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Activity-Oriented Causal Process Mining: An End-to-End Approach
Utilizing Ylearn

Abstract:
In recent decades, companies have explored data-driven methods and tools to improve
their business processes. More recently, prescriptive business process analysis became
popular among data analysts and researchers. There are many studies on the use of
prescriptive algorithms for the optimization of a variety of different business processes.
Prescriptive algorithms given the historical and/or real-time data try to discover and
recommend the best actions to improve the future outcome, e.g. what existing actions in
the advertisement process need to be changed to increase the sales. One of the prescriptive
methods approaches is Causal Process Mining which uses event logs received from the
company’s information systems and then analyses them with Causal Inference algorithms
to discover and estimate these possible changes (treatments) that would affect the final
outcome. However, all event logs can differ by the variables that are logged and the
models may become dependent on the data structure. This means that each event log
requires separate variables investigation and modeling that would match the event log
data structure. Consequently, performing these activities takes time and resources. A
more generic and automated approach could be better applicable in different business
cases and give useful results without excessive analysis or model building. For this
reason, in this study, we investigate the possibility to use only case ID, activity, and
timestamp variables of the event log for the causal inference algorithms. We propose
the experimentation software artifact that includes data preparation and integrates the
existing Ylearn causal inference tool. The approach is evaluated using five real-world
event logs. Evaluation results show that causal relationships can be detected between
activities of the event log and estimated treatment effects are comparable with other
approaches.

Keywords: Causal inference, Uplift modeling, Causal process mining.

CERCS: P170 Computer science, numerical analysis, systems, control.
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Tegevusele orienteeritud põhjusliku protsessi kaevandamine: Otsast
lõpuni lähenemine Ylearn’iga

Lühikokkuvõte:
Viimastel aastakümnetel on ettevõtted uurinud andmepõhiseid meetodeid ja vahendeid
oma äriprotsesside uuendamiseks. Viimasel ajal on andmeanalüütikute ja -uurijate seas
populaarseks saanud preskriptiivne äriprotsesside analüüs. Paljud uuringud käsitlevad
ettekirjutavate algoritmide kasutamist erinevate äriprotsesside optimeerimiseks. Ettekir-
jutavad algoritmid püüavad ajalooliste ja/või reaalajas saadud andmete põhjal leida ja
soovitada parimaid tegevusi tulevaste tulemuste parandamiseks, nt milliseid olemasole-
vaid tegevusi reklaamiprotsessis on vaja muuta, et suurendada müüki. Üks ettekirjutavate
meetodite lähenemisviis on kasutada põhjusliku protsessi kaevandamist. See lähene-
misviis kasutab ettevõtte infosüsteemidest saadud sündmuste logisid ja analüüsib neid
seejärel põhjusliku järeldamise algoritmide abil, et avastada ja hinnata neid võimalikke
muutusi, mis mõjutaksid lõpptulemust. Kõik sündmuste logid võivad siiski erineda logi-
tavate muutujate poolest ja mudelid võivad muutuda sõltuvaks andmestruktuurist. See
tähendab, et iga sündmuse logi nõuab eraldi muutujate uurimist ja modelleerimist, mis
vastaks sündmuse logi andmestruktuurile. Seetõttu võtab nende tegevuste teostamine
aega ja ressursse. Üldisem ja automatiseeritud lähenemisviis oleks paremini rakenda-
tav erinevate äritegevuste puhul ja annaks kasulikke tulemusi ilma liigse analüüsi või
mudeli koostamiseta. Seetõttu uurime käesolevas uuringus võimalust kasutada põhjusli-
ku järeldamise algoritmide jaoks ainult sündmuse ID, tegevuse ja ajatempli muutujaid
sündmuste logis. Pakume välja eksperimendi tarkvara artefakti, mis sisaldab andmete
ettevalmistamist ja integreerib olemasoleva Ylearni põhjusliku järeldamise tööriista. Lä-
henemisviisi hinnatakse viie reaalse sündmuse logi abil. Hindamistulemused näitavad, et
sündmuse logi tegevuste vahel on võimalik tuvastada põhjuslikke seoseid ja hinnanguline
muudatuste efekt on võrreldav teiste lähenemisviisidega.

Võtmesõnad: Põhjuslik järeldus, Tõusu modelleerimine, Põhjusliku protsessi kaevanda-
mine.

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria).
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1 Introduction
Every company consists of business processes which can be defined as a set of activities
that fulfills a specific organizational goal and produce an outcome. Business processes
could be dependent on the business context (e.g. car inspection process during the
roadworthiness test), or generic among businesses (e.g. accounting). Execution of
business processes produces a lot of data that could be used for management, accounting,
validation, or other purposes. The captured data is saved in different formats, e.g. cheques,
logs, documents, digital systems and etc. Analyzing the business process data can help
to optimize the process by solving problems, predicting the future of the processes, or
even recommending actions that would improve the final outcome [KMND21].

Business process analytics is a set of methodologies that can help to identify and solve
business process problems [Bay15]. Business process analytics has three main types:
(Descriptive, Predictive, and Prescriptive) which differ by the complexity and the output
that they can return [Bay15]. Descriptive analytics is the most popular one [LBAM20].
It focuses on analyzing business process data and identifying the problems in the current
or past situation. Predictive analytics tries to construct a possible trend or pattern that
can happen in the future from historical data. Usually, the output of Predictive analytics
techniques is a possible event and its mathematical probability. Prescriptive analytics
goes one step beyond and tries to predict the consequences of future events. Then its
goal is to optimize the business process by recommending business decisions that could
lead to the best possible outcome [LBAM20].

Causal process mining (CPM) is a field that bridges the gap between Process Mining
and Causal Inference, with a focus on prescriptive analytics [SD22]. CPM comprises
two main components: Causal discovery and Causal estimation algorithms. Causal
discovery analyzes the data to identify potential causal relationships between variables
and outcomes, essentially uncovering possible treatments based on the available data.
On the other hand, Causal estimation investigates the potential effects of the identified
treatments on the outcome, aiming to understand the causal impact. By combining these
two components, CPM provides valuable insights into understanding and optimizing
processes through causal relationships1.

In recent studies [SD22], [BTD+20], [TDRM18], researchers have explored CPM
algorithms and their application to process event logs. However, none of these studies
have presented a comprehensive solution that combines both Causal discovery and
Causal estimation in a single framework. One of the reasons for this gap is the inherent
uniqueness of business event logs, as they often contain a distinct set of attributes
that can vary depending on the specific business context. Developing a custom CPM
model tailored to match each company’s unique data and processes requires significant

1Marked paragraphs were written from a combined effort of the student and ChatGPT (06.04.2023),
i.e. a language model whose training is based on a large number of different text sources. ChatGPT is
developed by OpenAI. For more information about ChatGPT and OpenAI: https://openai.com.
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resources, which only a tiny fraction of companies possess. To solve this problem, our
approach utilizes an existing causal tool capable of automatically analyzing data from
any business process, uncovering potential treatments, and estimating their effectiveness.
By doing so, we aim to provide actionable recommendations for process improvement1.

This thesis focuses on the investigation of a minimal set of attributes, namely case
ID, activity, and timestamp, which are commonly found in any process data or event
log. By leveraging a causal tool, the aim is to automate the process of discovering
causal relationships and estimating their effects based on these fundamental attributes.
This approach enables the exploration of causal relationships and their impact without
requiring extensive additional information, thereby facilitating the analysis of process
data in a more efficient and accessible manner 1.

The main contribution of this thesis is the development of a tool that integrates
Ylearn2 [Yan22], providing an interface for causal algorithms and data preparation
functionality. In addition to the tool itself, the thesis presents performance metrics
obtained from experiments conducted using the tool. This developed tool is intended
to be utilized by researchers and data analysts, enabling them to perform experiments
with their own process logs. Furthermore, the captured metrics can serve as a baseline
for future benchmark studies in the field. Overall, the tool and its accompanying metrics
offer valuable resources for conducting causal analysis and advancing research in this
domain.

In the chapters below, we provide background with algorithms and evaluation metrics
with an overview of related work; a method chapter with a description of our research
process; a summary of the proposed approach and its implementation; a developed tool
evaluation and its results, and a conclusion with future work.

1Marked paragraphs were written from a combined effort of the student and ChatGPT (06.04.2023),
i.e. a language model whose training is based on a large number of different text sources. ChatGPT is
developed by OpenAI. For more information about ChatGPT and OpenAI: https://openai.com.

2https://ylearn.readthedocs.io/en/latest/index.html

7

https://openai.com
https://ylearn.readthedocs.io/en/latest/index.html


2 Background and related work
In this chapter, we present principles of the Causal Process Mining (CPM) and Causal
Inference (CI) field. We begin with an overview of CPM and CI. After that, we briefly
describe the Causal discovery, Causal estimation, and Uplift modeling processes. Then
we provide information about the evaluation metrics that were used in the tool evaluation.
Finally, we end this chapter with an overview of related work.

2.1 Causal Process Mining
CPM can be described as a sub-field of Process Mining and Causal Inference that
investigates possibilities to find causal relationships between variables of the process
event log [WPRM22].

Process Mining (PM) is a relatively young research discipline that involves computa-
tional intelligence and data mining, process modeling and analysis. The idea of PM is to
discover, monitor, and improve real processes by extracting knowledge from the event
logs readily available in today’s software systems. Process Mining includes automated
process discovery (i.e., extracting process models from an event log), conformance
checking (i.e., monitoring deviations by comparing model and the log), organizational
mining, automated construction of simulation models, model extension, model repair,
case prediction, and history-based recommendations. The main data entity used in PM is
an event log [KMND21]. An event log can be defined as a collection of business process
cases. Every case is a sequence of events that has several variables: a case ID, activity, a
point in time - (timestamp), and additional optional variables (e.g. resources, employees,
and etc.). Causal PM specializes in event log investigation using CI algorithms.

2.2 Causal Inference
Causal Inference (CI) is a set of methods that aims to find and estimate the relationships
between cause and effect from historical data. Together causal relationships form a
Causal model which is the main instrument of the Causal Inference. CI is used in a
variety of domains, including business process mining and monitoring [SD22].

The Causal Inference process can be divided into two main sub-processes: Causal
discovery (CD) and Causal estimation (CE). The CD is the process that tries to find
causal relationships (also referred to as cause-effect relationships between two variables
when one directly influences the other - or one event makes another happen) and build
a causal model from those discovered relationships. Causal estimation is the process
that estimates the size of the treatment effect on the outcome. This process is based
on the causal model discovered during the CD process, and also all available historical
data [Nea20]. The outcome variable in the CE and CD is defined as the variable that
has a causal relationship (as an effect end) with treatment, confounder and covariate
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variables and is influenced by those variables. The outcome variable is the one that Causal
Inference tries to improve. The, treatment is the variable that has a causal relationship
(as a cause end) with the outcome variable. The Causal estimation tries to calculate what
is the effect of changing the treatment values on the outcome. The other possible variable
types are confounder, covariate, instrument. The confounder is the variable that has a
causal relationship (cause-end) with both treatment and outcome variables [Tho23]. The
instrument variable influences only the treatment and covariate only the outcome (see
figure 1).

Figure 1. Example of the causal DAG. I - is the instrument, T - treatment, Con -
confounder, Cov - covariate, O - outcome.

2.3 Causal discovery and estimation
In this subsection, we describe Causal discovery and Causal estimation algorithms.

2.3.1 Causal discovery algorithm

Causal discovery (also called Causal search) algorithms try to identify the causal relation-
ships between values and build the causal model. The causal model is usually represented
as a DAG (Directed Acyclic Graph) - where nodes are variables, edges are discovered
causal relationships, and the direction of the edges points from the cause variable toward
the effect variable. As is shown in figure 1, if the historical data about the outcome is
known, the CD algorithms can directly find and return the set of potential treatment
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variables (those variables that have the biggest impact on the outcome) and confounders -
variables that influence both: the outcome and the treatment variables [NPR+22].

Learning a causal DAG from the data is an NP-hard problem because of the acyclicity
requirement that is hard to ensure efficiently [ZARX18]. For this reason, there are a
variety of approximate algorithms that tries to optimize the search of the DAG.

2.3.2 Causal estimation algorithm

Causal estimation algorithms try to estimate the treatment effect on the outcome also
considering confounders. This could help to predict how good the treatment can be
before applying it and wasting resources or searching for the best treatment option. The
problem that Causal estimation algorithms have to solve is that the object cannot be
treated and not treated at the same time, so it is only possible to observe the outcome of
only one of those two states. So, instead, the effect is estimated by learning the structure
from the historical data (training set) and a causal model. Then estimator can calculate
metrics that show how good the treatment could be if applied [CVMP23].

In figure 2, we present the overview of the Causal estimation algorithm components.
At first, the causal estimator learns the data structure from its training dataset and causal
model (outcome, confounders, covariates, instruments, and treatment). Then given the
test data, the estimator calculates the treatment effect on the outcome. The estimated
effect is returned as ATE or ITE (see subsection 2.5) or other causal effect metrics.

Figure 2. Causal estimation algorithm overview1.

1The arrows represent the data flow, and green document artifacts indicate inputs and outputs.
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2.4 Uplift modelling
In this subsection, we describe Uplift modeling.

In the causal data structure, each observation (in the context of this research we call
observation as the case) can be assigned to one of four categories based on the outcome
(successful or not successful) and treatment (treated or not treated) dimensions (see
figure 3):

Figure 3. Cases categorization based on two dimensions: outcome and treatment1.

1. Sure things: cases that end in success independently from treatment. Treating sure
things does not improve the rate of successful outcomes but takes additional resources
that are spent for the treatment.

2. Lost causes: cases with an unsuccessful end that is independent of treatment.
Similar to sure things, treating lost causes will not improve the rate of successful outcomes
but would take additional costs or resources.

3. Do-not-disturbs: cases that end unsuccessfully because of treatment and end
successfully if not treated. Consequently, treating do-not-disturbs will not improve the
successful outcomes rate, on the contrary, the treatment would even worsen the situation
and also would take additional costs and resources. When many do-not-disturbs cases
are included in the treatment, it could be even better, in terms of the cost of resources, to
not apply the treatment at all.

4. Persuadables: cases that end successfully only because they are treated. These are
1Figure was adapted from [DMV18].

11



the cases that should be treated. They increase the rate of successful outcomes if their
treatment does not take too many resources. Persuadables are exactly the cases that need
to be selected and should be found by uplift modeling.

The main goal of Uplift modeling is to find the category of the case - especially
if it is persuadable or do-not-disturb. This categorization depends on the treatment
characteristics (e.g. The treatment with x value could leave the case as a lost cause, but
with 2x (two times higher) treatment value the case could become persuadable). Uplift
modeling is applied in marketing or political campaigns, medical treatment and etc.

Uplift modeling similar to CE involves determining the causal effect of a treatment
on an outcome, enabling the identification of the most effective treatment to improve the
outcome. By simulating potential scenarios, uplift models provide a way to predict the
future based on various control variables.

Let’s assume that the cases are randomly divided into two groups: treatment and
control. A case can be either treated (treatment group) or not treated (control group).
Then Uplift score is defined as the difference between the probability of a case ending
with a successful outcome if treated and the probability of the case ending with a
successful outcome if not treated, or:

U(Xi) := P (yi = 1|xi; ti = 1)− P (yi = 1|xi; ti = 0)

Where X is a vector of independent variables and

X = x1, . . . , xn

and Y is the binary outcome variable, and yi = 1 means i -th case ended with a
successful outcome. T variable shows if the case is in the control or treatment group,
and ti = 0 means i -th case is in the control group, and ti = 1 means i -th case is in
the treatment group. P is a probability as estimated by a model [DMV18]. Overall, the
uplift refers to the difference in the effect of the treatment.

2.5 Evaluation metrics
In this chapter, we provide a summary of the Causal estimation model metrics. Those
metrics are used to measure the causal effect of the treatment on the outcome and also to
compare the performance of CE algorithms.

Individual treatment effect (ITE) - the difference between a case outcome when it is
treated and when it is not. It is defined:

m1(x) = E[y1|x]

12



,
m0(x) = E[y0|x]

then the function
g(x) := E[y1 − y0|x] = m1(x)−m0(x)

is the expected treatment effect when the case is treated relative to when not treated on
an individual unit with characteristics x, or the Individual Treatment Effect. y1 is the
outcome when treated, y0 is the outcome when not treated [SJS17].

Average treatment effect (ATE) - a commonly used causal effect metric. It is defined
as:

ATE = E[y1 − y0]

where y1(i) is the outcome value if the case i is treated and y0(i) is the outcome value if
the case is not treated. However, it is impossible to know both values of y0(i) and y1(i)
because the case cannot be treated and not treated at the same time [Zha17]. Various CE
algorithms try to predict the unknown value of y and calculate the ATE. The interpretation
of ATE value is the difference in risks that would be measured if every case in the dataset
was treated, versus if every case in the dataset was not treated, which is equivalent to the
average of all individual treatment effects [NW23].

Qini curve - the Uplift model comparison and validation metric. Firstly, the uplift
model sorts cases in descending order by their treatment effect scores (from the best
case for treatment to the worst one). Then it plots the cumulative difference between
the outcome rates of the treated group and not treated (control) group. The resulting
curve is known as the cumulative uplift or Qini curve. Usually, there is a Qini curve
and a random curve drawn in the graph for comparison (see the example in figure 4).
The random curve is constructed by giving a uniform outcome to each case from the
population and has a linear close to a straight-line incremental outcome. Then the Qini
coefficient (also known as Qini score) is the difference between the area under these
curves. A positive Qini coefficient represents a good performance of the model, while a
value close to the random curve shows that the model did not return any valuable insights.
The maximum possible Qini coefficient depends on the input data. Among alternative
models that process the same data, the method that returns the highest Qini coefficient is
preferable [GTFNZ+23]. E.g. in figure 4 model2 is better than model1 because its Qini
curve is higher at every point in the graph.
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Figure 4. Qini curve example.

2.6 Related work
This subsection is an overview of related scientific studies that were written on the
Process mining and Causal inference field.

The idea to combine Process mining and Causal inference methodologies into CPM
is investigated in Shoush et al. [SD22] and Bozorgi et al. [BTD+20] studies.

In Shoush’s et al. paper [SD22], the authors study the possibility to apply Causal
Inference for the Prescriptive process monitoring (PrPM) process. They define PrPM as
a branch of process mining techniques. They also state that PrPM is a process during
which the prescriptive model observes business process event logs in real time and
depending on the situation can recommend or directly intervene and make a decision
in order to improve process performance. The authors also included the limitation of
resources for interventions and used the Causal Inference approach for the estimation
of the interventions to the outcome (if there is a causal relationship between variables
X (cause) and Y (effect), then the intervention is a change of variable X value that
should change the value of variable Y ). Their goal was to maximize a cost function
with resource constraints. The evaluation showed that their new approach gives better
results than predictive non-causal approaches. In the approach used in this thesis, Causal
Inference is also used for the process logs investigation. The difference is that our work
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does not consider resources, instead, we focus on only activity and timestamp variables,
and our approach works with only historical data and does not aim to optimize the
process in real-time.

Teinemaa’s et al. study [TDRM18] is a review of existing Predictive Process Monitor-
ing methods. The authors try to solve the problem of unclear characteristics, applicability,
and poor comparability of different PrPM approaches by presenting a systematic review
and the classification of outcome-oriented PrPM techniques and experimental compar-
ison/benchmark of eleven selected methods by using nine real-life event logs. In this
thesis, we use events preprocessing methods (Aggregation and One Hot Encoding) and
datasets from their Evaluation chapter [TDRM18] but the difference is that our focus is
investigating Causal Inference methods.

Bozorgi et al. in their paper [BTD+20] introduce an Action Rule Mining method
for examining business process event logs with the goal of producing suggestions for
possible treatments that would optimize the probability of receiving the wanted outcome.
The Uplift trees were used as a machine learning method for causal rules discovery.
The model identifies causal relationships between treatment and outcome while also
accounting for the influence of confounding variables. The evaluation of this approach
was done by comparing its result with the recommendations of process mining experts.
We use a different approach - instead of Action Rule Mining we use Causal discovery
to discover possible treatment variables and instead of Uplift trees, we used Causal
estimation algorithms for estimating the treatment effect. We used the results of Bozorgi’s
et al. study in our evaluation (see paragraph 5.3.2).

The approach of applying Causal discovery and Causal estimation in one end-to-end
pipeline is proposed in Geffner’s et al. paper [GAF+22]. The authors develop Deep
End-to-end Causal Inference (DECI), a single flow-based non-linear additive noise model
that takes in observational data and can perform both Causal discovery and estimation,
including average treatment effect (ATE) estimation. Their evaluation results show the
competitive performance of DECI in comparison with relevant baselines for both Causal
discovery and ATE estimation. Their proposed method of Deep end-to-end Causal
Inference has six steps: 1) Observe data corresponding to X variables; 2) Learn the
causal relationships among all variables; 3) Learn the functional relationships among
variables; 4) Select intervention and target variables; 5) Estimate causal quantities such as
ATE; 6) Make optimal decisions and take action. The first and fourth step is manual and
has to be done by the user of the pipeline while the other steps can be automatically done
in their developed DECI model. The principle of having Causal discovery and Causal
estimation together in one pipeline is also used in our research. However, the difference
between the pipeline in our research and their pipeline is that only the first step (data
preparation) in our approach is manual and we also add Uplift modeling instead of their
sixth step: "Make optimal decisions and take action step". We chose to not include this
tool and the DECI model in further investigation in our research because its repository

15



with the source code of the model was still being updated during the time we started our
research.

The review of other Causal algorithms and tools was done by Guo et al. [GCL+18].
The focus of this paper is on examining the impact of having a large amount of data
on the capability to understand and learn about causal relationships and effects. The
main question that this study tries to answer is: "How does the process of learning about
causality differ or resemble the present age of big data, compared to the traditional ap-
proach?" The research presents a comprehensive and organized review of the established
and cutting-edge techniques for learning causal relationships, in addition to exploring
the connections between CI and machine learning [GCL+18]. This paper also provides
a link (https://github.com/rguo12/awesome-causality-algorithms) to the code
repository which contains scientific papers and links to source codes, tutorials, and other
information about more than 100 Causal Inference algorithms. This set of algorithms
was used in this thesis as a starting point for the selection of the existing Causal Inference
tool.
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3 Method
In this chapter, we present the method that we used for developing the tool. Our method
is divided into four steps that are based on Design science research methodology steps
[PTRC07]: 1) Problem identification & Motivation; 2) Objective of the Solution; 3)
Requirements gathering and development; 4) Evaluation methods. After describing all
these steps we explain how we used the AI language models to assist the writing of this
thesis.

3.1 Problem identification & Motivation
The problem was identified as the goal to investigate causal process mining from a more
generalizable perspective. E.g. in Bozorgi’s et al. work [BTD+20], the approach is
dependent on the additional dataset variables that could not appear in other business
process event logs. The Shoush’s et al. study [SD22] investigates resource constraints that
also could be unknown in simple event logs. While the activity, case ID, and timestamp
variables are included in almost event logs, an approach that could give beneficial results
from only these variables and has a potential for high applicability. Also having an
End-to-End pipeline with Causal discovery combined with Causal estimation algorithms
would automate the manual work performed by the data analysts. The requirement to
use the generic Causal Inference tool in the study was added because there is a variety
of available CI tools [GCL+18]. These tools lack comparison and adaptation research,
so we decided to select and use one of them in our solution (the tool selection process
is described in the subsection 3.3). Our developed solution tries to cover these points
mentioned above by preparing case ID, activity, timestamp event log for the Causal
Inference. And then it combines the CD and CE algorithms from the existing tool in
order to discover a treatment and its effect.

3.2 Objective of the Solution
The solution objective is to facilitate Causal Inference experiments with real-world event
logs. The existing Causal Inference tool provides generic interfaces for the experiments
with a selected causal discovery or estimation algorithms, and the data preparation step
is left to the users of this tool. Our solution integrates those interfaces and adds a data
preparation feature for the activity variable encoding. It also expands the functionality by
allowing to perform experiments with several selected or all CE and CD algorithms from
the generic tool in one pipeline.

3.3 Requirements gathering and development
Functional requirements for the solution were gathered from the problem identification.
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Based on the solution objective we divided the development process into three main
steps: 1) Selection of the Causal Inference tool; 2) Integration of the selected Causal
Inference tool; 3) Development of the code for the data preparation step. The selection
of the CI tool started from the causal algorithms and tools source [GCL+18], then
inclusion criteria were introduced based on gathered requirements and sources from the
related work (see subsection 2.6). While the related work was found using supervisors’
knowledge. Then algorithms from the source were investigated based on the introduced
inclusion criteria, and the best tool was selected. The integration was done based on
the interfaces that were discovered in the selected tool. We wrote the code needed
for the integration and data preparation step in the same programming language and
technologies as the selected Causal Inference tool in order to maintain consistency and
avoid interoperability problems that occur integrating several programming languages in
one project. The techniques for the data preparation were selected based on the problem
identification and the source [TDRM18] from the related work (see subsection 2.6). The
development process was organized using the iterative-incremental model of two weeks
cycles for the duration of two months. The feedback was received from the supervisors
and improvement based on the feedback was done in the next cycle. The choice of
this development organization model was made because of the need to perform initial
experiments before the final version of the solution.

3.4 Evaluation methods
The sources for the evaluation technique selection were the problem identification and
studies from the related work (see section 2.6). The evaluation step was divided into four
substeps: 1) Dataset selection; 2) Metrics selection; 3) The execution of experiments; 4)
Results analysis. Dataset selection was started by constructing requirements for the event
logs. Then datasets from the related studies [TDRM18, BTD+20] were selected based
on those requirements. Metrics selection was done based on the problem identification
and requirements for the solution. The execution of experiments was performed using the
datasets from the first substep on the developed solution. During the execution metrics
from the second substep were calculated. Results analysis consisted of metrics results
analysis and comparison with the other studies’ findings.

3.5 The use of AI
The AI models: ChatGPT 1, and Grammarly2, were used to assist in the writing of this
thesis. These models were used only to improve the quality of the thesis style and do
not contribute to the results of the experiments or the analysis. The use of ChatGPT was
done by writing the initial version of paragraphs by ourselves and posting the written
paragraph with the query: "Rewrite this paragraph in academic style: <paragraph>".
All paragraphs that were written with the assistance of the ChatGPT are marked with a
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footnote. Grammarly was utilized in the Overleaf3 tool in order to check the grammar of
the text and fix mistakes. Overleaf was used for the writing and formatting4 of this thesis.

1ChatGPT - a language model whose training is based on a large number of different text sources.
ChatGPT is developed by OpenAI. For more information about ChatGPT and OpenAI: https://openai.
com.

2Grammarly - an online writing tool that provides automated grammar, spelling, and punctuation
checking. For more information about Grammarly: https://www.grammarly.com/.

3Overleaf - an online platform for collaborative writing and publishing of scientific and technical
documents using LaTeX. For more information about Overleaf: https://www.overleaf.com/.

4Document format used for this thesis was taken from the template: https://www.overleaf.com/
latex/templates/unitartucs-thesis-template/hvprxmvkzywk.
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4 Implementation
In this chapter, we present an overview of the proposed evaluation tool. The chapter is
divided into two subsections: the Requirements subsection is the design and functionality
description of the approach, and the Implemented solution subsection is the overview
of the evaluation tool that was implemented to perform experiments and evaluate the
approach.

4.1 Requirements
In this subsection, we present the pipeline for the utilization of our End-to-End Causal
Inference approach. The pipeline consists of four steps: 1) Input data preparation; 2)
Causal discovery; 3) Causal effect estimation; 4) Uplift modeling (see figure 5). In the
following paragraphs, we describe in detail each of the steps.

Figure 5. Pipeline steps diagram1.

4.1.1 Data preparation

This step consists of the data preparation activities, to prepare the data for the next steps
of the pipeline. The input of this step is the event log; the output is the train and test
data for Causal Inference steps. This step has three substeps: 1.a Event log attributes
preparation; 1.b Data encoding; 1.c Data split (see figure 6).

1Arrows represent the data flow.
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Figure 6. Overview of the Data preparation step1.

Event log - event log is the initial input of the whole approach. Requirements for the
event log were formulated according to the approach:

1. Event log should consist of cases - sequences of activities (events).

2. Every event in the event log should have these attributes (other attributes are
optional) and types: Case ID (string); Activity (string); Timestamp (datetime).

3. Event log should be saved in .csv format.

It is worth noting that the absolute majority of all event logs hold these requirements.
Additional preparation might be needed to transform the event log to the .csv format.
The template of the event log that corresponds to these requirements can be seen in table
1.

1Arrows represent the data flow. All data (green document artifacts) is saved in .csv format
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Table 1. The template of the event log for the data preparation step.

Case ID Activity Timestamp
CASE_1 ACTIVITY_1_1 TIMESTAMP_1_1

...
CASE_1 ACTIVITY_1_M TIMESTAMP_1_M

...
CASE_N ACTIVITY_N_1 TIMESTAMP_N_1

...
CASE_N ACTIVITY_N_K TIMESTAMP_N_K

Event log attributes preparation substep - during this substep the outcome of the
case should be formulated as a binary variable and added to the event log. If the outcome
value for case c is 1, then when adding it to the event log, it should be 1 next to all
activities of case c. Because the fact that the outcome is dependent on the event log, this
substep should be implemented separately for each event log. The output of this substep
should be the event log enriched with the outcome variable. The example of an event log
with the outcome is visualized in table 2.

Table 2. The template of the event log after the addition of the outcome.

Case ID Activity Timestamp Outcome
CASE_1 ACTIVITY_1_1 TIMESTAMP_1_1 0

...
CASE_1 ACTIVITY_1_M TIMESTAMP_1_M 0

...
CASE_N ACTIVITY_N_1 TIMESTAMP_N_1 1

...
CASE_N ACTIVITY_N_K TIMESTAMP_N_K 1

Data encoding substep - data encoding substep is needed to encode the categorical
activity variable. This substep is divided into four smaller phases:

1. Sort the event log.

2. Encode the activity variable.

3. Add activities duration to encoded variables by multiplying them by the calculated
duration.

4. Aggregate all variables by case ID.
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In the first phase, the event log should be sorted by case id(as the first level of the
sort, order: ascending) and timestamp (as the second level of the sort; order: ascending).

For the activity encoding phase, the One Hot Encoding method is used. One Hot
Encoding is a commonly utilized encoding scheme [PPP17]. It compares each level
of the categorical variable to a fixed reference level. One hot encoding transforms a
single categorical variable X with n elements and d unique categories, to d new binary
variables with n elements each. Each new variable represents one category from the
initial X variable. Each element in the new variable specifies the presence (1) or absence
(0) of the category in the previous variable X [PPP17].

In the third phase, the activity duration is calculated by subtracting two timestamps of
consecutive activities of the same case, the last activity in the case (which does not have
the next timestamp to calculate the duration) is set to have a default 0.01 sec. duration.
Then encoded variables are multiplied by the calculated activity duration in order to get
the duration dk > 0.0 in the encoded activity variable k when the activity k was observed
in the case and dk = 0.0 in the encoded activity variable k when the activity k was not
observed in the case.

In the fourth phase, we use the activity aggregation method from Teinamaa’s et al.
paper [TDRM18]. We group activities by case id, then remove case id, timestamp
variables, and other optional variables that depend on the event, and then aggregate the
activities into one row by performing a sum of each case encoded activities durations.
After this phase, each column (except the outcome) represents distinct activity and each
row represents a distinct case. Then if the value in the cell is equal to d and is more than
0.0 it means that the activity took d time in the case and if the d is equal to 0.0, then the
activity was not observed in the case.

The example of the end result of the encoding substep is visualized in table 2.

Table 3. The template of the event log after the encoding substep when the dataset has k
distinct activities and n distinct cases.

Outcome Activity_1 ... Activity_k
0 d11

1 ... 0.0 2

...
1 0.0 2 ... dkn

3

Data split - this substep is required to separate the prepared data into training and
testing parts, in order to validate the performance of the estimation models. The data

1d11 - The sum of Activity_1 duration in the first case.
20.0 - means that the activity in that particular case was not observed.
3dkn - The sum of Activity_k duration in the n-th case.
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should be shuffled before the split and the proportion for the train and test size is selected
depending on the resulting event log size (number of cases).

4.1.2 Causal discovery step

The Causal discovery step is required to learn the causal model of the data by getting a
causal graph - especially to capture possible treatment variables. The input of this step is
the train data and outcome variable name from the Data preparation step. Then based
on the settings one or many Causal discovery algorithms (in the latter option we use the
execution of many CD algorithms to compare them) are executed and return the causal
graph(-s) as the output of this step (see figure 7). The causal graph is represented as the
adjacency matrix of the graph. Where the adjacency matrix is a square matrix G that has
v rows and columns, where v is the number of variables from the train data and each
variable is represented by the number from 1 to d. Then the matrix element Gij = 0 if
i and j variables do not have a causal relationship or Gij > 0 if i causes j to happen
(1 ≤ i, j ≤ v) [Big93].

Figure 7. Overview of the Causal discovery step1.

4.1.3 Causal estimation step

The Causal estimation step is needed to gather the causal effect metrics from the dis-
covered possible treatment. The step is divided into two substeps: a) Fit (or estimator
training); b) Estimate (prediction of the trained estimator) (see figure 8).

The input of the Fit substep is the causal graph from the Causal discovery step to give
the estimator potential treatment variables and train data with outcome variable name
to get the outcome from train data. The Fit substep ends with a fitted estimator that is
ready to estimate the causal effect between treatment and outcome and will also be used
in Uplift modeling.

1Arrows represent the data flow.
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The input of the Estimate substep is test data that is prepared in the Data preparation
step. Also, it uses the fitted estimator for the causal effect estimation. The output of this
substep is Causal effect metrics: ITE and/or ATE (see subsection 2.5).

Figure 8. Overview of the Causal estimation step1.

4.1.4 Uplift modeling step

The Uplift modeling step is needed to draw a Qini curve for model validation and
comparison. The step is divided into two substeps: a) Select one treatment; b) Perform
Uplift modeling (see figure 9).

The input of the "Select one treatment" substep is the causal graph from the Causal
discovery step. The causal graph provides the set of treatment variables and during this
substep, one discrete treatment variable should be selected (because Uplift modeling is
only performed on one discrete treatment variable at the time).

The input of the "Perform Uplift modeling" substep is a Fitted estimator from the
Causal estimation step and test data prepared during the Data preparation step.

The input of the estimate step is test data that is prepared in the Data preparation
step. The Uplift model uses the Fitted estimator to calculate the uplift score and then the

1Arrows represent the data flow.
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Qini curve for the test data. The output of this substep is Uplift metric: Qini curve (see
subsection 2.5). After this substep, if there are more possible discrete treatment variables
from the causal graph, then the substeps can be repeated again with the new treatment
variable until all discovered discrete treatment variables are used in the Uplift modeling.

Figure 9. Overview of the Uplift modeling step1.

4.2 Developed solution
To evaluate the End-to-End pipeline proposed in subsection 4.1 we developed an Evalua-
tion tool that consists of two main components: The Data preparation module and the
Causal Inference toolbox. The Data preparation module facilitates the Data encoding
and data split substeps from the Data preparation step as the outcome preparation sub-
step should be implemented by the users of the tool for each event log separately. The
Causal discovery, Causal estimation, and Uplift modeling steps were implemented using
the Ylearn Causal inference library [Yan22]. Finally, the Evaluation tool collects the
results from the Causal Inference toolbox, saves them, and returns them to the user (see
figure 10). The implemented tool corresponds to the design and functionality description
in subsection 4.1.

1Arrows represent the data flow.
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Figure 10. Implemented pipeline components diagram 1.

4.2.1 Technology selection

In this part of the chapter, we list the technology used in the Evaluation tool and the
reasons for each selection. Then we describe selected Ylearn tool features.

Causal inference tool selection - to evaluate the approach we needed the tool that
would provide the automatic pipeline for the Causal Inference steps: Causal discovery,
Causal estimation, and Uplift modeling. Based on the design states in subsection 4.1, we
formulated these inclusion criteria for the tool:

1. The tool is not dedicated to investigating only one specific problem - should provide
several different options for the same problem.

2. The tool should have Causal Inference (can find the causal graph), Causal estima-
tion (can estimate ATE), and Uplift modeling features.

3. The priority should be given to well-documented tools that provide a clear descrip-
tion of functions and classes and give use examples.

4. The priority should be given to the tools with straightforward installation and setup
(provides installation and environment setup instructions).

1Arrows represent the data flow.
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The main source for the tool search was "A Survey of Learning Causality with Data:
Problems and Methods" [GCL+18] which has a list of more than 100 causal algorithm-
s/tools/methods. After the first review of that list, 8 tools that match the first inclusion
criterion were selected for further investigation: Trustworthy AI, YLearn, DoWhy,
EconML, Uber CausalML, JustCause, WhyNot, scikit-uplift. Then the comparison
against the remaining inclusion criteria of those 8 tools was done (see table 4).

Table 4. Comparison of the Causal Inference tools.

Tool name Study Link to source code Inclusion criteria
2 3 4

Trustworthy AI [ZZK+21] Python - - +
YLearn [Yan22] Python + + +
DoWhy [KS18] Python - + +
EconML [SLO+21] Python - + +
Uber CausalML [CHL+20] Python - + +
JustCause - Python - - +
WhyNot [MHT+20] Python - + +
scikit-uplift [MS20] Python - + +

As presented in the table 4 the Ylearn tool was the only one that matched all inclusion
criteria and was selected for the use in Evaluation tool.

Evaluation tool technologies - the evaluation tool was written in Python3.8.161 pro-
gramming language. The selection was done to ensure interoperability with the Ylearn
tool. In table 5, we present other Python libraries and tools that were used in the
Evaluation tool:

1https://www.python.org/downloads/release/python-3816/
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Table 5. The overview of the Python libraries or tools used for the Evaluation tool.

Tool or library
name

Reason for use Link

Conda Packages management Documentation
Jupyter notebook Data preparation and experi-

ments
Documentation

pandas Data preparation and results Documentation
numpy Data preparation Documentation
scikit-learn Data encoding and split Documentation
NetworkX Causal graphs Documentation
Matplotlib Results Documentation
pytest For data encoding unit tests Documentation
Ylearn Causal discovery, Causal in-

ference, Uplift modeling algo-
rithms

Documentation

4.2.2 Ylearn toolbox

The Ylearn (a pun for "learn why"), is a Python package for CI that supports various
aspects of Causal Inference ranging from causal effect identification, estimation, causal
graph discovery, etc. It is freely available for use. Release 0.2.0 was used in this
research. The documentation can be found: https://ylearn.readthedocs.io/en/
latest/. The package provides algorithms for Causal discovery and estimation also
Uplift modeling and other feature related to Causal Inference. The tool also provides an
All-in-One feature, to perform Causal Inference algorithms while only using one Class.
This flexible feature was used in our solution. In table 6 we list the Ylearn All-in-One
feature methods that were used in our solution.
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Table 6. The use of YLearn tool methods in our solution.1

Package path Method name Use in our solution
ylearn._why Why() Object initialization method to

use other interface methods.
ylearn._why.Why identify() Used for the Causal discovery

step - to discover causal rela-
tionships.

ylearn._why.Why causal_graph() Used to receive the adjacency
matrix of the causal graph.

ylearn._why.Why fit() Used to train the estimator.
ylearn._why.Why causal_effect() Used to estimate the causal ef-

fect.
ylearn._why.Why uplift_model Used to get fitted Uplift model
ylearn._model.Uplift-
Model

get_qini() Used to get qini scores for the
Qini curve.

The Ylearn has a variety of Causal discovery and Causal estimation algorithms to
choose from for the experiment. They all were used in our developed solution. In tables
7 and 8 we list the set of CD algorithms that the Ylearn tool provides.

1Used Ylearn methods documentation: https://ylearn.readthedocs.io/en/latest/sub/why.
html
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Table 7. The overview of Causal discovery algorithms that Ylearn tool provides (part: I).

Algorithm name Description Study
Notears
NotearsNonlinear

NOTEARS (Non-combinatorial Optimization
via Trace Exponential and Augmented la-
gRangian for Structure learning) algorithm intro-
duces a Gradient-based optimization approach
and novel characterization of acyclicity for learn-
ing the DAG structure. NotearNonlinear is the
algorithm version for the non-linear data.

[ZARX18]

ANMNonlinear Nonlinear function-based causal discovery algo-
rithm with additive noise models.

[HJM+08]

GES A score-based Greedy Equivalence Search algo-
rithm.

[Chi03]

DirectLiNGAM
ICA-LiNGAM

A direct learning function-based and An ICA
(Independent component analysis) algorithm for
linear non-Gaussian acyclic model (LiNGAM)

[SIS+11,
SHHK06]

PC A classic constraint-based causal discovery
Peter-Clark (PC) algorithm which uses condi-
tional independence tests for the DAG structure
learning. PC algorithm is useful for problems
with a huge number of nodes (variables).

[KB05]

DAG_GNN DAG gradient based Structure Learning with
Graph Neural Networks

[YCGY19]

RL
CORL

A Reinforcement Learning-based algorithm that
can work with flexible score functions. A CORL-
and order-based RL algorithm that improves the
efficiency and scalability of the RL-based ap-
proach.

[ZNC20,
WDZ+21]

GOLEM A more efficient gradient-based version of
NOTEARS that can reduce the number of opti-
mization iterations.

[NGZ21]

MCSL Masket Causal Structure Learning (MCSL) - a
gradient-based algorithm for non-linear additive
noise data by learning the binary adjacency ma-
trix.

[NZF+22]

GAE A gradient-based algorithm using Graph Au-
toEncoder (GAE) to model non-linear causal
relationships

[NZCF19]
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Table 8. The overview of Causal discovery algorithms that Ylearn tool provides (part:
II).

Algorithm name Description Study
Hill Climb Search Optimization algorithm that applies local search

to estimate the DAG structure that has an op-
timal score, according to the provided scoring
method. Starts with the initial DAG model and
does graph modifications step-by-step until a lo-
cal maximum is reached.

[KF09]

Chow–Liu Tree
search

The method uses the Chow Liu algorithm for the
estimation of the tree structure, then the DAG is
constructed based on tree search learning.

[CL68]

MmhcEstimator Estimates a BayesianNetwork for the data set, us-
ing the Max-Min Hill climb(MMHC) algorithm.
First estimates a graph skeleton using Max-Min
Parents and Children (MMPC) algorithm and
then orients the edges using a score-based local
search (hill climbing).

[TBA06]

In tables 9 and 10 we list existing Causal estimation algorithms that can be accessed
using the Ylearn tool.
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Table 9. The overview of Causal estimation algorithms that Ylearn tool provides (part I).

Algorithm name Description Link to the
study

DR The doubly robust (DR) method estimates
the causal effects when the treatment is
discrete. Training a doubly robust model
is composed of three steps.

[JFWW+11]

ML Meta-Learners (ML) aim to estimate the
ATE when the treatment is discrete by us-
ing machine learning models. It provides
flexibility in choosing a machine learning
model.

[KSBY19]

S-learner The branch oh Meta-Learners. S(single)-
learner uses one machine learning model
to estimate the causal effects.

[KSBY19]

T-learner The branch oh Meta-Learners. T(two)-
learner uses two machine learning models
to estimate the causal effects.

[KSBY19]

X-learner T-Learner does not use all data efficiently.
This issue can be addressed by the X-
learner which utilizes all data to train sev-
eral models. Training an X-learner is com-
posed of three steps.

[KSBY19]

Causal Tree Causal Tree is a data-driven approach to
grouping the data into parts that differ by
the size of their causal effects.

[AI16]

GRF Generalized Random Forest (GRF) - is
a random forest algorithm adaption on
causal effect estimation. Performs better
in highly flexible non-parametric causal
effect estimation.

[AW20]

Approximation
bound (Bound)

Many estimator models require the un-
confoundedness condition which is not
testable. The bound approach builds the
upper and lower bounds of causal effects
before diving into specific estimations.

[Nea15]
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Table 10. The overview of Causal estimation algorithms that Ylearn tool provides (part:
II).

Algorithm name Description Link to the
study

IV
DIV

Instrumental Variables (IV) models are
dedicated to the case of estimating causal
effects in the presence of unobserved con-
founding variables that simultaneously
have effects on the treatment and the out-
come (instrumental variables). Deep In-
strumental Variables (DIV) is the model
which uses deep learning for instrumental
variables estimation.

[New13,
HLLBT17]

DML The double machine learning (DML)
model can be applied when all con-
founders of the treatment and outcome,
variables that simultaneously influence the
treatment and outcome, are observed.

[CCD+17]
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5 Evaluation
The evaluation process was divided into four steps: 1) Dataset selection; 2) Metrics selec-
tion; 3) The execution of experiments; 4) Results analysis. In the following subsections,
we present the evaluation process and obtained results.

5.1 Dataset and metrics
To select the datasets we formulated these requirements:

1. The event log is about the real-world business process.

2. The event log has case ID, activity, and timestamp variables.

3. The event log has a defined binary outcome.

4. The event log has more than 9 but less than 51 distinct activities (to have a variety
of possible activities but having too many of them would be unfeasible for the
algorithm’s execution time).

The datasets that would match those requirements were found in Teinemaa’s and Bo-
zorgi’s studies [TDRM18, BTD+20]. The selected event logs are listed in the table with
the name of their business process and the outcome = 1 definition:

Table 11. The list of selected datasets.

Dataset name Bussiness process Outcome = 1 definition
BPIC2017 Loan application If the case has O_Accepted activity.
BPIC2012 Loan application If the case has O_ACCEPTED_-

COMPLETE activity.
Production Manufacturing process The number of rejected work orders is

larger than zero.
Sepsis_cases Patient cases from hos-

pital
The patient returns to the emergency
room within 28 days from the dis-
charge.

Traffic_fines Fines for the violated
traffic rules manage-
ment process

Whether the fine is repaid in full or is
sent for credit collection.

To test the Causal discovery results we introduced the Consistency metric that is
calculated and interpreted as follows:

1. Causal discovery was done with the prepared dataset.

35



2. Causal discovery was done a second time with the same data but randomly rear-
ranged variable positions.

3. If Causal discovery returned treatment variables were the same in both tryouts,
then the Consistency metric is equal to 1.

4. If the Causal discovery returned treatment variables that did not match in both
tryouts, the model just returned random results and the Consistency metric is equal
to 0.

If the context of the dataset was known, the Causal discovery results were additionally
interpreted according to that context.

To measure Causal estimation we used an ATE metric (see subsection 2.5). To
measure the Uplift effect we used the Qini curve (see subsection 2.5). After initial tests
of the algorithms, we discovered the unequal duration of algorithms execution, so also
added the duration in seconds as the metric for algorithms.

5.2 Experimental setup
The experiments were done using the developed tool. Each dataset (see table 11) was
executed in the pipeline once. The pipeline of one experiment was divided into these
steps: 1) Data preparation; 2) Causal discovery; 3) Causal estimation and Uplift modeling;
4) Results gathering and analysis. All experiments were done on Macbook Air 10,1
M1 chip, 2020, 8 processors, 16 GB RAM, macOS Ventura 13.1 laptop. For the data
preparation step, 80% for train and 20% for test split was used. Causal discovery was
done with all algorithms available in the Ylearn tool (see table 12) two times (one time
with prepared data, and another with the same data but randomly switched variables), in
order to check the consistency of the results. The timeout of the algorithm functionality
was introduced because some algorithms did not finish - the timeout was chosen to equal
1600 seconds. Causal estimation and Uplift modeling were done once after the results of
the Causal discovery were received. Only results with a Consistency metric equal to 1
were tested further with all CE algorithms (see table 12) that are available in the Ylearn
tool. The timeout function also was used for 1600 seconds. Then all results were saved
(numerical in .csv format, graphs in .png format) and analyzed by drawing Qini curve
graphs and comparing the performances.
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Table 12. List of Causal discovery and Causal estimation algorithms that were used in
the evaluation.

CD algorithms CE algorithms
External
package

Name Name

ANMNonlinear S-learner
GES T-learner
DirectLiNGAM X-learner
ICALiNGAM Causal tree
PC GRF (Generalized Random Forest)
Notears Bound (Approximation bound)

gcastle1 DAG_GNN IV (Instrumental Variables)
RL Deep div (Instrumental Variables)
CORL DML (Double Machine Learning)
NotearsNonlinear DR (Doubly Robust)
GOLEM
MCSL
GAE
ExhaustiveSearch
HillClimbSearch

pgmpy 2 TreeSearch
MmhcEstimator
PC

-3 Notears

5.3 Results
In the following subsections, we present the results of the experiments.

5.3.1 BPIC2017

Firstly, individual preparation was done - to prepare the dataset to the one that has Case
ID, Activity, and Timestamp columns and is in .csv format. The BPIC2017 has 26
unique activities, the average duration of the case is 38 activities. The data was encoded,
prepared, and split into train and test parts, then put into the Causal discovery step which

1gcastle - the external Python package that the Ylearn tool uses for its CD algorithms [ZZK+21].
2pgmpy - the external Python package that the Ylearn tool uses for its CD algorithms [AP15].
3Notears CD algorithm version that is the only one built-in the Ylearn tool.

37



was done two times to check if the position of variables does not affect the result. We
present discovery results in table 13.

Table 13. BPIC2017 Causal discovery step results.

Discovery algo-
rithm

Treatment result A Treatment result B C1 T2

DirectLiNGAM 20.7
ICALiNGAM Activity_O_Sent (mail 3.9
gcastle-Notears Activity_A_Complete and online) 5.3
NotearsNonlinear Activity_A_Accepted Activity_O_Create Of-

fer
0 153.6

GOLEM Activity_A_Cancelled 1122.9
pgm-PC 71.5
Notears Activity_W_Call in-

complete files,
Activity_W_Call after
offers,
Activity_W_Validate
application

Activity_W_Call in-
complete files,
Activity_W_Call after
offers,
Activity_W_Validate
application

1 809.9

TreeSearch Activity_W_Call after
offers

Activity_W_Call after
offers

1 1.5

ANMNonlinear
GES
DAG_GNN
RL
gcastle-PC
CORL Terminated after

timeout
Terminated after
timeout

- -

MCSL
GAE
ExhaustiveSearch
MmhcEstimator
HillClimbSearch

The results showed that 11 of 19 algorithms were terminated because of the time-
out. Another 6 showed inconsistent results and the Notears (which is the only built-in
Ylearn discovery algorithm) and TreeSearch algorithms were consistent by testing the

1Consistency metric.
2Average duration of algorithm execution in seconds.
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data with shuffled variable positions. The Notears returned possible treatments in "Ac-
tivity_W_Call incomplete file", "Activity_W_Call after offer" and "Activity_Validate
application". The "TreeSearch" returned "Activity_W_Call after offer". Resulting causal
graphs are presented in Appendix I.

The BPIC2017 dataset was analyzed by other researchers and their study provides
additional information about this dataset. Rodrigues’ et al. in their paper [RAS+17],
did a descriptive analysis of the BPIC2017 dataset and presented recommendations,
on how to improve the business process. Their analysis showed that more interaction
with the customer results in more accepted offers. Activities that involve interaction
with the customer are "Activity_W_Call incomplete files" and "Activity_A_Call after
offers". "Activity_W_Validate". According to the authors [RAS+17] those activities
are dependent on the customer as the bank waits for the applicant to send the requested
documents before starting the validation step. This results in the longest durations that
influence the case time and also the success rate. So, the discovery of these activities as
possible treatments seems logical. However, the data analyst still has to manually check
the discovery step results if it is possible to make interventions in discovered treatments
because a bigger part of algorithms returned inconsistent results.

After the Causal discovery step. We performed the Causal estimation step with found
consistent treatment variables. In table 14 and figures 11 and 12 we present BPIC2017
Causal estimation results.
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Table 14. BPIC2017 Causal estimation step results.

Estimator Treatment name ATE Avg time
(sec)1

Activity_W_Call incomplete
files

0.035

T-learner Activity_W_Call after offers 0.038 887.9
Activity_W_Validate applica-
tion

0.036

Activity_W_Call incomplete
files

0.426

Causal tree Activity_W_Call after offers 0.415 5.5
Activity_W_Validate applica-
tion

0.423

Activity_W_Call incomplete
files

0.056

GRF Activity_W_Call after offers 0.047 270.8
Activity_W_Validate applica-
tion

0.051

X-learner
Bound
DML Terminated after error - -
IV
DIV
S-learner Terminated after timeout - -
DR

Five algorithms terminated because of the error. The reasons for the error are that
additional input was needed for the model or that the error happened inside the package.
Two algorithms terminated because of the timeout (1600 seconds). T-learner, Causal
tree, and GRF (Generalized Random Forest) algorithms returned ATE results for each
treatment. The best ATE was measured by the Causal tree model while T-learner and GRF
showed similar results. All three models returned the biggest ATE for "Activity_W_Call
after offer" treatment, then "Activity_W_Validate", and lowest to "Activity_W_Call
incomplete files". We interpret these results as the following: positive ATE of these
activities shows that having those activities in the case would give a slightly better
outcome than without them.

1Average duration of algorithm execution
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Figure 11. BPIC2017 data Uplift modeling Qini curve results.

Qini curve results also confirm this observation. In the figure 11 "W_Call incomplete
files" activity Qini curve of all estimators is close to the random model while the
best results can be seen in "W_Call after offers" activity estimations. In figure 12 all
estimators are compared with each other. GRF estimator showed the best Qini scores in
"W_Call incomplete files" and "W_Call after offers" and was between the two best in
"Activity_W_Validate" treatment.
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Figure 12. BPIC2017 data estimator comparison by Qini curve.

5.3.2 Comparison with the "Process mining meets causal machine learning" study
results

Bozorgi et al. also evaluated BPIC2017 data in their study. Their approach consisted
of: 1) Identifying candidate treatments; 2) Causal Rules Discovery; 3) Ranking Rules
Using a Cost-Benefit Model. In the end, their approach suggests eight actions to improve
the BPIC2017 dataset outcome. The actions correspond to treating the withdrawal
amount and a number of terms variables based on sub-populations of the cases. We
decided to evaluate their approach by performing Causal discovery with our evaluation
tool on their variables and constructing a treatment variable that would match their
recommended actions. Then we calculated the ATE value and compared it to our result.
To achieve this goal we took a BPIC2017 dataset with Case ID, Outcome, Loan Goal,
Application Type, Credit Score, Offered Amount, Number Of Terms, Monthly Cost,
and First Withdrawal Amount variables. Then we constructed continuous treatment
values "First Withdrawal Amount treatment" and "Number of terms treatment" which
correspond to the recommended actions from Bozorgi’s et al. study [BTD+20]. Then we
evaluated the treatment in Ylearn continuous treatment models: DML (Double Machine
learning) and IV (Instrumental variables) because other Ylearn algorithms do not support
the treatment with continuous values. We calculated the results of ATE metric and
presented them in the table 15.
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Table 15. ATE results from applying recommended actions from Bozorgi’s et al. pa-
per [BTD+20] on Ylearn tool’s CE algorithms.

Estimator Withdrawal
amount ATE

Number of terms
ATE

DML 0.0030 -0.069
IV 0.0012 -0.024

We could not draw the Qini curve for the models because of the limitation of the
Ylearn tool (it cannot apply the uplift model on continuous treatment). The best ATE that
we received by applying the treatment from Bozorgi’s et al. approach was 0.003 while
from our approach it was 0.426. Respectively, the worst ATE was -0.069 while from our
approach it was 0.035.

5.3.3 Results of other datasets

Causal discovery consistency results of other datasets are presented in Appendix II.
Causal estimation results and Qini curves of other datasets are presented in Appendix III.

5.4 Threats to validity
The validation described above comes with threats to internal validity. The results may
be influenced by data preparation or the limited knowledge about the event log context
(e.g. meaning and the use of the activities). This threat is reduced by comparing part
(BPIC2017 data) of the experiments with other studies which provided more information
about the data. By the use of activity, case ID and timestamp variables that are commonly
found in most event logs our approach has a good generalizability. We acknowledge that
there could be a potential threat to reliability because our evaluation tool was largely
dependent on the Ylearn tool. To address this issue and combat the reproducibility crisis
we provide a software artifact that allows other researchers to recreate our evaluation
process and test their own data. The developed evaluation tool is saved in the repository
(https://github.com/lukasbaltramaitis/CI_Experiments). The instructions on
how to recreate the experiments are described in the README.md file.
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6 Conclusion
Our proposed approach aims to enhance business processes by automatically discovering
potential treatments from event logs and estimating their effects. This approach includes
both Causal discovery and Causal estimation into a unified solution. To achieve this, we
select a minimal set of variables that are commonly available in any business process
event log, namely case ID, activity, and timestamp. The approach integrates the existing
causal tool Ylearn, adapting it to the context of Causal process mining. Using this
developed tool enables researchers and data analysts to apply causal analysis techniques
to process logs, leading to valuable insights for process improvement. To validate the
effectiveness of our approach, we conducted an empirical evaluation using six real-life
event logs from diverse business domains. This evaluation provides tangible evidence of
the applicability and benefits of our approach in real-world settings, further reinforcing
its potential for improving business processes.

While our work has made significant progress in automating the discovery and
estimation of causal relationships from event logs, it still requires human intervention to
validate the results of Causal discovery. This limitation opens up opportunities for future
research to explore ways to reduce or eliminate the need for manual validation1.

One potential direction for future research is to incorporate human feedback into
the pipeline, enabling real-time evaluation of the discovered treatments. This can be
achieved by integrating reinforcement learning techniques, allowing the system to learn
from human judgments and continuously improve the effectiveness of the discovered
treatments1.

Furthermore, expanding the scope of our analysis by exploring alternative causal
tools would be valuable. Comparing different causal analysis tools with the adapted
Ylearn tool can help determine which tool provides better results in terms of improving
business processes. This comparative analysis would contribute to a better understanding
of the strengths and limitations of various tools and guide the selection of the most
appropriate tool for different contexts and datasets1.

Finally, the validation of the tool is only done by the authors of this thesis and does
not have the feedback of the possible users. Doing more extensive testing and validation
with new data configurations could be another future step of this work.

1Marked paragraphs were written from a combined effort of the student and ChatGPT (06.04.2023),
i.e. a language model whose training is based on a large number of different text sources. ChatGPT is
developed by OpenAI. For more information about ChatGPT and OpenAI: https://openai.com
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Appendices

I BPIC2017 Causal graphs

Figure 13. BPIC2017 dataset Notears algorithm discovered causal graph.
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Figure 14. BPIC2017 dataset TreeSearch algorithm discovered causal graph.
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II Datasets Causal discovery results

Table 16. Discovery step consistency and duration results of all (except BPIC2017)
datasets.

Discovery BPIC2012 Production Sepsis cases Traffic fines
algorithm C1 T2 C1 T2 C1 T2 C1 T2

DirectLiNGAM 0 12.3 0 1.9 0 0.7 0 8.3
ICALiNGAM 0 1.3 0 0.26 0 0.4 0 3.7
gcastle-PC 0 16.0 1 0.08 0 0.2 0 19.2
gcastle-Notears 0 5.0 0 1.5 0 1.6 0 5.6
NotearsNonlinear 0 78.8 0 3.5 0 12.7 0 84.5
GOLEM 0 511.4 0 97.0 0 75.0 0 1364.0
pgm-PC -3 -3 0 49.1 0 81.6 1 1644.8
TreeSearch 1 0.7 1 0.4 1 0.2 1 0.4
Notears 1 425.8 0 39.6 1 26.8 0 535.0
ANMNonlinear

Terminated after timeout

GES
DAG_GNN
RL
CORL
MCSL
GAE
ExhaustiveSearch
MmhcEstimator
HillClimbSearch

1Consistency between two experiments with different variable positions.
2Average execution time in seconds.
3Terminated because of the timeout.
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Table 17. Discovered treatments.

Dataset Discovered treatments
BPIC2012 Activity_W_Nabellen offertes-START,

Activity_W_Nabellen offertes-SCHEDULE,
Activity_O_SENT-COMPLETE,
Activity_W_Nabellen offertes-COMPLETE

Production Activity_Turning & Milling - Machine 9,
Activity_Turning & Milling - Machine 4,
Activity_Flat Grinding - Machine 11,
Activity_Turning & Milling Q.C

Sepsis cases Activity_CRP,
Activity_Admission NC

Traffic fines Activity_Add penalty,
Activity_Send Fine,
Activity_Create Fine
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III Datasets Causal estimation results

Table 18. BPIC2012 dataset Causal estimation step results.

Estimator Treatment name ATE T1

S-learner Activity_W_Nabellen offertes-START 0.010
Activity_W_Nabellen_offertes-SCHEDULE 0.030 359.5
Activity_O_SENT-COMPLETE -0.013
Activity_W_Nabellen_offertes-COMPLETE -0.006

T-learner Activity_W_Nabellen offertes-START 0.021
Activity_W_Nabellen_offertes-SCHEDULE -0.004 359.5
Activity_O_SENT-COMPLETE -0.011
Activity_W_Nabellen_offertes-COMPLETE 0.061

Causal tree Activity_W_Nabellen offertes-START 0.513
Activity_W_Nabellen_offertes-SCHEDULE 0.459 0.8
Activity_O_SENT-COMPLETE 0.454
Activity_W_Nabellen_offertes-COMPLETE 0.491

GRF Activity_W_Nabellen offertes-START 0.044
Activity_W_Nabellen_offertes-SCHEDULE 0.056 62.0
Activity_O_SENT-COMPLETE 0.031
Activity_W_Nabellen_offertes-COMPLETE 0.023

DR Activity_W_Nabellen offertes-START -0.035
Activity_W_Nabellen_offertes-SCHEDULE 0.061 1663.9
Activity_O_SENT-COMPLETE 0.005
Activity_W_Nabellen_offertes-COMPLETE 0.028

X-learner
Bound
DML Terminated after error - -
IV
DIV

1Average duration of algorithm execution in seconds.
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Figure 15. BPIC2012 dataset Uplift modeling Qini curve results.

Figure 16. BPIC2012 dataset estimator comparison by Qini curve.
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Table 19. Production dataset Causal estimation step results.

Estimator Treatment name ATE T1

S-learner Activity_Turning & Milling - Machine 9 0.01
Activity_Turning & Milling - Machine 4 0.034 11.4
Activity_Flat Grinding - Machine 11 -0.020
Activity_Turning & Milling Q.C 0.089

Causal tree Activity_Turning & Milling - Machine 9 0.810
Activity_Turning & Milling - Machine 4 0.540 0.1
Activity_Flat Grinding - Machine 11 0.182
Activity_Turning & Milling Q.C 0.503

GRF Activity_Turning & Milling - Machine 9 0.049
Activity_Turning & Milling - Machine 4 0.065 2.4
Activity_Flat Grinding - Machine 11 -0.120
Activity_Turning & Milling Q.C 0.048

X-learner
Bound
DML Terminated after error - -
IV
DIV
T-learner Terminated after timeout - -
DR

1Average duration of algorithm execution in seconds.
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Figure 17. Production dataset Uplift modeling Qini curve results.
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Figure 18. Production dataset estimator comparison by Qini curve.

Table 20. Sepsis cases dataset Causal estimation step results.

Estimator Treatment name ATE T1

S-learner Activity_CRP -0.012 5.1
Activity_Admission NC -0.030

T-learner Activity_CRP 0.001 2.9
Activity_Admission NC 0.014

Causal tree Activity_CRP 0.140 0.1
Activity_Admission NC 0.134

GRF Activity_CRP 0.026 1.6
Activity_Admission NC 0.021

DR Activity_CRP 0.000 8.3
Activity_Admission NC -0.003

X-learner
Bound
DML Terminated after error - -
IV
DIV

1Average duration of algorithm execution in seconds.
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Figure 19. Sepsis cases dataset Uplift modeling Qini curve results.

Figure 20. Sepsis cases dataset estimator comparison by Qini curve.
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Table 21. Traffic fines dataset Causal estimation step results.

Estimator Treatment name ATE T1

S-learner Activity_Add penalty 0.040
Activity_Send Fine 0.086 2023.1
Activity_Create Fine 0.073

T-learner Activity_Add penalty 0.035
Activity_Send Fine 0.087 699.0
Activity_Create Fine 0.074

Causal tree Activity_Add penalty 0.466
Activity_Send Fine 0.476 1.8
Activity_Create Fine 0.478

X-learner
Bound
DML Terminated after error - -
IV
DIV
GRF Terminated after timeout - -
DR

1Average duration of algorithm execution in seconds.
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Figure 21. Traffic fines dataset Uplift modeling Qini curve results.

Figure 22. Traffic fines dataset estimator comparison by Qini curve.
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