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LLM-based Interface for Data-Driven Waiting Time Analysis of Busi-
ness Processes

Abstract:
Recent advancements in process mining, a field at the intersection of data science
and process management, have unveiled significant potential in analyzing business
processes, particularly in analyzing waiting times between different activities to identify
potential bottlenecks and inefficiencies. This thesis addresses a common limitation in
existing process mining tools: their fixed analytical interfaces, which restrict dynamic
interaction with data and limit user-driven analysis of the process. Fixed interfaces often
hinder the ability to generate customized insights and adjust analyses in response to
evolving business needs. To address this, the thesis proposes the integration of a Large
Language Model-based (LLM) conversational interface with process mining tool, aiming
to foster an interactive engagement with the data, allowing for personalized responses
and actionable insights on reducing waiting times. This initiative aligns with recent
explorations of integrating LLMs with process mining to enhance user interaction and
understanding. The primary contribution of this thesis is the design, implementation, and
evaluation of the LLM-based interface within process mining tool, which is anticipated
to allow interactive navigation with the data plus the insights on how to reduce waiting
times within the process with redesign suggestions based on event logs.
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LLM-põhine liides äriprotsesside ooteaja analüüsimiseks
Lühikokkuvõte:

Hiljutised edusammud andmeteaduse ja äriprotsesside juhtimise ristumiskohas paik-
nevas protsessikaeve valdkonnas on avanud märkimisväärse potentsiaali äriprotsesside
analüüsimisel, seda eriti tegevuste vahele jäävate ooteaegade analüüsimisel, eesmärgiga
tuvastada võimalikke kitsaskohti ja ebatõhususi. See lõputöö käsitleb olemasolevate prot-
sessikaeve tööriistade ühte tüüpilist piirangut: andmeanalüüsi fikseeritud kasutusliidesed,
mis piiravad andmete dünaamilist käsitlemist ja kasutajakeskset protsessianalüüsi. Lisaks
takistavad fikseeritud kasutusliidesed sageli ka protsessi spetsiifikale vastavate arusaama-
de teket ja analüüside kohandamist vastavalt äritegevuse muutuvatele vajadustele. Selle
probleemi lahendamiseks integreerib käesolev lõputöö suurel keelemudelil põhineva
vestlusliidese konkreetse protsessikaeve tööriistaga, eesmärgiga soodustada interaktiivset
andmetöötlust, võimaldada isikupärastatud vastuseid, ja pakkuda rakendatavaid soovi-
tusi ooteaegade vähendamiseks. Need eesmärgid seonduvad ühtlasi ka teiste hiljutiste
uuringutega, milledes rakendatakse suuri keelemudeleid protsessikaeve tööriistades, et
võimendada tulemuste käsitlemist ja tõlgendamist. Käesoleva lõputöö peamine panus
on suurel keelemudelil põhineva vestlusliidese kavandamine, rakendamine ja hindamine
protsessikaeve tööriistas, mis peaks seeläbi võimaldama andmete interaktiivset navigee-
rimist ning lisaks pakkuma protsessi sündmuslogile tuginevat teavet selle kohta kuidas
protsessi ooteaegu ümberkujundamise soovituste abil vähendada.

Võtmesõnad:
Protsesside kaevandamine, ooteaja analüüs, protsesside ümberkujundamine, suured kee-
lemudelid, vestlusliides

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction
In recent years, process mining has emerged as an area at the intersection of data science
and process management, showing potential in analyzing business processes [24]. An
event log, crucial to this field, is a digital record of the sequence of activities in a
process, capturing detailed information such as activity names, timestamps, and involved
resources, thus providing the data foundation for analysis [19]. This field mainly relies
on examining event log data to gain insights into process performance and providing a
base for optimization efforts [17]. Specifically, waiting times between different activities
within a process are commonly considered a form of waste, and their analysis can
highlight inefficiencies. By investigating the causes of these waiting times, opportunities
for streamlining and improving process cycle times become apparent, offering potential
for enhancing operational efficiency.

Waiting times in business processes are often seen during transitions between activi-
ties, such as when a case progresses from one activity to another. These periods can be
caused by various factors including handoffs between resources, resource contention,
or coordination issues, all contributing to potential inefficiencies within the process.
While some waiting times are inevitable, others can be mitigated with strategic process
design and resource management. Waiting times in business processes, such as those due
to batching when activities await grouping, resource contention when activities queue
for an occupied resource, prioritization when activities are delayed for others deemed
more urgent, resource unavailability when resources are not working, and extraneous
factors that account for delays outside the event log’s scope, are key considerations for
optimizing efficiency and reducing waste [17].

A step forward in this regard is the approach introduced in the paper by Lashkevich
et al [17]. This approach is implemented through a tool named Kronos, which processes
event log data, formatted in CSV, to create a detailed report. This report sorts the waiting
times into five clear categories: batch processing, resource contention, prioritization,
resource unavailability, and extraneous factors. The resulting output, displayed through
tables, charts, and graphs, provides a thorough analysis of waiting times, aiding informed
decision-making and process improvement.

However, Kronos reveals a limitation: its analytical interface is fixed. The built-in
charts and visualizations, while initially insightful, are confined to what the developers
have pre-determined to show. Process analysts often require the flexibility to investigate
specific areas of interest within the process that are not covered by these standard visual-
izations. Furthermore, Kronos does not actively suggest ways to redesign or improve
processes, nor does it assess the potential effects of such modifications. This points to a
need for an interface that is not only adaptable and user-friendly but also equipped to
provide tailored insights and proactive recommendations for process optimization.

Recent works have begun to explore the integration of Large Language Models
(LLMs) with process mining, aiming to address some of the inherent complexities and
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diverse skill requirements within this domain [23, 1, 2]. Despite the promise shown
by LLMs in augmenting conversational process mining [23], producing outputs that
are both precise and contextually relevant to the complex needs of process analysis,
challenges persist. Moreover, while these models have shown a solid understanding of
key process mining abstractions and a notable proficiency in interpreting both declarative
and procedural process models [1], the efficient conversion of traditional and object-
centric process mining artifacts into textual format remains a hurdle [2]. This limitation
underscores the need for ongoing improvements in LLM capabilities. Additionally,
enhancing the integration of these technologies into existing process mining frameworks
requires focused efforts to ensure effectiveness and efficiency.

This thesis aims to bridge this gap by developing and evaluating an LLM-based
interface for Kronos. This thesis is motivated by the need to enhance Kronos with an
LLM-based conversational interface, addressing the tool’s limitations. The integration’s
primary objectives are: (1) to facilitate the identification of improvement opportunities
by enabling inquiries about process inefficiencies; (2) to offer and recommend relevant
process redesigns aimed at reducing waiting times; and (3) to predict the expected impact
of these improvements on process performance.

The methodological framework of this thesis employs Design Science methodol-
ogy to guide the development of the LLM-based interface. This structured approach
is crucial for creating and evaluating technological artifacts, ensuring that the develop-
ment is grounded in principles that foster technological innovation and practical utility
[15]. Complementing this, Agile methodology is used during the product development
phase. Agile’s adaptability and collaborative nature support continuous improvement
and responsiveness to change [8]. This dual approach, combining Design Science for
structured development and Agile for iterative refinement, ensures that the interface is
both technically robust and user-centric. The process includes planning, development,
and evaluation phases, allowing for steady improvements and ensuring the interface
aligns with project objectives and technological advancements.

The contribution of this thesis encompasses the design, implementation, and eval-
uation of the LLM-based interface within Kronos. This enhancement is anticipated to
substantially improve the analytical experience for process analysts by providing a more
intuitive and interactive engagement with the data. Our evaluation approach will assess
the performance of the interface, verifying its ability in delivering responses, its capability
to furnish textual descriptions, its proficiency in rendering visual representations such as
graphs, and its insightfulness in suggesting redesign strategies to mitigate waiting times.

The rest of the thesis is structured as follows. Section 2 introduces background and
related work. Section 3 presents the method. Section 4 describes the implementation,
Section 5 outlines the evaluation, Section 6 describes limitations of the research Section
7 concludes the thesis.
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2 Background and Related Work
This section provides an overview of concepts that are relevant to the area of research in
the scope of this thesis.

2.1 Process Mining for Waiting Time Analysis
Process mining has emerged as a technology at the intersection of data science and
process management, aiming to extract meaningful information from event logs generated
by information systems [24]. This field leverages algorithms to reconstruct, analyze, and
improve real-life business processes, offering a lens into the actual execution of these
processes as opposed to how they were designed to function [25].

Process mining allows analysts to explore various business questions, such as uncov-
ering process models, assessing performance, and monitoring compliance, with a focus
on identifying delays in processes [20]. There are various ways to analyze process mod-
els. One can identify inefficiencies by performing performance analyses, such as spotting
bottlenecks, or evaluate adherence to organizational policies through conformance checks.
The identification and mitigation of process inefficiencies, such as prolonged waiting
times between activities, demand a deeper understanding of the process context and the
factors influencing performance. These delays, typically occurring during transitions be-
tween tasks, can significantly hinder process flow. Waiting times are often symptomatic
of deeper process issues, such as resource bottlenecks, inefficient process design, or
misaligned priorities. Tackling these issues requires not only sophisticated analytical
tools but also a strategic approach to process redesign and improvement. Lashkevich et
al. [17] have developed a method to classify these waiting times into five main reasons:
batching, resource contention, prioritization, resource unavailability, and extraneous
factors, providing a detailed framework for understanding and mitigating such delays
[17].

Event logs, essential for process mining, capture detailed records of process activ-
ities. They typically include a timestamp, indicating when an event occurred, a case
ID to identify the process instance, and an activity name or ID, specifying the action
taken. For waiting time analysis—key to identifying inefficiencies and areas for im-
provement—having both start and end timestamps is particularly crucial [17]. These
timestamps detail when an activity begins and ends, allowing for an accurate measure-
ment of the duration of activities and the identification of delays between tasks. These
logs serve as rich datasets, forming a network of event sequences linked by temporal
order and case association, thereby enabling comprehensive analysis of business pro-
cesses [25]. This relational structure allows for intricate process examination, including
performance evaluation and deviation detection [26].
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2.2 Kronos: Analyzing Waiting Times in Process Mining
Kronos is a dedicated tool designed for the analysis of waiting times within business
processes and the tool is publicly available to the users 1. It provides an approach to
decompose waiting times in activity transitions into their causes and analyze their impact
on the cycle time efficiency of the process.

The preliminary step in utilizing Kronos involves the uploading of an event log,
specifically in CSV format. This log is expected to comprise essential attributes for an
analysis:

• Unique Case Identifier to distinguish between individual cases or process in-
stances.

• Activity Name indicating the specific process activity.

• Resource representing the entity responsible for the activity’s completion.

• Start and End Timestamps marking the activity’s duration and pivotal for calcu-
lating waiting times.

Users are tasked with accurately mapping these columns to their corresponding attributes
in Kronos to facilitate a precise evaluation of the process.

Upon successful input validation, Kronos performs a comprehensive analysis includ-
ing several critical steps:

1. Activity Transition Discovery to identify pivotal transitions between activities,
highlighting potential bottlenecks.

2. Waiting Time Cause Discovery segments waiting times into identifiable causes,
such as batching, resource contention, and others, providing a detailed insight into
process inefficiencies.

3. Waiting Time Analysis evaluates the influence of waiting times on the Cycle Time
Efficiency (CTE) of the process, pointing towards possible areas for optimization.

The insights garnered from Kronos are visualized through an interface comprising
tabs and transitions selector:

• The Tabs outline process statistics, including cases, activities, and the quantified
impact of each waiting time cause (batching, prioritization, resource contention,
resource unavailability and extraneous reasons); predict the potential enhancement
in process efficiency (Cycle Time Efficiency) upon mitigating identified waiting
times.

1http://kronos.cloud.ut.ee/
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• The Transitions Selector delves into the specifics of waiting times for specific
activity transition.

These findings can be downloaded in CSV and JSON formats, facilitating further analysis
or integration into reports.

Despite its significant contributions to operational efficiency, Kronos, like many
process mining tools, faces inherent limitations that could impede the depth of process
analysis and optimization. These limitations span both methodological aspects and
implementation challenges.

Methodologically, Kronos focuses on predefined algorithms to analyze waiting times
between activities, leaving potential delays at process inception or within activities due to
interruptions largely unexamined. This reliance on predefined processes means that the
tool can only offer insights in a preset manner, potentially limiting analysts’ perspectives
on uncovering inefficiencies or exploring alternative process improvements.

Moreover, Kronos’s visualization capabilities, while informative, are restricted to the
graphs and tables designed by its developers. This predetermined nature of visualization
tools can limit analysts from diving deeper into the process data or uncovering insights
that go beyond the standard visual representations. Such constraints may obscure
potential inefficiencies or waiting time causes not initially anticipated, limiting the tool’s
flexibility and adaptability to diverse analytical needs.

On the implementation front, Kronos struggles with processing large event logs
due to a cap on data handling and minimal error-handing features, necessitating a size
limit to maintain functionality. This processing limitation, combined with a lack of
automated suggestions for process redesign, underscores a significant challenge in the
current landscape of process mining tools: the absence of solutions that offer both
exploratory visual analysis and automated recommendations for process improvement.
These tools often require manual intervention for redesign, relying heavily on predefined
pathways that may not fully capture the unique nuances or optimization opportunities
within specific processes.

In summary, while Kronos offers valuable insights into the causes and impacts of
process delays, its capabilities highlight a broader issue within process mining tools — a
need for greater flexibility in analysis and more dynamic solutions for process redesign.
To solve these problems, we need tools that do more than just look at data. They should
also offer clear suggestions for making things better, suited to the specific needs of each
business process, and not just stick to a set formula or way of showing information.

2.3 Large Language Models
Large Language Models (LLMs) represent a significant breakthrough in the field of
natural language processing (NLP) and artificial intelligence (AI). These models, powered
by deep learning algorithms, have shown remarkable capabilities in understanding,
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generating, and interpreting human-like text, fundamentally altering the landscape of
computational linguistics and AI-driven applications [18].

The development of LLMs has been marked by a series of advancements in deep
learning and neural network architectures. Initially, models like RNNs (Recurrent Neural
Networks) and LSTMs (Long Short-Term Memory networks) laid the groundwork by
demonstrating that machines could process sequences of data, such as sentences in a
paragraph. However, it was the introduction of the Transformer architecture by Vaswani
et al. [27] that catalyzed the rapid progress in LLMs. Transformers enabled more efficient
handling of sequences by allowing models to weigh the importance of different parts of
the input data without the sequential processing limitations of RNNs and LSTMs [29].

One of the most notable LLMs, GPT (Generative Pre-trained Transformer) by Ope-
nAI, exemplifies the capabilities of these models. Starting with GPT and evolving
through GPT-2, GPT-3, and the latest, GPT-4, each iteration has expanded the model’s
capacity for text generation, comprehension, and context understanding [5]. GPT-3 and
GPT-4, in particular, with its vast number of parameters, has set new benchmarks in the
model’s ability to generate text that is indistinguishable from that written by humans
across a wide array of topics and styles [10].

The applications of LLMs span across various domains, demonstrating their versatility
and power. In content creation, LLMs assist in writing articles, generating creative
fiction, and composing poetry. In the customer service domain, they power sophisticated
chatbots that offer human-like interactions. LLMs also play a crucial role in translating
languages, summarizing texts, generating code in software development, and even in
fields as diverse as legal analysis and biomedical research, where they help in interpreting
complex documents and literature [10].

Despite their remarkable capabilities, LLMs are not without challenges. Issues such
as bias in model outputs, the environmental impact of training large models, and concerns
around misinformation and content authenticity have sparked discussions about ethical
AI development and the responsible use of LLMs [3] [14].

As the field continues to evolve, the integration of LLMs with other technologies,
like process mining tools, opens new avenues for innovation. The potential to enhance
process mining with the advanced text understanding and generation capabilities of
LLMs could lead to more intuitive interfaces, improved analysis tools, and ultimately,
more efficient and effective process management strategies.

2.4 LLMs in Data Analysis and Process Mining
The integration of Large Language Models (LLMs) into data analysis signifies a trans-
formative shift towards more sophisticated, intuitive, and comprehensive analytical
methodologies. Particularly within the domain of process mining, the potential of LLMs
to revolutionize the way data is analyzed, interpreted, and utilized is immense. This
section explores the burgeoning role of LLMs in data analysis, with a particular emphasis
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on their application in process mining, surveying the existing literature and projects that
highlight their integration into this field [22].

LLMs, such as OpenAI’s GPT series, have demonstrated capabilities in generating
human-like text, understanding complex queries, and providing insightful responses
across various domains. These capabilities are not just limited to text generation but
extend to the analysis and interpretation of vast datasets, making them invaluable tools
in the arsenal of data scientists and analysts. In process mining, where the goal is to
extract actionable insights from process data (event logs), LLMs offer a new paradigm
for data interaction. They enable a more natural dialogue with data, allowing users to ask
sophisticated questions and receive answers that are both accurate and contextually rich
[22] [27].

The application of LLMs in process mining is a relatively new yet rapidly developing
area. By leveraging LLMs, analysts can query process data in natural language, breaking
down the barriers often imposed by traditional data querying languages. This not only
democratizes access to process insights but also significantly speeds up the analysis by
allowing direct interrogation of the data in an intuitive manner. For example, analysts
can ask, "What are the bottlenecks in this process?" and receive a response based on the
analysis of event logs, without the need for complex query construction or manual data
exploration [12] [29].

Another possible use of LLMs is the development of conversational agents specifi-
cally designed for process mining tasks. These agents use LLMs to interact with users,
understand their queries about process performance, and provide insights and recom-
mendations for process improvement. Such applications of LLMs in process mining not
only highlight their potential to make data analysis more accessible and efficient but also
point towards future innovations in process optimization and management [5] [27].

The future of LLMs in data analysis, and particularly in process mining, is promising.
As LLMs continue to evolve, becoming more sophisticated in their understanding and
generation of language, their potential applications in process mining are likely to expand.
This could include more advanced predictive analytics, automated process optimization
recommendations, and even the generation of actionable strategies for process improve-
ment based on historical data analysis. The ongoing research and development in this
area are crucial for realizing the full potential of LLMs in transforming process mining
from a primarily descriptive tool into a prescriptive and predictive instrument for business
process management [5] [12].

2.5 Conversational Interfaces and Chatbots
The advent of conversational interfaces and chatbots marks a significant evolution in the
way humans interact with digital systems. These technologies, rooted in the fields of
natural language processing (NLP) and artificial intelligence (AI), have transformed user
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interaction paradigms across various sectors by offering more intuitive and accessible
means of engaging with software applications [29].

The development of conversational interfaces and chatbots has been closely tied to
advancements in NLP and machine learning. Early chatbots, such as ELIZA and PARRY,
laid the foundational work for simulating human-like conversations, albeit in a limited
manner. With the advent of more sophisticated AI models and computational resources,
contemporary chatbots have grown significantly in their ability to understand complex
queries, context, and even emotions, leading to more natural and meaningful interactions
[28].

Conversational interfaces have found applications across a myriad of sectors, each
leveraging the technology to enhance user experience and streamline interactions. In cus-
tomer service, chatbots like Zendesk’s Answer Bot provide instant support to customers,
handling inquiries and solving problems around the clock. In healthcare, conversational
agents such as Woebot offer mental health support through therapeutic conversations.
The finance sector has also embraced this technology, with bots like Erica from Bank of
America helping customers manage their finances through conversational interactions
[31] [5].

One of the key advantages of conversational interfaces is their ability to improve user
interaction and make data more accessible. By allowing users to interact with systems
in natural language, these interfaces reduce the learning curve and make technology
accessible to a broader audience [16]. They also enable more efficient data retrieval, as
users can directly ask for the information they need without navigating complex interfaces
or learning specific query languages. This has significant implications for fields like
process mining, where analyzing complex event logs can be made more user-friendly
and intuitive through conversational interfaces [22].

Despite their progress, conversational interfaces and chatbots face challenges such
as understanding diverse languages and dialects, dealing with ambiguous queries, and
maintaining context over extended interactions. Future developments are expected to
address these issues through more advanced AI models, better contextual understanding,
and personalized interactions, further broadening the applicability and effectiveness of
these technologies [3].

As conversational interfaces continue to evolve, their integration into more domains,
including process mining and business analytics, is anticipated. This integration promises
not only to enhance user experience but also to unlock new possibilities for data interac-
tion and business intelligence.

2.6 Related Work
Recent advancements have shown significant promise in the fields of process mining
and Large Language Models (LLMs), yet there exists a distinct gap in the literature
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regarding their combined use, especially in the development of LLM-based conversa-
tional interfaces for process mining tools like Kronos. While individual studies have
explored the capabilities of LLMs in data analysis and the application of AI in process
mining for optimization and analytics, the integration of these technologies to enhance
user interaction within process mining tools remains largely unexplored.

Recent efforts have significantly advanced the integration of Large Language Models
(LLMs) with process mining, demonstrating their potential in transforming the analysis
and management of business processes. The technical report by Berti et al. [4] stands
out by exploring the use of LLMs, specifically GPT-4 and Google’s Bard, for abstracting
process mining artifacts into textual format. Their work introduces innovative prompting
strategies, including direct answering, multi-prompt answering, and the generation of
database queries. This approach has shown that LLMs can effectively understand and
interpret key process mining abstractions, demonstrating proficiency in both declarative
and procedural models and evaluating concepts of fairness in process mining. This has
significant implications for advancing the object-centric process mining discipline and
facilitating more efficient fairness assessments.

Similarly, Kiran Busch et al. [6] delve into the application of prompt engineering
within the Business Process Management (BPM) domain. By leveraging pre-trained
LLMs, their research bypasses the need for extensive fine-tuning and large training
datasets, highlighting the method’s potential to bring LLM capabilities to BPM research.
Their work outlines a research agenda for using prompt engineering to address BPM
challenges, recognizing both the potentials and the hurdles associated with this approach.

Furthermore, the study by Michael Grohs et al. [13] illustrates the versatility of
LLMs in handling text-related BPM tasks. By applying an LLM to three exemplary
tasks—mining both imperative and declarative process models from textual descriptions,
and assessing process tasks’ suitability for robotic process automation—they demonstrate
that LLMs can perform comparably to, or even better than, task-specific solutions. This
opens new avenues for BPM research and practical application, suggesting a future where
LLMs serve as a general-purpose instrument for multiple process-related problems.

These contributions collectively underscore the untapped potential of LLMs in en-
hancing user interaction within process mining tools and BPM at large. By enabling
conversational queries and interactions, these studies pave the way for a more accessible
and intuitive exploration of process data, promising significant advancements in the field.

A few endeavors, such as the development of C-4PM, a conversational agent for
declarative process mining by Yago Fontenla-Seco et al. [11], illustrate the attempts to
create conversational agents within the process mining domain. However, this solution
have not fully utilized LLMs to facilitate a conversational interface specifically tailored
for uncovering waiting times, analyzing event logs in depth, and suggesting process
redesigns.

This gap signifies a promising area for innovation where conversational interfaces,
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powered by the intuitive and user-friendly nature of LLMs, could democratize access to
process mining insights. Such advancements would not only make these insights more
accessible to non-expert users but also enable a deeper and more natural exploration
of process data. The potential for LLMs to significantly improve how users query and
interact with process data suggests a fertile ground for future research, aiming to bridge
this gap and fully realize the synergy between LLMs and process mining technologies.
While existing work focuses on using LLMs for abstracting process mining artifacts,
prompt engineering, and task-specific solutions in BPM, this thesis integrates an LLM-
based conversational interface within a process mining tool to enhance user interaction,
identify inefficiencies, and suggest process redesigns based on detailed event log analysis.
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3 Method
This thesis is primarily guided by the Design Science methodology, a framework cru-
cial for studies that propose and evaluate technological artifacts, including algorithms,
models, languages, methods, systems, tools, and other computer-based technologies [15].
Design Science is chosen for its structured approach to creating and assessing innovative
solutions, ensuring that the development is systematically grounded in principles that
drive technological innovation and practical utility [15]. Complementing Design Science,
the Agile methodology is employed in the product development phase. Agile is valued
for its adaptability, collaborative nature, customer-centric approach, and facilitation of
continuous improvement and responsiveness to change [8]. This dual approach, with De-
sign Science as the foundation and Agile for iterative product development, ensures that
the process is not only efficient and responsive but also aligned with rigorous academic
and practical standards.

The methodology adopted in this project is visualized in Figure 1, which illustrates
an approach taken from the initial analysis through to the final evaluations. This diagram
encapsulates the research process, starting with the analysis of related work and defining
research goals, followed by requirement elicitation and prioritization. Subsequent phases
include defining the implementation strategy, undertaking iterative development and test-
ing, and conducting comprehensive evaluations to assess accuracy, redesign suggestions,
and performance.

Figure 1. Methodological approach to the development and evaluation of the conversa-
tional LLM-based interface for Kronos.

In the writing of this thesis, the ChatGPT 4, developed by OpenAI 2, was utilized as
an auxiliary tool to assist in structuring text, rephrasing complex content, and generating
LaTeX code, particularly for tables. This use of advanced language models allowed for
more efficient organization and presentation of research content, ensuring that complex
ideas were communicated clearly and effectively.

2https://openai.com/chatgpt
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3.1 Research Goals and Motivation
This research aims to enhance the analytical utility of the Kronos tool by incorporating
a Language Model (LLM) within its interface. The motivation stems from Kronos’s
current limitation of offering only a static set of visual outputs that is predefined by the
developer. Research goals, which refer to a clear, concise statement that outlines the
intended outcome of a study, guiding the direction and focus of the investigation [9],
were defined. An LLM-based conversational interface will enable a more adaptable
analysis experience for users:

1. Facilitating the Identification of Improvement Opportunities: The interface is
designed to empower users to uncover inefficiencies by inquiring about specific
aspects of event logs. The motivation here is to transition from static data represen-
tation to a dynamic interrogation process, thereby enabling users to identify and
act upon improvement opportunities within their business processes.

2. Offering Redesign Suggestions: To address issues such as prolonged waiting
times, the interface will be able to suggest feasible redesigns. The motivation
for this objective is to provide users with not just data insights but also practical
recommendations for process optimization.

The research is driven by the need for a more interactive tool that extends beyond
static data presentation, providing a platform for users to engage with the data in a mean-
ingful way. In essence, this thesis seeks to broaden the scope of Kronos by introducing
an LLM-based interface that delivers tailored insights and recommendations, thereby
enhancing the analytical capabilities of process analysts.

3.2 Requirements Gathering and Prioritization Methodology
The development of the conversational interface for Kronos is guided by a structured
requirement gathering process, which is essential for aligning development with the
tool’s limitations. This process is informed by Kronos’s existing challenges, notably
its complex user interactions and static data presentation, and gaps in current research
concerning conversational interfaces in process mining.

User stories are utilized to translate these needs into actionable requirements, follow-
ing the format: "As a [type of user], I want [some goal], so that [some reason]." This
method ensures requirements are user-centric and aligned with practical objectives. This
approach is a widely recognized and commonly used method in software development [7].
User stories simplify complex needs by translating them into clear, concise narratives.

Prioritizing requirements is critical for focusing on the most impactful features
first. This is achieved using the MoSCoW method by sorting functionalities into ’Must-
have’, ’Should-have’, ’Could-have’, and ’Won’t-have’ categories. The MoSCoW method
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effectively streamlines the development focus towards essential features, ensuring the
deployment of a robust initial version of the interface that addresses the most pressing
user needs [30]. The prioritization categories are:

• Must-have: Essential for core functionality.

• Should-have: Important but not critical, enhance functionality.

• Could-have: Less critical, included if resources permit.

• Won’t-have: Lowest priority or for future consideration.

Prioritization factors include the potential impact on user efficiency, technical fea-
sibility, and resource availability, ensuring that development is feasible within current
capabilities and project scope.

In addition, each requirement is linked to specific evaluation criteria, crucial for
ensuring that development outcomes meet the intended goals. These criteria include:

• Correctness Assessment via Event Logs: Ensuring the interface accurately
utilizes event logs for process analysis.

• Redesign Suggestion Practicality: Evaluating the feasibility of suggested process
improvements.

• Response Time Variability: Assessing the interface’s responsiveness across dif-
ferent scenarios. This linkage facilitates targeted development, focused testing, and
comprehensive validation, aligning features with the interface’s overall effective-
ness and ensuring they address the core objectives of enhancing user interaction
and data analysis capabilities in Kronos.

This streamlined method ensures the development process is not only efficient but
also aligned with strategic goals, making the best use of available resources and ensuring
the functionality and usability of the conversational interface.

3.3 Iterative Development
This thesis is primarily guided by the Design Science methodology, a framework cru-
cial for studies that propose and evaluate technological artifacts, including algorithms,
models, languages, methods, systems, tools, and other computer-based technologies [15].
Design Science is chosen for its structured approach to creating and assessing innovative
solutions, ensuring that the development is systematically grounded in principles that
drive technological innovation and practical utility [15]. Complementing Design Science,
the Agile methodology is employed in the product development phase. Agile is valued
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for its adaptability, collaborative nature, customer-centric approach, and facilitation of
continuous improvement and responsiveness to change [8]. This dual approach, with De-
sign Science as the foundation and Agile for iterative product development, ensures that
the process is not only efficient and responsive but also aligned with rigorous academic
and practical standards.

Instead of following a structured development cycle, the project will move through
a series of adaptable, iterative stages. Such flexibility is crucial due to the project’s
dynamic nature and the ongoing emergence of new technologies. Phases within our
cycles include planning, development, and evaluation, thereby adjusting the project’s
direction as necessary. This iterative approach facilitates a steady improvement of the
interface, ensuring it stays current with technological developments and remains in line
with the overall objectives of the project.

This strategy ensures that the development process is dynamic and user-centered,
with a commitment to progressively refining the interface. By engaging in Agile sprints,
the project remains open to adaptation and improvement, thereby fostering a robust and
efficient development lifecycle.

3.4 Evaluation Approach
The evaluation of the LLM-based interface within each development cycle is essential
for validating the effectiveness and efficiency of the iterative enhancements. The primary
objective is to ensure that the interface meets the established criteria in terms of accuracy,
speed, and utility.

Performance Evaluation Performance evaluation focuses on the operational aspects
of the interface, such as responsiveness, efficiency, and error handling. The criteria for
this evaluation include:

• Response Time Variability: We will monitor the response time of the interface,
aiming for a response in under a minute. Additionally, we will assess how response
time varies with different sizes of event logs, establishing benchmarks for accept-
able performance across varying data volumes. This non-functional requirement
ensures the tool remains efficient and responsive under varying operational loads,
which is key to maintaining a positive user experience.

• Query Processing Efficiency: The efficiency of the interface in query processing
will be evaluated. We will measure what percentage of the total response time is
devoted to data retrieval as opposed to answer compilation. A reasonable maximum
threshold for data retrieval time will be established to ensure balance and efficiency
in processing. This non-functional requirement is vital for assessing how the
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system manages its processing resources to optimize performance and user wait
times.

• Multi-Query Handling: The interface’s capability to handle multiple questions
within a single prompt will be assessed. This includes measuring the accuracy and
completeness of responses when faced with compound queries. This functional
requirement evaluates the system’s ability to understand and respond accurately to
complex inquiries, highlighting its effectiveness in user interaction.

• Error Rate in User Inputs: The interface’s error rate in interpreting user inputs will
be tracked, with a focus on maintaining a low error percentage of 5%. This metric
will help in evaluating the robustness of the interface’s natural language processing
capabilities. This functional requirement focuses on the reliability of the tool in
interpreting user inputs accurately, which is crucial for trust and usability.

• Price Per Search: The cost-effectiveness of the tool will be evaluated by estimating
the average price per search. To this end, I aim to estimate the average price per
search, setting a preliminary price cap at 1 EUR per search, this consideration
is essential for ensuring the tool’s long-term viability and accessibility to a wide
range of users. Factor influencing price will include API usage of LLMs. This non-
functional requirement addresses the tool’s affordability and economic feasibility,
ensuring it is accessible while remaining financially sustainable.

• Relevance to All Goals: These performance metrics—including response time
variability, query processing efficiency, multi-query handling, and error rates—are
vital across all objectives. They underpin the interface’s overall effectiveness, scala-
bility, user-friendliness, and reliability, contributing to a comprehensive assessment
of the system’s capabilities.

Content Evaluation Content evaluation deals with the accuracy and relevance of
the information provided by the interface, assessing its practicality and applicability in
real-world scenarios. This includes:

• Facilitating Improvement Opportunities:

– Correctness Assessment via Event Logs: To assess the interface’s effective-
ness in identifying process inefficiencies, we utilize analysis from Kronos as
benchmarks. These logs serve as a factual basis to test if the interface can
accurately identify areas needing improvement. Specifically, the evaluation
will include involving issuing predefined questions to the LLM through a
conversational interface, focusing on various aspects of waiting times within
the logs. Each question will be directed to the LLM in a separate thread to
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ensure unbiased responses, and correctness will be measured by comparing
the LLM’s answers against a manually verified baseline taken from analysis
Kronos performed.

– Relevance to Goal: This evaluates the first goal of transitioning from static
data representation to a dynamic questioning process, by verifying the data
provided by the interface is correct, enabling users to spot inefficiencies.

• Offering Redesign Suggestions:

– Reasonability Assessment: The redesign suggestions offered by the interface
will be evaluated for their practicality and feasibility. This assessment will
determine whether the suggested process improvements are reasonable and
can be effectively implemented in real-world scenarios. To ensure a thor-
ough evaluation, interviews will be conducted with individuals possessing
expertise in business process management and process mining. The selec-
tion of participants will be based on their ability to understand event logs
and identify inefficiencies within processes. This expertise is essential as it
enables the interviewees to assess the practicality of redesign suggestions in
a real-world context and ensure that the LLM-generated recommendations
are grounded in actual process dynamics and constraints. The interviews
will conducted online through Zoom. They will be recorded using Open
Broadcaster Software (OBS), with immediate documentation of feedback
and scores to support later analysis.

– Relevance to Goal: This step is critical to the second goal, ensuring the
interface provides not just insights but also viable recommendations for
process enhancements.

Post iteration, all findings from these evaluations will inform the decision-making
process for the final implementation choice. The culmination of these iterative evaluations
will lead to the selection and refinement of the most effective solution for the LLM-based
interface.

21

https://zoom.us/
https://obsproject.com/
https://obsproject.com/


4 System Development and Implementation

4.1 Requirements Gathering
Building on the methodology outlined, we developed specific requirements for the
conversational interface. These requirements were derived from the identified limitations
of Kronos and the gaps in current research regarding conversational interfaces in process
mining. Each requirement was crafted using user stories and prioritized through the
MoSCoW method to ensure they are both impactful and feasible, focusing on enhancing
user interaction and dynamic data processing capabilities.

User Story 1: Interactive Query Handling

• Story: "As a process analyst, I want the interface to handle interactive queries
about process data so that I can receive real-time insights and make informed
decisions quickly."

• Priority: Must-have

• Justification: This feature is fundamental for ensuring that the interface meets
the core functionality expected by users who need to interact with process data
efficiently. It is essential for enhancing the user experience and the practical utility
of Kronos.

• Evaluation Link: Directly linked to the ’Correctness Assessment via Event Logs’
and ’Response Time Variability’, ensuring that the interface not only responds
quickly but also accurately processes queries to deliver reliable insights.

User Story 2: Intuitive User Interaction

• Story: "As a process analyst, I want the interface to provide intuitive interaction
mechanisms so that I can use the tool without extensive training."

• Priority: Should-have

• Justification: While not critical to the core functions of Kronos, enhancing user
interaction is important for broader user adoption and satisfaction. It reduces the
learning curve and makes the tool more accessible.

• Evaluation Link: Linked to ’User Input Error Rate’, which assesses how effec-
tively the interface guides the user to make correct inputs and queries.
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User Story 3: Cost-Effective Operation

• Story: "As a product owner, I want the interface to operate within a defined budget
so that we can maintain cost efficiency."

• Priority: Could-have

• Justification: Managing operational costs is important for the sustainability of the
tool, especially in a resource-constrained environment. However, this requirement
is less critical than those directly affecting functionality and user experience.

• Evaluation Link: Linked to ’Price Per Search’, ensuring that the interface remains
within the financial scope of the project and organization.

User Story 4: Proactive Redesign Suggestions

• Story: "As a process analyst, I want the interface to proactively suggest process
redesigns based on the analysis so that I can improve process efficiency."

• Priority: Must-have

• Justification: The ability to suggest actionable redesigns is critical for the utility
of the conversational interface, turning insights into direct action points that can
significantly impact the efficiency of processes.

• Evaluation Link: Directly linked to ’Reasonability Assessment’ of redesign
suggestions, which evaluates the practicality and feasibility of the suggestions
provided by the interface.

User Story 5: Multi-Query Handling

• Story: "As a process analyst, I want the interface to handle multiple queries at
once so that I can efficiently manage multiple issues without switching contexts."

• Priority: Should-have

• Justification: Efficient handling of multiple queries enhances productivity and
user satisfaction by reducing waiting times and streamlining interactions, although
it is not essential for basic functionality.

• Evaluation Link: Linked to ’Multi-Query Handling’, which assesses how well
the interface manages and responds to several inputs simultaneously.
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User Story 6: Scalable Architecture

• Story: "As a product owner, I want the interface to be scalable so that it can grow
with the increasing data volume and user base."

• Priority: Could-have

• Justification: While scalability is important for future growth and flexibility,
it does not impact the immediate functionality of the interface but prepares the
system for long-term success.

• Evaluation Link: Linked to general performance metrics like ’Response Time
Variability’, which will help ensure that the system maintains performance as scale
increases.

User Story 7: Facilitation of Improvement Opportunities

• Story: "As a process analyst, I want the interface to analyze event logs and provide
detailed insights into process inefficiencies, highlighting potential improvement
opportunities without needing manual intervention."

• Priority: Must-have

• Justification: The core functionality of any process mining tool is to provide
actionable insights that can lead to significant operational improvements. This
feature is essential for ensuring that Kronos not only identifies issues but also
suggests data-driven solutions automatically, enhancing the tool’s practical value
for continuous process optimization.

• Evaluation Link: This requirement is directly linked to ’Correctness Assessment
via Event Logs’, which will evaluate the accuracy of the insights provided by the
interface, and ’Reasonability Assessment’, which will measure the practicality and
feasibility of the suggested improvements.

These user stories directly address the primary concern of providing detailed, action-
able data about process analyses and improvements. Prioritizing these features ensures
that the conversational interface for Kronos will not only enhance user interaction but also
empower users with powerful tools to manage and optimize their processes efficiently.
The prioritization reflects a strategic focus on functionalities that maximize immediate
benefits while laying a foundation for continued innovation and user satisfaction.
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4.2 Implementation and Architecture
4.2.1 System Architecture

This subsection outlines the initial architecture of Kronos and changes that have been
implemented to bring conversational capabilities to Kronos, further aligning the tool with
the interactive needs of its users.

The flow depicted in Figure 2 illustrates view of how user queries are processed
and used in this section to showcase how the application and its interface are working.
Initially, the user uploads an event log, which is then analyzed by Kronos to discover
activity transitions, waiting time causes, and perform waiting time analysis. This analysis
data is used to visualize the analysis results. When a user poses a question, the system,
based on the LLM’s request, retrieves relevant data from this analysis to inform an LLM.
The LLM then processes this data to generate a response, which is subsequently output
to the user as the LLM’s response. The vital part of Kronos, waiting time analysis and
existing functionalities, will not be changed during this work, but additions will be made
so the conversational interface could be integrated seamlessly.

Figure 2. Process flow illustrating the steps from event log upload to LLM response
generation.

Figure 3. Architecture of Kronos Web Application

Figure 3 showcases the architecture of the Kronos Web Application from the de-
veloper point of view. The system is divided into four main dockerized services: the
Frontend, Backend, Command Line Tool, and Database Service.
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The Frontend, implemented using TypeScript and the Angular framework, serves
as the user interface. It is where users upload event logs and engage with the system to
view the results of the analysis. This service is containerized using Docker to ensure
consistency across different environments and is served through an NGINX server for
efficient request handling and static file serving. The source code for this component is
available on GitHub3.

At the core of the application lies the Backend, which is responsible for managing
job queues and processing jobs. Developed with Go, it handles incoming job requests
and leverages Gunicorn, a Python WSGI HTTP Server, to manage interactions with
the Command Line Tool. The Backend’s dockerization guarantees isolation and swift
deployment. The Backend’s repository is accessible on GitHub4.

The Command Line Tool, written in Python, conducts the primary analysis of event
logs. As a separate Docker image, it ensures modularity and scalability. Upon completion
of the analysis, results are stored in a structured CSV format, ready for retrieval by the
Backend. The Command Line Tool’s code can be found on GitHub5.

PostgreSQL is used for the Database Service, where the results from the Command
Line Tool are stored. Dockerization of this service facilitates straightforward version
management and setup. Through this service, the Backend can access and manage the
analysis data, underpinning the application’s data persistence. The database set up is
hosted in docker compose file as a part of Backend GitHub repository4.

Each of these services is a separate component within the application’s dockerized
ecosystem, ensuring seamless integration and high maintainability. The dockerized
approach also simplifies the process of updating individual components without affecting
the entire system, crucial for continuous integration and delivery practices.

The process of data analysis in the Kronos Web Application is a multi-stage operation
that begins when a user interacts with the frontend and culminates in the presentation of
the analyzed data. The steps are as follows:

1. Job Submission: When a user uploads an event log via the frontend interface, the
system encapsulates this log into a new job and submits it to the backend. This
action triggers the job processing sequence within the application’s workflow.

2. Job Processing: Upon receiving a new job, the backend places it into a managed
job queue. This queue helps in organizing the order and priority of jobs to be
processed. The backend then dispatches the job to the Command Line Tool
operating within a Docker container, dedicated to executing the event log analysis.

3. Result Handling: The Command Line Tool, after processing the event log, com-
piles the analysis results into a CSV file. This file is then uploaded to the Database

3https://github.com/AutomatedProcessImprovement/waiting-time-frontend
4https://github.com/AutomatedProcessImprovement/waiting-time-backend
5https://github.com/AutomatedProcessImprovement/waiting-time-analysis
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Service, where it is stored for subsequent retrieval. Upon successful storage of the
results, the backend updates the job status to reflect its completion.

4. Data Retrieval: The frontend, in an effort to provide timely feedback to the user,
regularly checks the status of the job. Once it detects that a job has been marked as
completed, the frontend sends a request to the backend to aggregate the data. The
backend, in turn, fetches the processed data from the Database Service and sends
it back to the frontend for display to the user.

Integration of the Conversational Interface To achieve the thesis goal of enhancing
user interaction with Kronos through a conversational interface, strategic modifications
were made to both the frontend and backend components.

A key addition to the frontend is the integration of a new component dedicated
to conversational interactions. This component is seamlessly embedded within the
main user interface, ensuring that users can access the conversational features without
navigating away from the primary application context. The design decision to embed
this feature directly in the main page facilitates a fluid user experience, as users can
engage in dialogue with the system while simultaneously interacting with the analytical
functionalities of Kronos.

The backend has been augmented with a new component responsible for the internal
processing of chat messages. This ensures that user inputs are efficiently parsed and
handled, laying the groundwork for a responsive conversational interface.

• API Extensions: To support the new conversational capabilities, additional end-
points have been added to the backend API. These endpoints specifically cater to
the operations of the conversational interface, managing the flow of data required
for processing and responding to user queries.

• External API Interaction: The backend has been equipped with the capability to
communicate with the external OpenAI API. This allows the system to leverage
the sophisticated processing of Large Language Models to generate intelligent and
contextually relevant responses for the users. This external interaction is designed
to be triggered as needed, based on the complexity and nature of the user’s request.

4.2.2 System Development

This subsection details the developmental considerations and decisions undertaken during
the creation of the conversational interface.

Selection of an LLM The initial phase of the development involved deciding between
self-hosting an LLM and utilizing a commercial service. Due to the cost implications
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of maintaining a dedicated server for an LLM and the relatively low volume of queries
anticipated, it was deemed more cost-effective and efficient to opt for a commercial LLM.
Commercial services offer the advantage of robust, high-speed processing capabilities
that are scalable and financially more viable for handling sporadic query loads.

Among the available commercial LLMs, OpenAI’s ChatGPT-4 Turbo was selected
for its enhanced capabilities and efficiency. Released around the time of this study, GPT-4
Turbo was noted for its increased capacity and reduced operational costs. It supports
an extensive 128K token context window, which is beneficial for processing complex
queries that require a deeper understanding and retention of context. OpenAI highlights
that GPT-4 Turbo is particularly adept at following precise instructions and generating
outputs in specific formats, an essential feature for our application needs6.

Furthermore, OpenAI provides well-documented APIs and Python libraries that
facilitate seamless integration and interaction with their models. This accessibility
greatly simplified the process of incorporating the LLM into our system, ensuring that
we could leverage the advanced capabilities of GPT-4 Turbo efficiently.

The decision to utilize a commercial LLM, specifically OpenAI’s GPT-4 Turbo, was
driven by both technical and economic considerations. The capabilities of GPT-4 Turbo
in handling complex, instruction-based tasks, combined with the cost-effectiveness of
using a scalable commercial platform, laid a solid foundation for the development of the
conversational interface.

OpenAI’s Assistants API The subsequent phase of development involved a thorough
assessment of OpenAI’s Assistants API to determine its suitability for our conversa-
tional interface needs. This API is specifically tailored for applications that require a
dynamic and interactive assistant capable of handling complex tasks beyond simple text
generation.6

The Assistants API by OpenAI introduces several advanced features designed to
enhance the functionality and flexibility of AI-driven applications6. Key capabilities of
this API include:

• Code Interpreter: This tool allows the AI to write and execute Python code within
a secure, sandboxed environment. It is particularly useful for applications that
require data manipulation, graph generation, or complex computational tasks.

• Retrieval: This feature enhances the assistant’s capabilities by integrating external
knowledge sources. It can access proprietary data or public information, thereby
broadening the assistant’s knowledge base without the need for extensive pre-
processing or embedding computations.

6https://openai.com/blog/new-models-and-developer-products-announced-at-devday

28

https://openai.com/blog/new-models-and-developer-products-announced-at-devday


• Function Calling: Assistants can call custom-defined functions, allowing for the
integration of specific business logic or data processing routines directly within
the AI’s workflow.

The Assistants API supports persistent threads, allowing continuous interaction and
overcoming context window limitations. This feature is crucial for applications that need
sustained dialogue for complex analyses or ongoing user engagement.

The Assistants API was chosen for its versatility and ability to meet our project’s
needs. Its capabilities enhance our conversational interface’s ability to understand
complex queries, interact naturally, and perform various tasks effectively.

Preliminary Architectural Adaptations for LLM Integration The integration of
OpenAI’s Assistants API into the Kronos system necessitated targeted architectural
changes, particularly affecting the frontend and backend components. These modifica-
tions were essential to accommodate the new conversational interface capabilities while
maintaining the integrity and functionality of the existing system.

The database, responsible for storing analysis data, required no schema changes.
However, it was essential to ensure that the new components had appropriate access
to perform data retrieval operations. This was facilitated by the inherent connectivity
provided within a Docker environment, where services are configured to communicate
seamlessly.

The Command Line Tool, which executes the core analysis of event logs, remained
unchanged. This decision was made to preserve the integrity of the data analysis processes
that Kronos was already handling effectively.

In the frontend, the addition of a conversational interface was conceptualized to
complement, not replace, the existing user interface elements. Positioned at the bottom
of the main page, this new component allows users to interact with the LLM while
simultaneously accessing detailed process analysis. This dual-accessibility design ensures
that users can engage in dynamic conversations with the LLM without losing visibility
of the ongoing analyses. The frontend development continued to utilize TypeScript,
leveraging its robust features for building scalable and maintainable web applications.

Significant extensions were made to the backend to support the new functionalities.
New API endpoints were developed to handle the communication between the frontend
and the LLM. These endpoints facilitate the transmission of user queries to the LLM and
the reception of responses. The backend’s expansion included integrating with OpenAI’s
Assistants API to fetch and relay the LLM’s outputs effectively. Python, already a part
of the backend’s technology stack, was further utilized due to its excellent support for
OpenAI libraries, simplifying the integration process and ensuring efficient data handling.

Communication Logic between Frontend and Backend The implementation of
conversational threads to maintain the history of interactions between the user and the
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LLM presented a complex challenge. The adopted approach hinged on the creation of
a seamless communication channel between the frontend and backend, exploiting the
persistent thread feature offered by the Assistants API.

The process commences with the user inputting their initial message into the system.
This action triggers an API request to the ‘/start‘ endpoint, transmitting two key pieces
of information:

• jobid: A unique identifier for the Kronos job, facilitating subsequent data retrieval
from the analysis database.

• message: The message composed by the user, initiating the dialogue with the
LLM.

Upon receiving this information, the backend engages in a multi-step procedure:

1. It creates a new thread through the Assistants API, leveraging OpenAI’s Python
client library.

2. A message is then crafted within this newly formed thread.

3. Finally, a ‘run‘ is instantiated to process the message.

The backend subsequently relays the thread_id and run_id back to the frontend. These
identifiers are critical for the frontend to request updates on the message processing
status.

The frontend initiates a polling mechanism, periodically sending requests to the
backend every five seconds. The backend’s response can either contain the awaited
LLM message or indicate the continuation of processing. This exchange leverages a
Gunicorn-Flask setup, with distinct endpoints delineated for the initial message and the
polling actions:

POST /start
GET /status/<jobid>/<threadid>/<runid>

On the frontend side, communication with the backend is executed using JavaScript’s
Fetch API with the POST method for the initial message, and the appropriate headers
are set to ensure the correct content type. During this interaction, all relevant data is
temporarily held in the local memory, ensuring privacy and security as the data is lost
upon page refresh, which echoes the ephemeral nature of a conversation.

The diagram provided in Figure 4 encapsulates the aforementioned communication
logic, offering a visual representation of the flow from the user’s initial message to the
backend’s processing and OpenAI’s Assistants API interaction.
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Figure 4. Flow of the initial message through the conversational interface system.

Subsequent Message Processing Building upon the foundation established for initial
communications, the system is designed to maintain continuity within a conversation
thread. This is crucial for the LLM to access the history of interactions and provide
contextually relevant responses.

When the user submits additional messages after the first, the frontend leverages an
alternative endpoint to ensure the conversation’s flow within the established thread:

POST /process

The data transmitted via this request includes:

• thread_id: The identifier for the ongoing conversation thread.

• jobid: The unique identifier for the job, consistent throughout the dialogue.

• message: The new user message to be processed by the LLM.

Upon receiving the message continuation, the backend performs the following steps:

1. Submits the new message to the existing thread.

2. Commences a new run within the thread to process the message.

Following these actions, the backend enters a polling state, awaiting the LLM’s response.
The same as to the initial message, the frontend executes a systematic polling oper-

ation at five-second intervals, querying the backend for updates on the message status.
This iterative process continues until a response is received or an error is encountered.

The diagram provided in Figure 5 delineates this process, illustrating how subsequent
messages are incorporated into the existing thread and processed by the system.

The implemented method ensures that if users wish to initiate a new conversation,
they can simply refresh the page. This action clears the thread information from the local
memory, resetting the dialogue and reverting to the use of the ‘/start‘ endpoint for a fresh
interaction.
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Figure 5. Procedure for handling subsequent messages within an existing conversational
thread.

Polling Mechanism To facilitate the polling process, the backend provides a dedicated
endpoint:

GET /status/<jobid>/<threadid>/<runid>

This endpoint expects the jobid, threadid, and runid as parameters to accurately fetch
the status of a message being processed by the LLM.

Upon receiving a polling request, the backend employs the function provided by
OpenAI’s Python library. This function client.beta.threads.runs.retrieve is
instrumental in obtaining the latest status update of a specific message within the conver-
sational thread.

The backend discerns the message status based on the run_status attribute:

• If run_status is ’completed’, the backend extracts the content of the final message
from the thread’s message list and returns it to the frontend along with a ’completed’
status.

• If run_status is ’in_progress’, the backend notifies the frontend to continue
polling by returning an ’in_progress’ status.

The chosen polling interval of five seconds provides a balance between user expec-
tations for prompt responses and the system’s capacity, preventing undue stress on the
infrastructure while awaiting LLM processing completion.

Upon receipt of the ’completed’ status, the frontend stops further polling requests
and presents the response to the user. Conversely, an ’in_progress’ status prompts the
frontend to reinitiate the polling request after the designated interval.
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Frontend Implementation The frontend of the conversational interface is designed
to facilitate an intuitive user interaction, enabling seamless communication with the
backend and, ultimately, with the LLM. The implementation details provided below
outline how the frontend manages user input and the display of responses.

The chat interface on the frontend is composed of a simple structure that includes
a text field for input and a ’Send’ button for submitting messages. These elements are
constructed using a card layout that dynamically adjusts to accommodate the conversation
history.

Interaction with the chat interface is designed with user convenience in mind:

• The ’Send’ button is temporarily disabled during message processing to prevent
multiple submissions.

• The input field allows users to type their message and submit it either by pressing
the ’Enter’ key or clicking the ’Send’ button.

• The size of the chat history area dynamically adjusts based on the length of the
conversation to provide a streamlined view of the interaction.

To ensure that responses from the LLM retain their original formatting, a markdown
rendering function is implemented on the frontend. This function translates markdown
syntax into corresponding HTML, enabling the proper display of headings, bold and
italic text, links, and line breaks. The core logic of the rendering function is as follows:

• Headings are converted into HTML heading tags, maintaining their hierarchical
importance as specified by the markdown syntax.

• Text emphasis such as bold and italic is rendered using strong and em tags, respec-
tively.

• Hyperlinks are preserved by transforming markdown link syntax into clickable
HTML anchor tags.

• Line breaks in the LLM’s response are replaced with HTML break tags to maintain
the intended text layout.

To achieve that, text.replace function is used to replace all markdown heading with
HTML headings.

Data Accessibility for LLM After establishing the communication between the user
interface and the LLM, the next pivotal step involved granting the LLM access to process
data.

Initial attempts to feed data into the LLM involved direct input of CSV files containing
Kronos analysis. However, this method proved inefficient due to:
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• The potentially large size of event logs, leading to extensive processing times.

• The propensity of the LLM to commit errors in Python code, resulting in inaccurate
data interpretations.

The function calling feature offered by OpenAI’s Assistants API was identified as a
more efficient alternative. This approach involves:

• Describing the function within the API call, enabling the LLM to intelligently
decide when to generate a JSON object containing function call arguments.

• Executing function calls in the user’s environment, using the JSON generated by
the LLM.

• The model’s capability to perform parallel function calls, improving efficiency,
especially with time-intensive functions.

The function ’query_database’ was defined with specific characteristics to interface
with the database holding Kronos analysis. This function allows the LLM to generate
SQL queries, which are then processed on the backend, with the results returned to the
LLM for continued analysis.

The function configuration provided to the LLM outlines the structure and scope of
the SQL query function call:

{
"name": "query_database",
"description": "Executes a read-only SQL query on a specific database
that contains analysis on waiting times and returns the results.
The query should be limited to select statements. Use '{table_name}'
as a placeholder for the actual table name in your query. Available
columns: starttime, endtime, wtcontention, wtbatching, wtprioritization,
wtunavailability, wtextraneous, sourceactivity, destinationactivity,
sourceresource, destinationresource, wttotal.",
"parameters": {

"type": "object",
"properties": {

"query": {
"type": "string",

"description": "The SQL query to execute. Include '{table_name}' as
a placeholder for the table name."

}
},
"required": ["query"]
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}
}

This configuration serves as a blueprint for the LLM to understand the accessible
data structure, allowing for accurate and targeted data retrieval queries.

• Name: ’query_database’ – Identifies the function for SQL queries in the Kronos
database.

• Description: Executes read-only ’select’ SQL queries, ensuring only data
retrieval without modification.

• Placeholders: Uses ’{table_name}’ as a dynamic placeholder in queries for
actual table names.

• Available Columns: Lists columns like ’starttime’ and ’endtime’, aiding in
forming relevant queries.

• Parameters:

– Defined as an object specifying the SQL query format.

– Includes a ’query’ property, accepting a string with the SQL command.

– The ’query’ requires a placeholder for table names, enabling backend scripts
to adapt it based on the job context.

• Requirements: Specifies that a ’query’ is necessary for function execution.

In order to enrich the conversational interface’s capabilities for more sophisticated
insights, a suite of function descriptions was integrated additionally within the assistant
model. These functions allow the LLM to access and analyze data beyond the standard
analysis provided by Kronos. They include strategies for batching, prioritization, and
additional resource information which are not typically present in the standard Kronos
report.

Function: Discover Batching Strategies

{
"name": "discover_batching_strategies",
"description": "Returns batching strategies of an event log.
The function internally processes a pre-loaded event log and
discovers batching strategies, providing insights into batch
processing instances within a process. It characterizes each
batch with details about the activity, involved resources, batch
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processing type (sequential, concurrent, or parallel), frequency,
batch size distribution, duration distribution, and firing rules
for batch initiation.",

}

The discover_batching_strategies function serves to illuminate the batch process-
ing instances within an event log, offering information into how these batches affect
overall process efficiency.

Function: Discover Prioritization Strategies

{
"name": "discover_prioritization_strategies",
"description": "Discovers and returns prioritization strategies from
an event log. This function analyzes the pre-loaded event log to
identify case priority levels and classify process cases into
corresponding levels. It provides insights into how cases are
prioritized, ensuring that high-priority activities are executed
before.",

}

The discover_prioritization_strategies function enables the LLM to deduce how
prioritization within a process affects case handling and resource allocation.

Function: Discover Resource Calendars

{
"name": "discover_resource_calendars",
"description": "Discovers and returns list of resources and their
working calendars",

}

The inclusion of discover_resource_calendars is to give the LLM insight into the
working time of various resources, crucial for optimizing process flow.

Function: Discover Case Attributes

{
"name": "discover_case_attributes",
"description": "Discovers and returns case attributes present in the
event log. If returned data is empty, then there is no case attributes
present in the event log.",

}
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The discover_case_attributes function aims to provide the LLM with additional
context regarding the static characteristics of cases within the event log.

The integration of these function descriptions allows the LLM to generate more
targeted and nuanced queries and responses. They do not require direct input parameters
but leverage the rich data provided by Kronos’ backend infrastructure, thereby enhancing
the LLM’s decision-making support capabilities.

When the status endpoint receives a ’requires_action’ status, the backend must process
the required function(s) as per the LLM’s request. These functions, identified by a list of
tool_calls, encompass pre-defined tasks that are essential for the LLM to generate an
informed response.

The frontend’s role remains consistent: to regularly send a request to check for
updates from the LLM. If a ’requires_action’ status has been handled, the frontend will
be updated with the name of the function executed, keeping the user informed of the data
sources utilized by the LLM.

Assistant’s instructions To ensure that the assistant not only understands its opera-
tional context but also adheres closely to the requirements of processing event logs for
waiting time analysis, facilitating targeted and effective process improvements, instruc-
tions were added to the assistant. This paragraph outlines the description of instructions
provided to the assistant, but full instructions are available on the GitHub of Kronos
Backend service 7.

Instructions provided to the assistant are tiered at multiple levels to enhance its
responsiveness:

• Assistant Instructions: Broad guidelines about the assistant’s capabilities and
operational context.

• General Message Instructions: Specific directives accompanying each message,
focusing on immediate response needs.

• Direct Message Instructions: Highly detailed instructions embedded within
messages to refine the assistant’s responses. This option is not provided by OpenAI
directly, but rather a possibility for us to integrate instructions by concatenating
user message and these instructions.

The assistant is designed as an expert in process mining and process improvement,
integrating closely with the Kronos tool to enhance its capabilities. These instructions
form the backbone of how the assistant interprets and responds to user queries.

The assistant functions as an expert within the domain of process mining, specifically
tailored to work with the Kronos process-mining tool. Kronos analyses event logs to

7https://github.com/AutomatedProcessImprovement/waiting-time-backend/blob/main/
assistant-instructions.txt
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determine the causes of waiting times in business processes. The assistant’s role is to
interpret these analyses and assist in identifying and addressing inefficiencies.

The primary goal of the assistant is to facilitate the analysis of waiting time causes,
unearth inefficiencies and bottlenecks, and suggest actionable process redesigns to
mitigate these inefficiencies, ultimately aiming to reduce cycle times and enhance process
efficiency.

• Waiting Time: Defined as idle time between activities, identified during transitions
between sequentially executed activities.

• Waiting Time Cause: Direct sources of delay within a transition, decomposed into
intervals attributable to specific causes like batching, prioritization, and resource
contention.

The assistant leverages the Kronos report, which compiles detailed transition ex-
ecutions and their associated waiting times. Each transition is analyzed for potential
improvement by examining the aggregated data across multiple executions.

• Batching Strategies: Outlines various batching approaches within the process,
providing insights into batch size, frequency, and activation rules.

• Resource Calendars and Prioritization: Examines resource availability and
prioritization strategies to suggest optimal resource allocation and scheduling
adjustments.

Throughout the development phase, the focus was on ensuring that the LLM could
access sufficient and relevant data, enabling it to provide insightful and actionable
feedback on process inefficiencies and potential improvements. The implementation
of the Assistants API from OpenAI played a crucial role in this, allowing the LLM to
interact dynamically with the system and perform complex data retrieval and processing
tasks effectively.

4.3 Demo
The Kronos Web Application is accessible to users 8, offering an interface for waiting
time analysis and conversational interface.

4.3.1 Main Page Interaction

Upon visiting Kronos, the user is greeted with the main page, depicted in Figure 6. Here,
users can either search for results by a previously obtained job ID or upload their own
event log for analysis.

8http://kronos.cloud.ut.ee/
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Figure 6. The main page of Kronos where users can upload event logs.

Event logs must adhere to specific criteria: they should include a Case ID, Activity,
Start time, End time, and Resource, which collectively facilitate the mining and analysis
of process workflows. The log file’s size is limited to 30 MB and must be in CSV format.
Users can download a sample event log provided on the main page for reference.

To upload an event log, users interact with the interface shown in Figure 7. Upon
selecting or dragging a file to the interface, users are prompted to map the columns of
their CSV file to the required fields. This ensures that each piece of essential data is
correctly identified for the analysis process.

Each required field—Case ID, Activity, Start Time, End Time, and Resource—can
only be mapped once to prevent data conflicts. If the event log contains additional,
non-required columns, the user can assign them as ’Other’.

Once the mapping is complete, the user can initiate the analysis by clicking ’CON-
TINUE’. This action submits a new job to the backend, where it enters the processing
queue.

Following the job submission, the frontend displays a unique job ID to the user
and begins periodically checking the job’s status every five seconds. When the job is
completed, the frontend redirects the user to a new page where the analysis results are
presented.

4.3.2 Analysis Completion and Dashboard Interface

Upon the successful processing of an event log, users are navigated to the dashboard
page, which offers a comprehensive view of the analysis results. Figure 8 illustrates this
interface.
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Figure 7. The event log mapping interface on Kronos.

The dashboard page first presents an overview with key metrics such as the number
of cases, activities, and transitions observed within the event log. It features interactive
pie charts displaying the cycle time and waiting times distribution. These charts include
selectable options to view data aggregations either as averages or totals across different
dimensions:

• Resource Unavailability: Time lost when a resource is not available.

• Resource Contention: Time when resources are occupied with other tasks.

• Batching: Time pending for batch processes to complete.

• Prioritization: Time extended due to prioritizing other activities.

• Extraneous Factors: Time affected by factors outside of typical process control.

Users can delve into each specific reason for waiting times by navigating through
additional tabs dedicated to each category.
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Figure 8. Dashboard page showcasing the analysis results.

A selector for activity pairs allows users to filter the data to view data relevant to
specific transitions between activities. This pre-existing functionality was not modified
as part of the thesis work.

4.3.3 Conversational Interface Integration

Located at the bottom of the dashboard page, the chat interface adds a conversational
element to Kronos, allowing users to interact with the LLM directly. Exactly this part
was added as a part of research work. It includes an input box where users can type their
queries or messages and a ’SEND’ button to submit their text to the LLM for processing.

Figure 9. Chat interface for LLM interaction on the dashboard page.

Upon sending a query through the chat interface, the frontend communicates with
the backend by calling the start_request REST API endpoint. This endpoint receives
the user’s jobid, which is the identifier for the analysis job in Kronos, and the message,
which is the user’s query.

The backend then interacts with the OpenAI API to initiate a conversation thread,
sending the user’s message and creating a new run. The frontend, upon initiating this
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request, displays a loading symbol, indicating that the query is being processed by the
LLM, as seen in Figure 10.

Figure 10. LLM processing indication in the conversational interface.

Every five seconds, the frontend makes a call to the message_status endpoint
with the jobid, threadid, and runid to check the status of the message processing.
Depending on the status returned by the OpenAI system, the frontend takes different
actions:

• If the run is completed, the message content is retrieved and displayed in the chat
interface.

• If the run fails, an error code 500 is returned, and the user is informed that there is
a problem on the OpenAI API side.

• If the run requires further action, the necessary tool is invoked, and the corre-
sponding processing begins.

The user is kept informed of the status of their query within the interface. For
instance, while the query is actively being processed by the LLM, the user will see a
status message indicating "Working...", as illustrated in Figure 11.

Figure 11. Intermediary processing status in the conversational interface.

Depending on the stage of processing, the chat interface updates to reflect one of
several status messages:

• "Working...": Displayed when the LLM is actively processing the current query.
This status is accompanied by a visual indicator, such as a spinning icon, signaling
that the operation is ongoing. An example of this status is presented in Figure 11.

• "Retrieving Kronos report": Shown when the LLM is querying the database for
the results of the Kronos analysis.
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• "Discovering batching strategies": Appears when the system is identifying
batching strategies within the event log.

• "Discovering prioritization strategies": This message indicates that the LLM is
analyzing prioritization strategies used in the event log.

• "Discovering case attributes": When additional attributes of cases within the
event log are being examined, this status message is displayed.

• "Get redesign pattern info": Informs the user that the system is gathering detailed
information about specific process redesign patterns.

• "Run has failed, problem on OpenAI API side": If the LLM encounters an
issue and cannot process the request, this error message is relayed to the user.

These status updates provide users with transparency regarding the progress of their
interactions with the LLM, ensuring a clear understanding of the process and timeline
for obtaining results.

Once the run is complete and the response is ready, it is conveyed to the frontend and
presented to the user, as shown in Figure 12.

Figure 12. Completed interaction displayed in the conversational interface.

Interaction Tools and Run Status Handling: The backend is equipped with a suite
of tools to handle specific actions required by the LLM. Here is a brief overview of
possible actions and tools:

The tools available for the backend to utilize are as follows:
As users engage with the conversational interface, the system dynamically adjusts

to display the LLM’s responses. The chat box expands to accommodate the length of
the message output. When users send subsequent messages, they are directed to the
process_request endpoint, carrying the threadid forward. This maintains the context
of the conversation, allowing the LLM to recall previous messages within the same
thread. Despite this continuity, users have the option to start fresh by simply reloading
the page, which resets the conversation thread while preserving the analysis results.
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Run Status Description and Action
Completed The message is retrieved and displayed to the

user.
Failed An error is indicated, and no further action is

taken.
Requires Action The respective tool is invoked based on the

LLM’s instruction.
In progress Run is in progress and Frontend will repeat API

call in 5 seconds

Table 1. Run status and corresponding actions in the conversational interface.

Tool Interface Description
Query Database Retrieves the Kronos report from the database using an SQL

query generated by the LLM.
Discover Batching Strategies Obtains batching strategies present in the event log.
Discover Prioritization Strategies Identifies prioritization strategies used within the event log.
Discover Case Attributes Extracts case attributes, which are additional, non-mandatory

columns in the event log that remain constant throughout the
case execution.

Get Redesign Pattern Info Gathers information on specific redesign patterns, including
definitions, explanations, and examples.

Table 2. Tools utilized based on the LLM’s run status in the conversational interface.

A key feature of the interface is its support for basic markdown, enabling the LLM to
enhance message formatting for a better user experience, including headers, bold and
italic text, hyperlinks, and line breaks.

This markdown functionality ensures that the chat interface is not only informative
but also visually engaging, presenting the content in a structured and easy-to-read format.

By allowing users to communicate through a chat interface and maintaining context
throughout their session, the system provides a more natural and engaging user experience.
Support for markdown syntax further refines this interaction, presenting information in
a clear, formatted manner. The demo showcases the nature of Kronos, illustrating its
capacity to evolve and adapt in different scenarios by utilizing conversational interface.
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5 Evaluation

5.1 Content Evaluation
5.1.1 Evaluation of Improvement Opportunities Facilitation

To evaluate the efficacy of the conversational interface in facilitating improvement oppor-
tunities within process mining, an experimental approach was adopted using four distinct
event logs: procure-to-pay, claims management, device repair, and production processes.
These logs represent varied business processes, each with its own characteristics and
complexities.

The evaluation utilized a comprehensive set of 55 questions tailored to investigate
various aspects of waiting times within these logs. Derived from existing research [23],
this set of questions was refined to align with the specific aim of identifying improvement
opportunities—thus ensuring relevance to the established evaluation goals.

To ensure clarity and directness in the inquiry process, questions were adapted for the
experiment’s context. For instance, instead of asking for filtering operations, questions
were reframed to elicit direct insights into waiting time issues. This led to a distilled list
of 28 questions focused on the discovery of improvement opportunities. An additional 27
questions were created to delve into the specific causes of waiting times as cited in [17].

The experiment was conducted by issuing each question to the LLM through a
separate thread, ensuring that the LLM responded without the influence of previous
interactions. To facilitate a rapid and structured execution, a script was developed to
automate API calls to the application, collecting LLM responses into a consolidated
document.

Simultaneously, a manual analysis was conducted to establish a baseline of expected
answers, enabling a comparison against the LLM’s responses.

Correctness Assessment The evaluation began with the replication of each event log
through the interface, facilitating variability in the LLM’s responses. Cases where the
LLM was unable to provide a response were marked, and these instances were assigned
a definitive score of 0, signifying an error within the interface’s processing capabilities.

For the remaining LLM responses, a parallel assessment was conducted against the
manually formulated baseline answers. This assessment was performed by submitting
both the LLM’s response and the baseline answer to a separate OpenAI LLM ChatGPT
4 Turbo instance, which was instructed to evaluate the responses according to a specified
scoring guide:

Scoring Guide:

• 0 (No Response/Error): No response provided or a system error
occurred, preventing a response.

45



• 1 (Unrelated/Error): Response provided but unrelated or acknowl-
edges an error.

• 2 (Slightly Related): Mostly unrelated with a vague connection or
significant mistakes.

• 3 (Related but Flawed): Related to the question but with major inac-
curacies or very minimal relevant content.

• 4 (Mostly Correct): Related and mostly accurate with minor errors or
slight irrelevance.

• 5 (Fully Correct): Fully relevant and accurate with no or negligible
errors.

The assessing LLM is to strictly provide a single numerical score that reflects
the completeness and accuracy of the given answer in relation to the correct
answer.

The instructions emphasized the importance of outputting only a single digit to
represent the score for each answer’s evaluation, thus maintaining the precision of the
assessment process. Each query posed to the LLM therefore yielded three key pieces of
data: the original LLM’s answer, the baseline answer, and the scored evaluation from an
independent LLM run.

Following the initial scoring, a random sample of the questions was selected based
on the calculated sample size to ensure a rigorous verification process. Simple random
sampling, an approach described in [21], that allowed for a detailed manual review of
the LLM’s answers, comparing them against the baseline to assess their accuracy and
completeness.

The first step in the sampling process involved calculating the sample size neces-
sary to achieve a representative and statistically significant subset of responses from
the conversational interface. The sample size was calculated based on the following
considerations:

• Population Size (N ): Total number of questions answered by the LLM.

• Confidence Level (Z): Standard z-score of 1.96 corresponding to a 95% confi-
dence level.

• Margin of Error (E): Desired precision level of 5%.

• Proportion (p): Assumed proportion of the characteristic of interest in the popula-
tion, typically set at 0.5 for maximum sample size.
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The sample size was calculated using the formula for a finite population:

n =
N × Z2 × p× (1− p)

(E2 × (N − 1)) + (Z2 × p× (1− p))

This formula adjusts the sample size based on the total number of responses, providing
a statistically robust estimate of the number of responses needed for manual verification.

Once the sample size was determined, responses were randomly selected from the
complete set of LLM outputs to ensure that every response had an equal chance of being
included in the review. This random selection process helps to mitigate any bias that
might affect the validity of the evaluation.

The selected responses were then manually reviewed to compare their accuracy and
completeness against the established baseline answers.

Upon completing the evaluation, a total of 350 questions were processed and analyzed.
A statistically representative sample of 183 questions was selected for manual assessment
based on the sampling methodology previously described. The results from this manual
verification process provided a significant insight into the effectiveness of the LLM in
responding accurately to the queries posed.

Error Analysis Of the evaluated responses, a total of 12 were found to result in an
error, where the LLM failed to provide a relevant response, corresponding to an error
rate of approximately 3.4%. This indicates a relatively low rate of outright failures in the
system’s operational performance.

The average score for the LLM’s responses, excluding those cases where an error
occurred (score of 0), was calculated to be 4.3 out of a possible 5. This high average
score suggests that, when the LLM provided a response, it was generally accurate and
relevant to the queries posed, indicating a strong alignment with the expected answers.

The findings from this evaluation demonstrate that the LLM-based conversational
interface performs effectively in identifying and addressing process inefficiencies through
its responses. The low error rate coupled with a high average response score underlines
the LLM’s utility in facilitating improvement opportunities within the scope of process
mining. These results confirm the robustness and reliability of the interface, making it a
valuable tool for enhancing decision-making in process optimization.

5.1.2 Evaluation of Redesign Suggestions and Their Impact

In alignment with the methodological framework outlined, an evaluative study was
conducted to assess the practicality and impact of redesign suggestions offered by the
conversational interface. This subsection details the approach taken to evaluate the
interface’s capability to generate actionable and relevant process improvements.

The interviews, conducted online via Zoom, ranged in duration from 23 to 37 minutes,
with an average length of approximately 29 minutes. Each session was recorded using
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Open Broadcaster Software (OBS), feedback and scores were documented in real-time
to facilitate subsequent evaluation.

Participants were presented with the LLM’s analysis of a procure-to-pay process.
Through this demonstration, the conversational interface’s ability to identify bottlenecks
and inefficiencies was highlighted. The aim was to familiarize participants with the
interface’s analytical capabilities before delving into specific evaluation questions.

Following the demonstration, participants were asked a series of questions designed
to gauge the value and applicability of the LLM’s responses from a process analyst’s
perspective. This approach facilitated both quantitative and qualitative feedback, allowing
for a nuanced assessment of the interface’s utility.

Initial Question The first query posed to the LLM, "Can you identify any bottlenecks
or inefficiencies?" served as a primer for the subsequent questions. The intent was not to
evaluate the LLM’s response but to establish a common ground for understanding the
current process’s key bottlenecks.

Figure 13. Partial response from the LLM indicating top bottlenecks

The LLM’s response, indicating the top five activities with the highest waiting
times and their distribution among various causes, is partially depicted in Figure 13. A
manual verification of the provided times confirmed the response’s accuracy, ensuring
the reliability of the data presented to the participants.

The evaluation proceeded with an inquiry into the LLM’s ability to propose spe-
cific process redesigns aimed at enhancing throughput based on previously identified
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inefficiencies.

Question 2. Based on the inefficiencies identified, what specific process
redesigns would you suggest for improving the throughput of process?

LLM’s Redesign Proposals The LLM responded with targeted suggestions, recom-
mending resource scheduling and the allocation of extra resources for the first four
activities with substantial waiting times. For the last activity, it advised optimizing batch
and prioritization strategies to streamline the process further.

The participants assessed the LLM’s suggestions for their alignment with the iden-
tified bottlenecks. They acknowledged that while most proposals were relevant, the
feasibility of batch optimization was questioned, given its minor contribution to overall
waiting time.

Each participant rated the LLM’s response on a scale from 0 to 5, with 0 indicating
no value or relevance, and 5 indicating high value and direct relevance. The scores for
the LLM’s response to the second question were as follows:

Participant Value Score Relatedness Score
1 4 4
2 4 5
3 4.5 3.5
4 3.5 5
5 3.5 3.5

Table 3. Participant scores for the LLM’s second response on redesign suggestions

Continuing the evaluation, the third question posed to the LLM aimed to ascertain
the expected impact of the suggested redesigns on the overall efficiency of the process.

Question 3. What impact do you predict these suggested redesigns would
have on the overall efficiency of process?

LLM’s Impact Prediction The LLM projected that the recommended redesigns,
particularly those addressing the significant waiting times due to resource unavailability
and extraneous factors, would markedly enhance process efficiency. It anticipated
that proper resource scheduling and the addition of extra resources could considerably
diminish the waiting times for key activities, such as ’Analyzing Request for Quotation’
and ’Send Invoice’.

Feedback from participants was unanimously positive regarding the relevance of the
LLM’s predictions to the event log, reflecting a keen understanding of the process ineffi-
ciencies. While most interviewees deemed the response valuable, noting the pragmatic
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approach of the suggestions, there was a note about the generality of the predictions.
One participant highlighted that without practical implementation and simulation, the
true effect of the redesigns could not be accurately gauged.

Participants were asked to rate the value and relatedness of the LLM’s response, with
the outcomes shown in Table 4.

Participant Value Score Relatedness Score
1 4.5 5
2 4 5
3 5 5
4 3 5
5 4.5 5

Table 4. Participant scores for the LLM’s third response on impact prediction

The responses to the third question underscored the LLM’s ability to provide in-
sightful and related suggestions for process improvement. Despite some concerns about
the ability to predict the exact outcomes of the proposed changes, the participants ac-
knowledged the conversational interface’s utility in facilitating a deeper understanding of
potential process efficiencies.

The fourth query addressed to the LLM concerned the identification of potential risks
and challenges that may arise from implementing the suggested process redesigns.

Question 4. What are the potential risks or challenges associated with
implementing the suggested redesigns for process?

LLM’s Response on Risks and Challenges The LLM’s detailed response acknowl-
edged the complexity inherent in process redesign. It outlined potential risks such as
misalignment of resource scheduling with actual demand peaks, resistance to schedule
changes, the financial burden of additional resources, diminishing returns on invest-
ment, and customer dissatisfaction from altered prioritization strategies. Challenges
included the complexity of implementing new scheduling, integrating extra resources, op-
timizing batch sizes, and modifying prioritization strategies without causing operational
disruptions.

Participants provided scores reflecting the general applicability of the LLM’s re-
sponse, with some noting that the information presented was fairly generic and could
be applicable to a broad range of scenarios, not specifically tailored to the event log in
question. This broader applicability resulted in somewhat lower scores for relatedness
and value, as detailed below:

The feedback received underscores the importance of specific, contextual information
in evaluating the practicality of redesign suggestions. Despite some participants perceiv-
ing the response as relatively basic and widely applicable, the consensus highlighted
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Participant Value Score Relatedness Score
1 3.8 3.5
2 4 3
3 3.5 3
4 4 3.5
5 4.5 5

Table 5. Participant scores for the LLM’s fourth response on risks and challenges

the need for careful consideration and management of the potential risks and challenges
outlined by the LLM.

The fifth question aimed to explore whether the LLM could propose additional
strategies for process redesign based on the identified bottlenecks.

Question 5. Is there any other redesign strategies you can offer based on
bottlenecks in our process?

LLM’s Additional Redesign Proposals The LLM offered a suite of strategies beyond
the initial recommendations, aimed at enhancing process efficiency. These included
fragment elimination to reduce non-value-adding tasks, task composition to combine
smaller tasks and reduce transitions, resequencing to create a more logical task flow,
and periodic action adjustment to optimize the timing of recurring actions. The LLM
stressed that the applicability of these strategies might vary depending on the specific
process characteristics.

Participants provided their evaluations, with some expressing that the suggestions,
while broadly applicable, presented a solid foundation for beginning optimization efforts.
There was an acknowledgment that the LLM’s recommendations might require follow-up
inquiries for clarification or further refinement. The notion of adjusting the periodicity of
actions elicited some surprise due to its potentially marginal impact on waiting times.
Nonetheless, the overall sentiment was that the responses served as a valuable starting
point.

Scores for the LLM’s response to the fifth question were assigned based on the value
and relatedness to the event log:

The feedback from the participants at this stage indicates a perception of the LLM’s
output as generally applicable yet valuable in the context of the specific process being
examined. This reflects the LLM’s potential to act as a preliminary advisor in process
enhancement discussions, with its broad recommendations providing a canvas for more
detailed, process-specific analysis.

The final question for the LLM focused on proposing a specific resequencing of
activities within the event log to address the identified bottlenecks.
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Participant Value Score Relatedness Score
1 4 4
2 3 3
3 4 3
4 3 3
5 4 4

Table 6. Participant scores for the LLM’s fifth response on additional redesign strategies

Question 6. What kind of resequencing you propose in our event log? Give
specific example.

LLM’s Resequencing Recommendation The LLM recommended several resequenc-
ing strategies, particularly focusing on the "Request for Quotation" (RFQ) related activi-
ties. It suggested options such as parallel processing of tasks, deferring amendments until
after initial analysis, and streamlining the RFQ creation and amendment processes. These
recommendations aimed to reduce the considerable waiting times observed between
these activities in the event log.

The participants generally found the LLM’s response to be highly specific and closely
related to the event log’s details, reflecting the practical applicability of the suggestions
to the given process. While one participant expressed reservations about the LLM’s use
of total waiting times instead of averages, which could potentially change the perception
of bottlenecks, the overall feedback was positive.

The LLM’s resequencing proposal was rated by participants for its value and relevance
to the event log:

Participant Value Score Relatedness Score
1 4 5
2 4 5
3 5 5
4 3.5 5
5 4.5 5

Table 7. Participant scores for the LLM’s sixth response on specific resequencing

This series of questions ended with the LLM providing a well-received proposal for
resequencing activities. Participants’ scores and comments indicate a strong appreciation
for the interface’s ability to generate specific, actionable insights based on the data within
the event log, solidifying its role as a valuable tool in the process analyst’s toolkit.
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5.1.3 General Assessment of LLM’s Redesign Suggestion Capabilities

To encapsulate the series of evaluations, participants were requested to provide an
overarching rating of the LLM’s competency in offering process redesign suggestions
and associated information.

The collective ratings from participants reflected a strong confidence in the LLM’s
capability to propose meaningful redesign strategies (scores 0-5):

Capability Score
4
4
4

3.5
4

Table 8. Overall participant scores on the LLM’s ability to suggest redesigns

The participants’ assessments, characterized by high scores, outlined the LLM’s
utility as a source of redesign recommendations. Furthermore, the scores and feedback
from the impact prediction question emphasized the LLM’s adeptness in not only sug-
gesting redesigns but also in providing predictions about their potential impact. These
insights highlight the LLM’s potential as a valuable adjunct tool for process analysts in
strategizing improvements.

Conclusion The findings from the evaluations conducted through the interviews un-
derscore the LLM interface’s effective role in enhancing the understanding of process
inefficiencies. Its proficiency in generating both redesign suggestions and impact pre-
dictions illustrates its potential utility in aiding informed decision-making for process
optimization. However, the interviews also surfaced some limitations of the LLM, such
as occasionally providing general responses that may require further clarification or
context-specific tailoring. Additionally, while the LLM demonstrated a strong founda-
tional capability, participants indicated the necessity for follow-up questions in certain
scenarios, highlighting the importance of iterative dialogue for refining the LLM’s out-
puts. These insights are vital for understanding the LLM’s role not as a standalone
solution but as a collaborative tool that functions optimally when paired with human
expertise.

5.2 Performance Evaluation
The performance of the conversational interface was assessed on various metrics, includ-
ing response time and response length. During the assessment, the following observations
were made:
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• The average response time for non-zero score responses was recorded at 34
seconds.

• The average response length amounted to 1078 characters, indicating an effective
rate of nearly 32 characters per second. It is noteworthy to mention that this rate is
a simplification, as the system spent portions of the time composing SQL queries
or utilizing other tools.

A visual analysis was conducted to study the relationship between total durations and
response lengths. Utilizing the matplotlib library in python, a scatter plot was created as
shown in Figure 14.

Figure 14. Relationship Between Total Duration and Response Length

A statistical measure of the correlation between these two variables was computed
using the numpy library to calculate the Pearson correlation coefficient. The resulting
coefficient of 0.77 indicates a strong positive linear relationship. Nonetheless, outliers
were observed; particularly, longer responses tended to omit critical details, resulting in
lower scores.

The error rate throughout the evaluation stood at 3.4%, which is satisfactorily below
the target threshold of 5%. Additionally, the LLM demonstrated the capability to concur-
rently use multiple tools, such as querying the database while identifying prioritization
strategies, showcasing its adeptness at handling complex queries or addressing multiple
questions simultaneously.

Another vital aspect considered was the cost per search. Although precise cost
tracking per search was not feasible due to OpenAI’s limitations, the total expense
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incurred for testing the dataset with 350 questions over a full day was approximately 20
USD. This translates to an average cost of 18 cents per search, significantly under the
maximum allowance of 1 EUR.

Conclusion The performance metrics affirm the LLM’s efficiency and robustness in
generating timely and substantial responses. The analysis provides a clear understand-
ing of the LLM’s operational capacity and its financial viability for widespread use,
reinforcing the tool’s potential for practical application in process mining tasks.

5.3 Summary of Evaluation Results
This subsection provides a comprehensive summary of all evaluation metrics assessed
during the study. The table below aggregates the results from various evaluation aspects,
including system performance, correctness of responses, redesign suggestion evaluation,
and overall capability scoring by participants.

Performance Scores
Average Response Time (sec) 34
Average Response Length (characters) 1078
Average Characters per Second 31.7
Error Rate 3.4%
Cost Per Search (USD) $0.18

Content Scores
Average Correctness Score (1-5 scale) 4.3
Redesign Capability Score (0-5 scale) 3.9

Table 9. Consolidated Evaluation Results Summary

The evaluation results demonstrate an efficient performance with an average response
time of 34 seconds and a response length of 1078 characters, indicating a robust capability
in handling queries effectively. The low error rate of 3.4% further attests to the reliability
of the system under test conditions.

The high average correctness score of 4.3 reflects the LLM’s ability to provide
relevant and accurate responses when not encountering errors. Participant feedback on
redesign suggestions, as detailed in earlier tables, shows a general satisfaction with the
LLM’s ability to propose feasible improvements, though the degree of specificity and
practical applicability varied among responses.

The cost-effectiveness of the tool was highlighted by an average cost of 18 cents per
search, significantly lower than the set threshold, underscoring the LLM’s potential for
cost-efficient deployment in real-world scenarios.
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6 Discussion, Limitations, and Implications

6.1 Discussion
This subsection summarizes the findings from the evaluation of the LLM interface,
emphasizing its facilitation of improvement opportunities, accuracy in technical tasks
such as SQL query generation, and the implications of user interaction on the efficacy of
the LLM’s responses. The discussion aims to outline these elements to derive actionable
insights and guide future enhancements.

A significant strength observed in the LLM’s performance was its capability to
identify and facilitate improvement opportunities within various event logs. The LLM, in
most cases, selected appropriate tools for extracting necessary information, demonstrating
a high level of decision-making accuracy. This aspect was particularly evident in its
flawless execution of SQL queries, which were crafted with precision and aligned well
with the data requirements of the tasks at hand. Such capabilities underscore the LLM’s
potential as a robust tool for process analysis, providing users with reliable data insights
to inform process optimization efforts.

The evaluation highlighted the LLM’s proficiency in handling technical tasks, es-
pecially in writing SQL queries. This skill is critical in scenarios where data retrieval
accuracy is paramount. The LLM’s ability to generate error-free SQL queries most of
the time suggests that it has a solid understanding of database structures and querying
languages, which is essential for performing complex data analysis tasks effectively.
Enhancing these capabilities could further leverage the LLM’s utility in processing and
analyzing large datasets, providing deeper insights into process dynamics.

Another crucial observation from the study was the impact of user interaction and
query phrasing on the LLM’s performance. The way questions were formulated by users
significantly affected the LLM’s ability to comprehend and respond accurately. Instances
where the LLM misunderstood or oversimplified responses were often traced back to
ambiguously phrased queries or lack of specific instructions. This finding highlights the
importance of developing user guidelines that can assist users in framing their queries
more effectively to maximize the utility of the LLM.

While the LLM provided valuable redesign suggestions, the feedback indicated
that these were sometimes too generic, which could limit their direct applicability in
specific process contexts. Future enhancements should focus on contextualizing the
LLM’s learning algorithms to adapt its suggestions based on the unique attributes of each
process. Tailoring responses to fit the specific operational nuances of different industries
or departments could greatly enhance the practical value of the LLM’s recommendations.
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6.2 Implications for Research
This subsection explores the broader academic implications arising from the current
study of the LLM’s application in process optimization.

The findings from this study on the application of Language Model-based (LLM)
technologies in process optimization reveal significant research opportunities and under-
score existing gaps. The research highlighted the need for a deeper understanding of how
LLMs process and respond to complex queries within varied contexts. Future research
should aim to unravel the decision-making mechanisms of LLMs to enhance model
transparency and explainability, which are critical for their application in industries.

There is also a critical need to tailor LLMs to specific industry domains. We noticed
that while the LLM performed well in general process analysis, it often required signifi-
cant user input for context-specific responses. Investigating adaptive learning strategies
that enable LLMs to continually learn from domain-specific data and interactions could
lead to more personalized and effective AI tools. Such strategies may involve hybrid
models that combine domain-specific knowledge with the LLM’s broad capabilities,
possibly through techniques like transfer learning or model fine-tuning.

Moreover, this research showed the lack of standardized, robust metrics to evaluate
LLM performance across various applications, as own metrics were used for evalua-
tion. Developing a set of quantitative and qualitative metrics could help in accurately
measuring the efficacy and efficiency of LLM responses, serving as benchmarks for
performance across different settings.

Lastly, the appropriate balance between automation provided by LLMs and necessary
human oversight was identified due to possibility of the LLM to generate incorrect
responses sometimes. Research should explore how best to integrate LLM recommenda-
tions with human decision-making to optimize both the speed and accuracy of process
improvements, determining when automated suggestions should be implemented directly
and when they require human validation.

6.3 Implications for Industry
This subsection discusses the practical implications for industry stemming from the
findings of this study on the LLM’s capabilities in process management.

The practical implications for the industry from this study’s exploration of LLM
capabilities in process management highlight several key considerations. Because LLMs
are not ideal and may produce incorrect information sometimes, LLMs should not be
seen as replacements but as enhancements to existing workflows, capable of analyzing
extensive datasets and aiding in process improvements. Industries should carefully assess
where LLMs can be integrated into their current operations to boost productivity without
disrupting established practices.

The effectiveness of LLMs greatly depends on their customization and training to
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meet specific industry demands. Given the diversity in industry processes and require-
ments, LLMs must be fine-tuned using sector-specific data and adjusted to fit particular
operational terminologies and protocols.

Finally, clear communication is vital for the successful adoption of LLMs. The study
underscored that the quality of user queries significantly impacts LLM performance,
indicating the need for adequate training for employees on how to effectively formulate
queries.

6.4 Limitations
This subsection addresses the limitations encountered during the study, which are crucial
for interpreting the findings and recommendations with an appropriate level of cau-
tion. These limitations also suggest areas for further refinement in future research and
application of the LLM in process management.

The limitations of this study largely stem from its methodological setup and affect
how the results can be applied more broadly. The results’ applicability is restricted mainly
to the specific scenarios tested: procure-to-pay, claims management, device repair, and
production event logs. This means the findings might not directly apply to different
contexts or datasets not examined in this study.

Additionally, the quality and scope of the input data significantly influenced the
LLM’s effectiveness. The study relied on detailed event logs from specific business
processes. If the data were incomplete, outdated, or biased, the LLM’s responses could
be less accurate and helpful.

Another noted limitation was the LLM’s occasional delivery of general or unclear
responses. These responses often needed extra interpretation, showing that the LLM
sometimes struggles to provide detailed, context-specific advice without additional
input. This issue is particularly critical in complex scenarios where detailed and specific
guidance is crucial.

These methodological limitations suggest that the study’s conclusions should be
interpreted with caution, particularly when considering their application beyond the
specific scenarios tested.
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7 Conclusion
This thesis explored the integration of a Language Model-based (LLM) conversational
interface into the Kronos process mining tool, aimed at enhancing its usability and
functional capabilities. The development followed a structured methodology that incor-
porated requirements gathering, iterative testing, and rigorous evaluation of the interface’s
performance and utility.

The results demonstrate that the conversational interface improves the process of
identifying and suggesting improvements within business process management by lever-
aging LLM capabilities. The system effectively facilitated improvement opportunities,
generated accurate SQL queries for data retrieval, and provided practical redesign sug-
gestions. Error rates were low, and the response metrics indicated a high degree of
efficiency and user satisfaction. By integrating this interface, Kronos now supports a
more interactive environment where users can receive responses and actionable insights,
effectively transforming static data presentation into a more engaging analytical dialogue.
This advancement in Kronos’s functionality empowers users to make informed decisions
faster and more accurately, leveraging the sophisticated natural language processing
capabilities of the LLM.

Future developments could focus on expanding the LLM’s contextual understanding
and its ability to generate more customized responses based on specific industry needs.
Further research might also explore the integration of additional AI capabilities to
enhance decision-making processes and automate more complex process management
tasks.

The findings from this study contribute to the broader field of AI in business process
management by demonstrating the potential of conversational interfaces to enhance
analytical tools and decision-making processes.
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