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An Approach for Generating Realistic Synthetic Transaction Data

Abstract:

Privacy factors are crucial in today’s constantly evolving financial technology and banking
world. Banks are turning to creative and secure solutions to overcome these issues and
perform better. Federated Learning (FL) is a novel approach that enables model training
between separate organizations. The author collaborated with "Swedbank" and worked
on a project to prepare the application of FL with another bank and an intermediary
company to enhance our money laundering detection system while preserving data
privacy. Both banks used an updated version of the open-source multi-agent-based
simulator "AMLSim" to generate synthetic data.

This thesis aims to generate synthetic transaction data close to real-life transactions,
making collaborating in anti-financial crime between banks possible. Based on our
real-life transaction data, we created features similar to the data generated by AMLSim.
Both real and synthetic datasets turned into a graph. The graph evaluation metrics
used are In-degree/Out-degree Ratio, PageRank, and Label Propagation. The Snowball
sampling algorithm is used to sample real-life transaction data to make it comparable
with smaller generated synthetic data. The sampling algorithm is evaluated by generating
three different subsamples from the same graph, and their structure is evaluated by the
aforementioned evaluation metrics in addition to Graph Density and Graph Components
to check if all subsamples are relevant to each other. Finally, generated synthetic graphs
are evaluated by the aforementioned evaluation methods to check if their structures are
close to real graphs. The results are used to hyperparameter tune AMLSim to generate a
more realistic dataset.
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Meetod realistlike sünteesitud rahatehingute genereerimiseks

Lühikokkuvõte:

Tänapäeva pidevalt arenevas finantstehnoloogia ja pangandusmaailmas on andmekaitse
olulisel kohal. Pangad otsivad innovatiivseid ja turvalisi lahendusi andmekaitsega seotud
probleemide ületamiseks ning efektiivsema ärimudeli loomiseks. Federated Learning
(FL) on uudne lähenemisviis, mis võimaldab mudeli treenimist eraldiseisvate organi-
satsioonide vahel. Autor töötas koostöös Swedbankiga projektis, et valmistada ette FL
rakendamine koos teise pangaga ja vahendusettevõttega meie rahapesu avastamise süs-
teemi täiustamiseks, säilitades samal ajal andmete turvalisus. Mõlemad pangad kasutasid
avatud lähtekoodiga mitmeagendilise simulatsiooni AMLSim ajakohastatud versiooni, et
luua sünteetilisi andmeid ja jagada parameetriväärtuseid.

See magistritöö eesmärgiks on genereerida sünteetilisi andmeid, mis on lähedased Swed-
banki reaalsete tehingute andmetele ning leida sobivad parameetriväärtused, mida jagada
vahendusettevõttega, et tulevikus FL edukalt taasrakendada. Taoline sünteetiliste andmete
genereerimine, mis oleks sarnased reaalsetele tehingutele, võimalikuks pankadevahelise
koostöö finantskuritegevuse vastu. Reaalsete tehingute andmed filtreeritakse, et neil olek-
sid AMLSimi genereeritud andmetega sarnased omadused. Nii reaalsed kui ka sünteetili-
sed andmekogumid muudetakse graafikuks. Graafiku hindamiseks kasutatud mõõdikud
olid In-degree/Out-degree Ratio, PageRank ja Label Propagation. Valimi moodusta-
miseks kasutati Snowball sampling algorithm’i, et muuta need võrreldavaks väiksema
sünteetilise andmekogumiga. Selle algoritmi hindamiseks luuakse samast graafikust kolm
erinevat alamgraafikut ja nende struktuuri hinnatakse eelmainitud hindamismõõdikute
abil ning Graph Componenti ja Graph Density’ga, et veenduda alamgraafikute sarna-
suses teiste alamgraafikutega. Viimasena sünteetilised graafikud hinnatakse eelmainitud
meetodite abil, et kontrollida, kas nende struktuurid on lähedased reaalsetele graafikute-
le. Tulemusi kasutatakse AMLSimi hüperparameetrite häälestamiseks, et genereerida
realistlik andmekogum.

Võtmesõnad:
sünteetiliste andmete genereerimine, tehingute andmed, alamgraafikute testimine, graafiku-
te võrdlus

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction

1.1 General Context

Banks increasingly turn to innovative approaches to enhance their services while address-
ing privacy concerns in the rapidly evolving landscape of finance and financial technology.
One such ground-breaking paradigm is Federated Learning (FL). This innovative ap-
proach enables model training across multiple decentralized entities without sharing data
because only model parameters are shared and aggregated centrally. Therefore, it is
helpful for scenarios where data privacy and security are top priorities.

This thesis concerns a project funded by "Vinnova", the Swedish government agency
for innovation, under project number 2022-03063. A Swedish intermediary company
supported the development and coordination of the project. This project aims to explore
the potential of Federated Learning in enhancing collaboration between banks for detect-
ing money laundering while preserving data privacy. "Swedbank" is one of the project
participants with whom the author of this thesis worked and contributed to the Federated
Learning project.

Expected results of this project include:

1. Enhanced identification of money laundering activities spanning multiple banks.

2. Development of innovative techniques in federated learning customized for anti-
money laundering purposes.

3. Strengthened cooperation among banks and external entities, addressing common
challenges and fostering innovation.

Since neither bank could share its data directly, synthetic data similar to real data had
to be generated. To achieve this, both banks used an updated version of an open-source
multi-agent-based simulator called "AMLSim," which the project intermediary provided
at the beginning of the project.

For the first part of the project, the author and his team had to generate synthetic data and
turn it into a graph, then turn one of Swedbank’s datasets into a graph and subsample it
if needed. Next, use proper graph comparing metrics to compare the real and synthetic
graph’s structures, tune hyperparameters of AMLSim to get the optimal synthetic dataset
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that is the closest to the real graph. Thus, this thesis primarily focuses on the project’s
first phase, which involves generating a realistic synthetic graph.

1.2 Roadmap Overview of the Project and Contributions

This subsection provides an overview of the project in which the author has been involved
and the author’s contributions to it.

The project started with our team getting AMLSim’s updated version from the interme-
diary company to generate synthetic datasets. Then, we implemented graph creation
functionality for our real transaction data. Since our real transaction data was big, we had
to find and implement a method to subsample our real graph into a smaller graph. It was
found that the implemented method is not optimized for big graphs, so our next task was
to optimize it to scale well with our big graphs. To ensure that our subsampling method
is functioning well, we had to put it into an experiment and create several subsamples
to compare them. We also filtered the synthetic dataset to make its structure match the
real dataset. After this step, we created a graph from the synthetic data, just like our real
dataset. We investigated possible graph comparison methods to evaluate how realistic
our synthetic graphs are. We conducted experiments on hyperparameters of AMLSim
and generated several datasets to find the optimal hyperparameter combination.

The author’s contributions to the project were researching a graph subsampling algorithm,
implementing it, and optimizing it for big graphs. Then, experiments are conducted on
created subsamples to see if every created subsample is similar to each other to ensure
the algorithm is consistent in creating subsamples. To ensure that the comparisons were
accurate, the author created a pipeline that filters synthetic datasets after their generation
to make them resemble the real graph in terms of structure.

In summary, the roadmap for the project was to:

1. Create a synthetic data by using AMLSim

2. Create a graph from our real data

3. Find a method to subsample our real graph

4. Optimize the method to make it scale well with our big graphs

5. Create subsamples from our real graph
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6. Filter the synthetic data to make it suitable to compare with our real graph

7. Create a graph from the filtered synthetic data

8. Find methods to compare real and synthetic graph

9. Compare real and synthetic graph

10. Hyperparameter tuning to create the optimal synthetic graph that is the closest to
our real graph

My contributions to the project are:

1. Find a method to subsample our real graph

2. Optimize the method to make it scale well with our big graphs

3. Create subsamples from our real graph

4. Filter the synthetic data to make it suitable to compare with our real graph

5. Create a graph from the filtered synthetic data

6. Hyperparameter tuning to create the optimal synthetic graph that is the closest to
our real graph

The details of the work are described in Figure 1. With a reflection on lesson learned
from methodological and technical point of view.

8



2 Literature Review

This section provides relevant theories, concepts, and previous research related to the
thesis topic. After providing information from other sources, we discuss how the shared
work relates to our topic and how the information can benefit us.

Detecting financial fraud is a challenge for every financial institution. There is a strong
need to detect financial fraud to preserve customers’ trust and keep assets safe. However,
there are obstacles to achieving this. One of these factors is that financial crime happens
rarely, and many transaction datasets are not balanced enough due to datasets having
fewer examples of fraud. This problem can affect the dependability of fraud detection
models. In addition, financial institutions can not share their data with any third party
to enable cooperation, creating stronger centralized detection models [5]. This research
aligns with what we want to achieve in our project—enabling collaboration with other
financial institutes to enhance our financial fraud detection systems. The paper’s authors
made several modifications to enable FL for fraud detection. They did not use a typical
machine learning model update in a centralized training environment, such as Stochastic
Gradient Descent (SGD), to achieve this. Instead, they used an averaging algorithm
developed by McMahan et al. [18], a modified version of the standard SGD. In this new
algorithm, each client computes its update. After these calculations and updates, the
server aggregates these updates to form the global model update. This process is repeated
until convergence. Even though they did not compare the performance of centralized and
FL learning models, they reported that the FL model had a definite accuracy score of
93%. Moreover, they drew attention to the fact that they achieved this by keeping the
privacy of their data [5]. In contrast to this paper, we will not use our actual data while
training.

We will create and use a realistic synthetic dataset to ensure that our training is fully
secure regarding data privacy. Synthetic data generation is important in the financial
sector due to privacy concerns and regulatory restrictions, which restrict institutions from
sharing their data. A published paper addresses this growing need by exploring three
main areas: generating realistic synthetic datasets, measuring their similarity to real data,
and ensuring privacy constraints during this data generation process [4]. For generating
synthetic tabular data, several methods have been proposed [26]. However, these existing
techniques come with their problems. Firstly, most differential privacy frameworks take
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each row of a table as a bit string, which is equal in length to the domain size, which
makes these techniques impractical. The reason is that the number of columns increases
because of the exponential growth. Secondly, sparse high-dimensional datasets often end
up having added noise that overpowers the real data. Therefore, the resulting synthetic
dataset is a bad approximation of the real dataset [28]. Agent-based modeling (ABM) is
also used to generate synthetic datasets. An ABM work has been done by simulating the
behavior of multiple agents (representing banks) over multiple periods within a real-time
gross settlement (RTGS) payment system to model a bank’s payment processing system
[10]. ABM has also been used to generate synthetic data for a retail shoe store in the past
[17]. When ABM is calibrated manually, the generated synthetic dataset respects privacy
constraints. However, it should be kept in mind that automatizing the calibration process
of ABM may pose a risk of data leakage [21]. In this thesis, we will use an agent-based
simulator, and this research taught us that calibration should be done manually to keep
our data safe from leakage.

Researching mobile money transaction frauds are not an easy task. Because finding
legitimate mobile money transaction datasets is difficult due to financial institutions’
inherent privacy, a paper introduces PaySim, an agent-based mobile money transaction
simulator [16]. PaySim has pre-defined transaction types, and the characteristics and
behaviors of the customers are based on statistical analysis and distributions gathered
from real transaction data. This approach enables PaySim to simulate complex client
transactions like in real life. Using PaySim, we can imitate real transaction data and work
on it without financial institutions’ constraints and legal boundaries. Understanding how
PaySim works is crucial for our project since we will use a simulator called AMLSim,
built on top of PaySim.

AMLSim is also an agent-based transaction simulator created especially for anti-money
laundering (AML) purposes [27]. It is designed to generate synthetic transaction data
resembling real-life financial transactions and activities, allowing people to work and
research transaction data in a controlled environment. AMLSim operates in two main
steps. Firstly, it generates a graph using NetworkX [11] based on pre-defined degree
distribution. Second, it generates a time-series of transactions based on observed dynam-
ics from real data using PaySim. Finally, it incorporates domain expertise and defines
known suspicious transaction patterns within the generated data. As a result, it generates
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a realistic synthetic transaction dataset containing suspicious transactions. This synthetic
dataset mimics real-world scenarios and makes the simulator effective in anti-money
laundering works.

Graphs are data structures that are essential in representing relationships between entities.
Utilizing realistic graphs is important for research and development. However, it is
challenging due to obstacles such as sensitive data or data scales, which obstruct the
usage of real-world graphs. A synthetic graph can be a solution to such problems. It
is possible to hide critical information using a synthetic graph [15]. A way to achieve
this is graph anonymization. Graph anonymization aims to keep the identity information
hidden in graphs [29]. This can be critical for usage in many areas where graphs contain
sensitive information. Differential privacy-based is one solution that hides information by
adding noise to statistical queries’ answers. Karwa et al. [12] proposed a technique that
preserved the privacy in graphs by proving approximated answers to subgraph counting
queries. However, this method has the downside of sacrificing some precision in query
responses. The same paper [15] talked about graph sampling techniques, which aim
to create smaller representations of given graphs. This can be achieved by selectively
sampling edges [2] or nodes [13]. This process is similar to reducing the density of the
graph. Graph sampling can be useful for big graphs since it creates computationally
efficient and more manageable versions of the given graph [3] while still keeping the
graph’s attributes and characteristics [14]. These approaches can be useful in this thesis
since we will be working on big graphs and need to do computations with them.
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3 Methodology and Analysis

This chapter overviews the steps towards making synthetic and real graphs ready for
hyperparameter tuning and comparison. The following subsections of this chapter will
provide an in-depth overview of each aspect. The first subsection explains how we
performed graph creation and hyperparameter tuning. The second subsection explains
why the project needed a subsampling method, how the research and experiments were
done on several subsampling methods, and the chosen method in detail. The third
focuses on optimizing and debugging the implemented subsampling method and then
subsampling the real graph. The fourth explains the graph creation process from tabular
synthetic datasets and the preprocessing steps applied. The fifth subsection presents
graph comparison metrics to demonstrate how synthetic graphs are evaluated. The final
subsection reports results on which metrics we decided to use for hyperparameter tuning
and why.

3.1 Workflow Architecture

Figure 1 explains the workflow loop of generating a more realistic synthetic graph each
time. In the beginning, the workflow splits into two separate roads, one for creating a
graph from Swedbank’s data and one for creating a graph from the generated synthetic
data. For synthetic graphs, experiments are done in batches, which means that for each
hyperparameter, only the parameters have been changed for a higher or lower value.
Then, I compared these synthetic graphs with the real graph to see which range of the
chosen hyperparameters performed the best. In order to have them equal in length in the
transaction period, we take the last 365 days from both datasets. After this step, we create
a graph from the real data, and the real graph is ready for comparison. For the synthetic
graph, the source and sink are getting dropped. Then, filtering to have transactions only
involves Swedbank customers. After these operations, we also create a graph from the
synthetic data. Finally, both of our graphs are ready for comparison.

We will first use the In-degree/Out-degree ratio for the comparison and hyperparameter
tuning step. For this comparison, we calculate each node’s In-degree/Out-degree ratio in
both graphs and create a histogram for the results. Then, we evaluate the results. After
the evaluation, if we could not decide which hyperparameter value to pick, we used other
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comparison metrics, PageRank and Label Propagation, to finalize the comparison. Next,
we calculated and evaluated the scores using the chosen algorithms for real and synthetic
graphs. After our evaluations, we checked if the synthetic graph was realistic enough. If
not, we changed the AMLSim hyperparameters to create a new batch of experiments to
find the most optimal value for the chosen hyperparameter. If it was realistic, we have
achieved our goal.

Docker is an open-source platform that makes executing and distributing applications
easier. Applications created by Docker are packaged into units called containers, with
all the dependencies needed to run the application. [7] As mentioned before, at the
project’s beginning, our team got an already-built Docker container for AMLSim from
the intermediary company. Therefore, we could generate datasets with ease and start
this project with synthetic datasets in our hands, with no preparation earlier. Next, other
people in our team created a graph from our transaction data using an "Apache Spark"
package called "GraphFrames." [9] GraphFrames provides a DataFrame-based API for
working with graphs. We decided to work with GraphFrames because our company has
big data and already uses Apache Spark, and GraphFrames integrates seamlessly.

3.2 Subsampling

The author researched how to subsample the real graph because it was too big to operate
certain comparison methods to evaluate our synthetic graph. A good subsampling
algorithm had to generate subgraphs relevant to our real graph and always identical
subgraphs, meaning the algorithm should be consistent. Following this research, a
decision had to be made between Stratified Sampling and Snowball Sampling, which
Snowball Sampling ended up being used in the project.

Stratified sampling is a probability sampling method that is implemented in sample
surveys. The target population’s elements are divided into distinct groups or strata
where within each stratum the elements are similar to each other with respect to select
characteristics of importance to the survey [25]. An example of Stratified sampling can
be seen from Figure 2. Using this method for graph subsampling would be good because
different substructures or communities within the graph are represented in the sample,
preserving the overall graph structure. Therefore, it was helpful to have low bias, which
is what we intend to have. However, it was computationally heavier than other choices.
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Figure 1. Workflow diagram of realistic synthetic graph generation
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Figure 2. Stratified sampling example

Snowball sampling is one of the most popular methods of sampling in qualitative research,
central to which are the characteristics of networking and referral. Figure 3 shows an ex-
ample of Snowball sampling. The researchers usually start with a small number of initial
contacts (seeds) who fit the research criteria and are invited to become participants within
the research. The agreeable participants are then asked to recommend other contacts
who fit the research criteria and who potentially might also be willing participants, who
then, in turn, recommend other potential participants, and so on. Researchers, therefore,
use their social networks to establish initial links, with sampling momentum developing
from these, capturing an increasing chain of participants. Sampling usually finishes once
either a target sample size or saturation point has been reached [20].

Snowball sampling was chosen because we could randomly choose a seed node each
time we started sampling. This would eliminate bias due to the randomness. Also, it is
more cost-effective than stratified sampling. In addition, while researching, we found
a Python library for graph subsampling called "Little Ball of Fur." [24] The author got
inspired by it and wrote his subsampling code optimized for big graphs with Snowball
sampling inside. In this way, implementing a subsampling algorithm from scratch was
not necessary and saved much time in the thesis work. The written code’s sampling part
can be seen from Algorithm 1.

Several experiments have been done for Snowball Sampling to ensure that generated
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Figure 3. Snowball sampling example

subsamples are not biased and are relevant to each other. Various calculations and
algorithms are used to evaluate generated subsamples. These are Graph Components,
Graph Density, PageRank, and Label Propagation. Experiments are done by comparing
three subsamples of the default synthetic graph with a quarter of its node size.

The results obtained by comparing generated subsamples with the four graph comparison
metrics mentioned earlier are displayed in Figures 4, 5, 6, 7. Results show that there are
minimal differences between the results of the subsamples. These experiments prove that
Snowball sampling is an excellent sampling method for the project; there is no bias in
generated subsamples, and they are relevant to each other.

3.3 Snowball Subsampling Implementation

Little Ball of Fur uses another Python library called NetworkX to work with graphs.
Moreover, NetworkX graphs differ from GraphFrames graphs, which we used in our
project. Therefore, the subsampling function from Little Ball of Fur was incompatible
with our graphs. As the solution, the function’s source code was found in the library’s
GitHub repository. Then, the code was customized to make it compatible with Graph-
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Algorithm 1: Sampling in Snowball Sampling

Input: Input Graph graph,
Desired node size for subsample desired_number_of_nodes,

Result: Subsampled Graph subsample

1 function Sample(graph, desired_number_of_nodes)

2 nodes← empty set;
3 queue← empty queue;

4 nodes← start_node;
5 queue← start_node;

6 while size(nodes) < desired_number_of_nodes do
7 temp_node← queue;
8 Find temp_node’s neighbors;
9 for each neighbor do

10 if neighbor is not in nodes set then
11 nodes← neighbor;
12 queue← neighbor;

13 if size(nodes) = desired_number_of_nodes then
14 break;

15 if size(queue) = 0 then
16 Select a new node from graph;
17 queue← new node;

18 subsample← Filter graph with nodes in nodes;
19 return subsample;

Frames instead of NetworkX. This approach was successful, but this solution brought
a problem with itself. It was discovered that customized subsampling performs very
slowly. This is because NetworkX is optimized for small graphs and does not scale well
with big graphs. Therefore, it took a lot of time to finish the execution of our very big
graph, which made the project much slower. After an investigation, it was found that
the problem was related to the code’s random node selection part. Little Ball of Fur
uses Python’s random module to pick a random node, causing the code to fetch all the
nodes in the graph, turn them into a Python list, and then pick a random node. This was
making the execution much longer, considering the size of our graph and how often the
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Figure 4. Subsampling experiment using Graph Components

Figure 5. Subsampling experiment using Graph Density
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Figure 6. Subsampling experiment using Label Propagation

algorithm had to do this until we got a subsample. The code was operating so slowly,
to the extent that it continued running for hours without producing any outcomes. An
experiment was done to subsample a graph with 400 nodes, and it took approximately
1.06 days. The solution for this issue was using Dataframe’s sample function instead
of Python’s random module. Currently, the algorithm fetches only ten nodes from the
graph at once rather than all the nodes from the input graph. After this step, it picks
a random node in these ten nodes. There is a reason why ten nodes are being fetched,
rather than such a smaller number since we are only picking a single node in this step.
This is because the algorithm has to redo this step if the picked node is already in its
subsample. This would cause the algorithm to sample nodes from the graph one more
time, therefore making the execution even slower. As a result, subsampling started to
operate significantly faster. An experiment was done after these changes, and a graph
with 400 nodes was subsampled again. The execution time was 1.53 minutes. As a result
of this optimization, we decreased the execution time for the same graph from 1.06 days
to 1.53 minutes.

Moreover, there was a bug in Little Ball of Fur’s code. During execution, if no nodes
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Figure 7. Subsampling experiment using PageRank

are left in the queue, the program goes into an endless loop and does not look for new
neighbors to add to the nodes list. This issue is fixed by adding an if statement to check
if the current queue is empty. By this change, if the queue is empty, the program picks a
new random node from the graph, puts it into the queue, and continues working with no
issues.

Thanks to all these works, it became possible to generate subgraphs of any desired size
effortlessly and without facing any issues. Based on these results, the work on real graphs
was over, and it was ready to be compared with generated synthetic graphs.

3.4 Graph Creation from the Synthetic Data

AMLSim generates transaction data as tabular data. Therefore, it should have been
converted into graph format to compare with the real graph. Before creating a graph
out of the generated data, a filtering process had to be done to eliminate unwanted
and unnecessary features to make it have the same format as the real graph. AMLSim
has a mechanism called source and sink. They are pseudo-customers used to adjust
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customer account balances in the synthetic dataset. They do this by putting money into
the simulation from outside or sending the simulation’s money to outside. In summary,
the source is the money from outside sources, and the sink is the money that went outside
the simulation. This thesis aims to imitate real data structure, and customer account
balances are irrelevant to this intent.

For this reason, the account balance information is not included in the real graph. There-
fore, all transaction rows that got the money from the source or put its money into the sink
have been removed from the generated synthetic data. Only transactions that were linked
to Swedbank are kept. Customer ID, transaction origin, and destination column names
are changed to make the data suitable for GraphFrames graph creation requirements.
Customers and transactions are separated from the generated data. Different DataFrames
are created for customers as nodes and transaction parties as edges. These nodes and
edges DataFrames are used to create a GraphFrames graph. These steps are combined to
create a pipeline for future synthetic graph generation. Finally, our synthetic graphs were
ready to be compared with our real graph.

3.5 Graph Comparison Metrics

Research on graph comparison metrics was conducted to evaluate how realistic generated
synthetic graphs are. This research also enabled the possibility of hyperparameter tuning
of AMLSim to create the optimal synthetic dataset by making changes according to the
evaluations. The first attempt towards this was to try the Graph Edit Distance (GED)
metric. GED is the minimum cost of an edit path between two graphs. An edit path
between graphs G and H is a sequence of edit operations that transforms G into H. There
are six edit operations, namely, node insertion, deletion, and substitution, as well as
edge insertion, deletion, and substitution. Each edit operation comes with an associated
non-negative edit cost, and the cost of an edit path is defined as the sum of the costs of
its edit operations [6].

PageRank is a method used by Google to evaluate the importance of web pages and their
relevance to the search. It works as a voting system, where each link to a page from other
pages is considered a vote. Each page has its self-importance score (PageRank). This
score is evenly distributed among the page’s outgoing edges [23]. While this approach is
used to find the most relevant web page, we used it in our graph comparison to find the
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distinct PageRank scores in a graph. This way, we can get more insights into the graph’s
structure since we can calculate how many relevant and irrelevant nodes are in the graph
and then compare the score with another graph to see if they have a similar pattern.

Graph Density is a measure of network connectivity that shows how linked the nodes
are in a given graph. It is calculated by dividing the number of edges in the graph
by the maximum possible number of edges [19]. This simple measure can show us
how connected customers are in our real and synthetic graphs, therefore, these graphs’
structure.

Graph Components in an undirected graph are defined as connected subgraphs, not part
of any larger connected subgraph. Each node in a graph belongs to a component; the
whole graph is a structure in which these components come together [8]. Each component
is like an island in the whole graph. They come together and create one big graph. We
calculated how many components our real and synthetic graphs have to check if they
share a similar structure.

Label Propagation is a semi-supervised machine-learning algorithm that assigns labels
to unlabeled data points. Firstly, the algorithm starts by labeling a small amount of data
points in the whole data. Then, it spreads these labels to unlabeled data points through
its execution [30]. In the context of complex networks, where community structures
are common, label propagation can be used to identify these communities within the
network [22]. We can use Label Propagation to identify communities, customer types,
and communication patterns. This can be used as a graph comparison metric to see if the
real and synthetic graphs have similar communities.

Except for the In-degree/Out-degree ratio, we implemented all the algorithms and metrics
mentioned in this subsection from the GraphFrames library, which is already available
for everyone to use [1].

3.6 Graph Comparison Metrics’ Results

We found out NetworkX had a function to calculate GED. We converted our GraphFrames
graphs to NetworkX graphs to make the function work and start doing tests. We had
to use subsamples of the original graph to achieve this because NetworkX had out-of-
memory problems with our big graphs. After testing the function, it was discovered that
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the function never stopped executing. While trying to find a solution, it is discovered
from its documentation that the function has a timeout parameter. However, a new
problem arose because there was no clarity on how long to set the timeout. If we set it
too short, we could not get the correct results or even get results because the calculation
had yet to be done. We tested several timeout values on the same graph to determine the
optimal timeout parameter. The results of the tested timeout values can be seen in Table
1.

Number of Nodes Timeout Parameter (s) Graph Edit Distance
100 50 323
100 200 323
100 500 323
500 50 No result
500 200 No result
500 500 4534

Table 1. Graph Edit Distance of graphs with several timeout parameters

However, this test was not helpful because the bigger your graph is, the longer you should
set the timeout. Moreover, the only way to find the optimal timeout is to brute force
the parameter. Another problem was the need to use bigger graphs to compare and get
more accurate results about the similarities in our graphs. However, this was causing
out-of-memory problems with the similarity function. To solve this problem, we tried
to customize the code, just like we did with the Snowball sampling. However, this idea
was quickly dropped since the source code was big and much more complex than the
Snowball sampling code.

Graph Components is another algorithm we gave up using in our hyperparameter tuning.
This is because we discovered that every time we execute the algorithm on our subsam-
ples, the algorithm finds only one component. This meant that our subsamples had no
islands; they were big, fully connected graphs, unlike the real graph. After seeing this,
we tried to run the algorithm on our real graph without subsampling it. Then, we saw
that the algorithm works slowly on the real graph. For these reasons, we decided that
this would not be a proper algorithm for hyperparameter tuning. Therefore, we decided
to use this algorithm only for subsampling bias experiments.

We also gave up on Graph Density. After calculating the score for a sampled real graph
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and several generated synthetic datasets, we realized their scores were not correlated.
This may be because the real graph is sampled by using Snowball sampling, which works
by iterating through nodes’ neighbors. Furthermore, since the real graph or synthetic
data does not have such a structure, they are naturally less connected than the sampled
real graph. Therefore, it was not accurate to compare synthetic graphs with a subsampled
graph using this algorithm. We had to drop this approach since we could not execute this
algorithm on the real graph without subsampling as well.

In-degree/Out-degree ratio is our best metric. Because it is fast to execute, and the results
are visible and detailed. We can see which node degree we should improve in order to
make the synthetic dataset more realistic. Which enabled us to have more ideas on how
to improve the generated datasets.

PageRank and Label Propagation was also successful. They were much faster compared
to Graph Components and Graph Density, which enabled us to do these comparisons.
And their results were on align with each other and In-degree/Out-degree ratio. Which
showed that they were reliable.

Ultimately, we decided to use the nodes’ In-degree/Out-degree ratios of graphs as our
first choice to compare since In-degree/Out-degree ratios are a great way to see if the
generated dataset captures the structure of our real graph and it was our the most reliable
and accurate comparison method. If experiments have close results, we will check Label
Propagation and PageRank to make the final decision.
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4 Hyperparameter Tuning

Fine-tuning AMLSim’s hyperparameters was crucial to generating synthetic data that
was close to our real data. AMLSim has many hyperparameters that change the behavior
of simulated customers and the structure of the generated dataset. We tried to capture
our real graph’s structure in the synthetic graph rather than focusing on details, such as
transaction amounts. Nevertheless, these details affect the general structure. Therefore,
paying attention and changing these attributes in our hyperparameters was important. In
addition, we had to be careful not to generate a dataset identical to our real dataset due to
privacy concerns. Luckily, AMLSim is a simulator that cannot generate precise datasets
with no bias. This issue will be addressed in the following subsections, and an example
of bias will be provided in the forthcoming sections.

Experiments were done by changing hyperparameters in AMLSim’s parameter files.
Which are one JSON file, which defines the behaviors of accounts, and one CSV file,
which defines the structure of the transaction network. Various hyperparameters are
changed during the experiment process.

4.1 Limitations

Hyperparameter tuning required an initial environment setup because of our way of
working in the bank and a couple of problems we faced. The first problem was that we
could only compare synthetic and real graphs on a cloud platform rather than a local
environment. Moreover, synthetic graph generation was the opposite. AMLSim was
only available to use in our local environments. Therefore, we had to generate synthetic
datasets locally and then commit the generated datasets to our repository. Finally, we had
to pull the changes from our repository to our cloud platform to compare the graphs. Here
comes the second issue. Our repository had limited space, and we generated datasets
containing more than one year of transaction data. This limited space was not big enough
to keep the generated datasets. We overcame this problem by creating a pipeline that
properly filters synthetic datasets and cuts down the generated datasets to 365 days,
which was small enough to keep in the repository. This solution brought a new problem
as well. The pipeline was using packages that were unavailable in our local coding
environment.
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Furthermore, we could not completely switch to a Docker container since AMLSim only
works in my local environment. Moreover, our privacy policies made installing packages
in our local coding environment impossible. To overcome this issue, we created a Docker
container that mounts our local project folder. By doing this, we could work on the same
folder but with different environments for different purposes and make our setup ready
to compare real and synthetic graphs.

4.2 Experiments with degree.csv

The degree.csv file in AMLSim defines the structure of the transaction network It consists
of 3 columns. Explanations of each column can be found in table 2.

Column Name Explanation
Count (integer) The number of nodes, as known as accounts.

In-degree (integer) The in-degree of the nodes.
Out-degree (integer) The out-degree of the nodes.

Table 2. degree.csv parameter structure

The graph needs to be complete, i.e., the sum of the in-degree and out-degree of all
nodes needs to be equal. Furthermore, the total count needs to be equal to the number of
accounts in the accounts.csv file.

Configuring degrees of accounts were important for us, since we observed a bump in
our synthetic graph’s histograms, which we did not have in our real graph. And we
eliminated this bump by changing degrees in the file according to our real data. As a
result, we had a more realistic synthetic graph.

From Figure 8, the modified synthetic graphs from Experiments 3, 4, and 5 are the ones
that resemble the subsampled real graph’s pattern the most in the In-degree/Out-degree
ratios histogram. We chose the mentioned experiments because other experiments do not
have a smooth ratio decrease while moving toward the right in the plot.

Since we could not decide which one to choose, we looked at the results of other
comparison algorithms.

According to the test results in Table 3, in PageRank comparison, experiment 3 is closest
to the sampled real graph. In Label Propagation comparison, experiments 3 and 5 have
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Figure 8. In-degree/Out-degree experiments for degree.csv
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Comparison Method Graphs to Compare Scores

PageRank

Experiment 3 509 Distinct Pages (Nodes)
Experiment 4 487 Distinct Pages (Nodes)
Experiment 5 489 Distinct Pages (Nodes)

Sampled real graph 3009 Distinct Pages (Nodes)

Label Propagation

Experiment 3 4089 Distinct Labels
Experiment 4 4094 Distinct Labels
Experiment 5 4089 Distinct Labels

Sampled real graph 1175 Distinct Labels

Table 3. degree.csv experiments with several algorithms

the same result and are closest to the sampled real graph. Since experiment 3 had good
results in both comparisons, we chose experiment 3’s parameters as our final decision in
degree.csv experiments.

In comparison to the default synthetic dataset, experiment 3 had lower In-degree/Out-
degree ratios and more nodes with less In-degree/Out-degree ratios in degree.csv.

4.3 Experiments with General Parameters

The conf.json file in AMLSim contains general parameters of the behavior of generated
accounts. Experiments are conducted by picking a hyperparameter and creating new
synthetic datasets by choosing a lower or higher value and then comparing it with a
real graph. First experiments have the lowest value in their hyperparameter experiment
group, and final experiments always have the highest value in their experiment cases.
For example, experiment 1 in parameter Alpha is the lowest value in all experiments
belonging to parameter Alpha. Experiment 7, the last experiment in parameter Alpha, has
the highest value in all parameter Alpha experiments. In all experiments, hyperparameter
values increase along with their experiment numbers. In each parameter experiment,
every experiment number also belongs to its parameter’s number in the belonging
parameter type. For example, parameter Alpha’s experiment 1’s parameter value is
mentioned as α1. The goal of these experiments is to find the best general parameter
combinations that lead to generating the most optimal realistic synthetic dataset. Due to
working on this project with another bank, we are prohibited from sharing our chosen
hyperparameters and their values openly and with details. Therefore, instead of directly
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disclosing parameter names, we will use mathematical symbols when explaining them.

Parameter Alpha (α)
From Figure 9, the modified synthetic graphs from experiments 1, 4, and 7 are the ones
that resemble the subsampled real graph’s pattern the most in the In-degree/Out-degree
ratios histogram. We chose the mentioned experiments because their degree distribution
is closer to the left, like how it is in the real graph. Their bump also moved more to the
left. After looking at the histograms closely, we saw that experiment 1 is less realistic
than others because experiment 4 and 7’s fourth bar is closer to the real graph. Therefore,
we have two options left: experiments 4 and 7.

Since they had similar results, we could not decide which one to choose, so we looked at
the results of other comparison algorithms.

Comparison Method Graphs to Compare Scores

PageRank

Experiment 4 477 Distinct Pages (Nodes)
Experiment 7 506 Distinct Pages (Nodes)

Sampled real graph 3009 Distinct Pages (Nodes)

Label Propagation

Experiment 4 4100 Distinct Labels
Experiment 7 4076 Distinct Labels

Sampled real graph 1175 Distinct Labels

Table 4. Parameter α experiments with several algorithms

According to the test results in Table 4, in PageRank comparison, experiment 7 is closest
to the sampled real graph. In Label Propagation comparison, experiment 7 is the closest
to the sampled real graph. Since experiment 7 had good results in both comparisons,
we chose experiment 7: α7 parameter value as our final decision in parameter alpha
experiments.

Compared to the default synthetic dataset, experiment 7 had a higher value for parameter
α.

Parameter Beta (β)
From Figure 10, the modified synthetic graph from experiment 1 resembles the sub-
sampled real graph’s pattern the most in the In-degree/Out-degree ratios histogram. We
chose experiment 1 because it has a smooth ratio decrease towards the right, without ups
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Figure 9. In-degree/Out-degree experiments with parameter α

and downs in bars. Its bump is also more to the left, unlike other experiments. Since
experiment 1: β1 parameter value is a clear winner, we didn’t have to look at the results
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of other comparison algorithms.

Figure 10. In-degree/Out-degree experiments with parameter β

Compared to the default synthetic dataset, experiment 1 had a lower value for parameter
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β.

Parameter Delta (δ)
From Figure 11, the modified synthetic graphs from experiments 1 and 5 are the ones
that resemble the subsampled real graph’s pattern the most in the In-degree/Out-degree
ratios histogram. We chose the mentioned experiments because they have a smooth ratio
decrease towards the right, without ups and downs in bars, like how it is in the real graph.

Since they had similar results, we could not decide which one to choose, so we looked at
the results of other comparison algorithms.

Comparison Method Graphs to Compare Scores

PageRank

Experiment 1 491 Distinct Pages (Nodes)
Experiment 5 489 Distinct Pages (Nodes)

Sampled real graph 3009 Distinct Pages (Nodes)

Label Propagation

Experiment 4 4083 Distinct Labels
Experiment 7 4089 Distinct Labels

Sampled real graph 1175 Distinct Labels

Table 5. Parameter δ experiments with several algorithms

According to the test results in Table 5, in PageRank comparison, experiment 1 is the
closest to the sampled real graph. In Label Propagation comparison, experiment 1 is
also the closest to the sampled real graph. Since experiment 1 had good results in
both comparisons, we chose experiment 1: δ1 parameter value as our final decision in
parameter δ experiments.

Compared to the default synthetic dataset, experiment 1 had a lower value for parameter
δ.

Parameter Epsilon (ϵ)
From Figure 12, the modified synthetic graphs from experiments 1, 2 and 5 are the ones
that resemble the subsampled real graph’s pattern the most in the In-degree/Out-degree
ratios histogram. We chose the mentioned experiments because they have a smooth ratio
decrease towards the right, without ups and downs in bars, like how it is in the real graph.

Since they had similar results, we could not decide which one to choose, so we looked at
the results of other comparison algorithms.

32



Figure 11. In-degree/Out-degree experiments with parameter δ

According to the test results in Table 4, in PageRank comparison, experiment 2 is the
closest to the sampled real graph. In Label Propagation comparison, experiment 2 is
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Figure 12. In-degree/Out-degree experiments with parameter ϵ

also the closest to the sampled real graph. Since experiment 2 had good results in
both comparisons, we chose experiment 2: ϵ2 parameter value as our final decision in
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Comparison Method Graphs to Compare Scores

PageRank

Experiment 1 491 Distinct Pages (Nodes)
Experiment 2 493 Distinct Pages (Nodes)
Experiment 5 488 Distinct Pages (Nodes)

Sampled real graph 3009 Distinct Pages (Nodes)

Label Propagation

Experiment 1 4086 Distinct Labels
Experiment 2 4079 Distinct Labels
Experiment 5 4090 Distinct Labels

Sampled real graph 1175 Distinct Labels

Table 6. Parameter ϵ experiments with several algorithms

parameter ϵ experiments.

Compared to the default synthetic dataset, experiment 2 had a higher value for parameter
ϵ.

Parameter Lambda (λ)
From Figure 13, the modified synthetic graphs from experiments 4 and 5 are the ones
that resemble the subsampled real graph’s pattern the most in the In-degree/Out-degree
ratios histogram. We chose the mentioned experiments because they have a smooth ratio
decrease towards the right, without ups and downs in bars, like how it is in the real graph.

Since they had similar results, we could not decide which one to choose, so we looked at
the results of other comparison algorithms.

Comparison Method Graphs to Compare Scores

PageRank

Experiment 4 480 Distinct Pages (Nodes)
Experiment 5 464 Distinct Pages (Nodes)

Sampled real graph 3009 Distinct Pages (Nodes)

Label Propagation

Experiment 4 4037 Distinct Labels
Experiment 5 4055 Distinct Labels

Sampled real graph 1175 Distinct Labels

Table 7. Parameter λ experiments with several algorithms

According to the test results in Table 7, in PageRank comparison, experiment 4 is the
closest to the sampled real graph. In Label Propagation comparison, experiment 4 is
also the closest to the sampled real graph. Since experiment 4 had good results in
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Figure 13. In-degree/Out-degree experiments with parameter λ

both comparisons, we chose experiment 4: λ4 parameter value as our final decision in
parameter λ experiments.
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Compared to the default synthetic dataset, experiment 4 had a higher value for parameter
λ.

Parameter Omega (ω)
From Figure 14, the modified synthetic graphs from experiments 1, 2 and 4 are the ones
that resemble the subsampled real graph’s pattern the most in the In-degree/Out-degree
ratios histogram. We chose the mentioned experiments because they have a smooth ratio
decrease towards the right, without ups and downs in bars, like how it is in the real graph.
After looking at the histograms closely, we saw that experiment 2 is less realistic than
others because experiment 1 and 4’s fourth bar is closer to the real graph. Therefore, we
have two options left: experiments 1 and 4.

Since they had similar results, we could not decide which one to choose, so we looked at
the results of other comparison algorithms.

Comparison Method Graphs to Compare Scores

PageRank

Experiment 1 479 Distinct Pages (Nodes)
Experiment 4 484 Distinct Pages (Nodes)

Sampled real graph 3009 Distinct Pages (Nodes)

Label Propagation

Experiment 1 4080 Distinct Labels
Experiment 4 4066 Distinct Labels

Sampled real graph 1175 Distinct Labels

Table 8. Parameter ω experiments with several algorithms

According to the test results in Table 8, in PageRank comparison, experiment 4 is the
closest to the sampled real graph. In Label Propagation comparison, experiment 4 is
also the closest to the sampled real graph. Since experiment 4 had good results in
both comparisons, we chose experiment 4: ω4 parameter value as our final decision in
parameter ω experiments.

Compared to the default synthetic dataset, experiment 4 had a higher value for parameter
ω.

4.4 Final Results

In order to have the final synthetic dataset, we combined parameters of the best results
from our degree.csv and general parameter experiments. In Figure 15, the first plot
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Figure 14. In-degree/Out-degree experiments with parameter ω

compares the real and default synthetic graphs. On the synthetic graph’s histogram,
it is visible that there is a bump in the middle, which does not exist in the real graph.
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We had several experiments on hyperparameters, and our main goal was to eliminate
this bump. The second plot on the top right shows the comparison between the real
graph and the synthetic graph, which is modified only on its general parameters. The
difference between the default synthetic graph and the synthetic graph with changed
general parameters is not much. The reason is that the general parameters do not affect
the graph too much without degree.csv changes. The third plot on the bottom left shows
the comparison between the real graph and the synthetic graph that has a modified
degree.csv but has default general parameters. It is visible that degree.csv is the most
effective method to make AMLSim graphs more realistic. The bump is almost gone, the
degree ratios decrease smoothly to the right, and it resembles the ratio pattern of the real
graph. However, the last plot on the bottom right shows that combining degree.csv and
general parameters gives the best results to generate the most realistic graph. The final
synthetic graph looks similar to the synthetic graph with modified degree.csv and default
general parameters, but the ratios of the degrees are lower and, therefore, closer to the
real graph.

As a result, we got a synthetic graph that resembles the real graph’s pattern and degree
ratios. We could not get a synthetic graph identical to the real one. This is because
AMLSim is not able to generate precise graphs. These results show the most realistic
synthetic graph we could get. This is good for us since generating an identical synthetic
graph would be dangerous. Because it could give important information about our data,
creating a risk of reverse engineering.
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Figure 15. Results of hyperparameter tuning
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5 Discussion

This chapter will cover the conclusions of this thesis and explain the limitations that
affected the result of the work.

5.1 Context and Outcome

This thesis investigated methods to produce a synthetic graph with a similar structure to
real transaction data for FL needs. We conducted graph creation for synthetic and real
datasets, paying attention to the fact that they have similar features. Then, we imple-
mented Snowball sampling to sample our real graph, make computationally expensive
comparison algorithms work faster with our big graphs, and make the real graph’s node
count equal to make their comparison meaningful. Next, we used In-degree/Out-degree
Ratio, PageRank, and Label Propagation methods to compare graphs and performed
experiments on AMLSim’s hyperparameters by comparing generated synthetic graphs
and a real graph generated from Swedbank’s transaction data. Then, we made changes to
hyperparameters accordingly in order to create more realistic synthetic data.

The results showed that the degree.csv file plays a crucial role in generating realistic
datasets in AMLSim compared to its general parameters. Combining our best results
from general parameters and degree.csv experiments, we generated the most optimal
synthetic dataset that resembles the real graph’s structure. When we first started doing
experiments, there was a bump in histograms of synthetic graphs that did not occur in
real graphs. This bump was the most unrealistic part of the generated dataset, which
we achieved by eliminating and moving to the left and tightening it to give it a similar
distribution to our real graph.

5.2 Limitations

Generating synthetic data identical to our real transaction data was impossible with
AMLSim because AMLSim does not have the capability to generate precise datasets.
The result of the work is based on the most realistic dataset we have achieved by using
AMLSim and experimenting with its hyperparameters.
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6 Conclusion and Future Work

6.1 Conclusion

In this thesis, the author collaborated with Swedbank and contributed to a project
to generate a realistic synthetic dataset to enable Federated Learning between banks.
At first, the author found a method to subsample a graph created from Swedbank’s
transaction data. Next, the method was optimized to make it scale well with Swedbank’s
big graphs, and subsamples were created. In addition, several methods are added to
compare graphs. To ensure that the subsampling method is working well, the author
conducted experiments to ensure that subsampling creates subgraphs similar to each
other using implemented comparison methods. Then, synthetic data was filtered in order
to make it suitable for comparison with the real graph. After creating a graph with the
filtered synthetic dataset, the author worked on hyperparameter tuning to find the optimal
AMLSim hyperparameters to create a realistic synthetic graph.

The results are that the subsampling method works as it should. Generated subsamples
are close to each other in structure, and the method is persistent in creating similar
subsamples. Hyperparameter tuning was successful. We experimented on different
hyperparameters by changing their values and comparing them with a subsampled real
graph. After finding the most optimal hyperparameter values and combining them, we
created a synthetic graph that represents the pattern of the real graph well. As a result,
we achieved our goal in this thesis work and generated a realistic synthetic graph. Our
final synthetic graph resembles our real graph, and the FL project is still progressing.
However, these results are not the final work in the project to generate a realistic dataset,
and the realistic synthetic graph generation work is still ongoing.

6.2 Future Work

In future work, different paths can be taken. If the work is done on an individual,
AMLSim can be customized and improved to generate more realistic datasets. It is
possible to modify the simulation’s agent’s behavior and the general structure of how
the simulation works. If the work is done with another company, like how we worked,
research on comparison methods can be considered to improve comparison and get more
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insights about the graphs. Furthermore, the hyperparameter tuning can be automatized to
make the process faster. It also may make the tuning more successful, as precise parameter
values can be found after experiments to create more realistic datasets. However, one
should pay attention to data leakage while automatizing tuning.
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