domain 28

3.2 Domain Implementation . 28
3.2.1 Step 5: Convert defined objects into classes 31
3.2.2 Step 6: Implementation of business logic 32
3.2.3 Step 7: Build controller directory 35
3.2.4 Step 8: Creation of infrastructure layer to write the implementation 37
3.2.5 Step 9: Create a cmd directory to build a server 37
3.2.6 Step 10. Completion of code repository for each sub-domain . . 38

4 Implementation 39
4.1 User Story Elicitation . 40
4.2 Domain Design . 41

4.2.1 Step 1. Identify sub-domains based on key business processes . 41
4.2.2 Step 2. Distill objects from user stories 41
4.2.3 Step 3. Examine business logic 43
4.2.4 Step 4. Completion of each sub-domain 45

4

4.3 Domain Implementation . 46
4.3.1 Step 5: Convert defined objects into classes 46
4.3.2 Step 6: Implementation of business logic 46
4.3.3 Step 7: Build controller directory 48
4.3.4 Step 8: Creation of infrastructure layer to write the implementation 52
4.3.5 Step 9: Create a cmd directory to build a server 52
4.3.6 Step 10. Completion of code repository for each sub-domain . . 53

5 Validation 54
5.1 Methodology of the validation . 54
5.2 Analysis of the Response . 57
5.3 Results . 57
5.4 Threats to validity . 60
5.5 Future work . 61

6 Conclusion 62

7 Appendix 66
7.1 Survey Consent . 66
7.2 Survey Content . 66
Licence . 70

5

List of Figures
1 Monolithic architecture . 13
2 Service-Oriented Architecture . 14
3 Microservice architecture . 15
4 The “Clean Architecture” schema proposed by Robert C. Martin (2017) 20
5 Overview of the proposed approach 25
6 Sub-domain elicitation . 26
7 Objects elicitation . 27
8 Proposed software architecture based on clean architecture 30
9 Entity layer creation . 33
10 "usecase" and "interface" directory creation 34
11 Controller layer creation . 36
12 Graph of defined objects . 43
13 Entity directory . 46
14 Entity directory . 49
15 Final file structure . 54

6

List of Tables
1 User stories . 40
2 List of distilled objects . 42
3 API documentation (Page 1) . 44
4 API documentation (Page 2) . 45
5 Response from SQ1 . 58
6 Response from SQ2 . 59
7 Response from SQ3 . 60

7

An approach for Designing Microservice-Based Applications using a Domain-Driven
Design Approach and Clean Architecture Principles

Abstract:
The current landscape of software services is marked by growing complexity, necessi-
tating adaptive changes in software architecture to keep pace with rapid developments.
As software architecture profoundly impacts code organization, the adoption of mi-
croservice architecture has gained popularity for breaking down systems into manageable
services. However, the development and management of numerous small services present
challenges. To address this issue, this master thesis introduces a novel approach that
combines the principles of Clean Architecture and Domain-Driven Design to construct a
microservice architecture. This methodology utilizes extensive business requirements
as input and produces a code repository prototype as its output. The study provides an
overview of this approach and presents a practical use case where it is implemented
with actual code. Furthermore, the performance of this approach is analyzed through
a comparison with the traditional software architecture paradigm, MVC (Model, View,
Controller).
Keywords: Software Architecture, Domain-Driven Design, Clean Architecture, SOLID
principles, factory design pattern.

CERCS: P170 Computer science, numerical analysis, systems, control
Lähenemisviis mikroteenusepõhiste rakenduste kujundamiseks, kasutades domeenipõ-

hist disaini lähenemisviisi ja puhta arhitektuuri põhimõtteid
Lühikokkuvõte:
Praegust tarkvarateenuste maastikku iseloomustab kasvav keerukus, mis eeldab kiire
arenguga sammu pidamiseks kohanemisvõimelisi muudatusi tarkvara arhitektuuris. Kuna
tarkvaraarhitektuur põhjalikult mõjutab koodikorraldust, on populaarsust kogunud mik-
roteenuste arhitektuuri kasutuselevõtt süsteemide jagamiseks hallatavateks teenusteks.
Kuid arvukate väikeste teenuste arendamine ja haldamine kujutab endast väljakutset. Sel-
le probleemi lahendamiseks tutvustatakse käesolevas magistritöös uudset lähenemisviisi,
mis ühendab puhta arhitektuuri ja valdkonnapõhise disaini põhimõtted mikroteenuste
arhitektuuri ülesehitamiseks. See metoodika kasutab sisendina ulatuslikke ärinõudeid ja
toodab väljundina koodirepositooriumi prototüübi. Uurimuses antakse ülevaade sellest
lähenemisviisist ja esitatakse praktiline kasutusjuhtum, kus seda rakendatakse tegeliku
koodiga. Lisaks analüüsitakse selle lähenemisviisi tulemuslikkust, võrreldes seda tradit-
sioonilise tarkvaraarhitektuuri paradigma MVC (Mudel, Vaade, Kontroller) abil.

Võtmesõnad: STarkvaraarhitektuur, Valdkonnapõhine disain, Puhas arhitektuur,
SOLID-põhimõtted, tehase disainimustrid.
CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

8

1 Introduction
This thesis stresses the effect of proposing the creation of a software architecture process
to build a microservice architecture. This introductory chapter describes the motivation
for utilizing software architecture in the software engineering field. It then presents
research questions, a list of contributions, and a structure of this thesis. I employed
ChatGPT 1, an AI writing assistant, throughout the writing process to ensure grammar and
punctuation accuracy and enhance the overall clarity of the written content. ChatGPT,
developed by OpenAI, stands as a cutting-edge language model. It harnesses deep
learning methods to produce text resembling human language, driven by the input it
receives.

1.1 Motivation
Nowadays, software development, in general, and web applications in particular, become
more challenging than ever as the final software product requires meeting the constantly
changing business requirements. These changes in requirements put lots of stress on the
development process and the software architecture. We believe that a solution to this
problem should consider not only low-level coding principles but also the architecture as
well as the design of the software application/system. Extending the software application-
s/systems with new features often becomes costly if the software applications/systems
are not optimized. In addition, a poorly designed system might lead to a problematic
implementation that becomes a big lump of technical debt. It is a problem for software
engineers and the whole company, as solving such a problem will require extra resources
and unplanned costs.

The increasing demand and complexity of new features in back-end applications may
negatively influence the system quality, especially maintainability, during development
Koller (2016). Solving this problem will require the software architecture to satisfy two
conditions: (1) a seamless translation of the business requirements into a component
of the software system; and (2) a coherent methodology to use these components to
derive the code. The seamless translation is meaningful because inaccurate translation
quickly causes technical debt, and other codes can be accumulated. A well-defined
methodology ensures consistency, efficiency, and maintainability of the code base. It
also facilitates collaboration among team members and allows for easier debugging and
future enhancements.

This thesis proposes the combination of Domain-Driven Design (DDD) and Clean Archi-
tecture Principles by satisfying the above two conditions. MVX or MVC may suffice for

1https://openai.com/chatgpt

9

simple apps with little business logic Nunkesser (2021). There are also apps of medium
complexity that do not need external infrastructures or do not need separate models for
the layers. Those applications don’t have a solid need to organize the business logic;
however, the large size of the application is obligated to take care of Nunkesser (2021).

Adopting a clean architectural approach can help reduce the issue of low maintainability
and significant amounts of code duplication because each layer is independent of the
layers above and below it Nunkesser (2021). While the primary objective of employing
the clean architecture is to orchestrate code organization Lakhai et al. (2022), it does not
inherently address the translation of business requirements into the system’s business
logic. In essence, clean architecture specializes in organizing already articulated business
logic. DDD emerges as the optimal choice to cater to the input of business logic. The
primary advantage of DDD lies in its ability to articulate real-world incidents into a graph
with ubiquitous language Bucchiarone et al. (2020), thereby facilitating the elicitation of
essential data-centric information. Consequently, DDD complements the lacuna in Clean
Architecture and furnishes a fully structured business domain for software architecture,
wherein clean architecture capitalizes on its inherent strengths.

1.2 Research Questions
This study attempts to present a comprehensive approach to developing a micoservice
architecture that enhances the development experience across various dimensions. The
thesis meticulously unveils the proposed approach in a sequential manner. Following
the elucidation of this approach, a case study is conducted, wherein applications are
constructed using both the proposed approach and a conventional method involving the
MVC (Model-View-Controller) architecture. This comparative analysis forms the core
of the study and seeks to address the subsequent research inquiries:

RQ1: To what extent does the incorporation of Clean Architecture and Domain-
Driven Design (DDD) principles enhance the understandability of the software architec-
ture?

RQ2: How does the incorporation of Clean Architecture and Domain-Driven Design
(DDD) principles facilitate the refactoring process of the software architecture in terms
of reducing technical debt and improving code maintainability?

RQ3: In what manner does the incorporation of Clean Architecture and Domain-
Driven Design (DDD) influence the extensibility of the software architecture over the
system’s lifecycle?

10

1.3 Contribution
The findings of this study aim to provide a guide to companies and industries for the
improvement of large-scale software services or products. This study focuses explicitly
on microservice architecture since it is helpful for the extensive complex software
system. The use of these findings is not limited to software developers but gives product
owners and project managers working on software services. This thesis’s contributions
are accomplished by providing a clear step of software architecture from the business
requirements to the code implementation.

1.4 Structure of the Thesis
The structure of the thesis is as follows:

• Chapter 2: This chapter elucidates the fundamental principles of three pivotal
concepts: Microservice architecture, Domain-Driven Design, and Clean Archi-
tecture. It delves into the motivations behind their development and outlines the
merits that underpin their relevance in modern software engineering.

• Chapter 3: This chapter provides an intricate exposition of the suggested ap-
proach. It unveils a meticulous step-by-step journey through the approach, eluci-
dating the rationale behind each stage while illuminating the advantages it bestows
upon the development process.

• Chapter 4: I materialize the proposed approach into reality through a proof of
concept. The narrative encompasses the in-depth implementation of code, offering
readers a comprehensive understanding of its execution and logical flow.

• Chapter 5: This chapter validates the efficacy of the proposed approach through a
rigorous comparison with traditional software architecture. It not only underscores
the outcomes of this validation but also confronts potential threats to validity.
Moreover, this chapter peers into the horizon, delineating future trajectories for the
proposed approach’s advancement.

• Chapter 6: I encapsulate the reflective conclusion. It encapsulates the thesis’s
findings, lessons learned, and the broader implications of the proposed approach.
This chapter functions as a culmination that ties together the disparate threads
explored throughout the thesis.

11

2 Background
This chapter introduces the conducted research about the three critical components in this
paper, Domain-Driven Design (DDD), Clean Architecture, and microservice architecture,
and summarizes their core feature.

2.1 System architecture
The system architecture was initially constructed on a single server, driven by the hard-
ware’s capabilities. However, with the advancement of technology, the approach to
shaping software architecture has evolved over the years.

2.1.1 Monolithic architecture

A monolithic application typically comprises a user interface (UI) layer, a business logic
layer, and a data access layer that interacts with the database, as shown in Figure 1 in the
next page Kalske et al. (2018).

A monolithic architecture prevents separate module execution by encapsulating all func-
tionality into a single program. This kind of architecture is closely coupled, and a separate
process handles each piece of logic that handles a request. This enables developers to
divide the application into classes, functions, and namespaces using the fundamental
characteristics of the language Ponce et al. (2019).

This style of system architecture is effortless to develop and deploy since everything is in
one place. This self-contained designed system also prevents delay due to the network,
which makes the throughput higher than other system architectures Turis (2019). While
adopting this kind of design to begin a project is smart because it enables you to investi-
gate a system’s complexity and the boundaries between its components Chen et al. (2017).

Although the application becomes increasingly intricate, the monolithic structure ex-
pands, transforming into a substantial and challenging-to-handle software component
that is difficult to scale De Lauretis (2019). Moreover, when a developer exercises
caution and prioritizes comprehensive documentation of the structure, the code may
become tightly coupled and needlessly intricate. In cases where certain sections of code
are interdependent, any required modifications can incur additional development costs
Weerasinghe and Perera (2021).

12

In addition, exercising diligence and placing a premium on meticulous structural docu-
mentation can inadvertently lead to a codebase characterized by excessive interdepen-
dencies and unnecessary complexity. When segments of code are intricately intertwined,
any subsequent adjustments can result in augmented costs to rectify the entanglements
Weerasinghe and Perera (2021). The endeavor to comprehend such an architecture can
also incur its own share of expenses if the documentation isn’t meticulously crafted. The
consolidation of all components into a singular position further deepens the imperative to
install a well-structured framework. Additionally, when confronted with the necessity to
rectify even the minutest fragment of code, the entire codebase necessitates deployment.
For systems requiring frequent updates, this translates into numerous deployments solely
for marginal alterations Ponce et al. (2019).

Figure 1. Monolithic architecture

2.1.2 Service-oriented architecture (SOA)

Enterprises use SOA to enhance agility and cost-effectiveness while reducing the burden
of IT on the organization by positioning services as the primary means through which
the solution logic is represented Erl (2008). SOA is not just an architecture of services
seen from a technology perspective but the policies, practices, and frameworks by which
we ensure the right services are provided and consumed Sprott and Wilkes (2004).
The system is organized into several services instead of being integrated into a single
unit. Each service operates within its defined scope, accomplishing its specific objectives.
Communication between services occurs through the network, storing their code in
separate repositories, as shown in Figure 2 on the next page.

13

This architectural approach emerged due to the convenience of server management and
deployment. Cloud technology has simplified server operations, enabling developers to
create multiple repositories instead of consolidating them into one entity Weerasinghe
and Perera (2021).

Figure 2. Service-Oriented Architecture

There are the following traits to explain the feature of SOA from Turis (2019).

1. Loose coupling – Service has minimal dependencies on each other. It increases
the modularity so that modification of codes becomes much more manageable. For
example, if a small portion of the code needs to be changed, not the whole code
must be deployed, but only the service containing the code will be redeployed.

2. Abstraction – A service hides inner implementation, and they expose only their
contract. It reduces complexity and increases readability.

3. Reusability – it should be possible to reuse the same service in different scenarios;

4. Statelessness – services do not manage the state, but they defer it to consumers;

5. Composability–services can be composed to create mutated services.

14

2.1.3 Micro-service architecture (MSA)

Unlike other architectural approaches, microservices are autonomous services that are
smaller and easier to deal with. Microservice architectures can offer many advantages.
The ability to design, develop, test, and release services with tremendous agility is crucial.
Infrastructure automation makes Continuous delivery possible, which lowers the manual
labor required for developing, deploying, and running microservices. MSA is especially
well suited to cloud infrastructures because they considerably benefit from the elasticity
and quick resource provisioning that the cloud enables Di Francesco et al. (2019).

MSA comprises fundamental building parts like core business services, infrastructure
services, discovery techniques, and communication infrastructure Clarke et al. (2017).
Microservices transform the entire software development process. As a result, microser-
vices follow the evolutionary design, in which the company foresees that some functions
may stop working. As conditions change, applications that can be expanded and reorga-
nized are necessary for scalable business models, as shown in Figure 3. It is simple to
alter the workflow because each microservice is a small business operation representing
a discrete area of business functionality Shadija et al. (2017).

Figure 3. Microservice architecture

15

MSA should be utilized when the advantages outweigh the disadvantages. Unlike mono-
lithic programs, which combine all functionality into a single process, MSAs split each
functionality set into its service. Monolithic apps scale by being duplicated across several
servers. On the other hand, microservices can be scaled by being distributed among
servers and duplicating as necessary. In any event, microservices are not the greatest
option Jamshidi et al. (2018).

The best benefit from the microservices is realized when use cases and conditions are
carefully assessed and judgments are made. Furthermore, cloud-based platforms can be
easily used in MSA development since autonomous services can be set up separately,
profit from the cloud’s flexibility, and provide resources quickly Pahl et al. (2017).

16

2.2 Clean architecture principle
The software architecture of a system is defined as “the structure or structures of the
system, which comprises software components, the externally visible properties of those
components, and the relationships among them” Bengtsson and Bosch (1999).

Without a clearly defined architecture, the source code will be a collection of unorganized
codes that are tightly coupled and hard to maintain. For instance, if a developer wants
to modify one specific component, tightly coupled components must also be adjusted.
Furthermore, low-readability software architecture costs significant development costs:
time, money, development speed, and an enormous amount of code. This emphasizes the
vital role software architecture plays in developing software products.

This section discusses clean architecture principles and SOLID principles, whereas Clean
Architecture organizes code into layers for maintainability and flexibility Martin (2017),
and SOLID principles offer guidelines for clean, extensible code Madasu et al. (2015).
Together, they promote scalable and manageable software architecture.

2.2.1 SOLID Principles

SOLID is an acronym encapsulating the five class diagram design principles created
by Robert Martin to improve the quality of software development life-cycle processes
Chebanyuk and Markov (2016).

SOLID principles guide developers to build we can build efficient, reusable, and non-
fragile software, which is sustainable and maintainable for long-term needs. The major
issues concerning software architecture quality are reusability, extensibility, sustain-
ability, and maintainability. SOLID principles provide a suitable answer to develop an
efficient Software architecture that can overcome the above four problems Madasu et al.
(2015).

This principle was named by the acronym of five principles as follows:

1. Single Responsibility Principle: A class should have only one job to exist: “A
class should have only one reason to change” Martin and Martin (2006). If a class
has more than one responsibility, the code is tightly coupled, and there is a need to
modify coupled codes every time. This principle helps to decouple each class to
increase maintainability.

17

2. Open-Closed Design Principle: Software entities should be open for extension
but closed for modification Chebanyuk and Markov (2016). In other words, it
should be able to extend the behavior of an entity with minimum change for its
source code. This principle helps to keep existing code stable and makes it easier
to add new features without introducing bugs.

3. Liskov Substitution Principle: Objects of a parent class should be replaceable
with objects of their child class without affecting the correctness of the program
Madasu et al. (2015). This principle promotes the reusability of the component to
create a more robust and maintainable object-oriented design.

4. Interface Segregation Design Principle: "The class interfaces can be broken
up into groups of methods. Each group serves a different set of clients. Thus,
some clients use one group of methods while others use the other" Martin and
Martin (2006). Clients should only know about the methods or interfaces that inter-
est them so they are not distracted by non-related information Madasu et al. (2015).

5. Dependency Inversion Design Principle: "High-level modules should not depend
on low-level modules. Both should depend on abstractions. Abstractions should
not depend upon details. Details should depend upon abstractions" Martin and
Martin (2006). This principle helps to decouple components, making changing and
maintaining the software easier without affecting other parts of the implementation
details Madasu et al. (2015).

2.2.2 Clean Architecture

Clean Architecture is one of the software architectures that embodies the SOLID princi-
ples. The main idea behind Clean Architecture is to create software that is independent
of external concerns, such as the user interface, the database, or any specific framework.
Instead, the architecture should focus on the application’s business logic Martin (2017).

Below Figure 4 is created by the creator of clean architecture principles, Rober C. Martin.
The software architecture consists of four layers, like an onion, and each layer depends
on the inner layer Martin (2017).

18

1. Entities: It encapsulates enterprise business rules. An entity can be an object with
methods or data structures and functions. It doesn’t matter so long as many dif-
ferent applications in the enterprise can use the entities Aguilar and Figueira (2020).

2. Use cases: The software in this layer has business rules specific to the application.
It serves as the implementation of all system use cases, coordinating data flow
to and from the entities and directing these entities to utilize enterprise business
rules to achieve the objectives of each use case. Changes made to this layer should
never impact the entities, nor should it be affected by external factors like the
database, user interface, or common frameworks, as it remains isolated from such
concerns. However, modifications to the application’s operation will influence this
layer. If the details of a use case change, certain codes in this layer will inevitably
be affected Aguilar and Figueira (2020).

3. Interface Adapters: The software within this tier consists of adapters responsible
for converting data between formats most suitable for the use cases and entities
and the format preferred by external entities like the Database or the Web. The
models likely serve as data structures transferred between controllers, use cases,
presenters, and views to facilitate data flow Aguilar and Figueira (2020).

4. Frameworks and Drivers: This layer comprises frameworks and tools, including
the Database, Web Framework, and others. Typically, minimal code is written
directly in this layer, mainly consisting of glue code responsible for communication
with the inner circle. This layer contains all the details defined in the interface
adapter layers Aguilar and Figueira (2020).

On the right below the Figure 4 is an image of the data flow with clean architecture
principles. Data is received by the controller in the interface adapter layers. Next, it is
handed to a use case interactor in the use cases layer to process the input. Finally, the use
cases layer output is handed to the presenter to format preferred by external entities.

19

Figure 4. The “Clean Architecture” schema proposed by Robert C. Martin (2017)

2.3 Domain-Driven Design (DDD)
When creating a software application, developers try to understand the real-world prob-
lem the application should solve rather than just jumping into writing code. They spend
time identifying the most important concepts, rules, and relationships the software needs
to model. Once they understand the problem domain, developers can create a model
using software design patterns and tools. This model serves as a blueprint for the actual
code that will be written to implement the application.

The model-driven process known as Domain-Driven Design (DDD) captures domain
information pertinent to software design. DDD promotes agile, collaborative modeling
of domain experts and software developers to promote domain expertise and the accuracy
of an emergent design Rademacher et al. (2018).

Developers work closely with domain experts, who have expertise in the problem domain,
to create a model of the problem domain based on the business requirements. This model
breaks down the problem domain into smaller, more manageable parts and represents

20

the key concepts, entities, and relationships in the problem domain Merson and Yoder
(2020). By creating a detailed problem domain model, developers can ensure that the
software is well-aligned with the users’ needs and requirements and solves real-world
problems more effectively.

DDD is an excellent place to start when looking for microservices. Still, it’s up for
debate where to draw the line for the constrained context Xie et al. (2018); quite a few
inconsistencies in the work of domain experts, analysts, designers, and developers led to
its evolution. It became clear that a common language had to be created. Complex sys-
tems with a wide range of domain knowledge domains best suit DDD. The introduction
of well-defined domain boundaries comes at a cost. Bounded contexts are the various
domain constituents. Each constrained context can be treated equally as a separate
microservice Vural and Koyuncu (2021).

2.3.1 Strategic design

Strategic patterns aim to evaluate the problem domain and decompose the problem
domain of a software system into multiple sub-domains Turis (2019). Some specific
terms are used in the process of evaluation of the problem domain.

1. Bounded context: A Bounded Context establishes a clear boundary for a specific
domain model, encompassing sub-domain parts and employing a shared ubiqui-
tous language to describe its concepts, properties, and operations. Each Bounded
Context defines unique meanings for terms within its domain, allowing the same
term to have different interpretations in other Bounded Contexts Turis (2019).

2. Context map: Determining appropriate Bounded Contexts remains a difficult task.
In addressing this challenge, Context Map models and diagrams, along with con-
text mapping as a practice and the strategic DDD patterns, play significant roles in
defining the relationships between Bounded Contexts Kapferer and Zimmermann
(2020).

3. Ubiquitous language: The language used in this context establishes the structure
and meaning of domain concepts pertaining to the software being developed. It
also harmonizes the terminology and specialized language to facilitate effective
stakeholder communication Rademacher et al. (2020). As a result, both software
architecture and code must adhere consistently to the terms of the ubiquitous
language, mirroring the structures and relationships of domain concepts as depicted
in domain models Rademacher et al. (2020).

21

2.3.2 Tactical design

Tactical patterns serve the purpose of handling complexity within the domain. They aim
to represent and illustrate objects, their behavior, meaning, function, and relationships in a
cohesive manner. Each pattern provides guidance on implementing an object with specific
functionality and attributes to enhance the overall model’s readability, maintainability,
and extensibility Turis (2019).

1. Entity: An entity is an object with attributes and functions whose unique identity
is significant. Even if certain attributes change, the object retains the same identity
Turis (2019). The three main components of the entity are public attributes, public
operations, and the transformation of attributes under operations Chen et al. (2019).
The below formula is a reference of the equation 1 of the entity retrieved from Chen
et al. (2019). In this context, properties refer to the set of attributes associated
with the entity, while "id" denotes a distinct identifier. Operations encompass
a collection of functions, and "H" represents the transformation of properties
resulting from these operations Chen et al. (2019).

Entity = <properties = {id, p1, p2, . . . , pn-1}, operations = {get, set, otherOperations}, H>
(1)

2. Value Objects: As its name suggests, a value object is represented solely by its
value. It lacks identity, and any changes made to it result in a different value Turis
(2019). The below formula is a reference of the equation 2 of the value object
retrieved from Chen et al. (2019). Compared to entities, value objects express only
the clear characteristics of a certain concept Chen et al. (2019).

Value Object = ⟨properties, operations⟩, (2)

3. Aggregates: An aggregate represents a cohesive group of entities and value
objects that form a transactional consistency boundary. The entire aggregate
should maintain consistency at all times. To achieve this, an aggregate root is
established as the entry point to the aggregate, and other entities and value objects
are considered internal, inaccessible from outside Turis (2019). The below formula
is a reference of the equation 3 of the aggregates retrieved from Chen et al. (2019).

Aggregate = ⟨Entities,Value Objects⟩ (3)

22

4. Repository: By encapsulating the logic involved in storing, retrieving, updating,
and removing aggregates from a particular persistence store, a repository acts as a
mechanism for persisting aggregates. A model can be built without considering in-
frastructure issues by removing the technical details from a store’s implementation
Turis (2019).

5. Factory Design Pattern: The book Design Patterns popularized the software
design pattern known as Factory Gamma et al. (1995). It is in charge of producing
sophisticated objects and aggregates. It is particularly helpful when creating a
new aggregate involves multiple steps during which the existing aggregate is
inconsistent, and the aggregate consists of numerous entities and value objects.
The factory creates a fully consistent aggregate while encapsulating the creation
logic. A factory can be implemented as a class or as a method on an aggregate root
Turis (2019).

23

3 Proposed Approach
This section introduces the approach of using DDD and Clean Architecture to create
Microservice Architecture. It explains step by step from the business requirements to the
completed prototype of the software application.

The flow of the proposed approach is as follows:

1. Input: As input, user stories should be elicited from the business requirements.
They are tailored to specific use cases, serving as cues for identifying domain logic
that must be appropriately modeled within the domain model Steinegger et al.
(2017). Without well-defined user stories, the development process risks being
directionless and might lead to irrelevant solutions.

2. Domain Design: The DDD designs the problem domain based on the given user
stories. The created domain consists of multiple domains with bounded contexts.
This step is necessary to understand the domain and prevent ambiguity or confusion
during development.

3. Domain Implementation: Clean architecture applies each domain inside the
problem domain to build the code organization. This step is crucial as Clean
Architecture helps avoid tight coupling between different parts of the code-base,
making it easier to modify or replace components without affecting the entire
system.

4. Output: After completing the approach, developers see the complete structure of
the code of each domain and their relationships. The output also fosters better com-
munication within the development team, making it easier for them to collaborate
and make informed decisions during the development process.

24

Figure 5. Overview of the proposed approach

3.1 Domain design
This stage uses the DDD approach to design each sub-domain structure and API docu-
mentation. It starts with a list of user stories as input and breaks down complex business
problems into smaller and cohesive sub-domains. The result comprises each sub-domain
structure with a context map and a list of available APIs, including their names, inputs,
and outputs.

25

The domain design stage referenced the idea from Overview of a Domain-Driven Design
Approach to Build Microservice-Based Applications Gamma et al. (1995). This paper
explains the whole process of DDD, from business requirements to the implementation
stage. The proposed approach referenced domain design from the paper.

3.1.1 Step 1. Identify sub-domains based on key business processes

This step divides The problem domain into multiple sub-domains, as Figure 6 on the
next page shows. Breaking a big domain into small sub-domains offers benefits such as
modularity, focused development, and scalability. Smaller sub-domains encourage loose
coupling and reusability while being simpler to comprehend, manage, and test. Domain
experts can focus on particular sub-domains to ensure correct solutions and a more agile
development process. Additionally, by drawing distinct lines between sub-domains,
communication, and solutions are enhanced Kapferer and Zimmermann (2020).

Each user story is analyzed to specify the key business process involved. Those key
business processes are high-level components representing significant parts of the appli-
cation’s functionality. They are considered sub-domains, and each user story should be
clarified which sub-domain is related.

Figure 6. Sub-domain elicitation

26

3.1.2 Step 2. Distill objects from user stories

This step focuses on extracting three types of objects from the user stories that pertain to
the sub-domain. Creating a consistent structure enables code reusability and aligns well
with Clean Architecture principles for effective implementation. A shared ubiquitous
language is also established, enhancing communication and understanding among stake-
holders and the development team.

Figure 7 shows the process of detailed elicitation of objects with example objects. On
the left side, start from the list of user stories; it takes one domain from the created
list of sub-domains and collects the corresponding user stories. Next, iterate the list of
user stories by processing the below steps. Throughout the iteration, the already defined
object is updated as needed.

1. List all the required entities with necessary attributes in the user story. If the
entities or aggregates already exist, move to the following entity.

2. Elicit aggregate based on newly created entities to have consistency.

3. Elicit value objects from the attributes in entities or aggregates.

After eliciting three types of objects, each object should be filled with minimum variables
to suffice each user story. The variables in those objects should not contain more than
necessary to avoid slowing down the implementation.

Figure 7. Objects elicitation

27

3.1.3 Step 3. Examine business logic

This step aims to examine the business logic of the user stories that relate to the domain
with those defined objects from step 2. This step is necessary to refine the domain model’s
correctness and completeness, ensuring it accurately represents domain interactions and
rules. It validates entities and aggregates against user story requirements, maintaining
consistency and integrity.

The process of this step is similar to step 2. It takes the related user story to the domain,
and continue the business logic elicitation until all the user stories in the list are addressed.
As the result of this step, the documentation that contains the below attributes should be
created.

• User Story Identifier: It tracks which user story it writes about.

• Input: The input for the user story should be defined. It is a list of variables or
objects with their data type.

• Business logic flow: It is the whole process of the business logic to complete the
user. This flow should be described with numbered list. It also explicitly explain
what data is modified and how does it modified.

• Output: The output for the user story should be defined. It is a list of variables or
objects with their data type.

Throughout the process, create repositories for aggregates or entities that handle any data
related to their creation, updates, or deletions. Should any inconsistencies arise with the
objects defined in step 2, return to step 2 to make the necessary updates. After updating
the objects, revisit step 2 to ensure the overall consistency of the remaining objects

3.1.4 Step 4. Completion of each sub-domain

Repeat steps 2 and 3 until all the user stories in the list are addressed.

3.2 Domain Implementation
Once the problem domain has been defined, the subsequent step involves the application
of Clean Architecture to each sub-domain. At this stage, multiple sub-domains are inter-
connected using a context map, and detailed API documentation for each sub-domain
exists. Clean Architecture principles are then applied to each domain, creating a unified
code repository for each sub-domain, as the context map dictates. This phase aims to
establish multiple code repositories that align with a microservice architecture.

28

This phase holds essential importance within the proposed approach as it involves the
actual implementation of the code. The developed sub-domains are meticulously struc-
tured and implemented, making full utilization of clean architecture principles.

The domain implementation referenced mainly Clean Architecture made by Martin
(2017). Some technical features of software architecture are also referenced: input port
Sanchez et al. (2022) and factory design pattern Gamma et al. (1995). Below are the
main ideas of the proposed software architecture, and Figure 8 visualizes it. The layers
are color-coded, aiding in their comparison with clean architecture. Each arrow in the
diagram represents the dependencies between the layers.

1. The software architecture involves the distinct segregation of five layers: entity,
usecase, interface, controller, and infrastructure. As depicted in Figure 8, these
layers align with the core principles of clean architecture, providing equivalent
functionalities. However, there is one distinction in the relationship between
the usecase and interface directories. Usecase relies on the functions defined in
the interface, which contain functions relevant to external devices. While this
contradicts the conventional rules of dependency direction Fowler (2012), it is a
logical necessity to configure it in this manner. As per the principle that details
must always rely on the interface Madasu et al. (2015), the usecase directory,
which encompasses the detailed implementation, inevitably needs to establish a
dependency on the interface directory.

2. The five directories mentioned earlier will reside within the "internal" directory,
focusing on the domain-specific aspects, while other files will be located outside
this directory. Figure 8 illustrates that separate external files exist in the root
directory, such as database-related or deployment-related elements. These files
are utilized within the "cmd" directory, where the overall business logic in the
"internal" directory is constructed. This architecture effectively dissociates the
business domain from unrelated external files.

3. Within the "controller" directory, as illustrated in Figure 8, three distinct sub-
directories exist: "inputPort", "api", and "presenter". The primary role of the
"controller" directory is to receive requests, pass the data to the "usecase" directory
for processing, and subsequently return the output as a response.

(a) The "api" directory houses API handler functions responsible for handling
incoming requests.

(b) Meanwhile, the "inputPort" functions validate and transform the requests
received within the "api" directory. Once validated, the requests are passed

29

to the "usecase" directory for processing, and the resulting output is subse-
quently transferred to the functions in the "presenter" directory, as required.

(c) The functions in the "presenter" directory are responsible for converting
the data into a format suitable for the User Interface and returning it as the
response.

Figure 8. Proposed software architecture based on clean architecture

30

3.2.1 Step 5: Convert defined objects into classes

In this step, all the defined entities, value objects, and aggregates in the entity layer are
implemented. Figure 9 illustrates the flow with some exemplary objects. The objects
within the rectangle above depict the diagram created during the Domain Design stage.

Each file within the directory should contain more than one entity or aggregate labeled
with the respective entity or aggregate name. In cases where similarities exist, develop-
ers have the flexibility to divide one file into multiple files based on grouping criteria.
Additionally, value objects are incorporated within the file of the aggregate if they solely
depend on one specific aggregate or entity. However, if value objects are shared among
multiple entities or aggregates, they should be consolidated into a single file named
"common." The "entity" directory currently contains several files, each accommodating
the specified arrangements.

31

3.2.2 Step 6: Implementation of business logic

This stage aims to finalize the contents of the "usecase" and "interface" directories based
on the API documentation developed during the Domain Design phase.

The "usecase" directory comprises files, each containing functions that implement the
specified "flow" outlined in the API documentation, in other words, business logic. These
functions are organized and grouped according to the most relevant class from the entity
layer, with each file residing in the "usecase" directory bearing the name of the corre-
sponding entity.

Any external functions required to support the functions in the "usecase" directory are
defined in the "interface" directory. These external functions are unrelated to domain
logic and include tasks such as data retrieval from databases or external APIs. To adhere
to Clean Architecture principles, these functions are accessed through an interface rather
than direct implementation Madasu et al. (2015).

Figure 10 illustrates the process of creating files within the "usecase" and "interface"
directories. Starting with a list of available APIs drawn on the left side from the do-
main design phase, one API is selected, processed, and saved into the corresponding
directories. This iterative process continues until all APIs have been addressed. The
detailed flow of the process is as follows. During the below process, developers can
optimize already defined function signatures since some can be redundant or unnecessary.

1. Developers individually examine an API to assess the required interactions with
the classes defined in the entity layer. If necessary, they create helper functions
within the same file.

2. Developers implement a function to fulfill the API’s purpose, adhering to the
specified "flow" detailed in the API documentation.

3. While implementing, if any essential function necessitates communication with
external devices, developers add the corresponding function to the appropriate
interface within the "interface" layer.

4. Ensure that each function stored in the "usecase" directory is appropriately grouped
according to the file defined in the "entity" directory.

32

Figure 9. Entity layer creation

33

Figure 10. "usecase" and "interface" directory creation

34

3.2.3 Step 7: Build controller directory

This stage aims to finalize the contents of the "controller" directories based on the API
documentation developed during the Domain Design phase and "usecase" directory
created in the previous step.

Figure 11 provides an illumination of the DDD components that align with the interface
adapter layers in the Clean Architecture principles. Positioned in the center of the
figure are the three interface adapter components: API handler functions, Boundary, and
Interfaces.

• API handler functions are responsible for handling APIs, where their primary
objective is to relay data to the bounded context and return the resulting output.

• The long vertical line serves as the boundary between the bounded context and
the external environment. To ensure consistency within the bounded context, the
"inputPort" directory and "presenter" directory adapt and convert the data structure
as necessary to facilitate the exchange of data between the bounded context and
the external environment.

• The lower half of Figure 5 demonstrates that interactions with external devices are
achieved through interfaces. As DDD focuses solely on the bounded context, any
essential interactions involving external devices should always be designed to be
interchangeable and substitutable.

35

Figure 11. Controller layer creation

36

A new directory called “controllers” is created, with three sub-directories: "api", "input-
Ports", and "presenters". Developers take one user story and create new files in those
three directories as required.

Starting with a list of available APIs drawn on the left side from the domain design
phase, one API is selected, processed, and saved into the corresponding directories.This
iterative process continues until all APIs have been addressed. The detailed flow of the
process is as follows.

1. Develop a function within the "api" directory, following the guidelines specified in
the API documentation from the Domain Design phase.

2. During the creation of the above function, if input validation is necessary, generate
a function in the "inputPort" directory. This function will be responsible for
validating incoming requests received within the "api" directory.

3. If any function related to middleware usage is required, it should be created as a
subdirectory named "middleware" within the "controller" directory. Upon passing
through the function defined in the inputPorts directory, the input proceeds to a
function defined in the use case directory, where the input undergoes processing.

4. The function defined in the use case layer returns the output, which should subse-
quently be passed to a function defined in the "presenter" directory. This function
transforms the output into the desired format.

3.2.4 Step 8: Creation of infrastructure layer to write the implementation

In the process outlined in step 6, developers establish an "infrastructure" directory, which
comprises multiple sub-directories, each corresponding to an external service identified
during the earlier steps. In step 6, function signatures were created, specifically tailored
to each external service, and these functions are subsequently implemented within this
directory. Additionally, each sub-directory for an external service should adhere to the
factory design pattern, creating instances to handle the respective functions.

3.2.5 Step 9: Create a cmd directory to build a server

During this step, a server is constructed to enable the functioning of the sub-domain. The
"cmd" directory is generated along with other essential files required to run the server.
The process for this step unfolds as follows.

1. Put all the created directories and files from Step 5 to Step 9 inside the new
directory called “internal.” The "internal" directory is under the root directory.

37

2. In the root directory, create the necessary files and directories to facilitate the server
building process. These files and directories may include configuration files, build
scripts, server initialization scripts, and any other components required to set up
and run the server effectively.

3. Under the root directory, a "cmd" directory is established to streamline the process
of building the server. This directory retains essential files necessary for server
construction and execution. Additionally, these files are responsible for reading
external files or directories under the root directory, such as configuration files,
to aid in the server-building process. The factory design pattern, implemented
within both the "infrastructure" and "usecase" directories, harnesses its advantages,
such as dependency injection, encapsulation of business logic, and concealment of
complex object initialization Chen et al. (2019).

3.2.6 Step 10. Completion of code repository for each sub-domain

Repeat steps 5 to 9 until all the sub-domains are processed.

38

4 Implementation
In this section, the proposed approach is implemented to showcase the process and
provide evidence of its viability in real-life use cases. The implementation aims to
demonstrate the approach’s proof of concept and practical application.

The proposed approach is implemented within the context of the existing software ar-
chitecture. An existing code repository, available at https://github.com/gieart87/gotoko,
had initially been developed as a small e-commerce business following the MVC (Model
View Controller) software architecture.

This implementation is done by the Golang 2 programming language created by Google.
Clean Architecture emphasizes separation of concerns, maintainability, and modular
design Aguilar and Figueira (2020), and Golang’s features align with the following
principles MALINA (2016):

• Simplicity: Go’s concise syntax, and minimalistic design encourage clean and
readable code. Clean Architecture values clarity, making Go’s simplicity a natural
fit for creating well-organized and understandable architecture layers.

• Package Management: Go’s built-in package management simplifies dependency
management, enabling clear separation of external dependencies for each layer of
Clean Architecture. This promotes encapsulation and reduces the likelihood of
tight coupling.

• Strong Type System: Go’s strong typing ensures data flows between architec-
tural layers with clear types, reducing ambiguity and preventing unintended data
mixing. This aligns with Clean Architecture’s emphasis on strict boundaries and
encapsulation.

The step for the implementation process of this section is as follows.

1. Elicit user stories from the existing code repository.

2. With the gained user stories, the proposed approach is then applied to create a new
code repository. This new repository is developed following the principles and
guidelines of the proposed approach, demonstrating how it addresses the same
user stories but with a different software architecture. This new repository is now
called the "new" software architecture.

2https://go.dev/

39

https://github.com/gieart87/gotoko

To ensure a fair comparison between the two software architectures, the code repository
undergoes a refactoring process and is enhanced with additional functionalities until it
reaches a reasonable size. This refactored code repository is now called the "traditional"
software architecture. In the next Validation section, "traditional" and "new" architectures
are compared to validate the proposed approach.

4.1 User Story Elicitation
The short description and user stories retrieved from the existing code repository are as
follows:

Description: The application is an e-commerce platform that allows users to browse,
purchase products, and make payments. It provides a user login feature, enabling users
to access their purchase history and view the available products. After completing the
payment process, users can access their order details. Below is the summary of the user
story in Table 1.

User story Explanation

US1 As a user, I can create a user as a customer.
US2 As a user, I can log in.
US3 As a customer user, I can list products with a specific page

number to see particular products.
US4 As a customer user, I can get a specific product identified by

a unique product identifier.
US5 As a customer user, I can see the information about the items

in the shopping cart.
US6 As a customer user, I can add one product type to the shop-

ping cart.
US7 As a customer user, I can remove one product type from the

cart.
US8 As a customer user, I can update items in the cart so that

multiple types of products can be added or removed.
US9 As a customer user, I can pay (cash or credit card) to com-

plete the shopping.
US10 As a customer user, I can see a list of orders I made.
US11 As a customer user, I can see a history of purchased products.

Table 1. User stories

40

4.2 Domain Design

4.2.1 Step 1. Identify sub-domains based on key business processes

Based on the gathered user stories, multiple sub-domain is elicited: Product management,
Order management, User management, and main service for users. The sub-domains are
interconnected in a manner similar to a microservice architecture.

• Product management: Handling product information, categories, and inventory,
such as listing available products.

• Order management: Handling customer orders, payments, and product shipping,
such as getting the order information.

• Customer management: Handling user registration, authentication, and profiles.

• Main service: It uses APIs created in the above sub-domains to serve a wide range
of usecase applications for end-users.

During this implementation, due to time constraints, the sub-domain will be limited
to the Main Service, which will be responsible for handling other sub-domains. As a
result, this Main Service will function as if it manages all tasks independently, relying on
simpler procedures instead of making API calls to other sub-domains.

4.2.2 Step 2. Distill objects from user stories

Utilizing the obtained user stories, Table 2 showcases the derived entities, value objects,
and aggregates. In the "Entity" column, the names of potential entities are displayed. The
"Aggregate" column illustrates the entity’s relationship within the aggregate, denoted
by "many" or "one" to signify the relationship type. Additionally, the "Value Object"
column specifies the particular values that require storage.

41

User story Entity Aggregate Value Objects

US1 session, user - -
US2 user - -
US3 products - -
US4 products - -
US5 cart, cart_item, prod-

uct
cart has: many
cart_item

cart_item has: one
product shop-
ping_status 0: in
progress 1: completed

US6 Same as above
US7 Same as above
US8 Same as above
US9 order, payment Order one payment

one cart (payment)
method 0: cash 1:
card

-

US10 - order -
US11 cart_item - -

Table 2. List of distilled objects

Upon extracting the three categories of objects detailed in Table 2, these objects have
been filled with the essential variables to satisfy the user stories, as depicted in Figure
12. Below the diagram, a comprehensive overview of these objects is provided. For
variables, their respective data types are indicated within the right-side parenthesis. The
relationships with associated objects are denoted: "one" indicates possession of a singular
object, while "many" signifies an array of objects.

42

Figure 12. Graph of defined objects

4.2.3 Step 3. Examine business logic

This phase is intended to generate the business logic for each user story. Essentially, the
business logic aligns with the intention of each API. Hence, Table 3 presents the list of
business logic flows for each user story, constituting the API documentation. By default,
the output consistently includes an error code.

43

User story Input Flow Output

US1 username, pass-
word, firstName,
lastName

Validate username if not taken

US2 username, pass-
word

1.Get user object based on the username 2.Com-
pare password. 3. Create session key, and put it
in a session object, then store it.

sessionKey

US3 productPageNum List products based on the productPageNum (array)
product

US4 code Get product based on the code (product code) product
US5 sessionKey 1.Validate session 2.Get the cart object based on

the userId from session object. The state of this
cart object needs to be “in progress”. 3. Get
cartItem object based on the cartId and put them
in the cart object. 4. Return the cart object with
items in it.

cart

US6 sessionKey, quan-
tity, productId

1.Validate session 2. Validate product ID 3. Get
product based on the product ID 4. Get cart
based on the user ID in session. 5. Check if
the product is already added. a.If yes, take it
into consideration to update the cart object. 6.
Update the cart object and store it.

US7 sessionKey, pro-
ductId

1.Validate session 2.Get cart object based on
the userId from session object. a.Return if cart
doesn’t exist 3. Delete cartItem object. 4. Up-
date cart object based on the deleting product(s).

Table 3. API documentation (Page 1)

44

User story Input Flow Output

US8 sessionKey, pro-
ductInfo (array) [
quantity produc-
tId]

1.Validate session 2.Get cart object based on the
userId from session object. a.If doesn’t exist,
create one 3. Delete all the items in the cart. 4.
Loop cartItem based on the productInfo to add
each cartItem object. While looping, calculate
the costs for the cart object. 5.Update the cart
object and store it.

US9 sessionKey, pay-
mentMethod

1.Validate session, 2.Get cart object based on
the userId from session object and status is in
progress. a.If doesn’t exist, return error that cart
object doesn’t exist. 3.Create payment object
and store it. 4.Update cart status to “comeplted”,
5. Create order object and store it

order

US10 sessionKey,
orderId

1.Validate session, 2.Get order object based on
the userId from session object. a. If doesn’t
exist, return error that order object doesn’t exist
3.Return order object that has payment and cart
object in it.

order

US11 sessionKey 1.Validate session, 2.Get multiple cart objects
based on the userId from session object. The sta-
tus of those cart should be “completed”. 3.Get
cartItems based on the above car object IDs.
4.Put product object in the cartItem. 5.Return
the array of cartItem.

(array) [car-
tItem]

Table 4. API documentation (Page 2)

4.2.4 Step 4. Completion of each sub-domain

Since the implementation focuses only on a “Main Service," all the sub-domains are
created.

45

4.3 Domain Implementation

4.3.1 Step 5: Convert defined objects into classes

Utilizing the information gained in Figure 12, which contains all the variables, the
ensuing step involves distributing these classes into individual files. If a value object
is specific to a single class, it should be included within the same file. Each file should
have class definitions or constants relevant to the corresponding class. On the next page,
Figure 13 shows the file structure after completing this step.

/
entity/

auth.go
cart.go
cartItem.go
order.go
payment.go
product.go
tax.go
user.go

Figure 13. Entity directory

4.3.2 Step 6: Implementation of business logic

This stage defines the business logic. On the next page, Listing 1 shows the whole codes
in the product.go file under the "usecase" directory. This file archives user story number 3
and 4: getting one specific product and listing all the products based on the page number.
In the "usecase" directory, every file employs the factory design pattern to manage func-
tions. Specifically, for product-related functions, an instance called "productService" is
generated using the "newProductService" approach. Moreover, "newProductService"
provides an interface, allowing the recipient object to encapsulate the associated business
logic.

Below, two functions are detailed, both associated with the "productService." Each of
these functions is designed to fulfill a specific user story. Within these functions, certain
methods are invoked from external devices. In Listing 1, some functions are related to the
database, so those functions are stored within the "interface" directory under "repository"
layer, as demonstrated in Listing 2. If other external devices are used, other name of the
directory should be created under the "interface" directory.

46

Listing 1. Usecase directory: usecase/product.go
1 package usecase
2
3 import (
4 "clean_architecture_with_ddd/internal/entity"
5 "clean_architecture_with_ddd/internal/interface/repository"
6)
7
8 type productService struct {
9 repo repository.Repository

10 }
11
12 func NewProductService(repo repository.Repository)

ProductUsecase {
13 return &productService{
14 repo: repo ,
15 }
16 }
17
18 type ProductUsecase interface {
19 GetProduct(productID string) (* entity.Product , error)
20 ListProductsByPage(page int) ([]* entity.Product , int ,

error)
21 }
22
23 func (s *productService) GetProduct(productID string)

(* entity.Product , error) {
24 product , err := s.repo.GetProductByCode(productID)
25 if err != nil {
26 return nil , err
27 }
28 return product , nil
29 }
30
31 func (s *productService) ListProductsByPage(page int)

([]* entity.Product , int , error) {
32 products , err := s.repo.ListProductsByPageNum(page ,

entity.PerPage)
33 if err != nil {
34 return nil , -1, err
35 }
36
37 count , err := s.repo.GetProductCount ()

47

38 if err != nil {
39 return nil , -1, err
40 }
41
42 return products , count , nil
43 }

Listing 2. Interface directory: interface/product.go
1 package repository
2
3 import "clean_architecture_with_ddd/internal/entity"
4
5 type ProductRepository interface {
6 GetProductByCode(code string) (* entity.Product , error)
7 GetProductCount () (int , error)
8 ListProductsByPageNum(pageNum int , perPage int)

([]* entity.Product , error)
9 }

After completing this step, the "usecase" and "interface" directories are completed as
shown in Figure 14.

4.3.3 Step 7: Build controller directory

In this phase, APIs for input and output data are handled using the functions crafted
within the "usecase" directory. Listing 3 serves as an illustrative example to guide the
progression of this step. It portrays an operation where a user’s current shopping cart is
updated. This file is positioned within the "api" directory, housing the central functions
dedicated to API management. The below list explains Listing 3.

• API layer also conducts the factory pattern that takes a specific interface from the
"usecase" directory on Line 10.

• Since the existing code repository was using the Echo library 3, this repository also
uses it on Line 24.

• Below is the flow of the data stream

1. Retrieves data from the request body on Line 28.

2. Since this user needed to be authenticated, the middleware function vali-
dates the user on Line 33. Any middleware functions are defined in the
"middleware" directory under the "controller" directory.

48

/
usecase/

auth.go
cart.go
cartItem.go
order.go
payment.go
product.go
user.go

/
interface/

repository/
auth.go
cart.go
cartItem.go
order.go
payment.go
product.go
user.go

Figure 14. Entity directory

3. Validate the input by passing a function defined in the "inputPort" directory
on Line 40.

4. Pass the validated input to the function in the "usecase" directory to process
on Line 47.

5. If the output needs to be modified, a function in the "presenter" directory
should be implemented before returning a response on Line 50.

Listing 3. controller directory: controller/api/cartItem.go
1 package api
2
3 import ...
4
5 type cartItemHandler struct {
6 usecase usecase.CartItemUsecase
7 auth middleware.Auth
8 }

3https://github.com/labstack/echo

49

9
10 func NewCartItemHandler(u usecase.CartItemUsecase , auth

middleware.Auth) CartItemHandler {
11 return &cartItemHandler{
12 usecase: u,
13 auth: auth ,
14 }
15 }
16
17 type CartItemHandler interface {
18 AddItemToCart(c echo.Context) error
19 RemoveItemFromCart(c echo.Context) error
20 UpdateCart(c echo.Context) error
21 GetPurchasedProducts(c echo.Context) error
22 }
23
24 func (cih *cartItemHandler) UpdateCart(c echo.Context) error {
25
26 // Retrieve input
27 var body request.ListCartItem
28 if err := c.Bind(&body); err != nil {
29 return c.JSON(http.StatusBadRequest , "failed to bind

the struct with the request body: "+err.Error())
30 }
31
32 // middleware validation
33 userId , err := cih.auth.ValidateSession(c)
34 if err != nil {
35 return c.JSON(http.StatusBadRequest , err)
36 }
37
38
39 // validate input
40 if err = inputPort.ListCartItem(body); err != nil {
41 return c.JSON(http.StatusBadRequest , err)
42 }
43
44 // pass to usecase
45 err = cih.usecase.UpdateItemsInCart(userId , body)
46 if err != nil {
47 return c.JSON(http.StatusInternalServerError , err)
48 }
49

50

50 return c.JSON(http.StatusOK , "cart is updated")
51 }

51

4.3.4 Step 8: Creation of infrastructure layer to write the implementation

The detailed implementation files for all functions outlined in the "interface" directory are
generated in this phase. For the purpose of this demonstration, as only the database serves
as an external device, solely a "repository" directory exists within the "infrastructure"
directory. In instances where additional external devices are required, such as utilizing a
third-party library, the interface directory must incorporate interfaces for the functions,
while their implementations should be documented under the infrastructure directory.

4.3.5 Step 9: Create a cmd directory to build a server

This stage constructs all the instances that have been created with the factory pattern in
the previous steps. Listing 4 is a core function of building a server.

1. The server creates an instance based on the external devices in Line 4. Since this
project only deals with the database, only one instance is created.

2. Those external instances are passed to each instance for the "usecase" layer from
lines 7 to 13. Output is an interface for the encapsulation of business logic

3. With a middleware instance, the created interfaces are passed to API handler
instances from lines 19 to 25. They also return an interface for the encapsulation
of business logic.

Listing 4. cmd directory: cmd/cmd.go
1 func buildServer(_ *config.Config , db *sqlx.DB)

(api.AuthHandler , api.CartHandler , api.CartItemHandler ,
api.OrderHandler , api.PaymentHandler , api.ProductHandler ,
api.UserHandler) {

2
3 // Build external devices
4 repo := repository.NewRepo(db)
5
6 // Put them in each usecase instances
7 authUsecase := usecase.NewAuthService(repo)
8 cartUsecase := usecase.NewCartService(repo)
9 cartItemUsecase := usecase.NewCartItemService(repo)

10 orderUsecase := usecase.NewOrderService(repo)
11 paymentUsecase := usecase.NewPaymentService(repo)
12 productUsecase := usecase.NewProductService(repo)
13 userUsecase := usecase.NewUserService(repo)
14

52

15 // controller middleware instances
16 middlewareAuthUsecase := middleware.NewAuth(repo)
17
18 // Create handlers for APIs
19 authHandler := api.NewAuthHandler(authUsecase)
20 cartHandler := api.NewCartHandler(cartUsecase ,

middlewareAuthUsecase)
21 cartItemHandler := api.NewCartItemHandler(cartItemUsecase ,

middlewareAuthUsecase)
22 orderHandler := api.NewOrderHandler(orderUsecase ,

middlewareAuthUsecase)
23 paymentHandler := api.NewPaymentHandler(paymentUsecase ,

middlewareAuthUsecase)
24 productHandler := api.NewProductHandler(productUsecase)
25 userHandler := api.NewUserHandler(userUsecase)
26
27 return authHandler , cartHandler , cartItemHandler ,

orderHandler , paymentHandler , productHandler ,
userHandler

28 }

4.3.6 Step 10. Completion of code repository for each sub-domain

Since there is only one sub-domain for this project, the process for the proposed architec-
ture is completed. The below Figure 15 shows the final directory of the file structure.

53

/
cmd.go/
config/
database/
internal

controller/
api/
entity/
inputPort/
middleware/
presenter/

entity
infrastructure
interface
usecase

Figure 15. Final file structure

5 Validation
Up to this point, this paper has introduced and elaborated upon the proposed approach,
detailing the systematic procedure for developing microservice architecture software.
Each step of the approach has been comprehensively outlined, emphasizing its signifi-
cance and underlying factors. This section serves to validate the proposed approach by
answering the research questions.

5.1 Methodology of the validation
Following the creation of the application using the proposed approach, I explored diverse
data collection methods to address the research questions. An online survey emerged
as an optimal choice to gather feedback, as it offers subjective insights into the actual
development experience through implementing code. Consequently, I opted to conduct
a comparative analysis of two applications: one crafted through traditional software
architecture using the MVC pattern and the other constructed employing the proposed
approach.

Participant selection:
Among my current and previous colleagues, suitable participants were chosen from
those qualified for the requirements, a back-end development in Golang for over two
years. This criterion ensures that participants possess substantial expertise to evaluate
the software architecture effectively.

54

The survey is structured around three distinct questions. Each of these questions com-
prises three tasks (ST) designed to meticulously assess various facets of the participants’
experiences and perceptions:

ST1: Code Explanation or Pseudo Code
The first task serves to measure the participants’ grasp of the question’s intent and the
accuracy of their responses. Prompting participants to explain or provide pseudo-code
effectively measures their understanding and ability to interpret the question correctly.
This understanding serves as a fundamental prerequisite, as it influences the validity of
the subsequent tasks.

ST2: Development Experience Narrative
The second task searches into the participants’ development experiences, offering a
valuable comparative analysis between the two architectural approaches. This task stands
at the heart of the validation process, providing nuanced insights that directly address the
research inquiries.

ST3: Time Investment Measurement
The third task introduces an additional dimension to the development experience assess-
ment by quantifying the time dedicated to each implementation or explanation. This
quantitative perspective offers an alternative lens through which to evaluate the research
questions.

Survey questions (SQ) are based on research questions (RQ). SQ1, SQ2, SQ3 are derived
from RQ1, RQ2, and RQ3 respectively.

Research questions:
RQ1: To what extent does the incorporation of Clean Architecture and Domain-Driven
Design (DDD) principles enhance the understandability of the software architecture?

RQ2: How does the incorporation of Clean Architecture and Domain-Driven Design
(DDD) principles facilitate the refactoring process of the software architecture in terms
of reducing technical debt and improving code maintainability?

RQ3: In what manner does the incorporation of Clean Architecture and Domain-Driven
Design (DDD) influence the extensibility of the software architecture over the system’s
lifecycle?

Below is the description and motivation of the survey questions.

• SQ1: The first question is an open-ended inquiry that involves describing the

55

data flow of an API, aiming to evaluate its readability and comprehensibility.
Participants are presented with specific application processes from an end-user
viewpoint and are then requested to describe the sequence from a developer’s
perspective.

• SQ2: The subsequent question prompts participants to implement a pseudo-code
focused on refactoring existing code based on additional user stories designed to
assess the performance of the refactoring process.

• SQ3: The third question also prompts participants to implement a pseudo-code to
extend a feature by integrating a third-party library, aiming to gauge the extensibil-
ity aspects. Participants are provided with a clear description of the function to be
incorporated from the third-party library and its implementation.

Google Forms 4, a digital tool provided by Google that enables users to create customized
surveys and questionnaires for gathering information and feedback, was used to conduct
this survey. All responses obtained from the survey are transcribed in order to prepare
them for subsequent analysis. Once this transcription is complete, the original responses
will be securely deleted to ensure data privacy and confidentiality. The flow of the
interview is as follows, and the survey content is displayed in Appendix 1.

1. Survey form is sent to each participant.

2. Participants read the consent and proceeded with the survey as agreed. The form
of the consent is displayed in Appendix 1.

3. Participants read the description of the survey, including API documentation and
User Stories.

4. Participants read a question and ask questions if any clarification is needed. Then,
start measuring time and answering the question.

5. After answering all three questions, submit the answers.

4https://www.google.com/forms/about

56

5.2 Analysis of the Response
Data analysis process:
The responses collected from the survey have been transcribed to enable thorough
analysis. Participants’ responses to each question are carefully examined to extract key
features.

• ST1 (Trustfulness): A trustfulness (ST1) is assigned to each response. A lower
value suggests that the participant might not have fully grasped the question,
reducing their response’s significance in addressing research inquiries. This score
is determined based on factors such as correct function name mentions for SQ1 or
accurate placement of pseudo-code in the intended file for SQ2 and SQ3.

• ST2 (Key insight): Extracting meaningful insights from responses for each re-
search question is facilitated through ST2. This involves identifying and formu-
lating succinct sentences containing key terms that contribute to addressing each
research question.

• ST3 (Time spent): The effort required to answer each question is quantified using
ST3. If the ratio of time spent on a question for each architecture is approximately
1, it indicates that both architectures necessitate similar efforts to complete the
task.

5.3 Results
This section presents the answers to the research questions based on the survey results.

RQ1:
Upon analyzing the responses for RQ1, Table 5 reveals that all participants provided
correct answers according to ST1. Additionally, ST3 demonstrates that both architectures
demanded an equal amount of effort to complete the respective question. The insights
derived from ST2 indicate that the proposed architecture introduces complexities in logic
when compared to the traditional architecture. However, it is noteworthy that the clear
separation of layers was cited as contributing to better comprehension of the structure.
The cumulative response implies that the proposed architecture enhances understandabil-
ity through the distinct separation of logic, although this might simultaneously lead to
structural complexity and reduced overall understandability.

57

Participant
ID

Truthfulness Key insight Time spent
(tradi-
tional,
new)

P1 100% Both were equally easy to understand. Proposed
architecture has clear separation of logic, and
traditional one has simple structure.

5min, 6min

P2 100% Because of too many layer separations in the
proposed architecture, traditional architecture
was easier to understand.

5min, 5min

P3 100% Both architectures had the same understanding. 3min, 3min

P4 100% Due to many interface separations in the pro-
posed architecture, traditional architecture was
easier to understand.

5min, 5min

Table 5. Response from SQ1

RQ2:
Evaluation of the responses for RQ2 is outlined in Table 6. Here, most participants
provided accurate answers based on ST1. Moreover, ST3 indicates that traditional
architectures required slightly less effort to address this question. Insights gathered from
ST2 underline that the proposed architecture introduces complexities in logic, primarily
due to increased usage of interfaces. Notably, the proposed architecture contains more
extensive code, thereby demanding more effort. However, some responses also highlight
that the proposed architecture’s benefit lies in clear logic separation, especially for
larger projects. The overall response suggests that traditional architecture boasts slightly
superior refactoring features, though this result could vary based on project scale.

58

Participant
ID

Truthfulness Key insight Time spent
(tradi-
tional,
new)

P1 90% This size of application prefers traditional archi-
tecture since the amount of code is less.

15min,
16min

P2 90% Both architectures had the same easiness of
refactoring.

14min,
16min

P3 100% Both architectures had the same ease of refac-
toring, but the separation of layers felt easier to
refactor if the project size was larger.

12min,
14min

P4 100% Proposed architecture has too many interfaces
that it took much more time for implementation.

12min,
13min

Table 6. Response from SQ2

RQ3:
For RQ3, the survey responses are examined in Table 7. Notably, some participants did
not accurately answer according to ST1, potentially due to limited understanding of the
proposed architecture. Particularly, participant P2 misplaced the pseudo-code within
the wrong layer. ST3 indicates that traditional architectures required significantly less
effort to tackle this question. Analysis of ST2 reveals that the proposed architecture
results in logic complexities compared to the traditional counterpart, attributed to the
presence of numerous directories. Conversely, several comments indicated that the
proposed architecture benefits extensibility by facilitating clear separation of logic,
especially in handling third-party libraries. The overall response indicates that traditional
architecture showcases superior extensibility, primarily due to project scale, while the
proposed architecture benefits from enhanced separation of third-party libraries for better
extensibility through improved understanding of each layer’s functionality.

59

Participant
ID

Truthfulness Key insight Time spent
(tradi-
tional,
new)

P1 90% Traditional architecture was easier to implement,
but old architecture would be more difficult to
maintain as the number third-party library in-
creases.

21min,
25min

P2 50% Traditional architecture was easier to implement
because of less interfaces.

22min,
23min

P3 100% Proposed architecture seemed more organized
since it has the separation of third-party library
in. But considering easiness of implementation,
old architecture was easier.

15 min, 18
min

P4 90% Traditional architecture was easier to implement
since I can put the logic in the controller layer.

23 min, 18
min

Table 7. Response from SQ3

5.4 Threats to validity
The evaluation conveyed above is potentially affected by the following threats to validity:

1. Limitation of Participant Count: The survey was conducted with a limited
participant pool consisting of four individuals. It’s crucial to acknowledge that
the outcomes and validity of the results could exhibit variations with an increase
in the survey’s participant count. To counteract this limitation, the survey was
meticulously designed to focus on practical implementation. This approach aimed
to gather detailed data on time invested and development experiences, thereby
enhancing the depth and reliability of the feedback obtained.

2. Scale of Application and Perceived Benefits: A noteworthy observation from the
survey responses underscores the challenge posed by the small-scale nature of the
application. As one respondent articulated, the application’s limited complexity
hindered the discernment of certain benefits associated with the proposed approach.
It is important to emphasize that the application was conceptualized to serve as a
foundation for a large-scale software service utilizing microservice architecture.
Consequently, certain advantages, such as the prominent utilization of interfaces,
might not have been fully realized due to the inherent simplicity of the application’s
scope.

60

By acknowledging these limitations and utilizing a combination of meticulous survey
design and an understanding of the application’s intended scale, efforts were made
to obtain valuable insights that contribute to a more comprehensive evaluation of the
proposed approach’s effectiveness.

5.5 Future work
For future possibilities, several ideas present themselves for extending and enhancing the
approach proposed in this study.

Scaling Up the Project for Validation: A key consideration lies in augmenting the
scale of the project, as acknowledged in the 5.4 section. A forthcoming step entails
conducting another implementation encompassing more than three sub-domains. The
queries posed to participants will be refined and expanded to strengthen the validation
process. For instance, respondents will be prompted to perform refactoring for an API
that integrates multiple APIs. This augmentation seeks to yield a more diverse array of
feedback, fostering a heightened precision in the validation process.

Integration with Test-Driven Development (TDD): The proposed approach stands
hovered to harmonize with and leverage the potency of Test-Driven Development (TDD).
The inherent decoupling of each layer offers a seamless integration opportunity. TDD
operates as a valuable asset, minimizing uncertainty through expedited debugging, pro-
viding clearer insights into implementation progress from test coverage and success
ratios, and instilling confidence in the comprehensiveness of covered functions Martin
(2007).

By executing these factors, the proposed approach has the potential to evolve into a more
versatile and robust software architecture process capable of accommodating larger and
more intricate software projects while concurrently capitalizing on the gains offered by
Test-Driven Development.

61

6 Conclusion
The primary objective of this thesis was to present an innovative method for constructing
a microservice architecture through the integration of clean architecture principles and
Domain-Driven Design (DDD). The journey began by elucidating essential aspects of rel-
evant concepts, including a comparative exploration of microservice architecture against
other system architectures, a comprehensive understanding of the pivotal attributes of
clean architecture principles, and an in-depth grasp of Domain-Driven Design principles.

Subsequently, the proposed approach was unveiled, characterized by the distilled es-
sential elements derived from clean architecture principles and Domain-Driven Design.
Each step of this approach was thoroughly outlined, traversing the entire process from
start to completion. This comprehensive exposition served to guide developers through
the sequential stages of creating a microservice architecture.

Furthermore, to manifest the viability of the proposed approach, a proof of concept was
meticulously actualized, with each step exhaustively described. The developed software
service underwent validation by means of a comparative analysis with traditional soft-
ware architecture. The validation outcomes illuminated the advantages of the proposed
architecture and its viable applications and potential use cases.

In conclusion, this thesis contributes a pragmatic approach that empowers developers to
translate a set of user stories into a functional software service. The approach not only
serves as a valuable tool for crafting new services but also serves as a valuable reference
for restructuring existing systems, enhancing the organization of business logic, and
refining file structures. By combining clean architecture principles and Domain-Driven
Design, this thesis offers a comprehensive framework that resonates across various
software development scenarios.

62

References
R. C. Martin, Clean architecture, Prentice Hall, 2017.

H. G. Koller, M.Sc. thesis, University of Oslo, 2016.

R. Nunkesser, Hamm-Lippstadt University of Applied Sciences, 2021.

V. Lakhai, O. Kuzmych and M. Seniv, 2022 IEEE 17th International Conference on
Computer Sciences and Information Technologies (CSIT), 2022, pp. 474–477.

A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M. Mazzara, V. Rivera and A. Sadovykh,
Science and Engineering. Springer, 2020.

M. Kalske, N. Mäkitalo and T. Mikkonen, Current Trends in Web Engineering: ICWE
2017 International Workshops, Liquid Multi-Device Software and EnWoT, practi-O-
web, NLPIT, SoWeMine, Rome, Italy, June 5-8, 2017, Revised Selected Papers 17,
2018, pp. 32–47.

F. Ponce, G. Márquez and H. Astudillo, 2019 38th International Conference of the
Chilean Computer Science Society (SCCC), 2019, pp. 1–7.

M. Turis, Ph.D. thesis, Masarykova univerzita, Fakulta informatiky, 2019.

R. Chen, S. Li and Z. Li, 2017 24th Asia-Pacific Software Engineering Conference
(APSEC), 2017, pp. 466–475.

L. De Lauretis, 2019 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2019, pp. 93–96.

L. Weerasinghe and I. Perera, 2021 International Research Conference on Smart Com-
puting and Systems Engineering (SCSE), 2021, pp. 137–144.

T. Erl, SOA design patterns (paperback), Pearson Education, 2008.

D. Sprott and L. Wilkes, The Architecture Journal, 2004, 1, 10–17.

P. Di Francesco, P. Lago and I. Malavolta, Journal of Systems and Software, 2019, 150,
77–97.

P. Clarke, R. O’Connor and P. Elger, J. Softw. Evol. Proc. 2017, e1866, 2017.

D. Shadija, M. Rezai and R. Hill, 2017 23rd International Conference on Automation
and Computing (ICAC), 2017, pp. 1–6.

63

P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis and S. Tilkov, IEEE Software, 2018, 35,
24–35.

C. Pahl, A. Brogi, J. Soldani and P. Jamshidi, IEEE Transactions on Cloud Computing,
2017, 7, 677–692.

P. Bengtsson and J. Bosch, Proceedings of the Third European Conference on Software
Maintenance and Reengineering (Cat. No. PR00090), 1999, pp. 139–147.

V. K. Madasu, T. V. S. N. Venna and T. Eltaeib, Journal of Multidisciplinary Engineering
Science and Technology (JMEST), 2015, 2, 3159–0040.

E. Chebanyuk and K. Markov, 2016 4th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), 2016, pp. 435–441.

R. C. Martin and M. Martin, Agile principles, patterns, and practices in C# (Robert C.
Martin), Prentice Hall PTR, 2006.

P. Aguilar and L. Figueira, I Workshop de Tecnologia da Fatec Ribeirão Preto, 2020.

F. Rademacher, J. Sorgalla and S. Sachweh, IEEE Software, 2018, 35, 36–43.

P. Merson and J. Yoder, 2020 IEEE International Conference on Software Architecture
Companion (ICSA-C), 2020, pp. 7–8.

Y. Xie, X. Zhou, H. Xie, G. Li and Y. Tao, 2018 IEEE 3rd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), 2018, pp.
887–893.

H. Vural and M. Koyuncu, IEEE Access, 2021, 9, 32721–32733.

S. Kapferer and O. Zimmermann, MODELSWARD, 2020, pp. 299–306.

F. Rademacher, S. Sachweh and A. Zündorf, 2020 46th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2020, pp. 229–236.

C. Chen, C. Dong, J. Cai and X. Cheng, Journal of Physics: Conference Series, 2019, p.
052028.

E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: elements of reusable
object-oriented software, Pearson Deutschland GmbH, 1995.

R. H. Steinegger, P. Giessler, B. Hippchen and S. Abeck, The Third Int. Conf. on
Advances and Trends in Software Engineering, 2017.

64

D. Sanchez, A. E. Rojas and H. Florez, IAENG International Journal of Computer
Science, 2022, 49, 270–278.

M. Fowler, Patterns of Enterprise Application Architecture: Pattern Enterpr Applica
Arch, Addison-Wesley, 2012.

P. Aguilar and L. Figueira, I Workshop de Tecnologia da Fatec Ribeirão Preto, 2020.

P. MALINA, M.Sc. thesis, BRNO UNIVERSITY OF TECHNOLOGY, 2016.

R. C. Martin, Ieee Software, 2007.

65

7 Appendix

7.1 Survey Consent
Study title: An approach for Designing Microservice-Based Applications using a
Domain-Driven Design Approach and Clean Architecture Principles
Researcher: Daichi Ando
Supervisor: Mohamad Gharib

This study is being conducted by Daichi Ando from the University of Tartu for the master
thesis in computer science department. It aims to validate the two software architectures:
proposed architecture and traditional architectures. This validation is utilized to answer
research questions in this master thesis.

Participation requirements: To be eligible to participate, a person has to be eighteen or
older and should have over two years of back-end development experience in Golang
programming language.

Voluntary Participation: Participating in this study may not benefit you directly, but it
will help us providing some insights for the master thesis.

Inquires about the Study: If you have any comments or concerns about the study in
anytime, please contact the Researcher (daichi@ut.ee).

Privacy: To keep the privacy confidential for the participants’ identities, following
procedure is carried out. Your response will be transcribed to formed information to
answer research questions, and eventually deleted after the completion of thesis.

By completing this survey, you are consenting to participate in this study.

7.2 Survey Content
This is a survey to see the performance of the new and traditional software architecture.
Some questions ask you to explain in text or write pseudo-code. For implementation,
please fork the repository, create a new branch for each implementation question, and
implement. Because this questionnaire asks you for the URL of the each branch you
implemented. Kindly record the time taken for each question’s response (they serve as a
data source for comparing the two software architectures)

Survey description

66

This project provides APIs for e-commerce applications/websites. Traditional software
architecture uses MVC (Model View Controller), but it doesn’t have a View component
since this project only focuses on backend development. New software architecture is
based on clean architecture.

This is the link 5 that you can see the user stories and brief API documentation

Traditional software architecture (MVC) 6

New software architecture 7

Prerequisite:

• You have installed Go version 1.20

• You have installed MySQL locally or you run MySQL docker container.

Q1. Understandability and Readability
For each traditional repository 6 and new architecture repository 7, please answer the
following three questions. Note: keep in mind that the third question requires you to
measure the time to complete the first question.

1. Explain the flow of completing shopping. Completing shopping meaning:

1. User adds or updates his shopping cart. Such as added a Product code P001 for 2
quantities.

2. The user makes a payment by choosing "cash" or "creditCard".

3. Shopping is completed. Now, user’s shopping cart is empty.

Please list which functions the input is passed and what are those functions intend to do.

2. Explain your experience of understanding the code. Which one was easier to under-
stand and why?

3. Write how long did it take for you to complete this task. (Example: traditional one for
m minutes and new one for n minutes)

Q2. Refactoring Feasibility
For each traditional repository 6 and new architecture repository 7, please answer the
following three questions. Note: keep in mind that the third question requires you to

5attached as an extra file named api_documentation_with_user_stories
6attached as a extra folder named traditional_architecture
7attached as the extra folder named proposed_architecture

67

measure the time to complete the first question.

1. There are some changes in business requirements; code needs to be refactored.
Please refactor the code by writing pseudo-code to satisfy the blow user story. (Later
questionnaire will ask you for the URL for the repository)

• As a user, I can create an account as a normal user so that I can see normal products.

• As a user, I can update my profile as a special user so that I can see exclusive
products.

2. Explain your experience of refactoring the code. Which one was easier to refactor and
why?

3. Write how long did it take for you to complete this task. (Example: traditional one for
m minutes and new one for n minutes)

Q3. Extensibility
For each traditional repository 6 and new architecture repository 7, please answer the
following three questions. Note: keep in mind that the third question requires you to
measure the time to complete the first question.

1. A project manager wants to integrate a third-party library to store customer informa-
tion. Please write pseudo-code using library api-go-wrapper 8 so that the system can
store customer data (last name and first name) in the remote database when a new user is
created.

How to use "api-go-wrapper" library to store new customer data:

• Create a demo account from this link 9

• A client code, username, and password are required to establish a client 10.

• Use a ’SaveCustomerBulk’ function 11 from CustomerManager to create a customer
in the remote database.

8https://github.com/erply/api-go-wrapper
9https://login.erply.com/demo-account

10https://github.com/erply/api-go-wrapper/blob/bc89d13e22c4fffbd2d17bf8c174e93daf89d5bf/examples/example.goL20
11https://github.com/erply/api-go-wrapper/blob/bc89d13e22c4fffbd2d17bf8c174e93daf89d5bf/examples/customers/main.goL133C6-

L133C22

68

2. Explain your experience of extending the code. Which one was easier to extend and
why? If you add other external libraries, which software architecture is more maintain-
able?

3. Write how long did it take for you to complete this task. (Example: traditional one for
m minutes and new one for n minutes)

69

License

Non-exclusive licence to reproduce thesis and make thesis public
I, Daichi Ando,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive license) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

An approach for enterprise systems development: Designing Microservice-
Based Applications using a Domain-Driven Design Approach and Clean Ar-
chitecture Principles,

(title of thesis)

supervised by Mohamad Gharib.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons license CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive license does not infringe on other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Daichi Ando
11/08/2023

70

	Introduction
	Motivation
	Research Questions
	Contribution
	Structure of the Thesis

	Background
	System architecture
	Monolithic architecture
	Service-oriented architecture (SOA)
	Micro-service architecture (MSA)

	Clean architecture principle
	SOLID Principles
	Clean Architecture

	Domain-Driven Design (DDD)
	Strategic design
	Tactical design

	Proposed Approach
	Domain design
	Step 1. Identify sub-domains based on key business processes
	Step 2. Distill objects from user stories
	Step 3. Examine business logic
	Step 4. Completion of each sub-domain

	Domain Implementation
	Step 5: Convert defined objects into classes
	Step 6: Implementation of business logic
	Step 7: Build controller directory
	Step 8: Creation of infrastructure layer to write the implementation
	Step 9: Create a cmd directory to build a server
	Step 10. Completion of code repository for each sub-domain

	Implementation
	User Story Elicitation
	Domain Design
	Step 1. Identify sub-domains based on key business processes
	Step 2. Distill objects from user stories
	Step 3. Examine business logic
	Step 4. Completion of each sub-domain

	Domain Implementation
	Step 5: Convert defined objects into classes
	Step 6: Implementation of business logic
	Step 7: Build controller directory
	Step 8: Creation of infrastructure layer to write the implementation
	Step 9: Create a cmd directory to build a server
	Step 10. Completion of code repository for each sub-domain

	Validation
	Methodology of the validation
	Analysis of the Response
	Results
	Threats to validity
	Future work

	Conclusion
	Appendix
	Survey Consent
	Survey Content
	Licence

