
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Data Science Curriculum

Rasmus Bobkov

Design and Implementation of an
Incremental ELT Pipeline for a Jira Data

Warehouse using Data Vault 2.0
Methodology and HP Vertica

Master’s Thesis (15 ECTS)

Supervisor: Feras M. Awaysheh, Phd

Tartu 2023

Design and Implementation of an Incremental ELT Pipeline for a Jira Data Ware-
house using Data Vault 2.0 Methodology and HP Vertica
Abstract:
This master’s thesis outlines the design and implementation of a containerized ELT
pipeline for TEHIK, a company requiring an efficient way to analyze Jira Software data.
The pipeline is designed to incrementally load data into a Vertica DWH, constructed
following DV 2.0 principles. The containerized architecture enables easy deployment in
production environments. Considering the extensive breadth of the subject, the thesis
aims to provide an overarching understanding of DE, DV 2.0, Agile methodologies, and
implementation. Instead of delving into intricate specifics of each area, it focuses on
presenting a broad perspective, offering a more comprehensive view of these fields.

The thesis begins by examining the current system, underlining its limitations, and
then introduces the proposed solution, emphasizing its advantages. The Background
Knowledge and Related Work section endeavors to provide a solid understanding of the
central concepts in DE, DWH’ing, and the DV 2.0 methodology, along with deployment
in production environments. This section touches upon key topics such as ingestion, ELT
vs ETL architecture, DWH architectures, and the essence and benefits of the DV 2.0
methodology.

While the practical application of Kubernetes, logging, monitoring, and orchestration
with Airflow is not included in the thesis due to time restrictions, these aspects are still
crucial for a holistic understanding of the project. Hence, a conceptual overview of
orchestration using Airflow and a theoretical implementation for logging and monitoring
are provided.

The implementation section comprehensively explores the project’s process, unveiling
the specific steps and methodologies employed, the challenges faced, and their respective
solutions. The subsequent ’Results and Analysis’ section critically compares the proposed
solution and the existing one. It evaluates aspects like reporting capabilities, compliance
with SLAs, and an analysis of the pipeline’s performance, considering its ability to handle
large data volumes and scalability.

In conclusion, this thesis delivers a robust, scalable, and efficient solution comprising
an ELT pipeline and a DV 2.0-based DWH tailored for TEHIK’s Jira Software data
analysis needs. This integrated solution outperforms the existing system, providing a
solid foundation for future enhancements and expansions.
Keywords:
ELT pipeline, Data Engineering, DWH, HP Vertica, Jira , TEHIK, DV 2.0, Meltano,
shell scripting, vsql, sofware development, Docker, scalability.
CERCS:
P170 Computer science, numerical analysis, systems, control
P175 Informatics, systems theory

2

Figure 1. Visual abstract

Inkrementaalselt täiendava ELT töövoo ja Jira andmelao arendus ja juurutamine
kasutades Data Vault 2.0 metoodikat ja HP Verticat
Lühikokkuvõte:
Käesolevas magistritöös on esitletud konteineriseeritud ELT töövoo lahenduse väljatöö-
tamist ja rakendamist ettevõttele TEHIK, kes vajab tõhusat võimalust Jira tarkvara
andmete analüüsimiseks. Töövoog on mõeldud andmete täiendavaks laadimiseks Vertica
andmelattu, mis on ehitatud vastavalt DV 2.0 põhimõtetele. Konteinerkonstruktsioon
võimaldab lihtsat kasutuselevõttu tootmiskeskkondades. Arvestades teema ulatuslikkust,
on töö eesmärgiks võetud anda pigem kõrgetasemelisi teadmisi andmetehnika, DV 2.0,
Agiiilsete metoodikate ja nende rakendamise kohta, otseselt mitte keskendudes süvendat-
ult ühelegi neist.

Lõputöö alustab kehtiva lahenduse uurimisega, selle piirangute välja toomisega, ning
seejärel tutvustab pakutavat lahendust, rõhutades selle eeliseid. Taustateadmiste ja sellega
seotud töö jaotises püütakse anda lühike ülevaade andmetehnika, andmelaonduse ja DV
metoodika kesksetest kontseptsioonidest ning lahenduse juurutamisest tootmiskeskkon-
dades. Selles jaotises käsitletakse põhiteemasid, nagu andmete sisse saamine, ELT vs
ETL arhitektuur, andmelao arhitektuurid ning DV 2.0 metoodika olemus ja eelised.

Ajapiirangute ja ka tööle esitatud mahu tõttu ei sisaldu praktilise rakendamise osas:
Kubernetese, logimise, monitoorimise ja Airflow’ga orkestreerimise osa. Kuna need
aspektid on siiski üliolulised projekti terviklikuks mõistmiseks antakse kontseptuaalne
ülevaade Airflow töö põhimõtetest, orkestreerimisest koos logimise ja monitoorimisega.

Rakendamise osas selgitatakse protsessi, tutvustades konkreetseid samme ja kasu-
tatud metoodikaid, erinevaid probleeme ja nende lahendusi. Järgnevas tulemuste ja
analüüsi peatükis on kehtivat ja töö käigus väljatöötatud lahendust võrreldud, hinnates
sellised apsekte nagu: raporteerimise võimalused ja võimekus, vastavus SLA-dele ja
töövoo jõudluse analüüs, võttes arvesse selle võimet käsitleda suuri andmemahtusid ja
skaleeritavust.

Kokkuvõtvalt võib öelda, et käesolev lõputöö pakub tugevat, skaleeritavat ja tõhusat
lahendust, mis koosneb ELT töövoost ja DV 2.0-põhisest andmelaost, mis on kohandatud
TEHIKu Jira tarkvara andmeanalüüsi vajadustele. Pakutud integreeritud lahendus ületab
olemasolevat süsteemi, võimaldades tugeva aluse tulevasteks täiendusteks ja laiendusteks.

Keywords:
ELT töövoog, Andmetehnika, Andmeladu, HP VErtica, Jira, TEHIK, DV 2.0, Meltano,
terminali skriptid, vsql, Tarkvara arendus, Docker, skaleeritavus.
CERCS:
P170 Arvutiteadus, numbriline analüüs, süsteemid, kontroll
P175 Informaatika, süsteemide teooria

4

Figure 2. Visuaalne abstrakt.

Acknowledgements
I would like to take a moment to express my heartfelt gratitude to my colleague Kristjan
for assisting me in selecting the topic for my thesis. In particular, I would like to extend
my deepest appreciation to my colleague Karl for patiently guiding me through the
challenging journey of navigating the complex world of data engineering. His mentoring
has been invaluable in helping me overcome the numerous technicalities and difficulties
encountered throughout this project. I would also like to express my sincere thanks to
Ida, a friend and classmate, who had a significant impact on the final form of this paper.
Her valuable insights and the stimulating discussions we had throughout the intense
writing process during the last two weeks made it possible for the paper to appear in its
current form.

Furthermore, I would like to express my sincere appreciation to my better half, Katri
and the ones close to my heart, whose unwavering love and support have been a source
of strength and inspiration throughout this journey. Their magnificent presence in my
life has made this achievement possible.

In the process of developing this master’s thesis, the assistance of ChatGPT, an AI
language model developed by OpenAI, was utilized for several purposes. These include
generating ideas, structuring the thesis, and refining sections to enhance readability and
effectively convey the author’s intended message. It is important to note that the use of
ChatGPT in this work was primarily to support the author’s own efforts, rather than to
create the content itself.

The author was careful to ensure that the information generated by ChatGPT was
accurate and reliable, and any references or claims made by the AI were thoroughly
checked and verified. In line with ethical guidelines, the use of ChatGPT in this thesis is
clearly disclosed, and any assistance received from the AI is acknowledged.

By incorporating ChatGPT’s assistance, the author was able to focus on refining
the core ideas and arguments presented in the thesis, ensuring a high-quality and well-
structured work that meets the academic requirements of the Institute of Computer
Science.

6

Contents

1 Abbreviations used 10

2 Introduction 12
2.1 Background on TEHIK . 12
2.2 What is Jira software and how it’s used in TEHIK 13
2.3 Overview of the existing solution and its limitation 13
2.4 Proposed Solution . 15

3 Background Knowledge and Related Work 16
3.1 Data Engineering . 16

3.1.1 Overview of DE . 16
3.1.2 Ingestion . 17
3.1.3 ETL vs ELT . 17
3.1.4 Data Transformations and Preparation 18
3.1.5 Serving and data modeling . 19

3.2 Orchestration and Workflow Management 20
3.3 Logging and Monitoring . 20
3.4 Data Warehousing . 22

3.4.1 Overview of DWH’ing and its Importance in Modern Business . 22
3.5 Three different DWH architectures . 23
3.6 Data Vault 2.0 . 26

3.6.1 DV 2.0 Model . 26
3.6.2 The use of hashing in DV2.0 28

3.7 Presentational layer (DWH) in DV2.0 29
3.8 Deployment in Production Environment 29

4 Implementation 30
4.1 Use Cases and User Stories . 30
4.2 Constraints set for the Architecture by TEHIK 31
4.3 Utilizing Testing and Live Environments for Development 33
4.4 On the Importance of Structure and Naming Conventions 36
4.5 Setting up Git repositories and on The Importance of Access Control in

DWH’s and Databases . 36
4.6 Ingestion . 38

4.6.1 Output from Meltano . 41
4.7 First layer - DW_JIRA_ODS . 42

4.7.1 Staging layer . 42
4.7.2 ODS layer . 44

7

4.8 EDW layer . 45
4.8.1 Jira Issues Structure Mapping and Collaborating with Analysts

for Data Verification and Validation 47
4.8.2 Preparation with the Analyst 48
4.8.3 First iteration - hubs . 49
4.8.4 First iteration - links . 50
4.8.5 First Iteration - Satellites . 51
4.8.6 Following Iterations . 53

4.9 DWH layer . 54
4.10 Containerization with Docker . 56
4.11 Implementation environment . 59

5 Results and Analysis 60
5.1 Comparison with Existing Solution . 60

5.1.1 Reduction in Manual Work . 60
5.1.2 Increased Flexibility . 60
5.1.3 Query Tuning and Performance Optimization 61
5.1.4 Up-to-date Reports . 61
5.1.5 Historical Data and Trend Analysis 61

5.2 Containerization and Deployment . 61
5.3 Monitoring and Maintenance . 62
5.4 Scalability and Performance . 62
5.5 Performance Analysis . 63

5.5.1 Extract Time . 63
5.5.2 Data Load Time . 64
5.5.3 Data Transformation Time . 64
5.5.4 Query Response Time . 65
5.5.5 ELT on everyday basis . 66

6 Discussion 67
6.1 Summary of Key Findings . 67
6.2 Future Work . 68

7 Conclusion 70

References 73

I Tree structure and naming conventions example based on EDW 74

II Meltano tap-jira possible endpoints 75

III Meltano init my-new-project 76

8

IV Meltano init promt 77

V Jira issue tree 78

VI Requirements mapping 79

VII Entities to be modeled in EDW 80

VIII EDW_JIRA ERD 81

IX DWH_JIRA ERD 82

X Dockerfile_vsql 83

XI Bash scripts used for executing containerized pipeline 84

XII Licence 85

9

1 Abbreviations used
• 3NF - Third-Normal-Form

• AD - Active Directory

• API - Application Programming Interface

• Bash - Bourne-Again Shell

• BD – Big Data

• ChatGPT - Chatbot Generative Pre-trained Transformer

• CIF - Corporate Information Factory

• CLI - Command Line Interface

• CPU - Central Processing Unit

• CSV - Comma Separated Values

• DAG - Directed Acyclic Graph

• DB – Database

• DDL - Data Definition Language

• DE - Data Engineering

• DML - Data Manipulation Language

• DWH - Data Warehouse

• DV - Data Vault

• DS - Data Science

• E-Health - Electronic Health

• EAV - Entity-Attribute-Value

• EDW - Enterprise Data Warehouse

• ELK - ElasticSearch, LogStash, Kibana

• GDPR - General Data Protection Regulation

10

• HIPAA - Health Insurance Portability and Accountability Act

• HP - Hewlett Packard

• HTTP - Hypertext Transfer Protocol

• IT - Information Technology

• JSON - JavaScript Object Notation

• JSONL - JavaScript Object Notation Lines

• JQL - Jira Query Language

• KPI - Key Performance Indicator

• ODS - Operational Data Store

• PIP - Python Package Installer

• PIT - Point in Time

• RAM - Random Access Memory

• REGEX - Regular Expression

• REST - Representational State Transfer

• SHA - Secure Hash Algorithm

• SKAIS - Social Insurance Board

• SQL - Structured Query Language

• STG - Staging

• TCL – Transaction Control Language

• TKT - Technical User Support

• VM - Virtual Machine

• Vsql - Vertica SQL

• XML - eXtensible Markup Language

11

2 Introduction

2.1 Background on TEHIK
TEHIK is a crucial organization responsible for managing, developing, and coordinating
Estonia’s health and welfare information systems [teh]. TEHIK was established with
the goal of ensuring a high-quality, efficient, and secure digital health and welfare
services system for Estonian residents. TEHIK’s primary tasks involve the development,
management, and integration of health and welfare information systems [teh]. The
organization ensures the implementation of digital solutions in healthcare, welfare
institutions, and other areas to provide citizens with better access to quality services.

TEHIK’s main departments are:

• Health and Welfare Information Systems Management and Development:
This department focuses on managing, developing, and coordinating health and
welfare information systems, ensuring their effectiveness and security [teh].

• E-Health Solutions Coordination: This department is responsible for imple-
menting, coordinating, and developing e-health solutions, ensuring easy access to
digital health services for healthcare professionals and citizens [teh].

• Data Analysis and Statistics: This department focuses on collecting, analyzing,
and disseminating health and welfare data to enable better decision-making and
policy formulation in the field [teh].

• IT Services Management and Support Services: This department ensures the
efficient operation, management, and provision of support services for the health
and welfare information systems’ IT infrastructure [teh].

TEHIK’s work is significant not only for Estonian residents and healthcare profes-
sionals but also in an international context, contributing to the promotion of digital health
and the spread of e-health solutions worldwide [teh]. TEHIK’s efforts support Estonia’s
goal of being an innovator and promoter in e-health and digital healthcare.

The following are the top 10 most critical IT systems managed by TEHIK:

• Old-age pension payments, approximately 310,000 people (SKAIS1), around 180
million EUR per calendar month.

• Family benefits payments, approximately 200,000 families (SKAIS2).

• Disability benefits, approximately 130,000 people.

• digilugu.ee, personal health data, approximately 1 million uses per month [diga].

12

• digiregistratuur.ee [digb].

• Health Information System, health data for health service providers (including
general practitioners, hospitals).

• Emergency medical services mobile workstation.

• Prescription Center [digc].

• SamTrack - the State Agency of Medicines’ procedural system [sam].

• Medre - Health care management information system [med].

• TEIS - Employment Information System [too].

• COVID data services [kor].

2.2 What is Jira software and how it’s used in TEHIK
TEHIK has implemented Jira as its internal issue-tracking software to manage and
address technical issues within its organization effectively[jirb]. Jira, a widely adopted
and robust project management tool, enables TEHIK to monitor and manage tasks,
incidents, and requests in a centralized and organized manner. This process ensures that
all relevant stakeholders within TEHIK are aware of ongoing issues and can efficiently
allocate resources to address them.

One key aspect of this thesis focuses on developing a reporting solution based on
TKT tickets. These tickets originate from various departments within the Ministry of
Social Affairs, the State Agency of Medicines, the Health Board, and other related
organizations[sm, rav, ter]. The TKT tickets encompass various technical issues and
requests, such as software bugs, system failures, and user support inquiries, requiring
prompt and efficient resolution.

By utilizing Jira for managing TKT tickets, TEHIK can benefit from a streamlined
process that enables task categorization, prioritization, and assignment to appropriate
team members. Furthermore, Jira provides robust reporting capabilities that allow TEHIK
to analyze the data associated with TKT tickets, identify trends and recurring issues, and
measure the effectiveness of their resolutions. These insights can, in turn, guide TEHIK
in making informed decisions regarding resource allocation, process improvements, and
strategic planning.

2.3 Overview of the existing solution and its limitation
AS-IS solution: The individual who requests a Tableau report provides the data composi-
tion and, if necessary, a JQL query[taba]. In order to export data from Jira to Tableau

13

Desktop, the Tableau Connector Pro for Jira is utilized, which connects via the Tableau
Web Data Connector Jira link[tabb]. Based on the conditions of the JQL query and the
selected data fields, Tableau Desktop automatically generates a Tableau-specific file
containing the data, known as a *.hyper extract. This extract serves as the initial source
for Tableau Prep Builder, where the data is cleaned, enriched, and linked to other data
sources if necessary.

The output of the Tableau Prep Builder data stream is a hyper file containing the
processed dataset or several files published on Tableau Server. These published data files
serve as inputs to Tableau reports. A newly created report in Tableau Desktop is bundled
together with the dataset and published on Tableau Server, where it is accessible to users.
Extracts and reports are updated on the server.

The initial step to update a report in Tableau Server is to update the extract in Tableau
Desktop by refreshing all extracts. Following that, a data flow is initiated in Tableau Prep
Builder, which results in the extract with the dataset on Tableau Server being updated.
The final step is to update the report published on the server. The visual overview of the
As-is solution can be seen in Figure 3.

Figure 3. AS-IS solution

The problems with AS-IS solution

• The process of updating reports (1 or 2 times a month, depending on the report,
approx (20 reports) is done manually today and has become a time- and resource-
intensive process due to the increase in data volumes. At the initial stage of data
update, about 40 extracts are created, some of which take more than an hour to
generate. This practically means that this process occupies the entire computer
resource. The extract cannot be created/updated at all if there is not enough
memory. The problem derives mainly from the fact that the entire set must be
queried every time.

• Using Tableau Connector Pro for Jira, it is not possible to perform all requests
optimally, so in the conditions of JQL requests where not all Jira data fields are
usable (for example, the request cannot be limited to history fields) and therefore,
it has turned out to be impossible to create some reports[tabb].

14

• There is no history of Jira users belonging to entities. For example, if a user moves
from one department to another, the department-based report for the same period
will be different if viewed at different points in time. A user’s membership comes
from AD groups, and he can belong to different AD groups at the same time. The
latter can cause a situation where the user is in two departments. Those who left
the institution are without a department.

2.4 Proposed Solution
Building a DWH for Jira data in an HP Vertica DB requires leveraging existing tools
and methods to ensure efficiency and minimize complexity[verb]. The proposed solution
uses REST API, Meltano, and custom scripts for data extraction[Mel], while vsql, bash,
SQL, and Python facilitate loading the data into the DWH. DV 2.0 serves as the DWH
model, providing a flexible and scalable foundation that is adaptable to changes in data
structures and requirements.

Also, Vertica is employed in the solution for scalability and fast analytics support,
ensuring the DWH can handle growing volumes of data without compromising perfor-
mance. SQL and custom scripts are used for data transformations, streamlining the
process of integrating and analyzing the data from Jira and allowing for more accurate
insights and decision-making.

On the other hand, monitoring is handled through custom scripts in the solution,
ensuring system health and providing real-time insights into performance. Potential
issues can be proactively identified and resolved, reducing downtime and ensuring
consistent data quality. Containerization is achieved using Docker, which simplifies
deployment, improves consistency across environments, and makes the solution more
portable and maintainable.

In the current implementation of the solution, the orchestration of the data pipeline
is managed using cron jobs[cro]. At the same time, Kubernetes is employed to han-
dle and manage the deployed containers efficiently[kub]. Looking ahead, the plan
is to incorporate Airflow for more advanced and automated orchestration of the data
pipelines[airb]. Airflow’s capabilities, including dependency management, error han-
dling, and job scheduling, will further streamline the maintenance and monitoring of the
data pipeline.

The proposal using these tools and methods will make the solution adaptable, auto-
mated, and easy to monitor, ensuring its long-term value to the organization, as demon-
strated in our experiments. Prioritizing scalability, simplicity, and effective management
will lead to a robust and efficient solution that meets the organization’s needs and remains
well-equipped to handle future challenges. This approach minimizes reinventing the
wheel and maximizes the benefits of existing open-source technologies.

15

3 Background Knowledge and Related Work

3.1 Data Engineering

3.1.1 Overview of DE

DE is a vital discipline in the big data ecosystem, responsible for designing, constructing,
and maintaining data infrastructure that enables efficient storage, processing, and data
analysis. As the foundation of modern data analytics, machine learning, and artificial
intelligence, DE is pivotal in extracting valuable insights and driving data-driven decision-
making across diverse industries.

The DE lifecycle encompasses several essential stages that ensure a seamless process
and high-quality outcomes. These stages include:

• Data ingestion: Acquiring raw data from various sources such as APIs, databases,
or log files, while considering aspects like data formats, schemas, and consistency.
[RH22]

• Data validation and cleansing: Identifying and rectifying inconsistencies, errors,
or missing values in the dataset, often employing techniques like outlier detection,
deduplication, or data imputation.[RH22]

• Data transformation: Converting and structuring data into a format suitable for
storage and analysis, utilizing techniques like normalization, denormalization,
encoding, or aggregation, while adhering to specific schema designs (e.g., star
schema, snowflake schema) and data modeling principles.[RH22]

• Data storage and management: Organizing and storing data in DB’s, DWH’s, or
data lakes, utilizing storage technologies like relational DB’s (e.g., PostgreSQL[pos],
MySQL[mys]), columnar DB’s (e.g., HP Vertica, Apache Cassandra[cas]), or dis-
tributed storage systems (e.g., Hadoop Distributed File System[had], Amazon
S3[ama])[RH22].

• Data retrieval and analysis: Accessing, processing, and analyzing relevant data
using query languages (e.g., SQL), programming languages (e.g., Python, R), or
data processing frameworks (e.g., Apache Spark[apab], Apache Flink[apaa]) to
generate actionable insights and support data-driven applications.

By comprehending and proficiently managing these stages, data engineers can de-
velop robust and efficient data pipelines that enable organizations to unlock the full
potential of their data assets. This technical understanding is critical in addressing the
ever-evolving challenges and opportunities presented by the rapidly expanding data
landscape. A comprehensive overview of the field known as Data Engineering can be
observed in Figure 4.

16

Figure 4. Data Engineering lifecycle [RH22].

3.1.2 Ingestion

Some popular open-source tools for data ingestion encompass Apache NiFi[nif],
Logstash[log], and Fluentd[flu], which support various data sources such as APIs,
databases, and log files. These tools offer pre-built connectors, customizability, and
scalability to accommodate data formats, schemas, and volumes.

Ingestion techniques can be categorized into batch, streaming, and real-time. Batch
ingestion involves accumulating data in chunks at regular intervals, processing it col-
lectively, and transferring it into a data storage system. This approach suits non-time-
sensitive data or scenarios where low latency is not crucial[RH22].

Conversely, streaming ingestion addresses continuous data flows, processing and
storing data as it emerges. Tools like Apache Kafka[kaf] and RabbitMQ[rab] enable
efficient streaming ingestion, fostering real-time analytics and immediate insights[RH22].

3.1.3 ETL vs ELT

Data integration is essential in DE, involving unifying data from multiple sources into a
cohesive structure. Two primary approaches to data integration are ETL and ELT, each
with its advantages and disadvantages.[RH22]

ETL is a traditional approach where data is extracted from various sources, trans-
formed into a desired format or schema, and loaded into a target DB or DWH. ETL
processes typically involve data cleansing, enrichment, and aggregation. This approach

17

is suitable for scenarios where data quality and consistency are paramount, as transfor-
mations are performed before loading.[RH22]

However, ETL can be resource-intensive and time-consuming, particularly with large
data volumes. The advent of modern data storage and processing systems, such as data
lakes and distributed computing platforms, has given rise to the alternative ELT approach.

In the ELT approach, raw data is extracted, loaded into the target system, and
transformed afterwards. This approach leverages the processing capabilities of modern
data storage systems, enabling parallel and distributed transformations for improved
performance. ELT is well-suited for scenarios where data processing speed and scalability
are essential.[RH22]

However, one disadvantage of ELT is that data quality may be less strictly controlled,
as raw data is loaded directly into the target system without prior transformations. This
drawback can make it challenging to maintain consistency and quality.

In conclusion, the choice between ETL and ELT depends on the specific use case,
requirements, and existing infrastructure. ETL is generally preferable when data quality
and consistency are crucial, while ELT is better suited for situations where processing
speed and scalability are the primary concerns. [Bar]

3.1.4 Data Transformations and Preparation

The importance of thorough source data preparation and analysis cannot be overstated in
the DE lifecycle, as it lays the foundation for deriving reliable and actionable insights.
Data transformation and preparation, comprising essential sub-tasks like data cleaning,
validation, standardization, normalization, and denormalization, convert raw data into a
usable and consistent format for analysis.[RH22]

Data cleaning is critical for identifying and rectifying errors, inconsistencies, and
missing values in datasets, utilizing techniques such as outlier detection, deduplication,
and data imputation. High-quality data ensures the reliability and accuracy of subsequent
analysis and insights.[RH22]

Data validation significantly confirms that data adheres to specified rules or con-
straints, guaranteeing data accuracy and fitness for its intended purpose. On the other
hand, standardization focuses on converting data into a consistent format or schema,
allowing seamless integration and analysis across various data sources.

Normalization and denormalization are essential concepts in data preparation, mainly
when dealing with relational DBs. Normalization is the process of organizing data into
multiple related tables to reduce redundancy and improve data integrity. This technique
ensures efficient data storage and facilitates data consistency across the database.[LO15]

Denormalization, in contrast, is the process of combining data from multiple tables
into a single table or view, which can improve query performance by reducing the need
for complex joins. While denormalization can lead to data redundancy and increased

18

storage requirements, it can significantly enhance analytical processing and reporting
capabilities.[KR13]

Handling diverse data formats and parsing them into structured representations is
also essential for data transformation and preparation. Standard formats like CSV, JSON,
XML, and Parquet each come with their own set of parsing libraries and tools[par]. For
instance, Python’s pandas library supports reading and writing data in multiple formats,
while the lxml library parses XML data, and Apache Arrow manages columnar data
formats like Parquet[pan][lxm][arr].

By thoroughly preparing and analyzing source data and mastering data transformation
and preparation techniques, data scientists ensure that their data is clean, consistent, and
compatible with analytical tools and models. This approach paves the way for more
reliable and actionable insights, ultimately empowering data-driven decision-making.

3.1.5 Serving and data modeling

In the broader context of the DE lifecycle, serving and data modeling are critical com-
ponents contributing to the overall effectiveness of data processing and analytics. Both
elements are essential in a data pipeline, regardless of the specific implementation or
platform used.

Data serving is the stage in which processed and transformed data is made available
to data consumers, such as data scientists, business analysts, and other stakeholders,
for analysis and decision-making. A key aspect of data serving is the performance of
data retrieval operations, which depends on several technical factors, such as query
optimization, indexing, and partitioning. Efficient data serving ensures that the data is
readily accessible to consumers while minimizing latency and maximizing throughput.
This process often involves caching mechanisms, parallel processing, and load-balancing
techniques to scale the serving infrastructure to handle high data requests. [KR13]

Data modeling defines the structure and organization of data to be stored and pro-
cessed within a DWH or DB. It involves the creation of schemas, tables, relationships,
and constraints that accurately represent the underlying business processes and data
requirements. Data modeling is essential for ensuring efficient data storage, retrieval,
and manipulation, which ultimately impacts the performance of the entire data pipeline.
[KR13]

Several aspects of data modeling require technical expertise, including selecting
appropriate data types, normalizing or denormalizing data, and establishing primary and
foreign key relationships. Additionally, data modeling must account for the specific
analytical needs of the system, which may involve the design of star or snowflake
schemas, materialized views, or indexing strategies to optimize query performance.
[KR13]

Developing robust and scalable DE solutions requires a deep understanding of serving
and data modeling components. This knowledge enables the creation of effective data

19

pipelines that can handle the dynamic requirements of data consumers, ensuring that data
is organized and delivered optimally for analysis and decision-making purposes.[LO15]

3.2 Orchestration and Workflow Management
The significance of orchestration and workflow management in DE pipelines is under-
pinned by their capacity to streamline the coordination and execution of intricate data
processing tasks. DE pipelines often comprise multiple interrelated steps, including
data ETL, necessitating proficient scheduling and resource allocation. Orchestration
tools such as Apache Airflow, Apache NiFi, and Luigi facilitate this process by pro-
viding a comprehensive framework for delineating, managing, and monitoring data
workflows[spo].[RH22]

Apache Airflow, a prominent open-source solution, enables the design and execu-
tion of DAGs representing sequences of tasks with explicit dependencies. Through
the programmatic definition of tasks and their dependencies, Airflow allows for easy
construction, scheduling, and monitoring of complex data workflows. This approach
bolsters the maintainability and dependability of data pipelines and enhances overall
productivity by automating repetitive tasks and mitigating the risk of manual errors. An
example of the Airflow DAG used to load the EDW model with staging can be seen in
Figure 5. [airb]

Likewise, Apache NiFi and Luigi offer potent capabilities for managing data work-
flows, each with distinct features tailored to specific requirements. For example, NiFi
emphasizes data flow automation and provides a visual interface for designing and
monitoring pipelines, while Luigi concentrates on dependency management and fault
tolerance within batch processing environments.[nif, spo]

Employing orchestration and workflow management tools within DE pipelines is in-
dispensable for preserving data integrity and guaranteeing the timely delivery of insights.
These tools assist in addressing the growing complexity and scale of data processing
tasks while fostering collaboration and standardization across teams. By adopting best
practices and leveraging the capabilities of orchestration tools such as Airflow, NiFi, and
Luigi, organizations can optimize their DE pipelines and extract valuable insights from
their data assets, driving informed decision-making and competitive advantage. [RH22]

3.3 Logging and Monitoring
Logging and monitoring are paramount aspects of DE pipeline management, as they
offer insights into data processing tasks’ performance, stability, and reliability. Due
to the intricate nature of data workflows, which frequently entail multiple steps and
dependencies, tracking pipeline execution is crucial for upholding data quality and
guaranteeing the timely dissemination of insights. Tools such as Elasticsearch, Logstash,
Kibana (ELK Stack), Grafana, and Prometheus have emerged as prominent solutions for

20

Figure 5. Airflow DAG example [Whe].

logging and monitoring data pipelines, enabling the diagnosis and resolution of issues
expeditiously[ela][kib][gra][pro].[airb]

Effective logging encompasses capturing and storing pertinent information regarding
the execution of data processing tasks, including progress, errors, and performance
metrics. This information allows for pinpointing bottlenecks, optimizing resource al-
location, and troubleshooting issues that may transpire during pipeline execution. By
implementing comprehensive logging practices, organizations can diminish the likeli-
hood of data inconsistencies, enhance pipeline efficiency, and minimize the impact of
errors on downstream analytics and reporting.[gra]

Conversely, monitoring centers on the real-time observation and analysis of data
pipelines, offering an all-encompassing view of their operational health. Configuring
automated alerts and dashboards exhibiting KPIs allows potential issues to be proactively
detected and addressed before they escalate, ensuring the uninterrupted availability of
data and insights for decision-making. Furthermore, monitoring tools can assist in
identifying trends and patterns in pipeline performance, directing attention toward areas
that necessitate optimization or improvement.[gra]

In conclusion, logging and monitoring are indispensable in managing DE pipelines,

21

aiding organizations in maintaining data quality, optimizing performance, and minimizing
downtime. By harnessing state-of-the-art tools and best practices for logging and moni-
toring, enhanced visibility and control over data workflows can be achieved, ensuring the
prompt and precise delivery of valuable insights to support informed decision-making
and drive business growth.

3.4 Data Warehousing

3.4.1 Overview of DWH’ing and its Importance in Modern Business

DWH’ing is the process of collecting, storing, and managing vast amounts of data from
disparate sources within an organization, aiming to facilitate data-driven decision-making.
It is crucial in modern businesses, enabling efficient analysis and reporting of complex,
heterogeneous data.

A DWH is a centralized repository that stores historical and current data, typically
structured to optimize retrieval and analytical performance. The primary function of
a DWH is to integrate data from multiple sources, such as transactional databases,
log files, and external data sources, and provide a unified view of the organization’s
data landscape. This data consolidation promotes consistency and reduces redundancy,
ensuring decision-makers have access to accurate, high-quality information.[Inm05]

The importance of DWH’ing in modern businesses must be considered. As organiza-
tions generate and consume vast quantities of data daily, the need for efficient data man-
agement and analysis has grown exponentially. DWH’ing provides a scalable solution
that enables businesses to store and analyze large volumes of data, helping them uncover
trends, patterns, and correlations that can drive strategic decision-making.[Inm05]

In addition to facilitating analysis and reporting, DWH’ing also plays a vital role in
supporting advanced data processing techniques, such as data mining, machine learning,
and AI. These technologies rely on large, diverse datasets to build predictive models
and uncover hidden insights, DWH’ing an essential component of modern data-driven
businesses.[RH22]

Furthermore, DWH’ing is instrumental in promoting data governance and regulatory
compliance. By centralizing data storage and enforcing data quality standards, data
warehouses help organizations maintain consistency and ensure adherence to industry
regulations, such as GDPR and the HIPAA.[RH22]

In conclusion, DWH’ing is a critical component of the data management process,
serving as the foundation for effective data analysis, reporting, and advanced data
processing techniques. Its role in modern businesses is indispensable, as it enables
organizations to harness the power of their data, driving informed decision-making and
fostering a competitive edge.

22

3.5 Three different DWH architectures
In the DWH’ing realm, there are three primary architectural approaches: Inmon’s CIF,
Kimball’s Dimensional Modeling (also known as the Star Schema), and DV 2.0. Each
methodology has its own merits, drawbacks, and use cases, but DV 2.0 is considered by
many to be a superior approach in specific scenarios. In this comparison, we will explore
the technical aspects of these architectures and highlight DV 2.0’s advantages. [YL16]

1. Inmon’s Corporate Information Factory :

Inmon’s CIF approach, named after its creator Bill Inmon, is based on the principle
of creating a centralized, normalized data repository known as an EDW. This top-
down method emphasizes the importance of data integration and data consistency.
Data from various sources is ETL-ed into the EDW, where it is stored in 3NF
tables. This normalized structure reduces data redundancy and maintains referential
integrity.[Inm05]

The CIF approach uses data marts to provide subject-specific, denormalized data to
end-users. These data marts are created by extracting and transforming data from
the EDW and are designed to support specific business processes or analytical
needs. In this architecture, data marts serve as the primary data source for reporting
and analytics. See figure 6 for the Inmon’s architecture overview. [Inm05]

Figure 6. Inmons DWH architecture [YL16].

2. Kimball’s Dimensional Modeling: Kimball’s Dimensional Modeling, or Star
Schema, is named after its creator Ralph Kimball. It is a bottom-up approach that
focuses on business processes and aims to deliver data directly to end-users. In this
methodology, data is organized into fact and dimension tables. Fact tables contain
quantitative data (e.g., sales amount), while dimension tables store descriptive data
(e.g., customer information). [KR13]

23

Fact tables are typically denormalized, with keys referencing associated dimension
tables. This structure enables efficient querying and reporting by reducing the
number of joins required for analysis. Kimball’s approach prioritizes ease of use,
as the schema closely resembles how business users think about their data. See
Figure 7 for the Kimball’s architecture overview.[KR13]

Figure 7. Kimballs DWH architecture [YL16].

3. Data Vault 2.0:

DV 2.0, developed by Dan Linstedt, is a hybrid approach that combines the best
features of the CIF and Kimball methodologies. It is designed to handle rapidly
changing data sources, enforce referential integrity, and provide high flexibility and
scalability. The DV 2.0 architecture stores data in a normalized form, similar to
the CIF approach, but maintains a modular structure that simplifies incorporating
new data sources.[LO15]

The key advantages of DV 2.0 include scalability, data lineage and audibility,
enhanced data quality, agility, near real-time data loading, efficient handling of
historical data, and integration of structured and unstructured data. These benefits
make DV 2.0 a compelling choice for organizations dealing with growth, BD,
or rapidly changing data landscapes. Its modular design allows for efficient
development, while its focus on data lineage and referential integrity ensures
high data quality and compliance. See Figure 8 for the DV 2.0’s architecture
overview.[LO15]

Advantages of DV 2.0 and Why It’s Superior:

(a) Scalability: DV 2.0’s parallel load and query capabilities enable it to handle
large volumes of data more efficiently than the CIF and Kimball methodolo-
gies. This advantage is particularly beneficial for organizations dealing with
BD or significant increases in data volume.

24

Figure 8. DV 2.0 architecture [YL16].

(b) Data Lineage and Auditability: DV 2.0 inherently captures data lineage
and history, providing a clear view of how data has changed over time. This
advantage is vital in industries where compliance and data governance are
essential.

(c) Enhanced Data Quality: DV 2.0’s architecture enforces referential integrity,
ensuring that relationships between entities are maintained. This advantage
results in higher data quality and fewer inconsistencies compared to the
Kimball approach, which does not enforce referential integrity.

(d) agility: DV 2.0 enables a more agile development process by allowing teams
to work on different components simultaneously. This is due to its modular
design, which separates data into Hubs, Links, and Satellites.

(e) Near Real-Time Data: DV 2.0’s architecture supports near real-time data
loading, making it suitable for organizations that require up-to-date infor-
mation for decision-making. This advantage is accomplished through incre-
mental loading and parallel processing techniques, which enable fast data
ingestion and querying.

(f) Better Handling of Historical Data: DV 2.0 can efficiently store and track
historical data through its Satellites. This feature facilitates the analysis of
data changes and trends over time, which can provide valuable insights for
organizations in various industries.

(g) Integration of Structured and Unstructured Data: DV 2.0 can accom-
modate both structured and unstructured data, making it a versatile solution
for organizations with diverse data types. This feature allows businesses to
analyze various data sources and derives insights that might not be possible
with more traditional data warehousing methodologies.[LO15]

25

In summary, while Inmon’s CIF and Kimball’s Dimensional Modeling approaches
have their merits, DV 2.0 offers a combination of benefits that make it a superior
choice in certain situations. Its flexibility, scalability, data lineage, audibility,
enhanced data quality, agility, support for near real-time data, efficient handling of
historical data, and integration of structured and unstructured data set it apart from
the other methodologies.

DV 2.0’s unique features enable it to address the challenges of rapidly changing
data landscapes, making it an ideal solution for organizations experiencing growth
or dealing with BD. Its modular design allows for efficient development, while
its focus on data lineage and referential integrity ensures high data quality and
compliance. As a result, DV 2.0 is a compelling choice for businesses seeking a
versatile and robust DWH’ing solution that can adapt to their evolving needs.

3.6 Data Vault 2.0

3.6.1 DV 2.0 Model

The DV 2.0 model, developed by Dan Linstedt, is a modern data modeling methodology
designed to provide a flexible, scalable, and agile solution for DWH’ing. The model
is built around three primary components: Hubs, Links, and Satellites, which create a
robust, adaptable, and efficient data storage and retrieval system. The DV 2.0 model
has gained significant traction for its superiority in facilitating agile development and
enabling businesses to adapt to ever-changing data requirements and structures.[LO15]

Hubs are the foundational elements of the DV 2.0 model, representing the core
business concepts or entities. Each Hub contains a unique identifier (such as a primary
key) and a minimal set of attributes that are unlikely to change over time. Hubs are stable
structures that ensure the integrity and consistency of core business data, even as other
aspects of the data model evolve.[LO15]

Links serve as the glue that connects Hubs, representing the relationships between
different business entities. A Link contains keys from two or more Hubs, effectively
establishing many-to-many relationships and enabling the modeling of complex inter-
actions between entities. Links are designed to be flexible and adaptable, allowing for
adding or removing relationships as business requirements change. By keeping relation-
ships separate from Hubs, the DV 2.0 model maintains the stability of core business
concepts while allowing for changes in how they relate to one another.[LO15]

Satellites, the final component of the DV 2.0’s model, store the descriptive attributes
associated with Hubs and Links. These attributes are often prone to change and may have
various formats, data types, or value ranges. Satellites allow for adding, modifying, or
removing attributes without impacting the core business concepts (Hubs) or relationships
(Links). They also facilitate the management of historical data, enabling the storage of
multiple versions of an attribute as it changes over time.[LO15]

26

Figure 9. DV 2.0’s Core Model architecture [Whe].

The DV 2.0 model’s superiority for agile development stems from its flexibility,
adaptability, and scalability. The separation of core business concepts, relationships, and
descriptive attributes into Hubs, Links, and Satellites allows individual components to
evolve independently. This modularity enables businesses to respond quickly to changing
data requirements and structures while maintaining the integrity and consistency of their
DWH. See Figure 9 for an overview of the DV 2.0’s model.

Furthermore, the DV 2.0 model supports parallel loading and processing, significantly
improving performance and reducing data load times. This capability is particularly
beneficial in large-scale DWH’ing projects, where processing vast amounts of data
efficiently is critical. Parallel loading and processing are made possible by the model’s
modular design and the separation of concerns among its components, such as hubs,
links, and satellites. This structure enables multiple data loads and transformations to be
executed simultaneously without conflicts or dependencies, thus maximizing resource
utilization and reducing overall processing time. Additionally, modern DWH’ing systems,
such as Vertica, are designed to leverage parallel processing and distributed architectures,
further enhancing the DV 2.0 model’s performance benefits when used with these
technologies.[LO15]

The DV 2.0 model also enables better data lineage and traceability, as it inherently
captures the history of changes in data attributes and relationships. This feature allows
data scientists and analysts to track the evolution of data over time, providing valuable
insights into business trends and patterns.[LO15]

Another advantage of the DV 2.0’s model is its adaptability to various data storage

27

technologies, including traditional relational DB’s, data lakes, and distributed storage
systems. This flexibility allows businesses to leverage the latest data storage and process-
ing technologies to optimize performance, reduce costs, and meet their specific DWH
needs.[LO15]

In conclusion, the DV 2.0 model, with its unique structure of Hubs, Links, and
Satellites, offers a superior solution for agile development in DWH’ing. Its flexibility,
adaptability, and scalability allow businesses to respond quickly to changing data re-
quirements and structures while maintaining data integrity and consistency. The model’s
support for parallel processing, data lineage, and compatibility with various data storage
technologies further enhances its value for businesses seeking a robust, efficient, and
future-proof DWH’ing solution.

3.6.2 The use of hashing in DV2.0

Hashing plays a crucial role in the DV2.0 methodology, providing several advantages
over traditional methods in DWH’ing. The primary purpose of hashing in DV2.0 is to
create unique and consistent keys for the data entities, allowing for efficient and reliable
data integration, retrieval, and maintenance.[LO15]

In DV2.0, hashing is used to generate surrogate keys for hubs, links, and satellites.
These surrogate keys are created by applying a deterministic hash function to the business
keys or a combination of keys, resulting in a fixed-length, unique, and consistent value. By
using hashing to generate surrogate keys, DV2.0 addresses several challenges associated
with traditional methods:[LO15]

• Consistency: Hashing ensures consistent surrogate keys across different data
sources, even when the underlying data structures or formats vary. This consistency
simplifies data integration and reduces the risk of data integrity issues when
merging data from multiple sources.

• Scalability: Hashed surrogate keys allow for efficient partitioning, indexing, and
data retrieval, as they are uniformly distributed across the key space. This uniform
distribution reduces the likelihood of performance bottlenecks or hotspots, enabling
the data warehouse to scale more effectively as data volumes grow.

• Data Privacy: Using hashing to generate surrogate keys, sensitive business keys
can be replaced with non-descriptive, hashed values. This process helps protect
sensitive information and maintain data privacy while allowing for efficient data
integration and retrieval.

• Collision Resistance: High-quality hash functions exhibit a low probability of
generating duplicate keys, known as collisions. This characteristic ensures that
surrogate keys generated using hashing are unique, minimizing the risk of data
integrity issues due to key collisions.

28

• Concurrency: Surrogate keys generated through hashing do not require centralized
sequence generators or other coordination mechanisms, thus enabling concurrent
data processing and reducing the risk of contention or performance issues during
data loading.[LO15]

Incorporating hashing as a core component of the DV2.0 methodology offers superior
performance, scalability, consistency, and data privacy compared to traditional DWH’ing
techniques. Hashing in DV2.0 ensures that data entities are uniquely and consistently
identified, facilitating effective data integration, retrieval, and maintenance in modern,
large-scale DWH environments.

3.7 Presentational layer (DWH) in DV2.0
In the context of DV2.0’s architecture, DWH is the presentation layer, acting as an
interface between the underlying data storage and the end-users. A key aspect of the
presentation layer is the concept of Information Marts, which are designed to provide
tailored views of the data to meet the specific requirements of various business units and
end-users. DV2.0 implements a dimensional model in the presentation layer, making
it more suitable for business users who understand business terms but may need to be
better versed in technical jargon.[LO15]

The dimensional model focuses on presenting only the required data, rather than
exposing the entire range of data available in the EDW layer. This approach ensures
that end-users’ information is relevant, concise, and easily understandable. Dimensional
models often consist of fact tables and dimension tables, which help users navigate and
analyze the data using familiar business concepts and terminology.[LO15]

3.8 Deployment in Production Environment
A well-deployed data pipeline exhibits several key characteristics that ensure its success-
ful integration, maintainability, and adaptability within a production environment. Such
a pipeline is a prime example of best practices in DE and DS projects.

Firstly, a well-deployed pipeline is easily transferable between different machines
and environments. Using containerization technologies like Docker allows for smooth
deployment without extensive setup or configuration efforts. It encapsulates dependencies
and configurations, ensuring the pipeline can be seamlessly transferred and executed on
various platforms with minimal adjustments.[RH22]

Incorporating orchestration platforms like Kubernetes further enhances the deploy-
ment process by managing containerized applications at scale. Kubernetes automates
containerized applications’ deployment, scaling, and management, ensuring optimal
resource utilization and resilience in production environments.[kub]

29

Secondly, maintainability and extensibility are essential features of a well-deployed
pipeline. The codebase should be structured and modular, enabling easy updates and
modifications. Adherence to established coding standards and comprehensive version
control systems, such as Git, facilitate collaboration, tracking of changes, and manage-
ment of updates. This standard allows for continuous improvement and adaptation of the
pipeline to evolving requirements and data sources. Version control ensures the pipeline
remains reliable and up-to-date, providing a robust foundation for data-driven insights
and decision-making processes. [RH22]

Thorough documentation is crucial for successfully deploying and adopting a data
pipeline. It should include clear instructions for setting up, configuring, and executing
the pipeline, as well as details about input data, expected outputs, and potential error
scenarios. Comprehensive documentation enables team members, including develop-
ers, data scientists, and business analysts, to understand the pipeline’s inner workings,
troubleshoot issues, and make informed decisions about future enhancements.

In summary, a well-deployed data pipeline is characterized by its ease of transferabil-
ity, maintainability, extensibility, thorough documentation, and incorporation of robust
technologies such as containerization and orchestration platforms. These features ensure
that the pipeline remains an effective, reliable, and valuable tool in the rapidly evolving
landscape of data science and reporting.

4 Implementation
This section discusses the proposed solutions implementation. The use case, architecture
design, essential aspects of implementation, different layers of implementation, and the
tools and software are thoroughly discussed and presented. This section aims to give the
reader insights into the solution environment and how to regenerate it.

4.1 Use Cases and User Stories
DV 2.0 embraces Agile and Scrum methodologies as integral components of its imple-
mentation process. Agile is a project management approach that prioritizes iterative
development, cross-functional collaboration, and customer feedback to deliver a high-
quality product that meets evolving requirements. Scrum is a specific Agile framework
that organizes work into smaller, manageable units called "user stories," each repre-
senting a specific feature or functionality. These stories are the basis for prioritizing
tasks, allowing teams to adapt quickly to changing needs and ensuring continuous
improvement.[LO15]

This study gathered the initial requirements from an analyst responsible for creating
AS-IS reports. To identify more potential users who could benefit from the TO-BE
Jira data warehouse, the author reached out to other stakeholders in the organization.

30

The Testing department manager at TEHIK was one such stakeholder who expressed a
need for improved reporting capabilities. The department faced significant challenges in
obtaining valuable insights and reports from their data using Tableau. They had to rely
on the limited capabilities of Jira Dashboard for some form of reporting. This situation
hindered the manager’s ability to make informed decisions and effectively manage the
testing processes within the organization, as many reports could not be generated using
Jira dashboards alone.

The manager expressed interest in having additional Tableau reports, which include:

• 1. An overview of testing for different projects/services, providing information
such as:

– Duration of a ticket in a specific status

– Tester, testing results, and other relevant data for evaluating the quality of
testing documents

– All other fields that need to be filled out to evaluate the quality of testing
documents

• 2. A separate report for each project/service, showcasing the product quality
with information like:

– List of defects

– Open defects

– Resolved defects

• 3. An overview of security testing partner contracts:

– Importing the list of contracts from JIRA dashboard into Tableau

– Creating a table and visual graph that displays the framework agreement,
including expected volume, volume of accepted contracts, and volume of
signed contracts

These requirements demonstrate the real-world application of Agile principles,
where user stories drive the development of a data warehouse solution tailored to
the specific needs of various stakeholders.

4.2 Constraints set for the Architecture by TEHIK
TEHIK had certain constraints that influenced the choice of tools and technologies used
in the architecture. The organization already used Jira as its project management platform,
limiting the available data extraction options. Jira supports several data extraction tools,

31

including its REST API, webhooks, and third-party connectors. The data retrieved
from Jira is typically in JSON format, a widely adopted data interchange format. Jira
follows an EAV data model, which allows for flexibility in storing and retrieving diverse
data types. However, it can be more challenging compared to traditional relational
models.[jira]

The company also specified using Vertica as the DB for their DWH. Vertica is a
high-performance, columnar, analytics-oriented DB management system. It is designed
to handle large volumes of data and perform complex analytical queries quickly and
efficiently. Vertica’s strengths lie in its ability to provide high concurrency, real-time
analytics, and horizontal scalability. However, due to its specialized architecture and
resource requirements, Vertica might not be ideal for very small-scale projects. [vera]

TEHIK preferred experimenting with quickly deployable, open-source tools with
minimal overhead. The company aimed to assess its viability for other extract and load
components in the future, including the potential integration of data orchestration tools
such as Apache Airflow. Open-source tools offer the advantage of cost-effectiveness,
community-driven development, and easy adaptability. However, they may need more
robustness, support, and features commercial solutions offer.

Considering these constraints and future plans, the architecture needed to integrate
Jira’s data extraction capabilities with Vertica’s analytical prowess. It also incorporates
open-source tools for a seamless, scalable, cost-effective solution. As a result, the
focus was on finding a balance between addressing the organization’s specific needs
and working within the imposed limitations while keeping the door open for future
enhancements and integrations with data orchestration tools like Apache Airflow.

The second set of requirements for the application stems from the need to ensure
compatibility with the State Cloud, a government-mandated cloud infrastructure currently
being developed in Estonia. The country has established strict policies prohibiting private
cloud service providers for government services. It has built its cloud infrastructure to
meet its unique needs and ensure data sovereignty.

In order to develop a compatible application, it is essential to adhere to the guidelines
and requirements laid out by the Estonian government, which includes using specific
common components within the application architecture. These components are Docker,
Kubernetes, Git, and Jenkins, each serving a crucial role in developing, deploying, and
managing applications within the State Cloud[riia].

Docker is a platform for containerization, enabling the packaging of applications
and their dependencies into lightweight, portable containers that can run consistently
across various computing environments. This platform ensures the application can be
seamlessly deployed and scaled within the State Cloud[doc, riia].

Kubernetes is a container orchestration platform that automates containerized ap-
plications’ deployment, scaling, and management [kub]. By utilizing Kubernetes, the
application can leverage the State Cloud’s inherent scalability, resilience, and self-healing

32

capabilities, ensuring high availability and efficient resource utilization.
Git is a widely-used distributed version control system that allows developers to

collaborate on code, track changes, and manage the application’s source code effectively
[git]. Integrating Git into the application development process makes it easier to adhere
to the State Cloud’s development guidelines and maintain a consistent and transparent
development workflow.

Jenkins is an open-source automation server that facilitates the implementation of
continuous integration and continuous delivery (CI/CD) pipelines. Through Jenkins, the
application can automate its build, testing, and deployment processes, ensuring that the
application is continuously updated, tested, and delivered in compliance with the State
Cloud’s requirements.[jen]

The application’s architecture must be designed with these components in mind,
integrating them effectively to create a solution that is compatible with the State Cloud
and leverages its capabilities to the fullest extent. By doing so, the application can deliver
the required functionality while adhering to the strict policies and guidelines the Estonian
government sets, ultimately fulfilling the project’s objectives and contributing to the
country’s digital transformation journey. Figure 10 provides a comprehensive overview
of the architecture.

4.3 Utilizing Testing and Live Environments for Development
TEHIK has established testing and live environments for Jira and Vertica, ensuring
a structured and secure development process. The testing environment serves as a
controlled space where new features, improvements, and bug fixes can be developed,
tested, and validated without affecting the live environment. This approach minimizes
the risk of introducing errors, data corruption, or performance issues in the live system,
which could negatively impact business operations.

Developing in the testing environment provides several benefits:

• Isolation: The testing environment is isolated from the live environment, allowing
developers to work on new features or improvements without the risk of impacting
the live system’s stability or performance.

• Iterative development: Developing in the testing environment enables iterative
development, where changes can be made, tested, and refined multiple times before
being deployed to the live environment.

• Debugging and troubleshooting: Issues can be identified and resolved in the
testing environment, reducing the risk of introducing errors or performance issues
in the live system.

33

Figure 10. Cloud-enabled application development process[riib]

• Validation and verification: The testing environment allows developers to validate
and verify the functionality and performance of the proposed ELT pipeline before
deploying it to the live environment, ensuring that it meets the requirements and
expectations.

Developing in the live environment is not recommended, as it can lead to unforeseen
consequences, such as data corruption, system instability, and performance issues. By
separating the development process into distinct testing and live environments, TEHIK
ensures a secure, controlled, and efficient development process for the proposed ELT
pipeline.

Utilizing both testing and live environments for Jira and Vertica is critical to the
development process. It allows TEHIK to maintain the stability and performance of the
live system while enabling the development of the proposed ELT pipeline in a controlled
and secure manner.

While separate testing and live environments are crucial for a controlled and secure
development process, there can be potential drawbacks when the two environments
differ. In the case of TEHIK, specific differences existed between the testing and live
environments, particularly in Jira and Vertica configurations. This section highlights the
challenges arising from non-identical testing and live environments and their impact on
the development process.

• Missing features in Jira test environment: A non-identical testing environ-
ment may lack certain features or configurations in the live environment, making
replicating and testing specific scenarios difficult. In TEHIK’s case, the Jira test
environment had some missing features compared to the live environment, which
could limit the ability to test and validate the proposed ELT pipeline thoroughly.

• Version differences in Vertica: At one point, the Vertica testing and live environ-
ments had different software versions. Version differences can lead to discrepancies
in functionality and performance, making it challenging to ensure that the pipeline
developed and tested in the testing environment will work seamlessly in the live
environment.

• Cluster configuration differences: The Vertica live environment had a four-node
cluster, while the testing environment had only one node. This discrepancy in
cluster configurations can impact the pipeline’s performance, as the testing environ-
ment may not accurately reflect the live environment’s performance characteristics.
In turn, this can result in unexpected performance issues when deploying the
pipeline to the live environment.

35

4.4 On the Importance of Structure and Naming Conventions
A consistent file tree structure and naming conventions are crucial for efficient and
automated data processing. Consistent organization and naming allow for smoother
automation of processes, making it easier to develop and maintain scripts and generative
SQL for creating DDL and DML statements. Moreover, a well-defined structure and
naming system enhance readability, understandability, and maintainability, ensuring
that current and future team members can effectively manage and develop the DWH.
In essence, adhering to consistent structure and naming conventions is a key aspect of
streamlining and optimizing DE processes, ultimately leading to better overall perfor-
mance and maintainability of the DWH.

In this project, adhering to established naming conventions within the DV 2.0 method-
ology was crucial to maintain consistency and clarity[Dat]. The chosen conventions were
as follows:

For Hubs, the format was <Entity_name>_HUB. For Satellites, the naming conven-
tion was <Entity_name>_<Source_Shortname>_SAT, while for multi-value Satellites
(in cases of arrays), it was <Entity_name>_<Source_Shortname>_MSAT.

In addition to these conventions, the primary keys (PK), foreign keys (FK), and
unique keys (UK) followed a specific naming pattern as well. The primary keys were
named as pk_<table_name>, foreign keys as fk_<table_name>_<referenced_table>,
and unique keys as uk_<table_name>.

Adhering to these naming conventions throughout the project ensured that the data
model was easily interpretable and maintainable, allowing for streamlined development
and a simplified understanding of the relationships between various components. see
Appendix I.

4.5 Setting up Git repositories and on The Importance of Access
Control in DWH’s and Databases

At the beginning of any new development process, setting up a Git code repository for
effective version control is essential. By doing so, developers can track changes in their
code, collaborate more efficiently, and avoid losing progress due to unforeseen issues
or mistakes. The development of the DWH is organized into three separate repositories,
each serving a specific purpose and layer within the architecture:

• DW_JIRA_ODS - This repository is dedicated to the staging and ODS layers,
where data is initially ingested and transformed.

• EDW_JIRA- The operational layer, consisting of hubs, links, and satellites, is
managed within this repository.

36

• DWH_JIRA - The presentational layer, designed for end-users such as analysts, is
maintained in this repository, providing them with easy access to the processed
data.

Each repository contains comprehensive instructions on setting up and executing the
associated application layer. Furthermore, these repositories adhere to established naming
conventions and ideally provide a clear data model representation. This structure ensures
that every aspect of the DWH development process is well-documented, organized, and
easily accessible to all team members.

In today’s data-driven world, building DWH’s and databases with robust access
control mechanisms is crucial. This stage ensures that sensitive data remains protected
and access to different components is managed appropriately. There are several reasons
why implementing granular access control is essential in any data management system.

• Data ownership changes: Over time, the ownership of specific data may change
due to various reasons, such as organizational restructuring or acquiring new data
sources. When this occurs, it is essential to have a system that allows for the quick
and efficient updating of access permissions. This permission ensures that the
new data owner can easily access and manage the data while previous owners are
restricted from accessing it.

• Employee turnover: When data engineers or other team members leave a company,
it is crucial to revoke their access to sensitive data and systems. A well-designed
access control system makes managing these changes easy and ensures that only
authorized personnel have access to the DWH or DB.

In TEHIK, the DWH is built with modularity in mind, adopting a microservices
architecture style derived from Data Vault 2.0 principles[LO15]. This approach enables
agile development, allowing for the rapid and efficient adaptation of the system as
requirements evolve.

One of this modular architecture’s key components is using service accounts to
manage access control. Each data warehouse layer has its dedicated service account
designed for a specific purpose. This service ensures that access to each layer is restricted
to the appropriate services, minimizing the risk of unauthorized access.

By implementing a robust and granular access control system, TEHIK ensures that
its DWH and databases are secure, adaptable, and easy to manage. This approach
protects sensitive data and allows the organization to adapt quickly to changes in data
ownership and personnel, maintaining the integrity and security of the system. Below is
a commented TCL about how the DW_JIRA_ODS was set up access rights wise.

37

−− C r e a t e schema
CREATE SCHEMA DW_JIRA_ODS DEFAULT INCLUDE PRIVILEGES ;
−− C r e a t e s e r v i c e a c c o u n t − change t h e password t o some th ing

r e a s o n a b l e
CREATE USER DW_JIRA_ODS IDENTIFIED BY ’ 123456 ’ ;
−− Apply a u t h e n t i c a t i o n method t o t h e u s e r o r r o l e
GRANT AUTHENTICATION p a s s _ a u t h TO DW_JIRA_ODS ;
−− S e r v i c e a c c o u n t a c c e s s t o schema
GRANT ALL PRIVILEGES ON SCHEMA DW_JIRA_ODS t o DW_JIRA_ODS WITH GRANT

OPTION ;
−− Gran t a l l p r i v i l e g e s on a l l c r e a t e d schema o b j e c t s t o t h e s e r v i c e

a c c o u n t
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA DW_JIRA_ODS t o

DW_JIRA_ODS WITH GRANT OPTION ;
−− C r e a t e a v i e we r r o l e f o r t h e schema
CREATE ROLE DW_JIRA_ODS_VIEWER ;
−− Gran t t h e v i e we r r o l e t h e r i g h t t o view t h e schema
GRANT
SELECT

,
USAGE ON SCHEMA DW_JIRA_ODS TO DW_JIRA_ODS_VIEWER ;

−− A t t a c h r o l e t o t h e u s e r
GRANT DW_JIRA_ODS_VIEWER TO user_name −− Change d e f a u l t r o l e f o r t h e

u s e r
ALTER USER DW_JIRA_ODS DEFAULT ROLE DW_JIRA_ODS_VIEWER ;

4.6 Ingestion
This section discusses extracting data from Jira and the various methods explored for this
task. Initially, the Jira REST API was considered as a possible solution. The REST API is
an architectural style that enables communication between systems over HTTP. However,
using the REST API with custom Python scripts would have been time-consuming to
develop, and since REST is not a standard, each endpoint would need to be manually
entered. If the source changed, the entire process would have to be reworked.

After researching further, Singer.io, a data integration tool that facilitates data ex-
traction and loading through taps and targets, was discovered. It provides a Jira tap
and Vertica target, which seemed promising. However, the search for a more capable
solution continued, leading to the discovery of Meltano and Airbyte. Both tools offer a
tap developer kit, integration with Airflow, and, in the case of Airbyte, integration with
Dagster [Mel].

Comparing Meltano and Airbyte, the main strength of Meltano is its CLI approach,
which makes state tracking easier to control. The CLI-based approach offers higher
value as the code can be version-controlled, tested, deployed, and orchestrated more
efficiently.[Mel]

38

Figure 11. Overview of Data integration tool [Aira]

Meltano is a powerful open-source data integration platform developed using Python.
It simplifies the process of ETL-ing data from various sources into a target data store.
Meltano achieves this through Singer.io’s taps and targets, which serve as pre-built
connectors to facilitate seamless data integration[Sin]. For easier understanding of what
a data integration tool is, see Figure 11.

Taps, developed by Singer.io, are pre-built connectors that package a collection of
REST API endpoints. They function as data extractors, enabling Meltano to connect with
various data sources and fetch the required data. By leveraging these taps, Meltano can
significantly reduce the time and effort required to build custom connectors and maintain
compatibility with various data sources.[Mel][Sin]

On the other hand, Targets are responsible for loading the extracted data into a desired
destination, such as a DB or DWH. These targets work in conjunction with taps to ensure
smooth data flow from the source to the destination, simplifying the ETL process and
promoting efficient data integration.[Mel]

One of Meltano’s key features is its ability to manage multiple environments, such as
testing, staging, and production. This flexibility allows for seamless transitions between
different stages of the development process and ensures the integrity and reliability of
the data pipeline.[Mel]

Meltano also provides robust state management capabilities, allowing for efficient
tracking of pipeline progress. It achieves this through its internal Meltano.db database or
by exporting the state to various common backends such as AWS S3, Azure Blob Storage,
Google Cloud Storage, or a local filesystem. This feature ensures that the pipeline can
resume from its last known state in case of interruptions or failures, thus minimizing data
loss and redundancy.[Mel]

Another notable aspect of Meltano is its integration with dbt (Data Build Tool) and
Apache Airflow. Dbt is a popular open-source transformation tool that enables data
engineers to define, test, and document data transformations using SQL. Meltano’s

39

integration with dbt simplifies the transformation process and improves the overall
efficiency of the data pipeline.[Mel]

Airflow, a widely used open-source platform for orchestrating complex data work-
flows, is also supported by Meltano. This integration is particularly beneficial for
organizations like TEHIK, as it allows for better management and scheduling of data
pipeline tasks, ensuring timely and accurate data processing.

Lastly, Meltano’s internal database, Meltano.db, is an effective logging mechanism
for tracking pipeline runs. This feature enables users to monitor the progress and
performance of their pipelines, identify bottlenecks, and troubleshoot any issues that may
arise during the data integration process.[Mel]

In summary, Meltano is a versatile data integration platform that leverages the power
of Singer.io’s taps and targets to streamline the ETL process. Its support for multiple
environments, robust state management, integration with dbt and Apache Airflow, and
efficient logging capabilities make it an ideal choice for organizations seeking to simplify
and enhance their data integration workflows. With a strong focus on efficiency, flexibility,
and scalability, Meltano is well-suited to meet the demands of modern data-driven
organizations.

Setting up Meltano locally is quite straightforward. Initially, a local installation was
utilized for experimentation purposes. Below are steps to get one’s local Meltano project
up and running with a minimal setup.

−− i n s t a l l me l t ano
p ipx i n s t a l l " me l t ano "

−− s e t up new mel t ano p r o j e c t
me l t ano i n i t DW_JIRA_ODS

−−Add e x t r a c t o r
me l t ano add e x t r a c t o r t ap − j i r a

−− C o n f i g u r e e x t r a c t o r
me l t ano c o n f i g tap − j i r a s e t −− i n t e r a c t i v e

−−add l o a d e r
me l t ano add l o a d e r t a r g e t − j s o n l

−− c o n f i g u r e l o a d e r
me l t ano c o n f i g t a r g e t − j s o n l s e t −− i n t e r a c t i v e

−− a f t e r t a p and t a r g e t a r e c o n f i g u r e d
me l t ano run tap − j i r a t a r g e t − j s o n l

40

The file structure created by initializing a new Meltano project is illustrated in
Appendix III. From this figure, the hidden .meltano directory is visible and responsible
for managing the meltano.db backend and other essential directories for their respective
purposes.

Tap and target configurations are primarily stored in the meltano.yml file. However,
sensitive information such as passwords is saved separately in the .env file to ensure
security. A fully configured meltano.yml file is depicted in Appendix IV. This file also
specifies the API endpoints to be requested during the data extraction process.

An extensive list of possible endpoints for the tap-jira component of Meltano can be
found in Appendix II. By leveraging these endpoints, the Meltano tool can efficiently
extract data from various sources and integrate it into the data warehouse for further anal-
ysis and utilization[Mel]. The modular nature of Meltano’s architecture enables seamless
data extraction, transformation, and loading, streamlining the entire data pipeline process
for a more effective workflow.

4.6.1 Output from Meltano

Meltano extracts data from various endpoints and stores the resulting information in
JSONL files. JSONL, or JSON Lines, is a file format that differs from the standard JSON
format in terms of size limitations. While a JSON file cannot exceed 2 GB, a JSONL file
can be larger, as long as no single line within the file is more than 2 GB. This flexibility
makes JSONL a suitable choice for large-scale data extraction and storage.[jso]

The extracted data from Jira includes several JSONL files, such as:

• issues.jsonl - contains the bulk of data about an issue, including common fields
like summary, description, and status.

• issue_comments.jsonl - stores comments made on issues.

• issue_transitions.jsonl - records the changes in an issue’s status, such as transi-
tioning from "open" to "in progress" or "resolved."

• changelogs.jsonl - captures the history of changes made to an issue, including
updates to fields, attachments, and other modifications.

It is worth mentioning that Meltano’s default configuration does not encompass
the vital fields.json endpoint. This dataset encompasses key-value mappings for all
custom fields and the schema for every custom field. The cURL command-line tool was
employed to address this constraint and retrieve the necessary data from the fields.json
endpoint, ensuring its integration into the data extraction process[cur].

41

4.7 First layer - DW_JIRA_ODS

4.7.1 Staging layer

During the development process, a singer.io target for Vertica was discovered. Unfortu-
nately, it was unavailable in the pypi[pyp][tarb]. Despite the challenges, the package was
eventually installed locally after several attempts. However, due to its outdated nature,
the package exhibited significant shortcomings, making it unsuitable for use as a loader
component.

This situation led to incorporating an intermediate conversion step to JSONL format
between the extraction and loading processes using meltanos target-jsonl[tara]. Adopting
this additional step allowed for a more flexible and manageable data pipeline, ensur-
ing that data could be successfully integrated into the staging layer. As a result, the
pipeline remained functional and adaptable to changing requirements, even in the face of
limitations presented by the outdated Vertica target[tarb].

Vertica is a high-performance columnar database management system designed to
handle both structured and unstructured data efficiently. Its capabilities make it an ideal
choice for scalable solutions. It supports horizontal scaling by adding more nodes to
the cluster, enabling organizations to adapt to increasing data volumes and performance
requirements easily.[verb]

Vertica’s architecture is built upon a distributed, shared-nothing design, where each
node operates independently and shares no memory or disk storage with other nodes. This
approach ensures high availability and fault tolerance, making it suitable for large-scale
data warehousing and analytics use cases.[vera]

One of the notable features of Vertica is its support for Flex Tables, which provide a
flexible and efficient means of storing and querying unstructured or semi-structured data.
Flex Tables offer several advantages in an ELT architecture context. First, they allow
for a schema-less design, enabling the ingestion of data without the need for predefined
structures. This flexibility simplifies incorporating new data sources or making changes
to existing ones.[vera]

Moreover, Flex Tables also support advanced analytics capabilities, such as full-text
search and pattern matching, which can be particularly useful when working with un-
structured data[vera]. However, there are some trade-offs to consider when using Flex
Tables. Due to their schema-less nature, they can be less efficient than traditionally
structured tables for certain queries, particularly those requiring complex joins or aggre-
gations. Nonetheless, the benefits they offer in terms of flexibility and ease of use often
outweigh these drawbacks, particularly in cases where the data schema needs to be more
well-defined and subject to frequent changes.

Vertica’s Flex Tables also support bulk loading, an efficient method for ingesting large
volumes of data into the DB[vera]. With bulk loading, data is loaded in large batches
rather than row by row, resulting in significant performance improvements. Flex Tables

42

further enhance the bulk loading process by allowing users to define default operations
for columns being copied in through DDL statements. This feature simplifies the data-
loading process and reduces the likelihood of errors caused by missing or mismatched
columns.

In addition to its robust DB capabilities, Vertica offers a CLI DB client called vsql.
A DB client is a software application that enables communication between a user or
another application and the DB server. vsql allows users to interact with the Vertica DB,
execute SQL queries, and manage DB objects from the command line. This makes it
an invaluable tool for developers and administrators working with Vertica. Furthermore,
vsql is particularly effective when utilizing containerization due to its minimal overhead.
In this context, manual loadings and other DB management tasks were primarily carried
out using a SQL executor such as DBeaver, highlighting the versatility and flexibility of
the available tools for working with Vertica.[vera][dbe]

In the context of the DV 2.0 staging layer, the following SQL code demonstrates
how the Vertica DB can be utilized to create and modify a flex table for managing Jira
issue data. The flex table, named DW_JIRA_ODS.stg_issues, is designed according to
Data Vault methodology, incorporating specific fields that serve essential purposes in the
DWH’ing process.

DROP TABLE IF EXISTS DW_JIRA_ODS . s t g _ i s s u e s ;
CREATE FLEX TABLE DW_JIRA_ODS . s t g _ i s s u e s () ;
ALTER TABLE DW_JIRA_ODS . s t g _ i s s u e s ADD COLUMN CHANGE_DTTM TIMESTAMP

DEFAULT CURRENT_TIMESTAMP;
ALTER TABLE DW_JIRA_ODS . s t g _ i s s u e s ADD COLUMN HASH_DIFF INT DEFAULT

HASH(__raw__ [’ key ’] , __raw__ [’ f i e l d s . u p d a t e d ’]) ;
ALTER TABLE DW_JIRA_ODS . s t g _ i s s u e s ADD COLUMN ISSUES_HASH_KEY INT

DEFAULT HASH(__raw__ [’ key ’]) ;

The CHANGE_DTTM column, which stores the timestamp of the data change, is
added to the flex table. It helps track the changes made to the data and ensures that the
most recent information is always available.

Next, the HASH_DIFF and ISSUES_HASH_KEY columns are created to store hash
values. These values are calculated using Vertica’s HASH function, a 64-bit function
that returns an integer value. Given the number of records held, this hash function is
sufficient to mitigate the risk of hash collisions. The HASH function can be executed
during the local COPY command, ensuring efficient computation. The HASH_DIFF
column is based on the unique combination of the Jira issue key and the updated field. In
contrast, the ISSUES_HASH_KEY column is derived solely from the Jira issue key for
possible faster querying for joins if necessary.

Additionally, the SQL code utilizes Vertica’s built-in JSON parser to extract relevant
information from the raw Jira issue data[vera]. By parsing the JSON data, the DB can

43

effectively identify and process the necessary attributes, such as the Jira issue key and the
updated field. This approach ensures that the data warehousing solution can effectively
manage and process the Jira data according to the Data Vault methodology.

The SQL code provided below demonstrates the simplicity and efficiency of the data
loading process due to the carefully designed DDL for the
DW_JIRA_ODS.stg_issues flex table.

First, the stg_issues table is truncated, ensuring it is empty and ready to receive new
data. Then, the COPY command loads data directly from the local JSONL file located in
the container’s volume into the stg_issues table. This process is achieved using Vertica’s
built-in fjsonparser() function, which parses the JSONL data and inserts it into the
corresponding flex table columns.

TRUNCATE TABLE DW_JIRA_ODS . s t g _ i s s u e s ;
COPY DW_JIRA_ODS . s t g _ i s s u e s (" __raw__ ")
FROM LOCAL ’ / p r o j e c t / o u t p u t / i s s u e s . j s o n l ’ PARSER f j s o n p a r s e r () ;

The remaining entities in the staging layer were managed using a comparable ap-
proach. The overview of staging table can be seen in Figure 12.

Figure 12. stg_issues screenshot from Dbeaver CE

4.7.2 ODS layer

The ODS layer serves as an intermediate storage area for data, functioning as a bridge
between the staging layer and the final DWH. The ODS layer provides a clean and
integrated view of the data while preserving the low-level details needed for operational
reporting and decision-making. In this context, a Vertica table had to be created for
the ODS layer, as reading from the flex table was not feasible due to certain technical
limitations.

The following SQL demonstrates the creation of the ODS layer table, named
DW_JIRA_ODS.ods_issues:

CREATE TABLE IF NOT EXISTS DW_JIRA_ODS . ODS_ISSUES (ISSUES_JSON LONG
VARBINARY(32000000) , CHANGE_DTTM TIMESTAMP, HASH_DIFF INT ,
ISSUES_HASH_KEY INT) UNSEGMENTED ALL NODES;

44

In this SQL code, the ods_issues table is created with four columns: issues_json,
CHANGE_DTTM, HASH_DIFF, and ISSUES_HASH_KEY. The issues_json col-
umn is of type long varbinary and is designed to store the JSON data related to Jira
issues. The other three columns serve the same purposes as described in the staging layer
section.

The UNSEGMENTED ALL NODES clause at the end of the SQL code defines
how the table data is distributed across the nodes in a Vertica cluster. By specifying
UNSEGMENTED ALL NODES, the table data is stored in an unsegmented manner,
meaning that each node in the cluster receives a full copy of the table. This approach
ensures that the data is equally distributed and accessible across all nodes, improving
query performance and fault tolerance by minimizing the need for data redistribution
during query execution.

The following pseudoSQL query demonstrates the process of populating the
DW_JIRA_ODS.ods_issues table with data from the DW_JIRA_ODS.stg_issues table.

INSERT INTO o d s _ i s s u e s (< columns >)
SELECT s tg_ <columns >
FROM s t g _ i s s u e s LEFT JOIN o d s _ i s s u e s ON o d s _ i s s u e s . HASH_DIFF =

s t g _ i s s u e s . HASH_DIFF
WHERE o d s _ i s s u e s . HASH_DIFF i s n u l l ;
COMMIT;

The SQL query effectively utilizes hash values in the
DW_JIRA_ODS.ods_issues table for efficient comparisons and joins. By using the
HASH_DIFF column as the join condition between the stg_issues and ods_issues tables,
the query can quickly identify new or changed records without the need for complex and
lengthy comparisons.

This approach, which leverages the precomputed hash values, substantially shortens
the query length compared to alternative methods that might involve multiple nested
CASE WHEN statements. The use of hash values not only simplifies the query but also
improves its performance, making it a suitable choice for handling large-scale DWH’ing
tasks.

The remaining entities in the ODS layer were managed using a similar approach. The
resulting layer structure overview can be seen in Figure 13.

4.8 EDW layer
Within the EDW layer, the Raw Vault is an essential subcomponent that stores the data
extracted from multiple source systems. The Raw Vault follows the DV 2.0 methodology,
which emphasizes separating data into distinct entities such as Hubs, Links, and Satellites.

45

Figure 13. DW_JIRA_ODS ERD screenshot from Dbeaver CE

This approach enables the seamless integration of new data sources, provides a high
degree of flexibility, and ensures data integrity and traceability. [LO15]

Before diving into the modeling process, it is essential to conduct thorough prepa-
ration with the source data and engage in discussions with analysts. This preparation
consists of several crucial steps that ensure the creation of an accurate and efficient data
model. The following steps outline the process in detail:

• a) Identify business keys: The first step is to pinpoint the business keys, which
are the unique identifiers for various data entities. These keys play a vital role
in data integration and retrieval, providing a reliable method of connecting and
associating data across different sources.

• b) Discover relationships between business keys: Once the business keys have
been identified, it is crucial to determine their relationships. Understanding the
connections among various data entities will aid in creating a comprehensive and
accurate data model that accurately reflects the underlying business processes and
requirements.

• c) Identify attributes of business keys: After determining the relationships
between business keys, the next step is to identify the attributes associated with
each key. Attributes provide additional information and context for the data entities,
enabling a more detailed understanding of the data and facilitating more accurate
and insightful analysis.

• d) Draw a logical model for each entity: With the business keys, relationships,
and attributes identified, the next step is to create a logical model for each issue.
This model serves as a visual representation of the data entities, their attributes,
and the relationships between them. It helps in understanding the overall structure
of the data and provides a solid foundation for the subsequent steps in the modeling
process.

46

• f) Implement the entity: Finally, after completing the logical model, the last
step is implementing the issue. This step involves designing and building the
physical data model, considering the insights gathered from the logical model, the
relationships between business keys, and the attributes of the data entities.

Based on the detailed preparation and understanding of the source data, business
keys, relationships, and attributes, sprints were planned and executed accordingly. This
approach ensured that the development process was in line with the Agile methodology,
focusing on delivering value incrementally and responding effectively to changing
requirements.

Due to the limitations set on the length of this thesis, an in-depth discussion of the
planning and execution of the sprints is not included in the work.

4.8.1 Jira Issues Structure Mapping and Collaborating with Analysts for Data
Verification and Validation

The general structure of a Jira issue comprises several standard fields, such as status,
name, priority, and more. These fields are essential for organizing and managing issues
within the platform. In addition to the standard fields, Jira allows users to define custom
fields tailored to their specific needs. These custom fields can be created based on a
combination of Jira’s supported data types and object types.[jira]

A full json tree about one Jira issue can be seen on Appenix V. The extensive vertical
tower represents all available custom fields Jira’s backend provides. Those without
connections between values, indicating that they are not mapped, can be customized to
suit specific needs.

Data Types: Jira provides various data types for custom fields, which determine the
kind of values the REST API accepts and returns for the field, the field’s behavior in JQL,
and its default rendering behavior. The available data types include:

• String: Plain strings with autocomplete and exact comparison in JQL.

• Number: Double-precision 64-bit IEEE 754 floating-point numbers.

• User: Users identified by Atlassian account IDs, with behavior similar to other
user fields in Jira.

• Group: Groups identified by names, with behavior similar to other group fields in
Jira.

• Object: Arbitrary JSON objects (see Object Type below for more details).

• Datetime: Strings representing dates with time and timezone, behaving like other
datetime fields in Jira.[jira]

47

Object Types: In addition to the data types mentioned earlier, Jira also provides a
variety of object types for custom fields, which can be added to request types and made
visible on the customer portal. These object types allow users further to customize their
issue-tracking and project-management experience. Three out of a total of the supported
object types include:

• Checkbox: Enables users to select multiple options from a predefined list.

• Radio Button: Provides a set of options where users can select only one.

• Single choice and Multiple choice: Allow users to select one or multiple options,
respectively, from a predefined list.[jira]

4.8.2 Preparation with the Analyst

Before delving into the modeling process, a significant amount of groundwork was
undertaken in collaboration with the analyst to ensure the accuracy and integrity of
the data. This initial preparation stage involved a thorough examination of all fields
utilized in the reports, as well as an assessment of their data types, structures, categories,
and relationships between attributes. Furthermore, priorities were set for the Agile
development process, emphasizing the rapid delivery of simple and easily achievable
results before proceeding sprint by sprint, aligning with the DV 2.0 methodology.

In total, 110 fields were meticulously examined and discussed with the analyst to
guarantee their correctness and validity. This process often involved modifying certain
fields to ensure their suitability for modeling. The emphasis during these discussions was
on understanding the underlying data structure and relationships, which facilitated the
prioritization of tasks for Agile development. The collaboration with the analyst proved
invaluable in identifying potential issues early in the process, allowing for necessary
adjustments to be made before proceeding with the modeling phase.

This comprehensive analysis of the fields laid the foundation for effective modeling,
ensuring that the data was accurately represented and suitable for the intended purpose.
In addition to thoroughly examining each field, the priorities set for Agile development
enabled a streamlined approach, focusing on delivering results quickly and efficiently. By
tackling more straightforward tasks first, the solution gained momentum and built upon
previous successes, setting the stage for a more effective sprint-by-sprint progression in
line with the Data Vault 2.0 framework.

The snapshot of an excel table used to identify unique combinations of data types
and entities to be modeled, can be seen in Appendix VI.

The complete list of entities to be modeled can be seen in Appendix VII.

48

4.8.3 First iteration - hubs

In the first iteration of the EDW, the business keys are identified as composite keys,
consisting of the project key (the string component) and the issue’s queue number, for
example TKT-123456. For the sake of simplicity, it was decided to use the entire string
as the issue’s business key and designate the project string as another separate business
key. Based on that, two hubs: ISSUES_HUB and PROJECT_HUB were created.

The next logical step was establishing the relationship between these two hubs. This
step is achieved through the creation of the ISSUES_PROJECT_LINK, which serves
to connect the ISSUES_HUB and PROJECT_HUB effectively.

The DDL without defined datatypes for the sake of length for ISSUES_HUB is as
follows:

/ *DROP TABLE IF EXISTS EDW_JIRA . ISSUES_HUB CASCADE; * /
CREATE TABLE IF NOT EXISTS EDW_JIRA . ISSUES_HUB (

ISSUES_ID , ISSUES_BK , REC_SOURCE, LOAD_DTS,
CONSTRAINT pk_ISSUES_HUB PRIMARY KEY (ISSUES_ID)

)
ORDER BY ISSUES_ID SEGMENTED BY HASH (ISSUES_ID) ALL NODES;
COMMENT ON TABLE EDW_JIRA . ISSUES_HUB IS ’ J i r a i s s u e s b u s i n e s s keys ’ ;
GRANT SELECT ON EDW_JIRA . ISSUES_HUB TO EDW_JIRA_VIEWER WITH GRANT

OPTION ;
GRANT SELECT ON EDW_JIRA . ISSUES_HUB TO DWH_JIRA WITH GRANT OPTION ;

DML for hubs, the following SQL query, is also relatively straightforward. Only the
distinct keys are selected, simplifying the process.

INSERT INTO EDW_JIRA . ISSUES_HUB
SELECT o d s _ i s s u e s . ISSUES_ID , o d s _ i s s u e s . ISSUES_BK , ’ JIRA ’ ,

CURRENT_TIMESTAMP
FROM (

SELECT DISTINCT sha1 (i s s u e s _ j s o n [’ key ’] : : VARCHAR(6 4)) AS " ISSUES_ID
" , i s s u e s _ j s o n [’ key ’] : : VARCHAR(6 4) AS "ISSUES_BK"

FROM DW_JIRA_ODS . o d s _ i s s u e s
) o d s _ i s s u e s
LEFT JOIN EDW_JIRA . ISSUES_HUB ON EDW_JIRA . ISSUES_HUB . ISSUES_ID =

o d s _ i s s u e s . ISSUES_ID
WHERE EDW_JIRA . ISSUES_HUB . ISSUES_ID IS NULL;
COMMIT;

DDL and DML for thePROJECT_HUB was done in a comprehensible manner.

49

4.8.4 First iteration - links

DDl for the ISSUES_PROJECT_LINK:

CREATE TABLE IF NOT EXISTS EDW_JIRA . PROJECT_ISSUES_LINK (PROJECT_ID
CHAR(4 0) , ISSUES_ID CHAR(4 0) , REC_SOURCE VARCHAR(2 0) , LOAD_DTS
TIMESTAMP, CONSTRAINT pk_PROJECT_ISSUES_LINK PRIMARY KEY (
PROJECT_ID , ISSUES_ID) , CONSTRAINT
fk_PROJECT_ISSUES_LINK_PROJECT_HUB FOREIGN KEY (PROJECT_ID)
REFERENCES EDW_JIRA . PROJECT_HUB (PROJECT_ID) , CONSTRAINT
fk_PROJECT_ISSUES_LINK_ISSUES_HUB FOREIGN KEY (ISSUES_ID)
REFERENCES EDW_JIRA . ISSUES_HUB (ISSUES_ID)) ORDER BY PROJECT_ID ,
ISSUES_ID SEGMENTED BY HASH(PROJECT_ID) ALL NODES;

CREATE PROJECTION IF NOT EXISTS EDW_JIRA .
PROJECT_ISSUES_LINK_ISSUES_ID AS SELECT PROJECT_ID , ISSUES_ID FROM

EDW_JIRA . PROJECT_ISSUES_LINK ORDER BY ISSUES_ID , PROJECT_ID
SEGMENTED BY HASH(ISSUES_ID) ALL NODES;

GRANT SELECT ON EDW_JIRA . PROJECT_ISSUES_LINK TO EDW_JIRA_VIEWER ,
DWH_JIRA WITH GRANT OPTION ;

The part of the query where the projection is created serves a critical purpose in the
Vertica DB. Projections are a crucial feature in Vertica that optimizes query performance
by pre-sorting, pre-joining, and pre-aggregating data.[vera]

In this query, a projection named
EDW_JIRA.PROJECT_ISSUES_LINK_ISSUES_ID is created using the CREATE
PROJECTION IF NOT EXISTS statement. The projection is based on the
EDW_JIRA.PROJECT_ISSUES_LINK table and contains the PROJECT_ID and
ISSUES_ID columns.

DML for the link:

INSERT INTO EDW_JIRA . PROJECT_ISSUES_LINK (PROJECT_ID , ISSUES_ID ,
REC_SOURCE, LOAD_DTS)

SELECT DISTINCT sha1 (i s s u e s _ j s o n [’ f i e l d s . p r o j e c t . key ’] : : VARCHAR(6 4))
AS PROJECT_ID , sha1 (i s s u e s _ j s o n [’ key ’] : : VARCHAR(6 4)) AS ISSUES_ID ,

’ JIRA ’ , CURRENT_TIMESTAMP
FROM DW_JIRA_ODS . o d s _ i s s u e s o d s _ i s s u e s
LEFT JOIN EDW_JIRA . PROJECT_ISSUES_LINK l i n k ON l i n k . PROJECT_ID =

o d s _ i s s u e s . PROJECT_ID AND l i n k . ISSUES_ID = o d s _ i s s u e s . ISSUES_ID
WHERE l i n k . ISSUES_ID IS NULL;
COMMIT;

The ORDER BY clause in the projection definition specifies the sorting order of
the data, first by ISSUES_ID, and then by PROJECT_ID. The SEGMENTED BY

50

HASH(ISSUES_ID) clause is used to distribute the data across all nodes in the Vertica
cluster based on the hash value of the ISSUES_ID column. In summary, the creation
of this projection helps improve query performance by pre-sorting the data based on
specified columns and distributing it efficiently across the Vertica cluster using a hash-
based segmentation strategy.

4.8.5 First Iteration - Satellites

In the first iteration, the focus was on incorporating purely string or option-type attributes,
which could be easily integrated into the underlying structure created by the DDL. This
approach ensured that the initial implementation could handle the simplest data types
and set the foundation for more complex attributes in subsequent iterations.

To determine the appropriate data lengths for these attributes, a length measurement
technique was employed to obtain a rough estimate of the required sizes. This measure-
ment served as a guideline for creating the DDL statements and ensuring efficient data
storage. Using a window function, the following SQL query maps all keys from the
issues_json to their maximum length. It filters out keys with a specific type_oid (199)
and keys that contain the strings ’customfield’ and ’project’. The result is then grouped by
keys and type_oid, and ordered in descending order based on the first column. type_oid
(199) means array data type in Vertica DB.[vera]

SELECT keys , t y p e _ o i d , MAX(" l e n g t h ") max_leng th
FROM (SELECT MAPKEYSINFO(i s s u e s _ j s o n) OVER(PARTITION BEST) FROM

DW_JIRA_ODS . o d s _ i s s u e s) AS a
WHERE t y p e _ o i d NOT IN (1 9 9) AND keys NOT LIKE ’%c u s t o m f i e l d%’ AND

keys NOT LIKE ’%p r o j e c t%’
GROUP BY keys , t y p e _ o i d
ORDER BY 1 DESC ;

Additionally, generative SQL was utilized to create both DDL and DML statements
dynamically. This approach streamlined the process of defining and manipulating the
data structure, enabling a smoother transition into more complex data types in future
iterations.

This following SQL query selects distinct keys, removes the prefix ’fields.project.’
using a regular expression, and assigns an alias for each key. The query is based on a
subquery that maps keys from the issues_json using a window function.

SELECT DISTINCT keys , REGEXP_REPLACE(keys , ’ ^ f i e l d s \ . p r o j e c t \ . ’ , ’ ’)
AS a l i a s , ’VARCHAR(1 0 0 0) ’ AS d a t a t y p e

FROM (SELECT MAPKEYSINFO(i s s u e s _ j s o n) OVER(PARTITION BEST) FROM
DW_JIRA_ODS . o d s _ i s s u e s) AS a

WHERE t y p e _ o i d NOT IN (1 9 9) AND keys NOT LIKE ’%c u s t o m f i e l d%’ AND
keys NOT LIKE ’%p r o j e c t%’

51

GROUP BY keys , t y p e _ o i d
ORDER BY keys DESC ;

In order to optimize the data integration process and minimize the overhead caused
by redundant comparisons against the ODS layer, staging satellites (STG satellites) are
employed. These STG satellites act as intermediary storage, facilitating efficient data
handling from the source systems before loading it into the target ODS.

The logic behind the STG satellites loading process is as follows:

1. Initially, the staging layer is purged to ensure a clean and updated environ-
ment for data processing. Following the purge, data is extracted from the ODS
layer and loaded into the STG satellites. The selection criteria are based on the
MAX(LOAD_DTS) from the EDW satellite, which provides the starting point for
querying records up to the most recent entry in the STG satellite.

2. Subsequently, a comparison occurs between the data residing in the STG satellites
and the EDW layer. This layer is accomplished by utilizing the HASH_DIFF
value, which is derived from hashing a lengthy concatenated string of column
values from the satellite. The primary objective of this step is to detect any newly
added, modified, or removed records that require synchronization with the ODS
layer.

3. Once the differences between the STG satellites and EDW layer satellites have
been identified, the necessary data updates and insertions are performed in the
EDW layer. This process ensures that the EDW layer remains up-to-date and
consistent with the source systems’ data.

Staging satellites make the data integration process more efficient, as the redundant
complete set comparison against the ODS layer is avoided. This approach leads to
improved performance, reduced resource consumption, and streamlined data processing.

The loading of the satellite, see the following SQL query, is similar to STG to ODS
transition.

INSERT INTO EDW_JIRA . ISSUES_JIRA_HDR_SAT (< l i s t o f columns >)
SELECT STG. < l i s t o f columns >
FROM EDW_JIRA . STG_ISSUES_JIRA_HDR_SAT AS STG
LEFT JOIN EDW_JIRA . ISSUES_JIRA_HDR_SAT SAT
ON STG . ISSUES_ID = SAT . ISSUES_ID
AND STG . HASH_DIFF = SAT . HASH_DIFF
WHERE
SAT . ISSUES_ID IS NULL;
COMMIT;

52

4.8.6 Following Iterations

As the project progressed, more complex elements were introduced in subsequent it-
erations/sprints. One of these additions was the implementation of SLAs, which are
contracts that define the level of service expected by a customer from a service provider.
To handle SLAs, they were grouped into two types of satellites:
ISSUES_JIRA_SLA_STR_SAT and ISSUES_JIRA_SLA_NS_ARR_SAT. The first
variant, ISSUES_JIRA_SLA_STR_SAT, deals with SLAs with string data types, while
the second variant, ISSUES_JIRA_SLA_NS_ARR_SAT, handles SLAs with nested
array data types.

Another critical aspect of the project was managing data related to projects han-
dled by the testing department. To address this need, all data associated with these
projects were grouped under two testing satellites: ISSUES_JIRA_TESTING_SAT
and ISSUES_JIRA_TESTING_MSAT. The ISSUES_JIRA_TESTING_MSAT is a
multi-active satellite, meaning one key can have multiple values.

One crucial aspect of working with complex data structures is parsing JSON arrays.
JSON arrays are ordered lists of values comprising various data types, including strings,
numbers, objects, and even other arrays. In order to effectively query and manipulate
this type of data, it is necessary to perform denormalization.

Denormalization transforms a hierarchical or nested data structure, such as a JSON
array, into a flattened, tabular format. This process enables easier querying and analysis of
the data since it removes the need to navigate through the nested structure. Denormalizing
the data makes it more accessible and can be efficiently used in various analytical
processes.[RH22]

The importance of denormalization lies in its ability to facilitate data querying and
manipulation. With denormalization, it can be easier to work with nested data structures,
as they are not easily interpretable by traditional querying methods. Users can effectively
query and extract the necessary information from the data by converting these structures
into a flattened format.

Below is a SQL that was used to select the fields going into ISSUES_ISSUES_LINK.
The attributes for the ISSUES_ISSUES_LINK_SAT can be received similarly.

SELECT
SHA1(s r c . " key ") AS ISSUES_ID ,
SHA1(s r c . " v a l u e s ") AS RELATED_ISSUES_ID ,
s r c . " key " AS ISSUES_BK ,
s r c . " v a l u e s " AS RELATED_ISSUES_BK

FROM (
SELECT sub . key ,
sub . v a l u e s ,
REGEXP_REPLACE(keys , ’ \ d + . ’ , ’ ’) keys_pa th ,
REGEXP_REPLACE(REGEXP_REPLACE(keys , ’ [^ 0 − 9 .] ’ , ’ ’) , ’ . + ’ , ’ . ’) k e y s _ i d e n t

53

FROM (
SELECT
i s s u e s _ j s o n [’ key ’] : : VARCHAR(6 4) " key " ,
MAPITEMS(MAPJSONEXTRACTOR(MAPTOSTRING(i s s u e s _ j s o n [’ f i e l d s .

c u s t o m f i e l d _ 1 9 2 0 3 ’]))) OVER (PARTITION BY
i s s u e s _ j s o n [’ key ’] : : VARCHAR(6 4))

FROM DW_JIRA_ODS . o d s _ i s s u e s
) sub
WHERE k e y s _ p a t h = ’ key ’
) s r c

In this query, we start by flattening the JSON data using the MAPJSONEXTRAC-
TOR function in the first subquery. This function helps us extract relevant data from the
nested JSON structure. Next, we use the mapitems function to map the extracted keys
and values.

After mapping the keys and values, we apply some REGEX to process and clean
up the keys. Specifically, we remove digits and periods from the keys to obtain the
keys_path, and we strip out all non-numeric characters and consecutive periods from
the keys to get the keys_ident.

Once we have processed the keys, we filter the results only to include rows where the
keys_path is equal to ’key.’ This key helps us focus on the data we are interested in.

Finally, we select the desired columns from the filtered data, such as the original
issue keys and their related issue keys, as well as their hashed representations using the
sha1 function.

The Data Vault model for the EDW_JIRA, although not complete, can be seen in
Appendix VIII. Further enhancements and features were developed in the following
iterations, but they are not covered in this paper due to length constraints.

4.9 DWH layer
Within the scope of this thesis, the presentation layer was designed to provide a unique
combination of states, specifically, the latest states from the satellites. This approach
ensures end-users can access the most recent and relevant information for their decision-
making needs. However, the DV2.0 methodology allows for more flexibility and control
over the combinations of data states using PIT tables.

PIT tables are an essential component of the DV2.0 architecture, enabling users to
access historical snapshots of data at various points in time. By providing a time-based
reference for the data stored in the Raw Vault, PIT tables allow users to track changes
and analyze trends over time. This functionality is precious for organizations that need to
understand the historical context of their data or analyze the impact of business decisions
and events over time.[LO15]

54

In the context of this project, as it currently stands, three entities have been imple-
mented within the DWH layer. D_ISSUES - issues dimension, D_PROJECT - project
dimension, B_PROJECT_ISSUES - bridge object between dimensions.

The following SQL query illustrates the logic used to construct the D_ISSUES
dimension by combining data from 3 satellite tables.

CREATE OR REPLACE VIEW DWH_JIRA . D_ISSUES AS
SELECT

IH . ISSUES_BK AS D_ISSUES_ID , IJHS . LOAD_DTS,
CASE WHEN IJHS_LAST .ROW_NUM = 1 THEN 1 ELSE 0 END AS

LAST_VALUE_IND ,
IJHS . < r e s t o f columns o f s a t 1 >

FROM EDW_JIRA . ISSUES_HUB IH
JOIN EDW_JIRA . ISSUES_JIRA_HDR_SAT IJHS ON IH . ISSUES_ID = IJHS .

ISSUES_ID
JOIN (SELECT ISSUES_ID , LOAD_DTS, ROW_NUMBER() OVER (PARTITION BY

ISSUES_ID ORDER BY LOAD_DTS DESC) AS ROW_NUM FROM EDW_JIRA .
ISSUES_JIRA_HDR_SAT) IJHS_LAST ON IJHS_LAST . ISSUES_ID = IH .
ISSUES_ID AND IJHS_LAST . LOAD_DTS = IJHS . LOAD_DTS

LEFT JOIN (SELECT <columns o f s a t 2 > , ROW_NUMBER() OVER (PARTITION
BY ISSUES_ID ORDER BY LOAD_DTS DESC) AS ROW_NUM FROM EDW_JIRA

. ISSUES_JIRA_CF_STR_OPT_SAT) CF_STR_SAT ON CF_STR_SAT .
ISSUES_ID = IH . ISSUES_ID AND CF_STR_SAT .ROW_NUM = 1

LEFT JOIN (SELECT <columns o f s a t 3 > , ROW_NUMBER() OVER (PARTITION
BY ISSUES_ID ORDER BY LOAD_DTS DESC) AS ROW_NUM FROM EDW_JIRA

. ISSUES_JIRA_SLA_STR_SAT) SLA_STR_SAT ON SLA_STR_SAT . ISSUES_ID
= IH . ISSUES_ID AND SLA_STR_SAT .ROW_NUM = 1 ;

GRANT SELECT ON DWH_JIRA . D_ISSUES TO DWH_JIRA_VIEWER WITH GRANT
OPTION ;

The unique combination of last states is achieved by using
ROW_NUMBER() OVER (PARTITION BY ISSUES_ID ORDER BY LOAD_DTS
DESC) AS ROW_NUM. This calculation is performed separately for each satellite. The
PARTITION BY clause groups the data by ISSUES_ID, ensuring that the numbering
restarts for each unique issue. The ORDER BY clause sorts the data in descending order
based on the LOAD_DTS column, which represents the load timestamp. As a result, the
most recent record for each issue will have a ROW_NUM value of 1, indicating the last
state.

After calculating the row numbers for each satellite, the subqueries are then left-
joined to the main query using the ISSUES_ID column and the condition ROW_NUM
= 1. This ensures that only the most recent records from each satellite, representing
the unique last states, are included in the final view. By utilizing the ROW_NUMBER
window function in this manner, the DWH view combines the latest information from all

55

satellites, providing a comprehensive and up-to-date picture of the entities.

4.10 Containerization with Docker
TEHIK uses Docker to containerize its applications, enabling the organization to package
applications and dependencies into a single unit. TEHIK employs a private Docker
repository to store and manage all container images for security purposes. This approach
ensures that only authorized personnel access these images, minimizing the risk of
unauthorized usage or tampering.

Docker is a platform that simplifies the deployment and management of applications
by automating the process of creating, deploying, and running application containers. A
container is a lightweight, portable unit that includes an application and all its depen-
dencies, such as libraries, runtime, and system tools. Containers provide a consistent
environment for applications, regardless of the underlying infrastructure.[doc]

Docker utilizes Dockerfiles, text files containing instructions for building Docker
images. Docker images are created by following these instructions in a step-by-step
manner. The process starts with a base image, a minimalistic and secure operating system
layer. The base image is then extended by adding application-specific components and
dependencies according to the Dockerfile instructions. The resulting Docker image
contains everything needed to run the application, ensuring consistency and reliability
across different environments.[doc]

When a Docker image is executed, it creates a runtime environment called a Docker
container. Containers isolate the application from the host system, ensuring that the
application runs consistently across various platforms. This isolation also provides
security benefits by limiting the potential impact of vulnerabilities in the application or
its dependencies.[doc]

Docker supports mounting external storage volumes, which allow containers to store
and retrieve data outside the container’s filesystem. This feature helps retain files and
data across container restarts or updates, enabling persistent storage and seamless data
sharing between containers.[doc]

The first step was to containerize vsql. The algorithm to achieve this is as follows:

• 1. Specify the base image, such as a lightweight Linux distribution (e.g., Alpine
Linux).

• 2. Install any required dependencies, like the Vertica client libraries and other
system tools.

• 3. Copy the VSQL binary or install the VSQL package from the official repository.

• 4. Set any necessary environment variables, such as DB connection information,
credentials, or default settings.

56

The code for actual vsqls dockerfile can be seen in Appendix X. Based on the same
conceptual algorithm, Meltano was also containerized.

All necessary authorization information, such as DB addresses, ports, usernames,
and passwords, is stored in a .env file. Additionally, the .env file contains an environment
variable called MELTANO_ROOT, which holds the root folder path for Meltano’s local
directory.

In the implementation process, script wrapping is employed to manage the execution
of multiple scripts sequentially. Script wrapping refers to using one script to execute other
scripts or commands, acting as an intermediary between the user and the target scripts or
commands. This approach helps in structuring the workflow, handling dependencies, and
maintaining the readability of the overall code.

Two series of scripts are utilized to extract data from Jira and load it into Vertica using
Docker containers. The first script series focuses on starting the Meltano container and
setting up the required environment. The meltano_docker_executable.sh script starts
the Meltano container and subsequently executes the entrypoint.sh script within the
container. The entrypoint.sh script serves as the entry point, initializing the environment
and ensuring that all necessary dependencies and configurations are in place.

The second series of scripts handle the actual data extraction from Jira and loading it
into Vertica. The first sequence is visualized in Figure 14 and the second in Figure 15.

Figure 14. Sequence of scripts to get Data from Jira to local machine with Meltano
container

The rest of the steps can be run analogously with the vsql container. The implemen-
tation of the pipeline is quite uncomplicated:

57

Figure 15. Sequence of scripts to get Data from local machine to Vertica ODS layer with
vsql container

• 1. Pull the prebuilt Meltano and vsql images from the TEHIK container repository

• 2. Create the .env file and add all necessary credentials to it

• 3. Change the MELTANO_ROOT=directory where the .env file is located

• 4. Run Extract:
s o u r c e / \ $ (pwd) / . env && d o ck e r run − i t −−rm −−mount t y p e =bind ,

s o u r c e ="$MELTANO_ROOT / . env " , t a r g e t = / p r o j e c t / . env −− e n t r y p o i n t
= bash −v "$MELTANO_ROOT : / p r o j e c t / " do c ke r \ _mel t ano −c " /
p r o j e c t / s c r i p t s / e n t r y p o i n t . sh "

• 5. Run load:
s o u r c e / \ $ (pwd) / . env && d o ck e r run − i t −−rm −−mount t y p e =bind ,

s o u r c e ="$MELTANO_ROOT / . env " , t a r g e t = / p r o j e c t / . env −− e n t r y p o i n t
= bash −v "$MELTANO_ROOT/ o u t p u t : / p r o j e c t / o u t p u t " d o c k e r _ v s q l −
c " / p r o j e c t / v s q l _ e n t r y p o i n t . sh "

Some of the bash scripts used, can be seen in Appendix XI.

58

4.11 Implementation environment
In order to validate the developed data pipeline components, this section outlines the
environment setup for developing and running the example data pipelines. The required
steps for performing this evaluation are listed below.

• A local machine with Windows 10 operating system and appropriate hardware
resources was configured (16GB of RAM, 8 CPU cores)

• Oracle VirtualBox was installed on the local machine to host an Ubuntu 20.04 VM
with allocated VM resources (50% of host resources)

• Zsh shell and Bash shell were installed, with their respective versions

• Vim and Visual Studio Code were set up as the text editors for the project

• Python programming language, versions 3.8 through 3.11, were utilized for the
data pipeline development

• Jira software, v8.22.4, was employed for project management and task tracking.
The same version was also used for extracting the data from

• Git was used for version control and as a code repository

• Vertica SQL was used

• Meltano, with its corresponding versions from v2.9.0 to v2.17.1, was implemented
for the extract part. Last runs were executed with v2.17.1

• Docker Engine v23.0.3 was utilized for containerization and deployment

• Vertica DB version 12.0.3 was used. The Vertica cluster hardware specifications
cannot be published here due to confidentiality concerns, but it can be said that the
live cluster has 4 nodes and the test cluster currently has 1 node, which has been
upgraded to 3 by the time anyone reads this thesis

• vsql version 12 command line tool was employed for querying the Vertica DB

• DBeaver Community Edition version 23.0.3 was set up and used as the DB man-
agement tool

59

5 Results and Analysis
This section presents the results of the newly implemented incremental ELT pipeline for
Jira data using DV 2.0 methodology and HP Vertica. The results are organized according
to the key aspects of the proposed solution, highlighting the improvements over the
existing AS-IS solution and the benefits gained by TEHIK.

5.1 Comparison with Existing Solution
The proposed solution was compared with the existing AS-IS solution regarding reporting
capabilities, adherence to SLA conditions, and other aspects relevant to the case. The
following subsections discuss the advantages of the new solution and its impact on
TEHIK’s operations.

5.1.1 Reduction in Manual Work

The new solution significantly reduces the manual work required to update reports by
automating the data pipeline process. In the AS-IS solution, updating reports was time-
consuming and resource-intensive due to the manual generation of extracts and the need
to query the entire dataset each time. With the proposed solution, the incremental ELT
pipeline ensures that only the necessary data is updated, reducing the time and resources
required for report generation.

Automating the data pipeline also reduces the potential for human error, leading
to more accurate and reliable reports. Staff can now focus on more critical tasks and
decision-making, increasing productivity and efficiency within the organization.

5.1.2 Increased Flexibility

The new solution offers greater flexibility in handling various data requirements and
adapting to changes in the data structure. The DV 2.0 methodology allows for adding,
removing, or modifying data fields without affecting the existing warehouse structure.
This flexibility enables TEHIK to adapt to evolving business requirements and ensure
the DWH remains relevant and valuable.

Additionally, the proposed solution overcomes the limitations of the Tableau Con-
nector Pro for Jira, which restricted specific JQL queries and prevented the creation
of some reports. By leveraging custom scripts and Vertica SQL, the new solution can
accommodate a broader range of query requirements and generate comprehensive reports
that better serve the organization’s needs.

60

5.1.3 Query Tuning and Performance Optimization

The proposed solution improves query performance by utilizing Vertica’s capabilities
in optimizing nodes, projections, and join strategies. Vertica’s columnar storage and
advanced compression techniques allow faster query execution and better performance
than traditional row-based storage systems. This performance leads to more efficient
data processing and reduced latency in report generation.

Furthermore, the custom scripts and SQL transformations streamline the integrating
and analyzing data from Jira, enabling faster insights and decision-making. The improved
query performance contributes to a more efficient and agile DWH that supports TEHIK’s
growing data needs.

5.1.4 Up-to-date Reports

The new solution ensures that reports are always current and accurate by automating the
data pipeline process and incrementally updating the necessary data. Hence, it eliminates
the need for manual updates and reduces the risk of outdated or inaccurate information
being used for decision-making.

By providing up-to-date reports, TEHIK can make more informed decisions and
respond quickly to emerging trends and changes in the organization’s environment. The
increased accuracy and timeliness of the reports contribute to improved decision-making
and a more agile organization.

5.1.5 Historical Data and Trend Analysis

The proposed solution maintains a history of Jira data, enabling better trend analysis and
decision-making. While the history of Jira users belonging to entities is currently limited
due to data access rights concerns, the rest of the historicization is available. It works
perfectly, including the history of changes to the issues.

In the existing AS-IS solution, there was no history of Jira users belonging to entities,
which led to inconsistencies in department-based reports viewed at different points in
time. Despite the current limitations with the history of Jira users belonging to entities,
the new solution allows TEHIK to analyze trends and changes over time in other aspects
of the Jira data, providing valuable insights for decision-making and strategic planning.
This capability enhances the organization’s ability to understand and respond to evolving
trends and challenges. Once the data access rights concerns are resolved, the solution
will offer a more comprehensive historical analysis.

5.2 Containerization and Deployment
The use of Docker for containerization and deployment of the data pipeline offers several
benefits to TEHIK, including improved consistency across environments, simplified

61

deployment, and enhanced maintainability. Containers ensure that the VSQL client and
other solution components run consistently across different platforms, reducing the risk
of environment-related issues. Additionally, containers can be easily scaled up or down,
enabling the pipeline to handle fluctuating workloads and resource requirements.

Isolation is another advantage of using containers, as running the pipeline in separate
containers isolates it from other processes. This isolation improves security and simplifies
troubleshooting, making it easier for TEHIK to maintain and manage the data pipeline.

5.3 Monitoring and Maintenance
Compared to the existing AS-IS solution, the proposed solution significantly simplifies
the monitoring and maintenance of TEHIK’s data pipeline. The reduction in the number
of moving parts, such as eliminating many previously required extracts, has made the
system more manageable and less prone to issues.

Custom scripts are employed in the proposed solution for monitoring system health
and providing real-time insights into performance. This enables TEHIK to proactively
identify and resolve potential issues, reducing downtime and ensuring consistent data
quality.

The current implementation of the data pipeline uses cron jobs for orchestration,
while Kubernetes manages the deployed containers efficiently. These technologies
contribute to a more streamlined and automated process, which reduces the complexity
of monitoring and maintaining the pipeline. As a result, the solution has become more
reliable and efficient compared to the previous setup.

In the future, incorporating Airflow for more advanced and automated orchestration
of the data pipelines will further improve the solution. Airflow’s capabilities will al-
low for compelling data pipeline maintenance and monitoring, including dependency
management, error handling, and job scheduling. This continuous improvement will
ensure that the solution remains robust and efficient, meeting TEHIK’s evolving needs
and easily handling future challenges.

5.4 Scalability and Performance
The proposed solution leverages Vertica’s scalability and fast analytics support capabil-
ities, ensuring the DWH can handle growing volumes of data without compromising
performance. Vertica’s columnar storage, advanced compression techniques, and query
optimization features enable the DWH to process large datasets and deliver timely
insights efficiently.

The DV 2.0 methodology provides a flexible and scalable foundation adaptable to
changes in data structures and requirements. Its methodology ensures that the DWH can
evolve with TEHIK’s needs and continue to deliver value over time. The modular design

62

of the DV 2.0 model makes it easy to add new entities or expand the scope of existing
reports, simplifying the process of addressing changing business needs and requirements.

The VD 2.0 methodology makes incorporating additional data sources or adapting to
new reporting requirements a breeze. This adaptability future-proofs the solution and
reduces the time and effort needed for system updates and modifications, ensuring that
TEHIK’s DWH remains agile and responsive to the organization’s evolving needs.

5.5 Performance Analysis
In the performance assessment, our concentration dwells on four pivotal KPIs and
metrics: the duration of data extraction, the response time for queries, the timeframe for
data loading, and the period required for data transformation. The subsequent sections
delineate the outcomes under each of these KPIs, delivering a comprehensive evaluation
of the performance exhibited by the proposed solution.

5.5.1 Extract Time

The extract time refers to the duration required to retrieve data from the source sys-
tem, in this case, TEHIK’s Jira test environment. The extraction process involves
retrieving data from several sources, including issues.jsonl, issue_comments.jsonl,
issue_transitions.jsonl, changelogs.jsonl, and fields.jsonl files. Table 1 summarizes the
extract time for all files combined, totaling at 8 hours.

Table 1. The current extract time for all files combined is 8 hours.

File file size output AA

issues.jsonl 4,5GB contains 200 000 Jira issues
issue_comments.jsonl 0.35GB contains 400 000 records
issue_transitions.jsonl 0.75GB contains 1 000 000 records
changelogs.jsonl 1,1 GB contains 5 000 000 records
fields.jsonl 0,006 GB contains 1000 records

However, this is not considered a problem, as when the pipeline runs daily, the extract
time is reduced to a maximum of 30 seconds. If necessary, extract time can be further
reduced by running multiple instances of Meltano, which can divide the extract time
interval accordingly. This optimization is outside the scope of this thesis. Fields entity is
not touched upon in the benchmarks since its negligible size makes it irrelevant.

63

5.5.2 Data Load Time

Data load time refers to the time required to load the extracted data into the data ware-
house. The load times for different staging tables in the proposed solution can be seen in
Figure 16.

Figure 16. stg to ods load times

These load times indicate the efficiency of the proposed solution in ingesting data
into the DWH.

5.5.3 Data Transformation Time

The data transformation time measures the duration required to perform data transforma-
tions within the DWH. This section is further divided into subsections for the ODS and
EDW layers.

1. Operational Data Store (ODS) The transformation time for the ODS layer in the
proposed solution can be seen in Figure 17.

64

Figure 17. ods layer loading times

2. Enterprise Data Warehouse (EDW) The EDW layer consists of hubs, links, and
satellites. The loading times of links and hubs are negligible (10...15 seconds) and
are not considered. The loading times for the rest of EDW entities can be seen in
Figure 18.

Figure 18. EDW layer loading times

5.5.4 Query Response Time

The query response time quantifies the duration required for executing a specific query
against the DWH. This KPI directly influences the DWH’s capacity to provide prompt

65

insights to the organization, especially when the entire underlying pipeline is automated.
The query times are negligible for the volume of records under consideration, remaining
within single-digit seconds.

5.5.5 ELT on everyday basis

It is important to note that the 8 hours is the initial full extract from the Jira test envi-
ronment. Once the pipeline is operational and regularly runs, the extract times become
negligible, and all hubs, links, and satellites can be loaded in parallel. This analysis
means that the slowest element in each layer determines the pipeline throughput. In
the current scenario, this is likely to be ISSUES_JIRA_SLA_NS_ARR_SAT, which
requires loading for nine attributes nested arrays. The author provides an estimated time-
line for an entire potential run under a daily scenario, assuming all loads are executed in
parallel and considering this satellite as the limiting factor. The times mentioned include
the necessary container startups and shutdowns. The evaluated times for the entire ELT
run on a daily basis can be seen in Figure 19.

Figure 19. Evaluated full ELT run on a daily basis

Overall, the performance analysis of the proposed solution, based on extract time,
query response time, data load time, and data transformation time, highlights substantial
enhancements in operational efficiency and the ability to provide timely insights. Under
everyday conditions, the pipeline is expected to run at most 5 to 6 minutes, ensuring the
data is efficiently processed and readily available for analysis. The proposed solution is
well-equipped to address TEHIK’s DWH’ing needs and adapt to future requirements.

66

6 Discussion

6.1 Summary of Key Findings
Throughout this thesis, several key findings, challenges, and surprises emerged. This
section reflects on these experiences, the learning process, and the importance of various
aspects of the project.

1. Learning Process and Overcoming Challenges Embarking on this project re-
quired extensive learning in various areas, such as architecture, bash, SQL, and
numerous tools. The initial phase was overwhelming, as it seemed like an insur-
mountable task with many complex concepts and tools to grasp. However, as
the project progressed, the different pieces of the puzzle started to come together,
and the various concepts began to make sense. This experience highlights the
importance of perseverance and continuous learning in overcoming challenges and
achieving project success.

2. Generative SQL and the Value of Metadata During the project, the discovery of
generative SQL proved to be a valuable asset. Generative SQL allows for more
dynamic and adaptable queries, which can significantly enhance the efficiency and
flexibility of data processing. Furthermore, this project shed light on the importance
of metadata and its role in enabling more automated and streamlined solutions.
If the field entity had been discovered earlier and the author’s competence in
DWH’ing and SQL had been higher, a different, more automated approach could
have been taken. This experience emphasizes the value of metadata and its potential
to drive more efficient and effective solutions when leveraged correctly.

3. Time-Consuming Testing and the Importance of Cooperation Testing proved to
be a time-consuming aspect of the project, as it involved not only the testing of the
implemented solution but also the validation of data. This experience underscores
the importance of thorough testing and the need for close cooperation with analysts
from the very beginning of the project. Moreover, the project highlighted the
importance of understanding the technical and business contexts. A solid grasp
of the company’s operations, requirements, and goals is essential in delivering a
solution that meets their needs and provides valuable insights.

4. Data Modeling and Making Sense of Complex Data Throughout the project, the
importance of data modeling became increasingly clear. In order to make sense of
the complex and often messy data from Jira and to fulfill the reporting requirements,
effective data modeling was crucial. This process involved understanding the
relationships between different data elements, their relevance to the organization,
and how they could be structured and transformed to deliver valuable insights.

67

5. Challenges with Meltano Containerization One of the more frustrating aspects of
the project was the struggle with Meltano containerization. The solution sometimes
worked seamlessly, while at other times, it failed without any apparent reason.
This led to extensive debugging and attempts to identify and resolve the underlying
issues. These challenges highlight the importance of persistence, problem-solving,
and adaptability in facing obstacles.

6. Implementation in the Live Environment The project also revealed the need for
considering the live environment when designing and implementing the solution.
While the proposed solution demonstrated promising results in the test environment,
its performance and adaptability in the live environment must also be assessed.
This assessment involves considering factors such as data volume, complexity, and
organizational requirements.

6.2 Future Work
There is still much to be accomplished in the context of the project. This section outlines
several areas of future work that could further enhance the solution’s capabilities and
overall effectiveness.

1. Completing Modelling and Implementation of Missing Satellites The current
data model still needs to incorporate all the necessary satellites. These missing
satellites should be modeled and implemented in the future to ensure a more
comprehensive data representation. This will allow for a more complete and
accurate analysis of the Jira data, leading to better insights and decision-making.

2. Developing a Logging Model A logging model can be developed to improve
the automation and monitoring of the data pipeline. One possible approach is to
store logs in the Vertica DB and use them to drive the pipeline execution. This
process would enable the pipeline to be more adaptive and responsive to changes
in the data, further enhancing its automation capabilities. A well-designed logging
model makes troubleshooting issues easier, monitoring performance, and ensuring
consistent data quality.

3. Implementing Airflow Orchestration Airflow orchestration has yet to be imple-
mented, and its integration would provide more advanced and automated control
over the data pipeline. Airflow offers powerful features like dependency manage-
ment, error handling, and job scheduling, which can streamline the maintenance
and monitoring of the data pipeline. Implementing Airflow would contribute to a
more efficient and reliable solution, better equipped to handle the organization’s
growing data needs.

68

4. Incorporating Additional Hubs Additional hubs could be incorporated into the
data model to provide more granular insights into the Jira data. For instance, hubs
could be created for epics, tasks, and subtasks, which are hierarchical structures in
Jira that represent different levels of work breakdown. Incorporating these hubs
may require parsing the issue, epic, and link trees to model their relationships
accurately. This hub would enable more detailed reporting and analysis, allowing
the organization to make more informed decisions.

5. Deployment in Live Environment and Modelling of Missing Entities In the
future, the solution should be deployed in a live environment. The missing entities
and their attributes should be modeled to provide a more comprehensive data
view. This deployment will ensure that the DWH is well-equipped to handle the
organization’s reporting and analysis needs and adapt to any future changes in data
structures or requirements.

6. Building Predictive Models Once the data warehouse is complete and fully oper-
ational, it may be possible to build predictive models using the data. These models
could forecast trends, identify potential issues, and inform strategic planning. For
example, a predictive model could be developed to estimate the likelihood of
an issue being resolved within a given timeframe based on factors such as issue
complexity, team workload, and historical performance. This would allow the
organization to allocate resources better and prioritize work.

7. Implementing AD Integration AD integration is still a planned feature, and
its implementation would allow for more accurate tracking of user memberships
and department affiliations. This would improve the quality of department-based
reports, making them more consistent and reliable. AD integration would also
enable the solution to maintain a history of user affiliations, allowing for more
accurate trend analysis and decision-making.In conclusion, while the current
solution provides a strong foundation for Jira DWH’ing, there is still much room
for improvement and expansion. The solution can be further refined and enhanced
by addressing the areas outlined in this section, ensuring its long-term value to the
organization and its ability to adapt to future challenges.

69

7 Conclusion
This thesis unveils a comprehensive DWH solution for TEHIK, focusing on assimilat-
ing and scrutinizing Jira data. It employs the flexible DV 2.0 methodology and HP
Vertica, which optimizes extensive dataset processing with its columnar storage and
advanced compression. Meltano enhances the solution for data extraction, VSQL for DB
interaction, Docker for environment isolation, and Bash scripts for automation.

This thesis addressed multiple challenges, including creating the architecture, mas-
tering DV 2.0, bash, python, and SQL, and gaining proficiency in various tools and
technologies. The uncovering of generative SQL and the significance of metadata were
pivotal moments in the solution’s development. Moreover, the emphasis on comprehen-
sive testing, close analyst collaboration, and understanding the business and company
underscored the importance of technical expertise and business acumen.

The performance analysis of the proposed solution demonstrated significant im-
provements in operational efficiency and the ability to deliver timely insights to the
organization. The measurements conducted on a Vertica Test cluster using data from
TEHIK’s Jira test environment indicated that the pipeline would run at most 5 to 6
minutes under everyday conditions, ensuring efficient processing and data availability
for analysis.

The Discussion section reflected on key findings, surprises, challenges, and best prac-
tices. The journey of developing the DWH solution was a valuable learning experience,
uncovering the importance of data modeling, the need for close collaboration with ana-
lysts, and the potential of generative SQL for automation. Additionally, containerizing
Meltano and deploying the solution in a test environment presented unique challenges
and opportunities for growth.

There are numerous opportunities for future work and enhancements to the proposed
solution. These include finishing the modeling and implementing missing satellites,
developing a logging model for better pipeline automation, implementing Airflow orches-
tration, and expanding the data model to include more hubs and relationships. Further
down the line, it may be possible to build predictive models using the data stored in the
warehouse, adding another layer of value to the organization.

In summary, this thesis has successfully developed a DWH solution that addresses
TEHIK’s needs while providing a solid foundation for future growth and evolution. The
lessons learned and challenges overcome along the way have contributed to a richer
understanding of the fields of DE, DWH’ing, and the importance of collaboration, testing,
and continual learning. With the proposed solution in place, TEHIK is well-positioned to
harness the power of its data and make more informed decisions, driving the organization
toward a successful future.

70

References
[Aira] https://airbyte.com. https://airbyte.com. Accessed: 2023-04-30.

[airb] https://airflow.apache.org/docs/. Accessed: 2023-05-05.

[ama] https://aws.amazon.com/s3/. Accessed: 2023-05-05.

[apaa] https://flink.apache.org/. Accessed: 2023-05-05.

[apab] https://spark.apache.org/. Accessed: 2023-05-05.

[arr] https://arrow.apache.org/. Accessed: 2023-05-05.

[Bar] Kevin Bartley. Etl vs elt: What’s the difference?

[cas] https://cassandra.apache.org/_/index.html. Accessed: 2023-05-05.

[cro] https://www.hivelocity.net/kb/what-is-cron-job/. Accessed: 2023-05-05.

[cur] https://curl.se/. Accessed: 2023-05-05.

[Dat] https://datavaultalliance.com/news/dv/dv-standards/data-
vault-2-0-suggested-object-naming-conventions/. https:
//datavaultalliance.com/news/dv/dv-standards/
data-vault-2-0-suggested-object-naming-conventions/. Accessed:
2023-04-24.

[dbe] https://dbeaver.io/. Accessed: 2023-05-05.

[diga] https://www.digilugu.ee/login. Accessed: 2023-05-05.

[digb] https://digiregistratuur.ee/login. Accessed: 2023-05-05.

[digc] https://www.tervisekassa.ee/inimesele/ravimid/digiretsept. Accessed: 2023-05-
05.

[doc] https://docs.docker.com/. Accessed: 2023-05-05.

[ela] https://www.elastic.co/. Accessed: 2023-05-05.

[flu] https://www.fluentd.org/. Accessed: 2023-05-05.

[git] https://git-scm.com/. Accessed: 2023-05-05.

[gra] https://grafana.com/. Accessed: 2023-05-05.

[had] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. Accessed: 2023-05-
05.

[Inm05] W. H. Inmon. Building the Data Warehouse. Wiley Publishing, 4th edition,
2005.

[jen] https://www.jenkins.io/. Accessed: 2023-05-05.

[jira] https://confluence.atlassian.com/jira. Accessed: 2023-05-05.

71

https://airbyte.com
https://datavaultalliance.com/news/dv/dv-standards/data-vault-2-0-suggested-object-naming-conventions/
https://datavaultalliance.com/news/dv/dv-standards/data-vault-2-0-suggested-object-naming-conventions/
https://datavaultalliance.com/news/dv/dv-standards/data-vault-2-0-suggested-object-naming-conventions/

[jirb] https://www.atlassian.com/software/jira. Accessed: 2023-05-05.

[jso] https://www.atatus.com/glossary/jsonl/. Accessed: 2023-05-05.

[kaf] https://kafka.apache.org/. Accessed: 2023-05-05.

[kib] https://www.elastic.co/kibana/. Accessed: 2023-05-05.

[kor] https://www.terviseamet.ee/et/koroonaviirus/koroonaviiruse-andmestik. Ac-
cessed: 2023-05-05.

[KR13] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Definitive
Guide to Dimensional Modeling. Wiley, 3rd edition, 2013.

[kub] https://kubernetes.io/. Accessed: 2023-05-05.

[LO15] Dan Linstedt and Michael Olschimke. Building a Scalable Data Warehouse
with Data Vault 2.0. Morgan Kaufmann, 2015.

[log] https://www.elastic.co/logstash/. Accessed: 2023-05-05.

[lxm] https://lxml.de/. Accessed: 2023-05-05.

[med] https://medre.tehik.ee/home. Accessed: 2023-05-05.

[Mel] https://docs.meltano.com/. https://docs.meltano.com/. Accessed: 2023-
04-30.

[mys] https://www.mysql.com/. Accessed: 2023-05-05.

[nif] https://nifi.apache.org/. Accessed: 2023-05-05.

[pan] https://pandas.pydata.org/docs/user_guide/index.html. Accessed: 2023-05-05.

[par] https://parquet.apache.org/. Accessed: 2023-05-05.

[pos] https://www.postgresql.org/. Accessed: 2023-05-05.

[pro] https://prometheus.io/. Accessed: 2023-05-05.

[pyp] https://pypi.org/project/pip/. Accessed: 2023-05-05.

[rab] https://www.rabbitmq.com/. Accessed: 2023-05-05.

[rav] https://www.ravimiamet.ee/. Accessed: 2023-05-05.

[RH22] J. Reis and M. Housley. Fundamentals of Data Engineering. O’Reilly Media,
2022.

[riia] https://riigipilv.ee/et. Accessed: 2023-05-05.

[riib] https://pilv.ee/pilvest/pilve-tehniline-lahendus/pilvevoimeka-rakenduse-
arendus. https://pilv.ee/pilvest/riigipilve-tehniline-lahendus/
pilvevoimeka-rakenduse-arendus. Accessed: 2023-04-30.

[sam] https://www.tehik.ee/ravimitega-seotud-menetlusprotsesside-infosusteem-
samtrack. Accessed: 2023-05-05.

72

https://docs.meltano.com/
https://pilv.ee/pilvest/riigipilve-tehniline-lahendus/pilvevoimeka-rakenduse-arendus
https://pilv.ee/pilvest/riigipilve-tehniline-lahendus/pilvevoimeka-rakenduse-arendus

[Sin] https://www.singer.io/. https://www.singer.io/. Accessed: 2023-04-30.

[sm] https://www.sm.ee/. Accessed: 2023-05-05.

[spo] https://github.com/spotify/luigi. Accessed: 2023-05-05.

[taba] https://www.tableau.com/. Accessed: 2023-05-05.

[tabb] https://appfire.com/solutions/tableau-connector-pro-for-jira/. Accessed: 2023-
05-05.

[tara] https://hub.meltano.com/loaders/target-jsonl/. Accessed: 2023-05-05.

[tarb] https://github.com/full360/pipelinewise-target-vertica. https://github.com/
full360/pipelinewise-target-vertica. Accessed: 2023-04-30.

[teh] https://tehik.ee/. Accessed: 2023-05-05.

[ter] https://www.terviseamet.ee/et. Accessed: 2023-05-05.

[too] https://www.tooelu.ee/et/73/tooelu-infosusteem-teis. Accessed: 2023-05-05.

[vera] https://docs.vertica.com/12.0.x. Accessed: 2023-05-05.

[verb] https://www.vertica.com/. Accessed: 2023-05-05.

[Whe] https://www.wherescape.com/solutions/project-types/data-vault-automation/.
(accessed: 22.04.2023).

[YL16] Lamia Yessad and Aissa Labiod. Comparative study of data warehouses
modeling approaches: Inmon, kimball and data vault. In Proceedings of the
Conference on [Your Conference Name Here], pages 95–99, 11 2016.

73

https://www.singer.io/
https://github.com/full360/pipelinewise-target-vertica
https://github.com/full360/pipelinewise-target-vertica

Appendix

I Tree structure and naming conventions example based
on EDW

Figure 20. Tree structure and naming conventions example based on EDW.

74

II Meltano tap-jira possible endpoints

Figure 21. Meltano tap-jira possible endpoints.

75

III Meltano init my-new-project

Figure 22. File structure created by blank meltano project.

76

IV Meltano init promt

Figure 23. Tree structure and naming conventions example based on EDW.

77

V Jira issue tree

Figure 24. Jira issue tree.

78

VI Requirements mapping

Figure 25. Requirements mapping

VII Entities to be modeled in EDW
• ISSUES_HUB: Represents the central hub for issues.

• PROJECT_HUB: Represents the central hub for projects.

• ISSUES_PROJECT_LINK: Establishes the relationship between issues and
projects.

• ISSUES_ISSUES_LINK: Connects related issues.

• ISSUES_ISSUES_LINK_SAT: Contains issue-related string data.

• ISSUES_JIRA_TESTING_SAT: Consists of 10 strings and 2 options for Jira
testing data.

• ISSUES_JIRA_TESTING_MSAT: Holds a single array for Jira testing data.

• ISSUES_JIRA_HDR_SAT: Contains 12 strings related to Jira header data.

• PROJECT_JIRA_HDR_SAT: Holds 2 strings related to project header data in
Jira.

• NOT REQUIRED: Consists of 2 strings that can be computed by Tableau and are
not needed for modeling.

• ISSUES_JIRA_SLA_STR_SAT: Contains 6 options for Jira Service Level Agree-
ment (SLA) data.

• ISSUES_JIRA_SLA_NS_ARR_SAT: Consists of 9 nested arrays for Jira SLA
data (to be modeled in a live environment).

• ISSUES_JIRA_COMMENTS_SAT: Holds 3 arrays and 1 nested array for Jira
comments data.

• ISSUES_JIRA_CF_STR_OPT_SAT: Contains 9 strings and 8 options for Jira
custom field data.

80

VIII EDW_JIRA ERD

Figure 26. EDW_JIRA ERD.

81

IX DWH_JIRA ERD

Figure 27. DWH_JIRA_ERD.

82

X Dockerfile_vsql

FROM ubuntu : 2 0 . 0 4

RUN apt − g e t u p d a t e
RUN apt − g e t i n s t a l l bash
RUN apt − g e t −y i n s t a l l c u r l

\ # C r e a t e p r o j e c t d i r e c t o r y
RUN mkdir −p / p r o j e c t

COPY v e r t i c a − c l i e n t − 1 2 . 0 . 3 − 0 . x86 \ _64 . t a r . gz / p r o j e c t
COPY . / s c r i p t s / p r o j e c t
COPY . / l o a d i n g s / p r o j e c t

RUN mkdir −p / o p t / v e r t i c a /
RUN mv / p r o j e c t / v e r t i c a − c l i e n t − 1 2 . 0 . 3 − 0 . x86 \ _64 . t a r . gz / o p t / v e r t i c a /
RUN t a r vzx f / o p t / v e r t i c a / v e r t i c a − c l i e n t − 1 2 . 0 . 3 − 0 . x86 \ _64 . t a r . gz
WORKDIR / p r o j e c t

RUN f i n d . −maxdepth 1 − t y p e f − exec chmod +x {} \ ;

ENV PATH=\$PATH : / o p t / v e r t i c a / b i n : / u s r / b i n
RUN chmod ugo+x / o p t / v e r t i c a / b i n / v s q l
ENV LC \ _ALL C . UTF−8

83

XI Bash scripts used for executing containerized pipeline

Figure 28. bash scripts used for executing containerized pipeline

84

XII. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Rasmus Bobkov,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Design and Implementation of an Incremental ELT Pipeline for a Jira Data
Warehouse using Data Vault 2.0 Methodology and HP Vertica,

(title of thesis)

supervised by Axel Feras M. Awaysheh, Phd.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Rasmus Bobkov
06/05/2023

85

	Abbreviations used
	Introduction
	Background on TEHIK
	What is Jira software and how it's used in TEHIK
	Overview of the existing solution and its limitation
	Proposed Solution

	Background Knowledge and Related Work
	Data Engineering
	Overview of DE
	Ingestion
	ETL vs ELT
	Data Transformations and Preparation
	Serving and data modeling

	Orchestration and Workflow Management
	Logging and Monitoring
	Data Warehousing
	Overview of DWH'ing and its Importance in Modern Business

	Three different DWH architectures
	Data Vault 2.0
	DV 2.0 Model
	The use of hashing in DV2.0

	Presentational layer (DWH) in DV2.0
	Deployment in Production Environment

	Implementation
	Use Cases and User Stories
	Constraints set for the Architecture by TEHIK
	Utilizing Testing and Live Environments for Development
	On the Importance of Structure and Naming Conventions
	Setting up Git repositories and on The Importance of Access Control in DWH's and Databases
	Ingestion
	Output from Meltano

	First layer - DW_JIRA_ODS
	Staging layer
	ODS layer

	EDW layer
	Jira Issues Structure Mapping and Collaborating with Analysts for Data Verification and Validation
	Preparation with the Analyst
	First iteration - hubs
	First iteration - links
	First Iteration - Satellites
	Following Iterations

	DWH layer
	Containerization with Docker
	Implementation environment

	Results and Analysis
	Comparison with Existing Solution
	Reduction in Manual Work
	Increased Flexibility
	Query Tuning and Performance Optimization
	Up-to-date Reports
	Historical Data and Trend Analysis

	Containerization and Deployment
	Monitoring and Maintenance
	Scalability and Performance
	Performance Analysis
	Extract Time
	Data Load Time
	Data Transformation Time
	Query Response Time
	ELT on everyday basis

	Discussion
	Summary of Key Findings
	Future Work

	Conclusion
	References
	Tree structure and naming conventions example based on EDW
	Meltano tap-jira possible endpoints
	Meltano init my-new-project
	Meltano init promt
	Jira issue tree
	Requirements mapping
	Entities to be modeled in EDW
	EDW_JIRA ERD
	DWH_JIRA ERD
	Dockerfile_vsql
	Bash scripts used for executing containerized pipeline
	XII Licence

