
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

SECCLO Program

Alessandro Chiarelli

Securing the Bridges Between Two
Worlds: A Systematic Literature Review

of Blockchain Oracles Security

Master’s Thesis (30 ECTS)

Supervisor(s): Mubashar Iqbal, PhD

Prof. Raimundas Matulevičius

Prof. Fabian Fagerholm

Tartu 2023

Securing the Bridges Between Two Worlds: A Systematic Literature
Review of Blockchain Oracles Security

Abstract: Blockchain technology has paved the way for the decentralization of Internet
services. It achieves this using a decentralized and distributed ledger that can withstand
single points of failure. The ledger is secured through advanced cryptographic tech-
niques and a decentralized consensus mechanism that ensures its resistance to tampering.
Blockchain is a self-enclosed system, usually called on-chain world. To interact with
the rest of the internet outside the blockchain (e.g., off-chain world), we need to set up
interfaces to let the two worlds interact. These interfaces are called oracles. Given the
role of the oracles in a blockchain system, it is paramount to design and implement them
securely. We perform a systematic literature review that shows not much research is done
into studying the security aspects of blockchain oracles. The research mostly focuses on
the economic aspects of the oracles or on how to implement or design oracles that can
benefit some specific use cases. In this thesis, we select two inbound oracles and imple-
ment them to evaluate and compare them from a security point of view. The contribution
of this thesis consists of a literature review motivating the need for further research on
the topic and comparing two inbound oracles, as the technique used to perform them can
be extended and adjusted to other oracles as well. We also present the implementation of
an outbound oracle for completeness and discuss its security properties. Furthermore, we
present a novel approach that makes use of a decentralized oracle network (i.e., Chainlink)
to build a system that fetches off-chain data to the blockchain and then securely retakes
the data off-chain, such that there is no need to trust the oracle nodes. The technique
we propose is thus blockchain and oracle agnostic and can be applied in various situations.

Keywords:
Blockchain, oracles, computer security

CERCS: T120 Systems engineering, computer technology

3

Sildade kindlustamine kahe maailma vahel: Blockchain Oraclesi
turvalisuse süstemaatiline kirjandusülevaade
Lühikokkuvõte: Plokiahela tehnoloogia on sillutanud teed interneti-teenuste detsen-
traliseerimisele. See saavutatakse detsentraliseeritud ja hajutatud pearaamatu abil, mis
talub üksikuid tõrkepunkte. Pearaamat on kaitstud täiustatud krüptograafiliste tehnikate
ja detsentraliseeritud konsensusmehhanismi abil, mis tagab selle rikkumiskindluse. Ploki-
ahel on iseseisev süsteem, mida tavaliselt nimetatakse ahelasiseseks maailmaks. Väl-
jaspool plokiahelat internetiga suhtlemiseks (nt ahelaväline maailm) peame seadistama
liidesed, mis võimaldavad kahel maailmal omavahel suhelda. Neid liideseid nimetatakse
oraakliteks. Võttes arvesse oraaklite rolli plokiahela süsteemis, on ülimalt oluline neid
turvaliselt kujundada ja rakendada. Teeme süstemaatilise kirjanduse ülevaate, mis näitab,
et plokiahela oraaklite turvaaspektide kohta ei ole palju uuritud. Uuring keskendub
enamasti oraaklite majanduslikele aspektidele või sellele, kuidas rakendada või kujun-
dada oraakleid, millest võiks mõnel konkreetsel kasutusjuhul kasu olla. Selles lõputöös
valime välja kaks sissetulevat oraaklit ning rakendame neid, et hinnata ja võrrelda neid
turvalisuse seisukohast. Käesoleva lõputöö panus seisneb kirjandusülevaates, mis rõhutab
teema edasise uurimise vajadust ning võrdleb kahte sissetulevat oraaklit, kuna nende
teostamiseks kasutatavat tehnikat on võimalik laiendada ja kohandada ka teistele oraak-
litele. Samuti tutvustame täielikkuse huvides väljamineva oraakli rakendamist ja arutame
selle turvaomadusi. Lisaks tutvustame uudset lähenemisviisi, mis kasutab detsentraliseer-
itud oraaklivõrku (st Chainlinki), et luua süsteem, mis tõmbab ahelaväliseid andmeid
plokiahelasse ja võtab seejärel andmed turvaliselt ahelast välja nii, et oraakli sõlme pole
vaja usaldada. Meie pakutav tehnika on seega plokiahela ja oraakli agnostitsism ning
seda saab rakendada erinevates olukordades.

Võtmesõnad:
Plokiahel, Plokiahela oraakel, arvuti turvalisus

CERCS: T120 - Süsteemitehnoloogia, arvutitehnoloogia

4

Preface
To my dear Nonna Maria

I would like to thank all of the people who helped me reach this point. First of all, my
parents, Mamma Milena, and Papà Massimiliano, encouraged me to pursue my studies
until the end. My sister Azzurra too, who has always been by my side. I would also like to
thank my supervisors Raimundas Matulevičius, Fabian Fagerholm, and Mubashar Iqbal
who were crucial in writing this work. My thanks go also to the SECCLO Consortium
and more generally to the Erasmus+ program of the EU for the learning opportunity they
have given me. Finally, I would also like to say grazie to my grandparents, both the ones
who are still here to cherish the end of my studies - Nonno Giacomo and Nonna Rosa -
and also those who could not make it - Nonno Carmelo and, especially, Nonna Maria
who passed away last year.

Alessandro Chiarelli

5

Contents
1 Introduction 8

1.1 Related work . 9
1.2 Research motivation and objectives . 10
1.3 Contributions . 11
1.4 Research Method . 11
1.5 Structure of the Thesis . 12

2 Systematic Literature Review 13
2.1 Literature Sources . 13
2.2 Search Terms . 13
2.3 Inclusion and Exclusion Criteria . 14
2.4 Papers Selection . 14
2.5 Information Extraction . 15
2.6 Summary of Selected Articles . 15
2.7 Summary of Results . 20
2.8 Presentation of Results . 21
2.9 Answers to Research Questions . 24
2.10 Limitations . 25

3 Background 26
3.1 Oracle Services . 26
3.2 Ethereum Endpoint and Web3.js . 28
3.3 Difference between Testnet and Mainnet 28
3.4 Remix IDE . 29
3.5 Web Development . 29
3.6 Components of Blockchain Oracles 30
3.7 Summary . 33

4 Implementing Blockchain Oracles 34
4.1 Data Source . 35

4.1.1 Generating Key Pair . 38
4.1.2 Generating and Verifying Signatures 40

4.2 Provable . 41
4.3 Chainlink . 46
4.4 Outbound Oracle . 53
4.5 Answer to Research Questions . 57
4.6 Limitations . 59

6

5 Evaluation of the Models 61
5.1 Motivating Blockchain Oracles . 61
5.2 Evaluation Criteria . 62
5.3 Evaluation of Provable Oracle . 64
5.4 Evaluation of Chainlink Oracle . 67
5.5 Comparison Between Provable and Chainlink 70

5.5.1 Security . 71
5.5.2 Performance . 71
5.5.3 General . 72

5.6 Evaluation of Outbound Oracle . 74
5.7 Answer to the Research Questions . 76
5.8 Lessons Learned . 78
5.9 Limitations . 79

6 Conclusion 80
6.1 Answer to Research Questions . 80

6.1.1 Answer to [RQ1] . 81
6.1.2 Answer to [RQ2] . 81
6.1.3 Answer to [RQ3] . 81

6.2 Future work . 82

References 88

Appendix 89
I. Glossary . 89
II. Code . 90
III. Licence . 102

7

1 Introduction
Blockchain technology rose to popularity after the anonymous Satoshi Nakamoto
launched Bitcoin in January 2009 [BTC]. Thirteen years later, the blockchain space
evolved and changed with an explosive innovation that took over. There have been
multiple Bitcoin forks (e.g., Bitcoin Cash, Bitcoin Original, Bitcoin Diamond) and new
blockchains such as Ethereum, Polkadot, Litecoin, Monero, and many more. While
Bitcoin is a blockchain implementation mainly designed for a cryptocurrency, it has
some support for smart-contracts on its base layer (layer-0). There exist higher layers
with better support (such as RGB [RGB] for layer-2 and -3), and smart contracts raised
to popularity thanks to Ethereum. Ethereum was designed mainly as a smart contract
platform, and thanks to its ecosystem, many different contracts have been popularized,
in particular, ERC-20 [ERCa] tokens and ERC-721 [ERCb] tokens, more commonly
known as NFTs (Non-Fungible Tokens).

Smart contracts [SMA] have great potential to automate and innovate many processes
present in our daily life. Smart contracts are code that resides on the blockchain and
run only when certain conditions are met. The most basic examples are exchanging
money between different accounts. For example, every time an account receives some
ETH, a certain amount can be sent to another as a commission. The next step in smart
contract innovation is the execution of some actions when certain inputs coming out
of the blockchain are received. An example is betting: two friends could use a smart
contract where they put their bets in a third account for holding, and after the results
of the bets, one of them will receive the win from the third account. The problem is
that while smart contracts work almost flawlessly with on-chain data (that is, data on
the blockchain), they need an interface with the off-chain world (that is, outside of the
blockchain) in order to get the data they need to operate. In our bet example, someone or
something needs to inform the smart contract of the result of the bet. This role is fulfilled
by blockchain oracles [ORA].

Blockchain oracles can be decentralized or centralized, but the centralized ones are
the most mature and widely used, so we will focus our research on them. Oracles are
a peculiar type of smart contract with an initiator and a responder. The initiator is, as
the name suggests, the entity that starts the interaction and either sends a request for
information or sends information without another entity requesting it. The responder is
the entity that reacts to the commands sent by the initiator. A blockchain oracle can be
either outbound, where the information flows from the blockchain to the off-chain world,
or inbound, where the information flows from an off-chain component to the blockchain.
It can also either be push-based, where the initiator sends data to the responder, or pull-
based, where the initiator requests data from the responder. There are four blockchain
oracle models [Lev22]:

• Push-based inbound: in this case, the initiator is an off-chain entity that pushes

8

information to be stored in the blockchain, which is the responder in this case.

• Push-based outbound: in this case, the initiator is an on-chain entity that pushes
information out to an off-chain entity.

• Pull-based inbound: in this case, the initiator is an on-chain entity that requests
data from an off-chain component.

• Pull-based outbound: in this case, an off-chain component requests data from the
blockchain.

1.1 Related work
Blockchain oracles may be a new technology, but there already is some research con-
ducted behind them. In Caldarelli literature review [Cal20b], the "Oracle problem" is pre-
sented as an apparent inconsistency between the original philosophy behind blockchain
technology, that is, removing all middle-men and third parties between transaction for
achieving a trustless system. The reason is that blockchain oracles are interfaces be-
tween the off-chain and on-chain worlds that are usually managed by central authorities,
thus recreating the original problem that blockchain was designed to solve. The work
then proceeds to analyze different use cases, including law, supply chain, energy, and
healthcare. It is evident that solving the blockchain oracle problem is fundamental if
this technology is to be implemented in the mentioned use cases, as they all require
high-security standards. Williams and Peterson [WP19] provide a thorough formal
analysis of economic incentives for blockchain oracles using game theory principles. In
particular, they point out how the major security problem of decentralized blockchain
oracles is the verification of a posteriori data coming from the off-chain world. A decen-
tralized blockchain oracle is one where there are multiple oracle operators providing
the required information to the oracle itself, instead of being just one operator/entity. In
their work, Williams and Peterson propose a new oracle design to address the risk of
multiple oracle operators providing false data to the oracle. Finally, another related work
has been conducted by Albreiki et al. [AHuRSS20]. Their work focuses on establishing
a common taxonomy for blockchain oracles as well as researching and comparing a
different number of blockchain oracle implementations, with the goal of pointing towards
a new direction in research. It also defines a few significant design patterns that are the
most commonly implemented in most blockchain environments.

Our work provides a systematic literature review of the current state of the art of
security for blockchain oracles, with no focus on a specific use case or scenario. To
our knowledge, there is no work that provides a similar analysis, as they either focus
on some specific scenario or industry or focus on presenting a single technique to be
used when designing or implementing blockchain oracles. The other chapters of our
work instead focus on the analysis of a system in which blockchain oracles are used, and

9

the goal is to analyze and compare two different techniques for inbound oracles and on
analyzing one technique for outbound blockchain oracles that is compatible with both
of the previous techniques. Thus, this work serves as an introduction to the industry of
blockchain oracles from a security point of view, starting from a general overview of the
current state of the art and then switching to a more hands-on or practical approach for an
analysis of different techniques and technologies that are currently used in the industry.
Finally, our work also presents a novel technique that allows using a decentralized oracle
network (Chainlink) in a centralized way with no loss of security.

1.2 Research motivation and objectives
Blockchain oracles are already the interface between the off-chain and on-chain worlds.
As more companies and institutions make moves towards implementing their own
blockchain solutions, oracles will play a fundamental role in the coming years once this
transition is completed. Especially in a future where smart contracts become widely
used in our daily life in fields such as betting, finance, healthcare, and news, oracles
will need to be secure to be trusted by the users of these applications, who can be the
population of entire countries. Malfunctions and exploits in the oracles could be used by
malevolent groups for their purposes, which could be of grave intensity, especially for
critical services. Without a thorough knowledge of the security framework for blockchain
oracles, the adoption of blockchain technologies, in general, will be slowed down and
would never be viable for use cases that require high-security standards.

Our main research objective is thus to analyze if the security requirements are satisfied
by the many different blockchain oracles, and in case they are, how they are satisfied.
We will have particular attention to the different use cases found both in the industry and
in the public sector. We are interested in their security threats and in discovering ways to
mitigate them accordingly. We will restrict our research mostly to centralized oracles, as
they are more mature and more widely used, and we will not consider the mechanisms
that allow decentralized oracles to decide the data to send to the blockchain.

In other words, we first wish to discover what assets, whether data, financial assets,
or of other nature, need to be protected when designing a blockchain oracle. To the
knowledge of the authors of this work, there is no literature review nor surveys analyzing
blockchain oracles technologies from a security point of view. There are many focusing
on the economic and social aspects [Cal20b, Car20], performance properties [KSG+20]
and consensus mechanisms for decentralized oracles [AHuRSS20]. Thus a review of the
current state of the art is something that is needed in order to encourage and foster new
research on the topic. Secondly, we aim to identify the threats and attack vectors against
blockchain oracles. In particular, we focus on discovering potential vulnerabilities and
exploits that could be made use of to attack an oracle. We remind here that our discussion
will be limited to centralized oracles, as decentralized oracles are less mature and involve
other types of threats due to their decentralized nature. Thirdly, we focus on developing

10

techniques and strategies to protect against these threats that can be easily implemented
when designing a new blockchain oracle. We are also interested in identifying the
differences between the different blockchain oracle models and the scenarios that they
were designed for. Finally, we will choose two oracle implementations and compare them
from a security point of view. The goal is to understand the strengths and weaknesses of
each implementation and their respective limitations, as well as the purpose they were
designed for. We will also implement an outbound oracle compatible with our previous
inbound oracles.

Here is a reformulation of our research goals as main research questions:

• [RQ1] What is the current state of the art for securing blockchain oracles?

• [RQ2] How to implement two widely used blockchain oracles securely?

• [RQ3] How can one compare the two blockchain oracles?

1.3 Contributions
This work contributes to research in two main ways. The first way is by presenting a
systematic literature review of the current techniques to secure blockchain oracles in
different situations and implementations. The goal of this review is to be the groundwork
to encourage further research on the topic, as the security aspects of blockchain oracles
are unfortunately often ignored or at least in the background, compared to economic
properties, game theory strategies for decentralized oracles, or performance properties.

The second main contribution of this paper is by analyzing two similar and widely
used blockchain oracle implementations from a security point of view, in order to see the
strengths and weaknesses of both strategies and as a starting point for further analyses and
comparisons in the future between other strategies and implementations. The contribution
is completed by implementing an outbound oracle in order to have a full system.

1.4 Research Method
The method used for this thesis is as follows. This thesis follows a design science
approach as in [HMPR04]. Our problem is to implement a system with on-chain and
off-chain components that uses secure blockchain oracles, one inbound and one outbound.
We will divide the process into multiple phases: technology survey, technology selection,
implementation, and evaluation. The first task is to perform a Systematic Literature
Review (SLR) using the Kitchenham method [KC07]. The SLR is the technology survey
phase, as it allows us to learn the state of the art of current blockchain oracle security and
to have an overview of many technologies. The SLR is performed by using a few publicly
accessible libraries and performing queries using relevant keywords. Once the initial

11

query is performed, relevant papers are selected according to inclusion and exclusion
criteria and analyzed to extract specific information about blockchain oracles and their
security. We will also be looking for papers discussing specific situations or use cases in
which blockchain oracles are used as a part of the solution. The second task is to use the
found information to choose the technologies and techniques needed to implement two
inbound blockchain oracles and one outbound blockchain oracle. This task addresses the
both the technoogy selection phase and the implementation phase. The final task is to
evaluate the oracles after having defined evaluation criteria to compare the three oracles.

1.5 Structure of the Thesis
The remainder of the thesis is structured as follows. Chapter 2 presents related work
previously conducted on the topic and presents the use cases and blockchain oracle
models that will be the focus of our work. Chapter 3 provides an overview of the
background technologies that will be used in the following chapters. Chapter 4 presents
the implementation choices of the two chosen blockchain oracles. Chapter 5 defines
evaluation criteria and evaluates the implemented oracles according to those criteria.
The evaluation will be focused on the security aspects of the oracles. Finally, Chapter
6 concludes this thesis. An appendix is also added, with additional information for the
thesis that was not necessary for the main work.

12

2 Systematic Literature Review
In this section, we conduct a Systematic Literature Review (SLR) to assess the current
state of research on the topic of blockchain oracles security. The SLR acts as our
technology survey in our design science approach. The SLR aims to identify relevant
academic papers and articles and extract information on the security requirements of
the main use cases that blockchain oracles are being used for, as well as how the most
well-known practical implementations address these requirements. At the current time
of writing, no previous SLR was conducted on the topic that the writers are aware of.
In this section, we will be answering the first research question [RQ1]: What is the
current state of the art for securing blockchain oracles? The question can be divided
into the following subquestions, and in order to reply to [RQ1] we will first reply to the
subquestions.

• [RQ1.1] What are the assets that need to be secured when designing a blockchain
oracle?

• [RQ1.2] What are the most important attack vectors and threats against blockchain
oracles?

• [RQ1.3] What are the most efficient techniques to secure the different blockchain
oracles?

2.1 Literature Sources
The initial source for relevant work on the topic was conducted on the IEEE digital
library, Scopus, ScienceDirect, and SpringerLink. References, citations, and related
work sections of the selected papers also provided an additional source to be added to
the initial search. Grey literature is considered and will be included in case the relevant
results are not already covered in academic or scientific literature.

2.2 Search Terms
To perform the search, the following terms were used: ("blockchain" AND ("oracle"
OR "oracles") AND ("use-cases" OR "security" OR "applications" OR "implementa-
tions")). Whenever appropriate, both plural and singular forms of the different words
will be used to perform queries in the database. The terms use-cases, applications
and implementations refer to similar concepts, but they are not perfect synonyms, as
they all have different nuances. Use-cases is used to look for examples of areas where
blockchain oracles can bring benefit; examples can be voting or healthcare. Applications
and implementations will be used to look for examples where blockchain oracles have
been practically implemented in the industry already.

13

2.3 Inclusion and Exclusion Criteria
The inclusion criteria are the following:

• Papers related to blockchain oracles

• Papers related to blockchain oracles security

• Papers related to blockchain oracles implementations

• Papers related to blockchain oracles applications

The exclusion criteria are the following:

• Papers not written in the English language

• Papers not accessible freely (ie not present in the main scientific databases)

• Papers older than 2015 (as smart contracts took off only after 2014)

• Short papers that do not take into account the security aspects of blockchain oracles

2.4 Papers Selection
The selection started with research in the digital libraries using the search terms as
explained in 2.2 Search Terms. As the blockchain field in general, and oracles in
particular, is a vast field of research, numerous results were reported from the various
queries and the articles were later analyzed manually to select the papers that presented
the search terms either in the title, in the abstract or in the introduction. Subsequently,
the sources of the papers will be analyzed as well, and relevant sources will be added
to the search. Finally, the papers will be manually filtered according to the inclusion
and exclusion criteria. The quantitative results of the queries are organized in Table 1,
where the snowballing column refers to the sources found by analyzing the sources of
the selected papers.

In total, 742 papers were found. After an initial screening using the inclusion and
exclusion criteria, 54 papers were remaining. After reading these papers, 5 potential
papers and pieces of grey literature were added through snowballing. Finally, the relevant
papers for the literature review were selected for a total of 16 papers. The papers that
were excluded were either redundant, since they were explaining the same concepts
already present in other papers, or were not focusing on the security aspect of blockchain
oracles or blockchain frameworks in general.

14

Table 1. Literature review screen

Initial search Inclusion criteria Snowballing
IEEE 105 16 3

Science Direct 451 19 2
Scopus 193 9 0

SpringerLink 167 10 0

2.5 Information Extraction
The blockchain oracle models are known in advance and they are defined in the 2 Intro-
duction section. The first piece of information we aim to extract from the papers is the
assets that need to be protected when designing a blockchain oracle. The vulnerabilities
of the blockchain oracle models are not known in advance and thus they are the second
kind of information that we aim to extract from the papers. Finally, we want to extract
information about the techniques and security measures taken to address those vulner-
abilities. Table 2 contains a detailed view of the information to be extracted from the
papers along with an explanation of each piece of information.

2.6 Summary of Selected Articles
Y. Zhao et al. "Toward Trustworthy DeFi Oracles: Past, Present, and Future" [ZKL+22]
present a thorough analysis of blockchain oracles for DeFi (Decentralized Finance).
Centralized oracles are characterized by being fed information from a single trusted third
party and then being more easily designed and implemented compared to Decentralized
oracles. Centralized oracles have high time efficiency and data throughput and are
applicable when there is a low-risk tolerance as well as a fast response scenario. They
introduce trust into the system, a single point of failure, and are not highly scalable. The
authors presented Provable [Pro] as an example of a centralized oracle that could be
used by institutions to interact with the blockchain. It later follows a discussion about
decentralized oracles, which is not interesting to our purposes.

A. Al Sadawi et al. "On the Integration of Blockchain With IoT and the Role of Oracle
in the Combined System" [SHN22] analyzes how blockchain technologies can benefit
IoT. Of particular interest to us is the discussion about centralized oracles. In particular,
oracles are necessary in order to satisfy the conditions of immutability and determinism
of smart contracts. The oracles are the link between the IoT devices and the execution of
their related smart contracts. The main problems in the IoT industry are that the entities
involved in a system lack trusted relationships to guarantee the identities of the involved
entities, the authenticity of the data provided by the IoT devices, and the reliability of data
transmission in case any party fails to fulfill its services. The current solution to these
problems is to use central authorities, but by combining blockchain and IoT this authority

15

Table 2. Features for data extraction

Feature Detail
ID This is paper id.
Title This field explains the paper title.
Authors Who the authors are.
Oracle model The oracle model or models pre-

sented.
Blockchain type Blockchain framework and if the

blockchain is public or permis-
sioned.

Comm. protocol Communication protocol used.
Data validation Data validation techniques pre-

sented.
Threat Type of threats presented.
Vulnerability Vulnerabilities presented or found in

the paper.
Impact The impact of a potential attack.
Countermeasures Countermeasures taken to prevent or

limit threats.
Consensus mechanism Consensus mechanism used in the

blockchain.
Assets The assets that can be targeted by an

attack.
Rer. References to the citations of rele-

vant papers.

can be removed. The paper later presents a literature review discussing how different
blockchain frameworks address the specific use case of IoT. The paper later proceeds
with a description of the concept of blockchain oracles and of the oracle problem. It is
relevant to us that the article explains that oracles collect data from IoT devices and then
submit them to the blockchain alongside a certificate to attest to the authenticity of the
data. The security of the data from the device to the oracle is guaranteed by security
hardware instead. Later follows a discussion about different types of oracles, where the
oracles are classified according to different parameters (number of nodes, type of data
source, and the design pattern). The paper also presents a description of different oracles,
of which some are decentralized and two are centralized. The centralized ones include:
Provable, which was already mentioned in another article, and Town Crier [Towb], an
oracle that uses hardware capabilities of Intel’s Software Guard Extensions (SGX) to
collect data and generate authenticity proofs. Finally, the paper analyzes a use case where

16

the authors build a carbon pricing oracle. The oracle is built on the Ethereum blockchain
using IoT devices capable of measuring the amount of carbon emissions being emitted
by an entity. The authors propose two system designs, one using software solutions and
one using hardware solutions. Both solutions are pull-inbound oracles. The security
analysis yields that the oracles satisfy the requirements of data availability, authorization,
accountability, confidentiality, integrity, and resilience to cyber attacks. In particular, the
resilience to cyber attacks is guaranteed by the use of the Ethereum blockchain, and data
integrity is guaranteed by cryptographic primitives that immutably save CO2 emissions
in the blockchain along with information to verify their integrity.

A. El Fezzazi et al. "Towards a Blockchain-based Intelligent and Secure Voting"
[FAB21] discusses the case of combining blockchain and machine learning (ML) tech-
nologies for secure e-voting practices. In the specific case of e-voting, there are two
additional requirements that need to be addressed: the first one is identifying the voter
and ensuring that their vote is not tampered with, and the second one is guaranteeing
the secrecy of the vote. The authors discussed several approaches and finally presented
their own. Among the processes discussed, in most solutions, voting is implemented as a
blockchain transaction where tokens are exchanged and the voter identification is either
based on the asymmetric cryptography infrastructure or using a centralized identification
service. The authors instead proposed a system that uses a Machine Learning Blockchain
Oracle (MLBO) to use face recognition for voters. An MLBO is divided into two parts,
one is the oracle script itself that interacts with the blockchain platform and the other one
is the ML system. The oracle script focuses on generating face recognition API requests
to the ML validators that are in charge of performing the face recognition.

S. Kuang et al. "Reliability analysis for blockchain oracles" [LXSY20] performs a
reliability analysis using Fault Tree Analysis. The discussion begins with a comparison
between different oracles, some centralized and some decentralized. In order not to
overlap with previous papers, we will only be reporting the relevant results of the
reliability analysis. In particular, Provable uses TLS-Notary to get data from off-chain
sources and to provide cryptographic proof about this data. The data is obtained from
websites using HTTPS protocol. Town Crier, Corda, and MS Bletchley instead use Intel’s
Software Guard Extensions as hardware modules to protect their environments. All of
the aforementioned oracles have a reliability higher than 98% and this is due to their
reliance on software and hardware components. Furthermore, the oracle designs present
an approach similar to fault-tolerance design patterns. Town Crier and Corda use Intel
SGX technology to contain errors and faulty data. MS Bletchley uses multiple oracles,
which guarantees higher reliability. Finally, the authors highlight the oracle problem (ie,
the reliability of the data source feeding information to the oracle).

M. Moussa et al. "Blockchain for Giving Patients Control Over Their Medical
Records" [MBY+20] in their study provide and evaluate a patient-centric framework to
allow patients, doctors, hospitals, regulator agencies, and insurance to interact on the

17

blockchain. Their proposed solution is based on using a reputation system for oracles
that are in charge of fetching data from a decentralized database network and sharing
it among the patient and the other entities involved. The reputation system gives each
oracle a score based on its interactions with both smart contracts and doctors. Regulatory
agencies are public authorities that register patients, hospitals, and doctors. Hospitals are
in charge of preparing the medical records and sharing them with the patients. Finally,
the doctors request access to a patient’s data, and once approved, an oracle will decrypt
said data. The encryption of medical records is based on asymmetric cryptography, with
symmetric keys being used to encrypt medical records; the symmetric keys are encrypted
using the patient public key instead. According to the authors’ security analysis, their
framework allows sharing of data securely, as all data is encrypted and can be decrypted
only with patient approval. The private keys used for the decryption of symmetric keys
are not exposed, so the encryption is secure. The framework is secure against other
types of attack (such as DDoS) thanks to the use of decentralized databases that remove
vulnerabilities related to a single point of failure. Additional security measures are the
use of the reputation system for the oracles as well as ensuring that only the patients
can access functions that modify their medical records. The authors remark that this
framework can be generalized to other use cases, in general where one would need a data
source and consumers of data from the data source.

Z. Song and Y. Yu in their study "The Digital Identity Management System Model
Based on Blockchain" [SY22] propose a digital identity management system based on
blockchain. Their system relies on four smart contracts. The first one is the identifier
management smart contract, which is constructed by the user who wants to get a way
to prove their identity using a Digital Identity Device (DID) and its respective public
key. The second smart contract is used by the attribute provider (an institution in charge
of releasing the digital identities) and binds the digital certificates with the DID of a
user. The binding is performed using hashes of the certificates and by keeping track of
the status of their certificates. The third smart contract is used by the validation service
provider, which is an institution in charge of verifying the validity and status of the digital
certificates provided by the user. Oracles are used for this smart contract to perform
the related costly cryptographic computations. If the certificate is valid, the validation
service provider will feed it to the fourth and final smart contract. This last smart contract
is called identity proxy and it is used by the validation service provider to store the
information of valid certificates it received. This allows binding a user DID with a digital
certificate on the validation service provider side and in the future, only the DID will be
needed to authenticate a user. The four smart contracts are executed in order and this
allows to efficiently manage the digital identity of users using blockchain. The first two
smart contracts are used when a user wants to register a new DID, the third is used when
a user wants to register their DID to a new validation service provider and the fourth and
last smart contract uses the DID to authenticate users by different service providers.

18

S. Wang et al. in "A Novel Blockchain Oracle Implementation Scheme Based
on Application Specific Knowledge Engines" [WLS+19] proposes using Application
Specific Knowledge Engines (ASKE) in conjunction with blockchain oracles to provide
authoritative sources of information. An ASKE is a framework that allows one to fetch
information from many different sources and reduces the possibility of single points
of failure, for the same information one can use multiple sources. At the same time,
using multiple sources allows one to verify the authenticity and truthfulness of the
information. An ASKE is implemented as a set of web crawlers that process queries
related to a specific domain. The authors recognize many limitations in this system;
in particular, the sources of information are still centralized (and thus do not solve the
oracle problem) and in their original implementations there is no way to verify that the
data being fed to an oracle is authentic. The solutions to these limitations that the authors
proposed are respectively the employment of a decentralized oracle system to have a
fully decentralized source of information and the use of authenticity proofs, such as the
one employed by TLS notary [TLS].

S. Cao et al. in "Hybrid Smart Contracts for Privacy-Preserving-Aware Insurance
Compensation" proposes an original strategy to manage the medical records of patients
and to process insurance claims. In their work, there are three entities interacting, the
patient, the insurance provider, and the hospital. The medical records are stored on a
private blockchain that can be accessed only by the hospital and the patient through
the use of a private smart contract. The private smart contract can be considered as a
pull-outbound oracle, as it is invoked from entities outside of the blockchain and the
source of data is the blockchain itself. The processing of the claims is instead performed
through the use of a public smart contract that is invoked by the hospital and the insurance
provider. The hospital will send the required information about a patient’s medical record,
such as the medicines used and the medical procedures performed on the patient. The list
of prices for the medicines and medical procedures is available on the public blockchain
and thus the oracle that sources this data is pull-outbound as well. The paper finally
goes into detail in how the process for an insurance claim is conducted, and provides a
security analysis and performance evaluation. The security analysis points out that zero-
knowledge proofs are used to verify and protect the privacy and personally identifiable
information of patients in insurance claims. The analysis also shows that the oracles
perform the computations in a secure environment with dedicated hardware using Intel
SGX so that cryptographic secrets cannot be leaked. The paper does not specify any
specific cryptographic strategy implemented to verify and validate the data by the oracle.
From the security analysis, it can be inferred that the blockchain oracle makes use of
asymmetric cryptography and digital signatures to verify the data, and especially in the
case of a private blockchain it can be inferred that digital certificates are also needed to
certify the identities of the different entities involved.

19

2.7 Summary of Results

Table 3. Blockchain framework presented in the papers

Ref. Oracle model Blockchain type Consensus mechanism Data Source
[ZKL+22] pull-inbound, push-inbound Ethereum (public) PoW (originally), PoS Trusted centralized source
[Pro] pull-inbound, push-inbound Ethereum (public), HLF (permis-

sioned), Corda (permissioned)
PoW, PoS, PBFT Website, IPFS, Wolfram Alpha,

random bytes, computation from
TEE

[SHN22] pull-inbound, push-inbound Ethereum (public) PoW (originally), PoS Centralized source or IoT device
[LXSY20] pull-inbound, push-inbound Ethereum (public), HLF (permis-

sioned), Corda (permissioned)
PoW, PoS, PBFT Centralized source or IoT device

[WLS+19] pull-inbound, push-inbound N/A N/A ASKE (multiple centralized
sources)

[Towb] pull-inbound Ethereum (public) PoW (originally), PoS Website
[FAB21] pull-inbound, push-outbound Ethereum (public), permissioned

(unspecified) blockchain
PoW (originally), PoS, unspeci-
fied

Blockchain, Face recognition de-
vice, online server

[CZW+22] pull-outbund (unspecified) private blockchain,
Ethereum

PoW (originally), PoS, unspeci-
fied

Blockchain

[SY22] push-inbound, pull-outbound Unspecified Unspecified User device, Blockchain, At-
tribute provider

[MCK21] push-inbound, pull-inbound Unspecified (public) STB (variant of PoS) IoT devices
[MCK19] push-inbound public/private unspecified IoT devices
[BHP20] unspecified, inbound Ethereum (public) PoW (originally), PoS external
[HCL+22] pull-inbound public unspecified smart devices for healthcare
[CYX21] pull-inbound Ethereum, public PoW (originally), PoS external web-api
[ABAQS+19] pull-inbound Ethereum, public PoW (originally), PoS External (unspecified)
[WZSK21] pull-inbound Ethereum (public) PoW (originally), PoS Decentralized storage

In this section, the results of the literature review are presented using tables 3 and 4.
Let us focus on the first table.

Table 3 focuses on presenting information about the blockchain frameworks used in
the different oracles. We were able to find detailed information for all blockchain models.
Thus we will present the information for each one of them. We will first explain each
characteristic in the table:

Oracle model refers to the blockchain oracle model being used to implement or
design the current oracle.

Blockchain Type refers to whether the blockchain is public (such as Ethereum), or
permissioned (such as Hyperledger Fabric).

Consensus mechanism refers to the consensus mechanism used by the blockchain.
The ones that were found are Proof of Work (PoW), Proof of Stake (PoS), Practical
Byzantine Fault Tolerance (PBFT), Delegated PoS (DPoS), and Asynchronous Byzantine
Fault Tolerance (aBFT). The differences between the different consensus mechanisms
are outside of the scope of this work.

Data source refers to the source of information for the oracle. In particular, we
found that it can be a Website (or online server), an InterPlanetary File System (IPFS),
Wolfram Alpha (an answer engine developed by Wolfram Research), random bytes, the
result of a computation in a Trusted Execution Environment (TEE) which usually are
ad-hoc devices, a blockchain or some other kind of device, like in the example of Face
recognition devices.

Ref. reports the references concerning the row being discussed.
Table 3 reports the information about the security techniques found in the different

blockchain oracles.

20

Comm. protocol refers to the communication protocol being used between the oracle
and the off-chain entity.

Data Validation refers to where the data is validated, whether in a decentralized
manner (on the device) or in a centralized manner.

Threat refers to the possible threats identified in the specific scenario being discussed.
Vuln. refers to the vulnerabilities identified in the specific scenario being discussed.
Impact refers to the consequences of a successful attack on the oracle.
Countermeasures refers to the countermeasures taken to limit the attacks.
Assets refers to the funds or data that need to be protected from attackers.
Ref. reports the references concerning the row being discussed.

2.8 Presentation of Results
After performing the survey, it is clear that there exist common practices and techniques
used over multiple solutions. Thus we will now be presenting a summary of the results
that were found in a content-centric way, topic by topic.

Blockchain types: Most of the surveyed papers focused on oracles based on the
Ethereum blockchain, which is indeed a public blockchain. Some papers discussed
general techniques that could be applied to multiple blockchain types, whether public
or private, in some cases specifying some implementations, in particular Corda and
Hyperledger Fabric (HLF).

Consensus mechanisms: Since the majority of the papers focused on pre-2022
Ethereum, the main consensus mechanism that was used for the blockchain was Proof of
Work (PoW). It is worth noting that since Ethereum updated [POS] in late 2022, now
the same analyses are valid with the new Proof of Stake (PoS) consensus mechanism,
as what changed in Ethereum was the consensus and not the Ethereum Virtual Machine
(EVM) that is in charge of executing the smart contracts [ethc]. Other papers focusing
on other blockchains had different consensus mechanisms, in particular PoS and PBFT
(respectively for HLF and Corda). What is remarkable is that since the oracles interact
with smart contracts and are not directly involved in the consensus mechanism as the
Ethereum upgrade in particular shows, the consensus mechanism itself does not influence
the workings of the oracle. It is worth noting, that in some cases the papers were
analyzing decentralized oracles, and in such cases, it can happen that the expression
consensus mechanism referred to the internal consensus of the oracle network to come to
a decision of the values of the oracle.

Table 4. Security information of the blockchain oracles

Ref. Comm.
protocol

Data Validation Threat Vulnerbility Impact Countermeasures Assets

[ZKL+22] HTTPS No data validation Attacker feeding false
information to the
blockchain

There is no default chan-
nel of information be-
tween the source and the
blockchain

Impacts funds and nor-
mal operation of smart
contracts

Authenticity Proofs Data and funds
in the smart con-
tracts

21

[Pro] HTTPS No data validation Attacker feeding false
information to the
blockchain

There is no default chan-
nel of information be-
tween the source and the
blockchain

Impacts funds and nor-
mal operation of smart
contracts

Authenticity Proofs (op-
tional)

Data and funds
in the smart con-
tracts

[SHN22] Unspec. On device Attacker feeding false
information to the
blockchain

There is no default chan-
nel of information be-
tween the source and the
blockchain

Impacts funds and nor-
mal operation of smart
contracts

Authenticity Proofs, Se-
cure module

Data and integrity
of the IoT ecosys-
tem

[LXSY20] Unspec. Unspec. Attacker feeding false
information to the
blockchain, Denial of
Service

There is no default chan-
nel of information be-
tween the source and the
blockchain; single point
of failure

Impacts funds and nor-
mal operation of smart
contracts

Authenticity Proofs, Se-
cure module

Data and reliabil-
ity of the system

[WLS+19] Unspec. Performed by
ASKE

Attacker feeding false
information to the
blockchain, Denial of
Service, Trusted source
misbehaving

There is no default chan-
nel of information be-
tween the source and the
blockchain

Impacts funds and nor-
mal operation of smart
contracts

Authenticity Proofs, Up-
dating of ASKE source

Data and reliabil-
ity of the sys-
tem, reputation of
trusted source

[Towb] HTTPS Digital Signatures Attacker feeding false
information to the
blockchain

There is no default chan-
nel of information be-
tween the source and the
blockchain

Impacts funds and nor-
mal operation of smart
contracts

Secure module Data and funds
in the smart con-
tracts

[FAB21] Unspec. Centralized server
validates API re-
quests

Attacker tries to influ-
ence the voting process
or steal the facial infor-
mation of the user

No encryption process
specified, no secure
channel between
blockchain and MLBO

The impact extends to
the theft of personally
identifiable information
and to influence the re-
sult of the vote

Reputation system for
ML providers and defi-
nition of clear roles with
different levels of privi-
leged operations

Personally identi-
fiable information
and voting result

[CZW+22] Unspec. Comparison
between ci-
phertexts and
Zero-knowledge
proofs

Attacker tampering with
medical records or fab-
ricating false insurance
claims

There is no secure chan-
nel between the two
blockchains involved.
Need to manage CAs

Medical records, per-
sonally identifiable
information, insurance
claims, reputation of
institutions.

Private blockchain for
private data and a pub-
lic one for public data.
Role-based access con-
trol.

Medical records,
insurance funds,
and personally
identifiable
information

[SY22] Unspec. Digital cer-
tificates and
signatures

Attacker impersonating
someone else

Multiple attribute and
service providers

Access to online ser-
vices

Delegation of identity
management to attribute
providers and storing
of digital certificates on
the blockchain

Digital Identity
and access to the
digital services

[MCK21] Unspec. Digital signatures
and weighted P2P
verification

Malicious oracle node
feeding false data,
attacker feeding false
information to the
blockchain

The oracle is made
by decentralized nodes,
there is an insecure net-
work between oracle
and blockchain nodes

Impacts transactions in
the blockchain and the
integrity of the off-chain
database

Multiple oracle nodes
needed to validate infor-
mation and reward sys-
tem for truthful oracle
nodes

Data in the
database, IoT
ecosystem

[MCK19] Unspec. Oracle compares
sensor data to ac-
ceptable data

Attacker feeds false
information to the
blockchain and breaks
food supply chain

There are multiple orga-
nizations involved, each
with different standards

Resilience of supply
chain, products, and
consumers

Quorum system for ap-
proval of new members,
each member has a list
of public keys it accepts

products in the
food supply chain

[BHP20] Unspec. No data validation Malicious oracle, at-
tacker compromises or-
acle

Oracles are a single
point of failure

Data to be stored on the
blockchain

Oracles linker as in-
terface between con-
sumer smart contracts
and oracles; Oracles se-
lected by Random Ora-
cle Provider and Oracles
store; reputation system

Data in the
blockchain

[HCL+22] Unspec. Done by TPM Data poisoning to the
smart health devices

There are multiple de-
vices and oracles in the
network

Reliability of data of pa-
tients

Whitelist with unique
identifiers of smart de-
vices and use of TPMs
to sign data sent to the
blockchain; multiple or-
acles need to verify the
data

The health of the
patients involved

[CYX21] Unspec. On-device Attacker feeding false
data to the blockchain or
compromising an oracle

There is no default chan-
nel of information be-
tween the source and the
blockchain; multiple or-
acle nodes

Smart contracts in
blockchain

Trusted Executed Envi-
ronments in TPMs

Data and funds
in the smart con-
tracts

[ABAQS+19] Unspec. Unspecified Attacker trying to get ac-
cess to get unauthorized
access to Data

IoT devices cannot
store Access control
lists (ACL); ACL need
to be managed

Data confidentiality Access control managed
by smart contract; ACL
on blockchain

Data in the exter-
nal sources

[WZSK21] Unspec. Validation of
metadata of files
by smart contract

Attacker tries to access
confidential data

Decentralized storage
does not hold access
control policies

Confidentiality of data Access control poli-
cies stored either on
Blockchain, Oracle or
Storage

Data on the decen-
tralized storage

Data source: There are many possible data sources presented in the surveyed papers,
and they can be all included in two main categories, external (for inbound oracles) and
internal or blockchain (for outbound oracles). The first category can be further divided

22

into three categories: the first one being an IoT device, for example, a medical device
or a sensor in a supply chain; the second one being a web source, either a website or
an IPFS; the third and last one being the result of a computation performed in a trusted
environment, or by a trusted device.

Communication protocol: There is not much variety in the communication protocols
being used. Only HTTPS/TLS is sometimes mentioned.

Data validation: on this side, there is a bigger variety of techniques. In many cases,
we either have no data validation or if there is it is still unspecified. A common technique
is to perform data validation on devices, especially common for IoT devices. Another
common solution is to use cryptographic techniques more or less sophisticated, such as
digital signatures or zero-knowledge proofs. Finally, there are some implementation-
specific techniques.

Threats: the most common threat analyzed in the papers is that of an attacker feeding
false information to the blockchain or trying to get access to confidential information,
whether it be personally identifiable information, such as in the case of voting or health-
care, or other information such as in a more general access control situation. Other
threats that are considered are data tampering, impersonations, denial of service, and in a
few cases the case of oracles being compromised and/or malicious is also considered.

Vulnerabilities: the most common vulnerability is the lack of a default channel
between the data source and the blockchain. In some cases, this is mitigated by the use of
HTTPS/TLS. Another common vulnerability is the fact that in many cases a centralized
oracle is also a single point of failure, which is vulnerable to denial of service or can be
more easily compromised compared to a network of oracles. In other cases, there can
be multiple organizations involved in an oracle, and thus one has the need to manage
identities through the use of CAs or other identity management solutions.

Impact: the impact is not thoroughly analyzed in the papers. As most of the papers
dealt with more general situations, they limited their analysis of the impact on the funds
and the normal operations of smart contracts. Papers that analyzed more closely a specific
use case, introduced a more specific description of the impact. In particular, in the case
of healthcare, personally identifiable information, personal data, and the reputation of
medical professionals and institutions, such as hospitals and insurance companies. The
reputation is impacted also in all cases where a user or a smart contract needs to make
a choice, either between different data sources or institutions with which to interact.
Resilience and strength of supply chains or access to data are also impacted by attacks.

Assets: the most common asset that the papers present of a blockchain are the data
funds and the smart contracts themselves. Then, similarly to the case of the analysis
of impact as above, papers analyzing some specific scenarios tend to have a more
specific description of the assets. In some cases, the assets are the personally identifiable
information of people, or reputations of either software, professionals, or institutions.
For example, in the case of voting, the outcome of an election is to be considered a major

23

asset, just as important as the information of the voters and the secrecy of their vote. Or
in the case of IoT ecosystems, the integrity and resilience of the ecosystem are to be
considered the main asset to be protected.

Countermeasures: there are many different countermeasures taken, which in many
cases depend on the scenario taken into consideration. Authenticity proofs are a common
one, as they allow one to prove that data was indeed obtained by a specific web source.
Another common strategy, especially in the case of the IoT ecosystem is the use of secure
modules to generate signatures that prove the authenticity of the data, and in these cases,
there is a list with all of the acceptable public keys or digital certificates accepted by
the IoT blockchain ecosystem. In other cases, especially where there can be multiple
data sources, there are reputation systems being used, where if a source is consistently
providing truthful data it will be rewarded and used more frequently; conversely, it will
be demoted and used less frequently if it holds a bad reputation. There are also more
sophisticated techniques, involving multiple different technologies for some specific use
cases, such as the use of access control lists (either on-chain or off-chain), or even the use
of multiple blockchains interacting with each other, both public and private, for different
kinds of data, depending on whether the data is public or private.

2.9 Answers to Research Questions
The results of the literature review have been presented in Section 2.7. Now we will use
those results to answer the research questions that were asked at the beginning of this
chapter. We will answer each question in order.

[RQ1.1] What are the assets that need to be secured when designing a blockchain
oracle?
The assets that need to be secured when designing a blockchain oracle depend on the
specific scenario we are discussing. In general, in all cases, the data itself and the normal
operation of the smart contracts involved is to be considered an asset. This is particularly
important in the context of blockchain, as transactions are irreversible and data, once
stored, cannot be deleted. Other assets to be considered rely on the specific scenario
being considered. For example, in the case of voting [FAB21], personally identifiable
information related to the voter is an asset to be protected, and it is also subject to
regulations in different countries, such as the EU’s GDPR regulations. In the same
example, the result of the election is to be considered an asset in and of itself, as it can
have drastic consequences on people’s everyday lives, especially if it is to be adopted for
political elections. In the case of Healthcare, [CZW+22], we also have additional assets
such as the patient’s medical records and the insurance claims, as we do not want an
attacker to tamper with the blockchain, nor false insurance claims or unjustly considering
a legitimate insurance claim as false.

24

[RQ1.2] What are the most important attack vectors and threats against blockchain
oracles?
The most important threat is an attacker feeding false information to the blockchain. The
reason is that if the blockchain is fed false information, then the normal operation of
smart contracts will be tampered with. Furthermore, depending on the scenario, this
can have more important consequences. In particular, in healthcare [CZW+22] it can
impact the databases of hospitals or insurance companies, resulting in claims not being
processed, false claims being processed instead, or the loss and tampering of important
medical data related to the patient’s health. In this case, the attackers can be competitors
that try to damage the reputation of legitimate companies. Other attackers can instead
try to process false claims or modify medical records, either to fabricate claims or to
tamper with someone else’s information. In the case of voting [FAB21], the main attack
vectors can be either foreign adversaries, terrorist groups, or other organizations trying
to influence the outcome of elections so that they get a favorable one.
[RQ1.3] What are the most efficient techniques to secure the different blockchain
oracles?
The most efficient techniques in securing blockchain oracles reside in the use of strong
cryptographic primitives. In particular, the use of TEE or other secure chips such as SGX
is commonly used, as it manages to secure the cryptographic secrets in a way that they
can not be tampered with by attackers. It will be the role of the oracles or the off-chain
entities to verify the signatures of the data being exchanged.

2.10 Limitations
There are threats to the validity of the presented SLR. The first one is that the review
focused on centralized blockchain oracles. Thus, the discussion ignored decentralized
blockchain oracles. The current landscape includes many different decentralized oracles
and thus any discussion about the security of blockchain oracles that does not include
decentralized oracles is excluding a part of the landscape that is already in use. The
second threat to validity is due to the sources used, as the literature review relied on the
sources that were found. There cannot be an SLR fully comprehensive of all possible
sources, whether they are scientific or grey literature. The third threat to validity is due to
the fact that the SLR was based on looking for existing or proposed solutions to specific
use cases. This excludes all work that focuses on general discussions about blockchain
oracles, without a specific scenario in mind. Finally, the last threat to validity is related
to the economic aspect that was considered out of scope for this work. Given the nature
of blockchain applications, the economic aspect should always be kept in consideration
whenever designing a solution for any scenario.

25

3 Background
This chapter focuses on the technologies that will be used in implementing blockchain
oracles in our experiments. There are multiple technologies and multiple implementations
of the same one; for this reason, it is needed to take a step back and focus on the
technologies and explain both the reasoning why a certain choice was made and how
it works. This chapter acts as the technology selection phase of our design science
approach.

3.1 Oracle Services
Provable [Pro] makes use of TLSNotary [TLS] in order to generate proof of authenticity.
The proofs are digitally signed by a Notary and can be used to generate proofs of content
on a web application. There is a form of trust, in the sense that one needs to trust that the
Notary does not provide malicious proof by colluding with the web application. One way
to mitigate that risk is to require multiple Notaries to provide multiple proofs, but we
will not be considering the possibility that a Notary is colluding with the web application.
The security is entirely software-based and relies on the TLS protocol.

TownCrier [Towb] instead makes use of Trusted Execution Environments (TEE) in
order to generate proofs. A TEE provides both integrity and confidentiality of all of the
operations being performed in the TEE. The TEE is executed on an Intel secure chip
called SGX, but in our simulation, we will be using a docker container. Comparing
TownCrier and Provable allows one to see how hardware-based and software-based
solutions might differ. There is a major hurdle though, which is that TownCrier was
acquired by Chainlink [Towa] in 2019. Today, the TownCrier project is deprecated, and
the TownCrier TEE technology is used inside the Chainlink nodes to make them more
secure. To our knowledge, it is not possible to leverage the TownCrier technology to
make oracles anymore. Even if it were, this project is deprecated, and thus for research
purposes, it is more important and productive to focus on new technologies that are still
being used and developed today over deprecated ones.

Outbound blockchain oracles differ in nature from inbound oracles. The two previous
solutions deal with inbound oracles. To the knowledge of the writer, there is not much
research done on the security of centralized outbound oracles for public blockchains, as
the research on security aspects focuses mostly on decentralized oracles or proposes the
usage of private/permissioned blockchains. The solution that we propose is to design the
blockchain smart contract in such a way that it can send information only to a specific
address. In this way, the integrity of the data and the authenticity are provided by the
blockchain itself, whereas confidentiality is not provided. The reason why this design was
chosen is that most of the oracle technologies and research focuses on inbound oracles,
as the data in the blockchain cannot be modified and it may influence the operation of
other smart contracts or other applications. When we are instead making an outbound

26

oracle, we control both the sending address, which will be the oracle address and the
receiving address. The oracle sends data as part of a transaction between the addresses,
and thus in most circumstances, one only needs to set up the receiving address. The
situation is different in case the receiving address cannot be set up priorly and needs
to change in function of who is querying the oracle. In this case, there can be multiple
solutions, with the trivial one being that the receiving address is the same as the one
querying the oracle. More sophisticated solutions are reliant on the specific scenario that
is being considered, and as we have seen in the systematic literature review, in many
situations a permissioned or private blockchain may be the better solution as it allows
more flexibility in managing transactions and access to data on the blockchain.

Chainlink [Chaa] is an ecosystem that provides a decentralized oracle. Chainlink
has an architecture relatively similar to that of blockchain, as its oracle is composed
of multiple different oracle nodes that validate the information. There is a consensus
mechanism that allows one to settle for one specific value based on the number of nodes
agreeing on the value of the data. Different oracle nodes can perform different jobs,
which means that they can perform different operations and query different data. This
oracle was originally intended to be excluded from our work, as the thesis focuses on
centralized oracles and not decentralized ones since the security considerations differ
greatly. But since we discovered that TownCrier is a deprecated project, we decided to
use Chainlink in order to implement our smart contract proposing a novel approach that
we will be explaining in detail in a dedicated section.

Augur [Aug] is a decentralized protocol on the Ethereum blockchain that provides
the ability to create prediction markets that can be used to bet on world events, financial
markets, or sports events. The protocol also provides a decentralized oracle with the
peculiarity that the source of data for each oracle node is a human. Each user has to stake
an amount of a cryptocurrency (either REP or REPv2) that corresponds to his or her
reputation. The event that will be considered true is the one that has the most reputation
staked in. If the user stakes REP correctly, then they will gain more REP, otherwise, they
will lose their stake. Augur allows to create prediction markets on events that cannot
really be queried automatically by computers, such as "Did X betray his country?" or
"Was X the worst thing to happen in year Y?". In these situations, data is not enough to
simply answer those questions and thus the so-called "wisdom of the crowd" is required.
Again, the reason why Augur was excluded is that it is out of the scope of this work, as it
is a decentralized oracle network. Furthermore, it adds human and economic issues due
to the way that the oracle settles for "true" data.

Tellor [Tel] is another decentralized blockchain oracle similar to Augur that allows
users to report data to the oracle. The Reporter has to submit data and stake some of
their tokens. The data can be disputed for 12 hours by any Disputer who has to match
one-tenth of the Reporter’s stake. During the dispute, multiple rounds can be performed
where other users vote on the data to settle the dispute. After the dispute is settled, the

27

winner gets the other party’s stake. The reason why Tellor was excluded is that it is a
decentralized oracle and its security mostly relies on the stake-and-dispute mechanism.

Ultimately, the chosen technologies are Provable, Chainlink, and a custom outbound
oracle. The reason is that they all meet our criteria of being centralized oracle technolo-
gies that were found in the systematic literature review.

3.2 Ethereum Endpoint and Web3.js
When building an outbound oracle, an important piece in our system is the Ethereum
endpoint. An Ethereum endpoint [Ethb] is a URL address that allows one to interact with
the Ethereum blockchain using a specific protocol. The main operation that an endpoint
allows that interests us is that endpoints allow us to query data from the blockchain
network. This action is key to building our outbound oracle, as it will need to be able to
query the blockchain in order to get data that is stored in smart contracts. It is possible
to run your own endpoint, which involves running an Ethereum node with all of the
associated costs, with the main ones being bandwidth and storage [Etha]. There are
multiple different companies that offer Ethereum endpoints, and we will be using Infura
[Inf] as it provides a free option that satisfies our requirements; furthermore Infura also
interacts with both the Sepolia and Goerli testnets.

One of the ways to interact with an Ethereum endpoint when developing a web
application is to use Web3.js [Web]. Web3.js is a popular JavaScript module that is
used by developers to create a web application that is able to interact with the Ethereum
network. It provides an interface to perform most actions that one would need to interact
with Ethereum, such as sending transactions and executing smart contracts. Web3.js is an
essential tool and for this reason, it has become the standard for Ethereum development.
We will make use of Web3.js to build our outbound oracle.

3.3 Difference between Testnet and Mainnet
Mainnet and Testnet are commonly used terms in Blockchain [Tes]. Mainnet refers to
the main network that a blockchain is being run on. It is the chain that is in charge
of transferring values between different addresses and that is used by the public. A
testnet is instead a network that is used to develop and implement projects before they
are deployed in the mainnet. There can be private testnets and public testnets, the first
ones are usually managed by the individuals or the team developing a specific project
and the second one is managed by a network of nodes in a similar way to the mainnet.
A private testnet allows to test smart contracts in a secure and private environment and
allows the developers to test the contracts without having to get test Ether, which can
sometimes be a challenge as one can get test Ether either by someone else who does
not need their test Ether anymore, or from faucets, tools that allow one to get free test
Ether in their address. A public testnet cannot transfer valuable tokens, which means

28

that it cannot transfer value between two addresses and should only be considered as a
test environment to deploy and test the different projects without incurring the risks of
deploying an unsafe project into the mainnet. There usually are multiple public testnet
for each mainnet, usually because each testnet can have slight differences that can make
it more useful for development, such as a higher block throughput or a different block
size. Other testnets can have the same parameters as the mainnet and serve as a faithful
reproduction of the mechanisms of the mainnet.

3.4 Remix IDE
The chosen IDE is Remix IDE as it is the most commonly used one for Ethereum. It
allows us to program smart contracts, and deploy and test them, both locally and on test
clients. For ease of development and to have the most general setting possible, the IDE is
accessed through this URL: https://remix.ethereum.org/. Remix IDE allows one
to perform multiple operations, in particular, one can create a workspace that will act as
its own root directory with multiple sub-directories that can be organized as the developer
wishes. The contracts need to be written in Solidity and the extension of a Solidity file is
.sol. Once the contract is fully developed, one needs to first compile it and later deploy it.
When it comes to deployment, there are multiple options that either use local VMs or
chains, public testnets, or the Ethereum mainnet itself. Whenever deploying on a public
network, no matter whether it is a test network or a public network, one needs to have
enough Ether (test or main ether) to fund the contract and pay the related gas fees.

3.5 Web Development
We will be building inbound and outbound oracles. In both cases, we will need to build a
web app that is able to interact with the blockchain, either directly or indirectly. In the
case of inbound oracles, the web app will act as a data source, whereas in the case of
the outbound oracle, the web application will act as the destination. Web development
techniques and technologies are outside the scope of this work, but it is imperative to
explain the technologies used for our implementation of oracles. In order to make use
of Web3.js, we will be using Node.js to create our web apps. We will be using some
specific modules for the Node.js framework. In particular, we will be using crypto.js,
which is included in the standard Node.js package, as our library to use the cryptographic
primitives we will be needing. We will also use Express.js as a module to create the web
app and manage routes, middleware, and HTTP requests and responses. The module
Cors.js will be needed as well to make the app accessible from any IP and we will also
use Body-parser.js to parse the HTTP requests that we will be receiving. We will also
use Nodemon.js to run the application in a test environment for ease of development and
logging and dotenv.js is needed to interact with the execution environment and store the

29

https://remix.ethereum.org/

Figure 1. System using blockchain oracles

secrets that are needed when the application is running, such as the database password
and the private key used to generate digital signatures.

As our data source for our inbound oracles will be needing a database, we will be
using MongoDB Atlas, as it provides a free option that suits our needs. Furthermore,
MongoDB Atlas offers an instance of MongoDB which is a NoSQL database that is
well-suited for JSON objects. In order to interact with MongoDB, our Node.js app needs
Mongoose.js, which is a module designed to interact with it.

Finally, for ease of development, we will use Render.com, which at the time of
writing offers a free option, in order to deploy and run the web app once its development
has been completed. Furthermore, Render.com natively offers an HTTPS/TLS certificate,
which will be needed for TLSNotary [TLS] and Chainlink [Chaa]. Finally, Render.com
supports Continuous Integration/Continuous Deployment (CI/CD) development using
GitHub repositories, thus for each web app, we will also be setting up a CI/CD pipeline
with a GitHub repository.

3.6 Components of Blockchain Oracles
A system that makes use of blockchain oracles is fairly involved, as it has multiple
interacting components. Figure 1 shows a small graph that at a glance explains the flow
of information between the different interacting components. Squares are used to show
elements that are off-chain, rhombuses are used for blockchain oracles, and circles are
used for on-chain elements.

In our experiments, the off-chain components are always web apps, we have one
app that acts as the data source and one app that acts as the data destination. The two
blockchain oracles are instead different in all three experiments we performed. The
blockchain oracles act as bridges between the on-chain and off-chain world and are at the
same time on-chain and off-chain components. The first blockchain oracle (the one on
the left) is either the Provable oracle service or a Chainlink oracle node. We call Provable
an oracle service as it has an off-chain component that interacts with our data source and
sends the information to a smart contract that interacts with our consumer smart contract.
We instead use a Chainlink oracle node as Chainlink is a network of nodes, where each

30

node is an oracle service similar to Provable. The consumer smart contract is the smart
contract that queries the oracle to get information about the off-chain world. The contract
will then use the information for its purposes according to its programming instructions.
The smart contract resides on the Ethereum blockchain, which resides in the distributed
network made up of Ethereum nodes. In order to interact with the blockchain from the
off-chain world, an endpoint is needed, but ultimately an endpoint is just an Ethereum
node accessible from a URL. This is still considered an on-chain element. The second
blockchain oracle (the one on the right in our figure 1) is the bridge that allows querying
the blockchain. In our experiment, the oracle is a role performed by our destination
web app, as it uses the Web3.js library to interact with the Ethereum endpoint and bring
on-chain data to the off-chain world. Finally, the off-chain data destination is where the
on-chain data will be manipulated off-chain. In our experiment, this is our second web
app.

The security properties of each of these components influence the security of the
whole system. We will discuss them one by one. Let us start with the on-chain com-
ponents, in particular, we will discuss the consumer smart contract first and later the
Ethereum endpoint. The blockchain provides data integrity and data authenticity by
design. In particular, once a transaction is made on the blockchain it is irreversible and
the data stored on the blockchain cannot be modified, and this is also true for smart
contracts, as they are code that is executed on the EVM. This means that the smart
contract code is a potential vulnerability. Once the smart contract is deployed, its code
cannot be modified and thus if there are any bugs or vulnerabilities in the smart contract
code, then we have a major vulnerability. The most common ones are the operational and
business logic of the smart contract, the funds that are stored on it, and the ownership
of the contract. Data authenticity in the Ethereum blockchain is provided through the
concept of accounts, as each account can perform transactions, and the information on
those transactions is stored on-chain and no transaction can be reversed. The transactions
are signed using the account’s private key in the case of user accounts, or just by running
the code if it is a smart contract account.

The Ethereum node and its relative endpoint operate along the rules of the Ethereum
protocol, which can be considered secure for our standards. When the node acts as an
Ethereum node, it acts as a peer-to-peer node in a network regulated by Ethereum rules.
Again, data integrity and authenticity for the data, which is entirely on-chain in this case,
is guaranteed by Ethereum’s properties. When the node acts as an endpoint, it needs to
act as a server that listens to clients’ requests and prepares and sends responses. If we
assume the endpoint to be trustworthy, then this means that the endpoint always queries
the data from the blockchain and prepares the right response. The vulnerabilities here
are related to Denial of Service attacks, as a node acts as a server and it can be overrun
by a number of requests that is higher than what the network can handle, and to the
communication between the Endpoint and its clients. There are multiple protocols that

31

have been proposed for endpoints [Ethb] and all of them make use of HTTPS/TLS to
establish an encrypted and secure channel between the client and the endpoint. The main
vulnerability thus relies upon the management of the TLS certificates and of the TLS
private key used to establish the connection. Thus, if an endpoint gets its private key
compromised, it cannot be trusted to establish secure channels between its clients.

If the endpoint is not trustworthy, then the above vulnerabilities still apply, with the
addition that even if the communication happens flawlessly and securely, the endpoint
can send false information. There is no way to protect against this situation, as the
client cannot query the blockchain directly. For this reason, it is necessary to take
countermeasures against this situation or to run your own node/endpoint, which can be
trusted as it is self-managed.

The off-chain components need to be secure as well. The main vulnerabilities that
they can bring are related to the communication between the off-chain component and
the oracle. Thus the goal is to establish a secure channel between the two. This is the
reason why the oracles that were used in the experiments take advantage of HTTPS/TLS
properties to establish secure channels. This means that if the private key used for TLS is
compromised, the entire web app is compromised and so is the communication between
the oracle and the web app, and thus we cannot trust the information we get from it.
There can be other security vulnerabilities. For example, the off-chain data source makes
use of a database, which can be attacked, and is a centralized data source, which means
that it can be victim to Denial of Service attacks and other vulnerabilities related to
centralized infrastructure. These vulnerabilities, though, do not affect the way that the
oracles and this system operate directly. In case of Denial of Service, the consequence
will be that the oracle is not able to fetch the data and feed it to the blockchain, which
means that the consumer smart contract may not be able to operate as intended, and some
countermeasures need to be taken. If the smart contract receives false data, then it will
be stored and it will permanently reside on the blockchain. If instead the database is
successfully attacked, this means that the web app will be malfunctioning and that it may
provide false data, as its database is compromised, and the consequences for our system
are similar to the other case we just discussed.

Finally, the last piece we need to discuss is the off-chain data destination. The
security of the data destination does not influence in any way the security of the other
elements of the system. As the flow of information goes from left to right, this means
that the security of an earlier step influences the security of a later step. But there is
no other component that follows the off-chain data destination, which means that its
security does not influence the rest of the system. The data destination is the client of
the Ethereum endpoint and can use different protocols to interact with it, but all rely
upon TLS. Because of TLS properties, if the private key of the Ethereum endpoint is
compromised, then the off-chain data destination cannot trust the data it receives from
the endpoint. The off-chain data destination technically does not even need to have a

32

permanent TLS private key and can use a simple ephemeral one. The security of the
off-chain data destination thus only influences its users and its business logic, but not the
security of the rest of the system as a whole.

3.7 Summary
As a summary of this chapter, it is important to mention that there are multiple tech-
nologies involved in making a blockchain oracle, as we have a system with multiple
components interacting with each other. We need to make use of web3 technologies, in
particular of endpoints to interact with the Ethereum blockchain, and of web development
technologies to have an interface to interact with the blockchain itself. The technologies
that we will be using are thus:

- Ethereum blockchain, in particular, the Goerli and Sepolia testnets

- Node.js with some modules

- Infura ethereum endpoint

- Provable

- Chainlink

- MongoDB

- Render.com and Github for CI/CD pipeline

33

4 Implementing Blockchain Oracles
This section of our work addresses the second research question [RQ2] How to imple-
ment two widely used blockchain oracles securely?. This chapter is the technology
implementation phase of our design science approach. In order to answer this question,
we need to divide it into subquestions:

• [RQ2.1] What are the assets to implement for a blockchain oracle?

• [RQ2.2] What are the threats to be taken into consideration?

• [RQ2.3] What are the countermeasures to be implemented?

As part of our work, we implemented three blockchain oracles and we will later
evaluate them to see how well they satisfy the security requirements. Since there is more
material available on Solidity and Ethereum and since it is the framework that we are
most familiar with, the oracles will be implemented using Solidity for the Ethereum
blockchain. The first two are inbound oracles using similar technologies, and the last
one is a custom outbound oracle. This is to see how off-chain data can get included in
the blockchain as well as how to get on-chain data into the off-chain world.

We will be using Provable [Pro] and Chainlink [Chaa] for the inbound oracles
as they have been used or mentioned quite frequently in the papers surveyed for the
literature review. The custom oracle instead will not make use of any specific technology
and will make use of specific smart contract properties to function. The reason is
that research around outbound oracles either focuses on decentralized oracles or on
private/permissionless blockchains.

As was mentioned in the Introduction, blockchain oracles are a special type of smart
contract where we have an initiator and a responder. Thus one could model the oracle as
an interface between the off-chain and on-chain world. Let us assume we have a network
with three nodes, one being the entity using the oracle, the oracle itself, and then the
rest of the blockchain. We have two edges in this network, one between the oracle and
the rest of the blockchain and one between the oracle and the off-chain entity. These
edges represent channels of communication. We can reasonably assume that the channel
between the blockchain and the oracle is secure. This is because the oracle is simply
a smart contract running over the blockchain, and thus it simply is some code being
executed over the multiple nodes of the blockchain. The same smart contract will always
produce the same output even when run on different nodes. We will, instead, assume
that the channel between the oracle and the entity is not secure, and thus we can model it
using the traditional Dolev-Yao model. Thus, while implementing our oracles, we want
to evaluate whether or not the communication between the oracle and the off-chain entity
can be successfully attacked. The definition of "successful attack" will depend on the
oracle model being used. Here is a thorough explanation:

34

1. Push-based inbound: in this case, an attack is successful if an attacker can either
tamper the data being sent from the off-chain entity or if it can send data to the
oracle in some way.

2. Push-based outbound: in this case, an attack is successful if an attacker can either
tamper the request being sent from the on-chain entity or fabricate a false request.

3. Pull-based outbound: in this case, an attack is successful if an attacker can either
tamper or fabricate a request or if it can fabricate or tamper the response.

4. Pull-based outbound: in this case, an attack is successful if an attacker can either
tamper or fabricate a request or if it can fabricate or tamper the response.

Another problem, commonly known in the research as The oracle problem [Cal20a], is
that blockchains are decentralized by design, and oracles introduce some centralization
to the system unless they are decentralized oracles, which are outside the scope of this
research. The oracles introduce centralization either as a single source or destination
of information. Especially in the case where they are a source of information for the
blockchain, there is no guarantee that the entity sending information to the oracle is
sending truthful information. Thus the oracle is introducing an element of trust in the
blockchain, as one has to trust that the entity is providing truthful information through
the oracle. This problem is not of easy solution, and for this reason in our analysis, we
will assume that the entity providing data to the oracle is providing "true" or "truthful"
data. The expression "false" data will refer to data sent by an attacker to the oracle, either
through fabrication or tampering with originally truthful data.

We will be explaining our implementation choices in the following subsections. The
first one is about the Data source of our oracles and then the following two subsections
will discuss the two oracles that have been chosen, Provable and Chainlink. We then
proceed with the fourth subsection which focuses on the outbound oracle and the last
two subsections will answer the research questions and address the limitations of this
chapter.

4.1 Data Source
The data source for our inbound oracles will be a custom made web-application. The
assumption is that the web app is secure, as we are not interested in the security of the
web application. Furthermore, the web app will provide publicly available data. The
web app can be thought of as a data source such as a weather website, a newspaper, or a
repository of data for statistical analysis such as information about a country’s economy.

This work does not focus on web development techniques, but for reproducibil-
ity reasons, it is important to outline the deployment mechanisms and the overall
architecture of the web app. In particular, the app is available at this URL: https:

35

https://two-oracle-thesis-web-app.onrender.com/posts
https://two-oracle-thesis-web-app.onrender.com/posts

//two-oracle-thesis-web-app.onrender.com/posts. The app was made using the
technologies listed below:

- Node.js / npm to create and manage the app (version 9.3.1)

- crypto.js library which is installed along with Node.js. It is used for generating an
asymmetric key pair and to generate the digital signatures

- MongoDB Atlas is used as a Database

- Mongoose.js to interact with MongoDB from the app

- Express.js to manage Middlewares and Routes

- Cors.js to allow interacting with the app from any IP

- Body-parser.js to parse the HTTP requests and responses

- Dotenv.js to deal with environment variables and hide run-time secrets; in this case
it is the database login information

- Nodemon.js to run the app in a test environment safely

- Render.com to deploy the app and manage CI/CD and to make it accessible from
the web at a specific HTTPS-enabled URL

- a Github repository for CI/CD available at this URL: https://github.com/
alexcarchiar/thesisWebApp

All of the chosen technologies are either open source, or proprietary but still offered
a free option; the main reason behind the choice of these technologies was that it
should be easy to reproduce and free. Furthermore, Render.com also offered at the
time of testing an HTTPS certificate, which is needed for our purposes, in particular for
Provable/TLSNotary.

The oracles are designed to interact with the app through a REST API. The reason is
that the oracles that were chosen require interaction with an interface in order to get back
data. All of the requests either provide or need JSON data. In particular, there are only
three possible requests to the API:

- GET /posts - Provides all of the posts that are on the database

- POST /posts - Allows one to submit a new article to the WebApp

- GET /posts/latest - Allows one to get the latest article that was submitted to the
WebApp

36

https://two-oracle-thesis-web-app.onrender.com/posts
https://two-oracle-thesis-web-app.onrender.com/posts
https://two-oracle-thesis-web-app.onrender.com/posts
https://github.com/alexcarchiar/thesisWebApp
https://github.com/alexcarchiar/thesisWebApp

The inbound oracles perform a GET /posts/latest request; the other two requests
were made for ease of development and testing. A similar app is the destination of
the outbound oracle. The app queries the blockchain in order to get information about
the data submitted to it. For simplicity reasons, the outbound oracle provides the same
data that is submitted to the blockchain from one of the previously designed inbound
blockchain oracles.

There are some main development files that are used to implement the web app
and define the required functionality. The main files are app. js which acts as the main
execution file; routes / posts . js which contains the routes used for the API requests and
finally models/Post . js which contains the database schema to define database objects in
the web app. The code for each of these files is available in the appendix and here you
can find an explanation of the code. We will be referring to the corresponding listing.

app.js

The code is reported in Listing 4. The first few lines import the required modules,
for example, Mongoose or Express. The third line require (' dotenv/ config ') specifies the
file containing the environment variables, in this case, they are the login information
to connect to the database. app.use(input) allows to add middlewares to the server. In
particular, the app.use(' / posts ' , postsRoute) allows one to define that all of the requests
being made to /posts, need to use the middleware postsRoute, which is a custom-made
module defined in routes / Posts . js that we will explain later. We define a get request with
app.get (' / ') for the homepage of our web server. The response is just the string ' We are
on home' followed by the public key used to verify the signatures of the various different
Post objects that are dealt with by the web app. The public key is an environment variable.
This exists to check that the website is up and running as well as to let a theoretical
user know the public key to verify the digital signatures. The last lines are used for the
database connection and to open a listening port so that the web app can receive requests.

posts.js

The code is reported in Listing 5. The first two lines allow us to import the Router object
from the Express module. The third line imports the /models/Post custom module to obtain
the object schema of a post used to interact with the database. The Router is used to
define the different API requests. As one can see, we call two methods of the router to
generate three functions: the get and post methods, which are used to deal with either
GET or POST HTTP requests. In both cases, we first define the relative path of the
request and then we define the function dealing with the request. The two get methods
return respectively all of the posts or just the latest one; the post method instead allows to
create a new Post. In particular, it obtains the title and the description from the request
body and generates the signature. Finally, the file defines the export object itself.

37

Post.js

The code is reported in Listing 6. The first line imports the Mongoose package which is
needed in order to create the object schema to interact with the database. The schema
is then defined in the following lines: it is a PostSchema which contains three required
strings, one called title , one called description , and one called signature . In our simple
experiment, the public data source acts as a "flash news media repository", and each
piece of flash news is defined by a title, which is used to captivate the reader, and by a
description, which is made up by a couple of lines that are needed to give some basic
context to the title. The signature is a digital signature generated using a private key that
is kept by the web app. The signature is generated by appending the title and description
strings, and the goal is for the web app to provide an attestation of this data so that it can
be verified using the public key available on the home page. The last line defines the
export for this file, in this case, we use the Mongoose package to explain that we just
created a model named Post for our schema named PostSchema.

4.1.1 Generating Key Pair

The generation of the key pair was performed once, and then the generated public and
private keys were added to the environment variables. In order to make this proof of
concept reproducible, you can find in Listing 1 that reports the code that was used to
generate the keys and later to import them and check that the whole process was working
as intended. The file is not intended to be run as is, rather you should first run the part
related to the generation of the keys, then add the keys to the execution environment.
Finally, you can run separately the last lines to check that the keys are imported in
Node.js.

% i m p o r t i n g t h e c r y p t o g r a p h y module
c o n s t c r y p t o = r e q u i r e (' c r y p t o ')

% g e n e r a t i n g t h e key p a i r f o r e l l i p t i c c u r v e c r y p t o g r a p h y
v a r k e y P a i r = c r y p t o . g e n e r a t e K e y P a i r S y n c (' ec ' , {

namedCurve : ' secp256k1 ' , % s p e c i f y i n g t h e c u r v e
pub l i cKeyEncod ing : {

t y p e : ' s p k i ' ,
f o r m a t : ' pem '

} ,
p r i v a t e K e y E n c o d i n g : {

t y p e : ' pkcs8 ' ,
f o r m a t : ' pem '

}
}) ;

c o n s o l e . l o g (k e y P a i r . p r i v a t e K e y)
c o n s o l e . l o g (k e y P a i r . pub l i cKey)

38

% t h e f o l l o w i n g l i n e s check t h a t i t i s p o s s i b l e t o g e t t h e p r i v a t e
key from t h e e x e c u t i o n e n v i r o n m e n t and g e n e r a t e s a p r i v a t e key
o b j e c t

p r i v a t e _ K e y = p r o c e s s . env . PRIVATE_KEY
c o n s o l e . l o g (p r i v a t e _ K e y)
c o n s o l e . l o g (c r y p t o . c r e a t e P r i v a t e K e y ({

key : p r i v a t e _ K e y ,
t y p e : ' pkcs8 ' ,
f o r m a t : ' pem '

}))
c o n s o l e . l o g (c r y p t o . c r e a t e P r i v a t e K e y ({

key : p r i v a t e _ K e y ,
t y p e : ' pkcs8 ' ,
f o r m a t : ' pem '

}) . e x p o r t ({
t y p e : ' pkcs8 ' ,
f o r m a t : ' pem '

}))

Listing 1. generateKey.js is the file to generate private and public key pair

The first line imports the crypto.js method. Then, the following lines are assigned to
the variable keyPair. These lines are the calling of a function in the crypto . js module named
generateKeyPairSync(), which as the name suggests, generates a key pair in a synchronous
way. It takes two inputs. The first input is the string ' ec ' specifies the key type, which
in this case is identified by the following OID: 1.2.840.10045.2.1 . The second input is an
object that specifies the parameters of the key pair we are generating. In this case, we use
the elliptic curve secp256k1 and for both private and public keys we specify the encoding
as a PEM file. The PEM file will be of type spki for the public key and of type pkcs8 for
the private one.

Afterward, the console outputs are used to print the keys to the console, so that they
can be manually added as variables to the execution environment. The last lines simply
import the private key from the execution environment and later use console messages to
test that the key was correctly imported as a string. Subsequently, the console messages
take as input the output of crypto . createPrivateKey () . This function takes as input an object
that specifies the key and the key parameters in a similar way as above. The first time
this function is called, it is directly given to the console, which will print the key object.
The second time, instead, we give to the console logger the output of the export method
of the key object. The export method takes as input parameters that specify how the key
should be exported as a string, and again we use pkcs8 type and PEM format like above.

39

4.1.2 Generating and Verifying Signatures

The generation and verification of digital signatures are explained in Listing 2. The same
lines are present in the routes / posts . js file, but here we will go more in detail. This file
can be run as is if you have already set the private and public key pair as environment
variables in your machine.

% i m p o r t i n g t h e c r y p t o g r a p h y module
c o n s t c r y p t o = r e q u i r e (' c r y p t o ')

% g e t t i n g t h e p r i v a t e key from t h e e n v i r o n m e n t
c o n s t p r i v a t e _ k e y = p r o c e s s . env . PRIVATE_KEY

% s e t t i n g t h e p a r a m e t e r s f o r t h e d i g i t a l s i g n a t u r e
c o n s t s i g n i n g _ a l g o r i t h m = ' sha256 '
c o n s t f o r m a t _ s t r i n g = ' hex '

% g e t t i n g t h e p u b l i c key from t h e e n v i r o n m e n t
c o n s t p u b l i c _ k e y = p r o c e s s . env . PUBLIC_KEY

% s e t t i n g two example s t r i n g s f o r g e n e r a t i n g and c h e c k i n g t h e
s i g n a t u r e

c o n s t f i r s t _ s t r i n g = " example1 "
c o n s t s e c o n d _ s t r i n g = " example2 "

% g e n e r a t i n g t h e d i g i t a l s i g n a t u r e by append ing t h e two s t r i n g s
l e t s i g n e r = c r y p t o . c r e a t e S i g n (s i g n i n g _ a l g o r i t h m)

s i g n e r . u p d a t e (f i r s t _ s t r i n g)
s i g n e r . u p d a t e (s e c o n d _ s t r i n g)
s i g n e r . end ()

l e t s i g n a t u r e = s i g n e r . s i g n (p r i v a t e _ k e y , f o r m a t _ s t r i n g)

% v e r i f y i n g t h e s i g n a t u r e
l e t v e r i f i e r = c r y p t o . c r e a t e V e r i f y (s i g n i n g _ a l g o r i t h m)

v e r i f i e r . u p d a t e (r e q . body . t i t l e)
v e r i f i e r . u p d a t e (r e q . body . d e s c r i p t i o n)
v e r i f i e r . end ()
c o n s o l e . l o g (v e r i f i e r . v e r i f y (p u b l i c _ k e y , s i g n a t u r e , f o r m a t _ s t r i n g)

)

Listing 2. verifySignature.js file to verify a digital signature

The first lines define constant strings that will be used for the signing and verification
process. The first one imports the crypto . js module. The names of the constants are
self-explanatory. The private key and the public key are obtained from the execution
environment. The hashing algorithm that was chosen was SHA-256 as it is secure
and commonly used in the industry. The format_string constant is used to represent the
signature as a hexadecimal string. Finally, the last two constants are two strings that are

40

Figure 2. Graph showing the design of Provable oracle

simply used as examples to show how to use the signing and verification procedures.
The second group of lines is used to generate a signature. We first have to create

an object signer = crypto . createSign (signing_algorithm). This object is used to first append
the two example strings using its update () method and finally, the signature is generated
using its sign () method.

The third and last group of lines is used to verify the signature that was just generated.
A verifier object is created using crypto . createVerify () and the strings are appended using
its update () method. Finally, the signature is verified using the verify () method. The
output of this call is given to the console logger which will print either True or False
depending on the result of the signature verification.

4.2 Provable
Provable [Pro] is an inbound blockchain oracle that can have multiple different types
of data sources. Figure 2 shows how the Provable oracle works at a glance. The data
sources include URLs, the WolframAlpha computational engine, IPFS, a random byte
generator, and the result of a computation. Provable is to be used as a trusted oracle,
as it does not provide any security measures by default. Provable allows requesting
authenticity proofs of the data Provable is submitting. The proofs are generated using
TLSNotary [TLS] or there are other solutions, but we will focus on TLSNotary since it
was the one mentioned in the papers found during the literature review.

TLSNotary is explained at a glance in figure 3. TLSNotary proofs make use of TLS
to generate a transcript of communications that took place between a web server and a
Client-Notary pair. The Client-Notary pair have one common TLS key, but none of them
have access to it. They have access to their share of the key and thus the communication
between the Client-Notary pair and the web server needs the pair to perform 2-party
computations in order to encrypt and decrypt the communications between the pair and
the server. This allows to generate a transcript of the communications and the transcript

41

Figure 3. Graph showing TLSNotary in the general scenario [TLS]

itself is the authenticity proof. It is important to also talk about other functions that
Provable offers and that were not used for this work [Pro]. In particular, the other types
of authenticity proofs offered are Ledger proofs and Android Proofs.

Android proofs make use of Google’s SafetyNet, which is a remote attestation
technology used to turn an Android device into a secure hardware device. The only way
to generate a false proof would be to gain access to the physical device or exploit the
Android OS itself with a vulnerability that is unknown to Google. Furthermore, there is
a system in place to automatically update the device and generate valid proofs only if the
device is running the latest version of SafetyNet. Ledger proofs make use of a Ledger
Nano S, which is a hardware cryptocurrency wallet that is used as a secure environment
to either generate random numbers or generate authenticity proofs. The advantage of
using a Ledger is that the private key used to generate the authenticity proofs is stored on
a secure chip in the device.

Finally, the last function that Provable provides is encryption, of both the request of
data and the response. The encryption is based on Elliptic curve cryptography and on
Elliptic curve Diffie-Hellman key exchange. The reason why this was not used is that the
function is currently available only on the mainnet and the scenario that we designed does
not have a need for encryption, as the data is assumed to be publicly available. Another
reason for the exclusion of this function is that no paper in the systematic literature
review mentioned the use of it. Our smart contract was deployed and tested for the Goerli
testnet. Below is the code of our smart contract using Provable oracle.

pragma s o l i d i t y ^ 0 . 4 . 2 2 ; % s p e c i f y i n g c o m p i l e r v e r s i o n : a t l e a s t

42

0 . 4 . 2 2 and lower t h a t n 0 . 5

% i m p o r t i n g t h e P r o v a b l e API s m a r t c o n t r a c t
i m p o r t " h t t p s : / / g i t h u b . com / p r o v a b l e − t h i n g s / e thereum − a p i / b lob / m a s t e r /

c o n t r a c t s / s o l c −v0 . 4 . 2 5 / p rovab l eAPI . s o l " ;

c o n t r a c t ExampleCon t r ac t i s u s i n g P r o v a b l e {

% t h i s s t r i n g s t o r e s t h e i n f o r m a t i o n r e l a t e d t o t h e JSON o b j e c t
o b t a i n e d from t h e web app

s t r i n g p u b l i c l a t e s t A r t i c l e ;

% t h i s s t i r n g s t o r e s t h e a u t h e n t i c i t y p r o o f g e n e r a t e d by P r o v a b l e
b y t e s p u b l i c A u t h e n t i c i t y P r o o f ;

% v a l i d I d s i s used t o s t o r e t h e r e q u e s t IDs o f t h e r e q u e s t s we
make t o P r o v a b l e ; i t i s used t o a v o i d someone s e n d i n g a
r e s p o n s e t o a r e q u e s t t h a t does n o t e x i s t

mapping (b y t e s 3 2 => boo l) v a l i d I d s ;

% d e f i n i n g t h e s m a r t c o n t r a c t e v e n t s , t h e i r s i g n a t u r e s a r e s e l f −
e x p l a n a t o r y

e v e n t L o g C o n s t r u c t o r I n i t i a t e d (s t r i n g n e x t S t e p) ;
e v e n t L o g A r t i c l e U p d a t e d (s t r i n g a r t i c l e) ;
e v e n t LogNewProvableQuery (s t r i n g d e s c r i p t i o n) ;

% t h i s i s t h e c o n s t r u c t o r f u n c t i o n t h a t c r e a t e s t h e s m a r t
c o n t r a c t and e m i t s an e v e n t announc ing i t s c r e a t i o n

f u n c t i o n Exampl eCon t r ac t () p a y a b l e {
p r o v a b l e _ s e t P r o o f (proofType_TLSNotary | p r o o f S t o r a g e _ I P F S) ;
L o g C o n s t r u c t o r I n i t i a t e d (" C o n s t r u c t o r was i n i t i a t e d . C a l l '

u p d a t e A r t i c l e () t o send t h e P r o v a b l e Query . ") ;
}

% t h e _ _ c a l l b a c k f u n c t i o n i s run once t h e s m a r t c o n t r a c t r e c e i v e s
a r e s p o n s e from P r o v a b l e

f u n c t i o n _ _ c a l l b a c k (b y t e s 3 2 myid , s t r i n g r e s u l t , b y t e s p r o o f) {
i f (! v a l i d I d s [myid]) r e v e r t () ; % c h e c k i n g t h a t t h e ID matches

a p r e v i o u s l y made r e q u e s t
i f (msg . s e n d e r != p r o v a b l e _ c b A d d r e s s ()) r e v e r t () ; % c h e c k i n g

t h a t t h e s e n d e r o f t h e r e s p o n s e i s P r o v a b l e s m a r t c o n t r a c t
a d d r e s s

% u p d a t i n g t h e s t r i n g v a r i a b l e s
l a t e s t A r t i c l e = r e s u l t ;
A u t h e n t i c i t y P r o o f = p r o o f ;

% e m i t t i n g an e v e n t t o l o g t h e o b t a i n e d r e s u l t

43

L o g A r t i c l e U p d a t e d (r e s u l t) ;
}

% t h e u p d a t e A r t i c l e f u n c t i o n i s c a l l e d by t h e u s e r whenever t h e y
wish t o u p d a t e t h e s m a r t c o n t r a c t w i th t h e i n f o r m a t i o n a b o u t
t h e l a t e s t a r t i c l e a v a i l a b l e on t h e web app

f u n c t i o n u p d a t e A r t i c l e () p a y a b l e {
% we f i r s t need t o check t h a t we have enough f u n d s t o pay

P r o v a b l e f o r t h e que ry
i f (p r o v a b l e _ g e t P r i c e ("URL") > t h i s . b a l a n c e) {

LogNewProvableQuery (" P r o v a b l e que ry was NOT s e n t , p l e a s e
add some ETH t o c o v e r f o r t h e que ry f e e ") ;

} e l s e {
% i f we have enough funds , t h e n we a r e s e n d i n g t h e

r e q u e s t a s a P r o v a b l e que ry and we emi t an e v e n t f o r
l o g g i n g p u r p o s e s

LogNewProvableQuery (" P r o v a b l e que ry was s e n t , s t a n d i n g by
f o r t h e answer . . ") ;

b y t e s 3 2 q u e r y I d = p r o v a b l e _ q u e r y ("URL" , " j s o n (h t t p s : / / two
− o r a c l e − t h e s i s −web−app . o n r e n d e r . com / p o s t s / l a t e s t) . 0 ") ;

v a l i d I d s [q u e r y I d] = t r u e ; % h e r e we save t h e r e q u e s t ID
f o r a l a t e r check

}
}

}

Listing 3. Provable smart contract

The first line specifies the compiler version; in this case, it is higher than 0.4.22 . The
second line instead imports the Provable API that contains the functions definitions and
extensions that we need in order to implement the contract.

The rest of the code is inside a structure called contract which is conceptually the same
as a class in Java or Python. The keywords contract ExampleContract is usingProvable mean
that we are creating a new contract named ExampleContract which extends the previously
created contract usingProvable, which is imported at the second line of the code.

We then define our data structures. We have two publicly accessible strings, one to
store the latest article and one to store the relative Authenticity proof. Each request to
the Provable oracle generates a unique id which is used to request information about it
and for security reasons, all messages relating to the same request need to have the same
request ID. The mapping validIds is used to store these IDs.

We then define three events that are used when running the smart contract. Each
event is used at the end of the execution of a function to log the current state for ease of
debugging. The name of each event is self-explanatory.

We finally have three functions: ExampleContract, __callback and updateArticle . The first
one is the constructor and it has the attribute payable which is used to add funds to the
contract. This is needed as in order to make requests to Provable, one needs to pay

44

some ETH. It is also used to pay for the authenticity proofs and encryption criteria; in
this case, we are only setting the authenticity proof and we are using TLS Notary. The
second function is the __callback which is called by the Provable oracle in order to send
the response to the request it received. It has three inputs: myid which is the request ID,
result which is the result of the request, and finally proof which is the authenticity proof.
The functions perform some safety checks, in particular, it checks the validity of the ID
and that the address of the contract calling __callback is valid as well. Finally, the contract
variables are updated. The last function is updateArticle which is also payable in case one
needs to fill up the funds of the smart contract. The function checks the contract has
enough funds to pay Provable for the request using provable_getPrice ("URL". The input of
this call is "URL" as the data source is a URL. If there are not enough funds, the smart
contract logs it; if there are enough funds then the smart contract sends the query and
logs it. Furthermore, the query ID is kept.

Analysis of Provable oracle

We can now analyze the Provable oracle through the lens of our research questions. This
oracle is a pull-inbound oracle, as it fetches off-chain data and is activated from the
blockchain. In particular, when it comes to the assets to implement for a blockchain
oracle that uses Provable, we can start by mentioning that we do not need to develop an
oracle service by ourselves. Furthermore, we do not need to design nor implement any
kind of security measures from the web server side, as they will be dealt with by Provable
and by the chosen authenticity-proof system. The assets that we need to implement for
the Provable oracle are the business and operational logic of the smart contract, and if
we are also in control of the data source, then we need to implement the business and
operational logic of the data source as well. In our case, the assets from the data source
are the server itself, the information that is stored in the different posts, and the REST
API itself. The assets for the smart contract, in our case, reflect the data source, as we
need to implement the data of the object we get. We need to implement a way to store the
authenticity proof, as we will ask for it from Provable itself. We do not need to manage
the Ether in the smart contract, as it is handled by Ethereum.

There are no additional threats to be taken into consideration in this case compared
to what we already discussed in the 2 Systematic Literature Review chapter. We
can assume the on-chain data to be secure and that the transactions between our smart
contract and Provable’s smart contract are secure, as they are backed by the Ethereum
blockchain. Without an authenticity proof, we would have to trust Provable to always
provide the correct information, which leads us to the oracle problem. There is another
threat, specific to Provable, which is denial of service, as Provable relies on centralized
private servers, that can be deprecated, attacked, or fail at any point.

The countermeasures that are to be taken in this case are related to making sure
that Provable cannot provide false data. Thus Provable offers authenticity proofs. The

45

authenticity proofs can be verified off-chain using any software that is able to perform
the required cryptographic functionality. A big limitation of smart contracts is that they
cannot perform cryptographic computations as they are computationally heavy, thus one
would need to perform the verification off-chain. If it needs to be integrated with the
smart contract, one would therefore need their own server, or some other oracle service,
that is able to perform the computation and verify the validity of the authenticity proofs.
This adds new layers of complexity and possible failure points, as the oracle service that
is used to verify the authenticity proof is also a victim of the oracle problem. For this
reason, the best way to use Provable would be to either have your own oracle that verifies
the authenticity proofs or perform them off-chain. The latter is suited for scenarios that
allow for high latency but is not acceptable for low-latency scenarios.

4.3 Chainlink
Chainlinik [Chaa] is a decentralized oracle network that allows one to get data from the
off-chain world to the on-chain world. Chainlink is made up of three main components:
the nodes and node operators, the smart contracts and the developers, and the LINK
token. The nodes [Chad] are run by node operators. Each node can be considered a node
in a blockchain ecosystem, in the sense that it can take part in the Chainlink ecosystem
by performing jobs and satisfying user requests to get data from the off-chain world
into the on-chain world. Each node is run independently and can run one or multiple
jobs. Each job offers a publicly available specification explaining its capabilities and
functionalities. Furthermore, each node has a reputation system and a cost per request,
which can be verified so that users can always choose the best combination of price and
reputation needed for their situation. A job can perform a limited amount of actions, and
therefore they are not very flexible.

The inflexibility of the jobs means that developers may not always find a job that
performs what they need. Thus, they either have to make their own node and become
node operators as well, and define their own job, or design their smart contracts in a way
that manages to use other existing jobs giving the intended result. The latter costs more
on-chain resources, as one needs to pay for each request done to other nodes, but it may
be simpler and more cost-efficient than designing, deploying, and running a job and a
Chainlink node. If one were to run a Chainlink node, some costs can be recouped by
accepting requests from other users. The smart contracts are usually written in solidity
and for the Ethereum Virtual Machine (EVM), but Chainlink offers compatibility for
non-EVM blockchains, such as Solana [Chaa]. We only focus on Ethereum.

The last component of the Chainlink is the LINK token. The LINK token is an
ERC677 token [ERCc] which is an extension of the ERC20 token [ERCa]. The difference
between them as reported by the ERC677 standard is the following: "This adds a new
function to ERC20 token contracts, transferAndCall which can be called to transfer tokens
to a contract and then call the contract with the additional data provided. Once the token

46

is transferred, the token contract calls the receiving contract’s function onTokenTransfer
(address , uint256 , bytes) and triggers an event Transfer (address , address , uint , bytes)" [ERCc].
This was needed in order to simplify the operation of the contracts. From a more practical
perspective, a developer working on a smart contract or a node operator on the Chainlink
ecosystem needs to know that they will transact in LINK in order to request data or fulfill
said requests. Node operators can set their own price, this allows more flexibility and a
market that is based on both the reputation and the cost of each node. It is important to
note, though, that each time a smart contract is called, the user needs to first pay some
Ether as gas to call the contract. Later, the contract needs to have enough LINK to pay
for its requests and finally, it will have gotten its off-chain data. In order to fund the
contract, a user needs to send LINK to the contract, and each transaction requires some
Ether to be paid as gas. Thus at the bare minimum, a user needs at least two assets, Ether
and LINK, each for their respective network.

Chainlink is a decentralized oracle network, and in our scenario, we have a centralized
data source and we wish to have a centralized oracle as well. Furthermore, Chainlink
does not provide any sort of proof of authenticity in a way similar to Provable. For this
reason, any data needs to be independently checked off-chain, and one cannot blindly
trust a single oracle node. As mentioned above, there is a reputation system, which
means that some nodes behave correctly and others misbehave. We propose a novel
approach to leverage the decentralized properties of Chainlink and use it as if it were a
centralized oracle, without the need of running your own node. There are two reasons
why we do not want to run our own node. The first one is that it would defeat the purpose
of treating Chainlink as a decentralized oracle network, and thus we would be simply
implementing a Chainlink node that acts as a server and a smart contract that interacts
with it. The second one is that this approach is more involved in terms of skill and time,
and it may not be the solution that most companies in the industry would like to leverage,
as each company would have to have a team working on the smart contracts and a team
working on their Chainlink nodes, thus increasing overhead and costs in a way that often
may not be acceptable.

We designed our web app in a way that is suitable for this purpose. In particular, as
seen in section 3.2 Data source and destination, when you fetch from the API the latest
object, you would get three strings, each one referring to either the title, the description,
or the signature of the object. The signature can be verified off-chain using the public key
which is accessible on the home page of the web app. This means that the signature is
acting as an authenticity proof. Thus we can query any node that is capable of processing
a job that provides the ability to fetch a JSON object from a publicly available API and
process it to obtain strings from it. To the knowledge of the writer, there is no job that
allows one to perform all of the three operations. Therefore, the more straightforward
option is to make our own node, make it run our own custom job, and then make the
smart contract that interacts with it. But this goes in contrast with our goal from earlier.

47

After performing a thorough research, the solution that seems the most reasonable is to
use the job with the following ID: 7d80a6386ef543a3abb52817f6707e3b [Chac]. This
job allows one to perform a GET request from HTTPS-enabled servers and to obtain
JSON objects. The obtained objects can be parsed and one can obtain a string from one
of the JSON object properties. The idea is to call this job multiple times, and each time to
change the property that we are parsing from the JSON object. This will provide us with
the three parameters that we need, including the signature that can be checked off-chain.
Since we are working on the Sepolia testnet, we only have access to one and only one
testnet oracle node that is able to perform this job. In the mainnet, there are multiple
nodes that are able to run this job and satisfy our request. Below is the code of our smart
contract and follows an explanation.

% s p e c i f y i n g c o m p i l e r v e r s i o n : a t l e a s t 0 . 8 . 7 b u t lower t h a n 0 . 9
pragma s o l i d i t y ^ 0 . 8 . 7 ;

% i m p o r t i n g s m a r t c o n t r a c t s from C h a i n l i n k f o r i n h e r i t a n c e
i m p o r t " @cha in l i nk / c o n t r a c t s / s r c / v0 . 8 / C h a i n l i n k C l i e n t . s o l " ;
i m p o r t " @cha in l i nk / c o n t r a c t s / s r c / v0 . 8 / ConfirmedOwner . s o l " ;

c o n t r a c t G e t L a t e s t P o s t i s C h a i n l i n k C l i e n t , ConfirmedOwner {
u s i n g C h a i n l i n k f o r C h a i n l i n k . Reques t ;

% d e f i n i n g t h e s t r i n g s t h a t keep t h e q u e r i e d i n f o r m a t i o n from t h e
web app

s t r i n g p u b l i c t i t l e ;
s t r i n g p u b l i c d e s c r i p t i o n ;
s t r i n g p u b l i c s i g n a t u r e ;

% t h e c o u n t e r i s used f o r t h e o p e r a t i o n o f t h e s m a r t c o n t r a c t a s
we need t o pe r fo rm 3 q u e r i e s i n s u c c e s s i o n

u i n t 2 5 6 p u b l i c c o u n t e r ;

% t h e j o b I d i s used t o s e l e c t t h e r i g h t j o b from t h e o r a c l e node
i n t h e C h a i n l i n ne twork

b y t e s 3 2 p r i v a t e j o b I d ;

% t h i s v a r i a b l e i s used t o s t o r e t h e f e e t h e s m a r t c o n t r a c t i s
w i l l i n g t o pay f o r t h e s e r v i c e s o f an o r a c l e node

u i n t 2 5 6 p r i v a t e f e e ;

% t h i s e v e n t i s used t o l o g t h e r e s u l t o f each que ry
e v e n t R e q u e s t L a t e s t P o s t (b y t e s 3 2 i n d e x e d r e q u e s t I d , s t r i n g

c u r r S t r i n g) ;

% t h i s f u n c t i o n i s t h e s m a r t c o n t r a c t c o n s t r u c t o r
c o n s t r u c t o r () ConfirmedOwner (msg . s e n d e r) {

48

% t h i s i s used t o s e t t h e C h a i n l i n k t o k e n as t h e c u r r e n c y t o
pay f o r i n t h e C h a i n l i n k network , t h e a d d r e s s i s s p e c i f i c
f o r t h e S e p o l i a ne twork

s e t C h a i n l i n k T o k e n (0 x779877A7B0D9E8603169DdbD7836e478b4624789)
;

% t h i s i s used t o s p e c i f y t h e a d d r e s s o f one s p e c i f i c o r a c l e
node t h a t t h e s m a r t c o n t r a c t i n t e r a c t s w i th

s e t C h a i n l i n k O r a c l e (0 x6090149792dAAeE9D1D568c9f9a6F6B46AA29eFD
) ;

% t h i s s e t s t h e jobID t o a s p e c i f i c v a l u e
j o b I d = " 7 d80a6386ef543a3abb52817f6707e3b " ;

% t h i s s e t s t h e f e e t h a t we wish t o pay t o 0 . 1 LINK , which i s
computed by 1 * LINK_DIVISIBILITY (which i s 1 e18) and

t h e n d i v i d e d by 1 0 . The f e e i s e x p r e s s e d as a number o f
J u e l , which i s t h e 1e −18 of a LINK t o k e n

f e e = (1 * LINK_DIVISIBILITY) / 1 0 ;
c o u n t e r = 0 ;

}

% t h i s f u n c t i o n r e q u e s t s t h e l a t e s t p o s t from t h e web app
f u n c t i o n r e q u e s t L a t e s t P o s t () p u b l i c r e t u r n s (b y t e s 3 2 r e q u e s t I d) {

% Thi s i s used t o b u i l d up t h e c h a i n l i n k r e q u e s t by
s p e c i f y i n g t h e jobID , t h e a d d r e s s o f t h i s s m a r t c o n t r a c t
and t h e c a l l b a c k f u n c t i o n

C h a i n l i n k . Reques t memory r e q = b u i l d C h a i n l i n k R e q u e s t (
j o b I d ,
a d d r e s s (t h i s) ,
t h i s . f u l f i l l . s e l e c t o r % t h i s i s t h e c a l l b a c k f u n c t i o n

) ;

% h e r e we add t o t h e r e q u e s t t h e URL of t h e HTTP GET r e q u e s t
we wish t o pe r fo rm

r e q . add (
" g e t " ,
" h t t p s : / / two − o r a c l e − t h e s i s −web−app . o n r e n d e r . com / p o s t s

/ l a t e s t "
) ;

% t h i s c he ck s t h e v a l u e o f t h e c o u n t e r ; depend ing on i t i t
w i l l t h e n p a r s e t h e JSON o b j e c t o b t a i n e d t o g e t e i t h e r t h e

t i t l e , t h e d e s c r i p t i o n o r t h e s i g n a t u r e f i e l d o f t h e
o b j e c t

i f (c o u n t e r == 0) {
r e q . add (" p a t h " , " t i t l e ") ;

} e l s e i f (c o u n t e r == 1) {
r e q . add (" p a t h " , " d e s c r i p t i o n ") ;

49

} e l s e i f (c o u n t e r == 2) {
r e q . add (" p a t h " , " s i g n a t u r e ") ;

}

% h e r e t h e C h a i n l i n k r e q u e s t i s b e i n g s e n t
r e t u r n s e n d C h a i n l i n k R e q u e s t (req , f e e) ;

}

% t h i s f u n c t i o n i s run once t h e r e s p o n s e from t h e o r a c l e node i s
r e c e i v e d

% _ c u r r S t r i n g i s a s t r i n g t h a t i s r e c e i v e d from as p a r t o f t h e
r e s o n s e , and depend ing on what was asked i t r e f e r e s t o e i t h e r
t h e t i t l e , t h e d e s c r i p t i o n o r t h e s i g n a t u r e

f u n c t i o n f u l f i l l (
b y t e s 3 2 _ r e q u e s t I d ,
s t r i n g memory _ c u r r S t r i n g

) p u b l i c r e c o r d C h a i n l i n k F u l f i l l m e n t (_ r e q u e s t I d) {
% an e v e n t i s e m i t t e d t o l o g t h e r e s p o n s e t h a t was g o t t e n
emi t R e q u e s t L a t e s t P o s t (_ r e q u e s t I d , _ c u r r S t r i n g) ;
% depend ing on t h e v a l u e o f t h e c o u n t e r we u p d a t e t h e

r e s p e c t i v e s t r i n g
i f (c o u n t e r == 0) {

t i t l e = _ c u r r S t r i n g ;
c o u n t e r = 1 ; % t h e c o u n t e r i s s e t t o 1
r e q u e s t L a t e s t P o s t () ; % we pe r fo rm a new r e q u e s t w i th

c o u n t e r ==1 , t h u s a s k i n g f o r t h e d e s c r i p t i o n
} e l s e i f (c o u n t e r == 1) {

d e s c r i p t i o n = _ c u r r S t r i n g ;
c o u n t e r = 2 ; % t h e c o u n t e r i s s e t t o 2
r e q u e s t L a t e s t P o s t () ; % we pe r fo rm a new r e q u e s t w i th

c o u n t e r ==1 , t h u s a s k i n g f o r t h e s i g n a t u r e
} e l s e i f (c o u n t e r == 2) {

s i g n a t u r e = _ c u r r S t r i n g ;
c o u n t e r = 0 ; % t h e c o u n t e r i s s e t t o 3

% we do n o t c a l l r e q u e s t L a t e s t P o s t () a g a i n t o b r e a k t h e
r e c u r s i v e e x e c u t i o n o f t h e s m a r t c o n t r a c t a s we have
j u s t u p d a t e d a l l o f t h e s t r i n g s

}
}

% t h i s f u n c t i o n i s used t o wi thdraw t h e LINK t o k e n s t h a t a r e i n
t h e s m a r t c o n t r a c t s h o u l d t h e owner wish so

f u n c t i o n wi thdrawLink () p u b l i c onlyOwner {
L i n k T o k e n I n t e r f a c e l i n k = L i n k T o k e n I n t e r f a c e (

c h a i n l i n k T o k e n A d d r e s s ()) ;
r e q u i r e (

l i n k . t r a n s f e r (msg . s ende r , l i n k . b a l a n c e O f (a d d r e s s (t h i s))) ,
" Unable t o t r a n s f e r "

) ;

50

}
}

We first have to import two other contracts that our contract inherits. After that,
we specify the contract name GetLatestPost and the inheritance, as we are inheriting
ChainlinkClient , ConfirmedOwner. Once inside the definition of the contract, we first make
use of the directive using Chainlink for Chainlink .Request to attach to Chainlink the Request
member for ease of use.

Finally, we can define our variables. Our four public variables are three strings, each
referring to one of the JSON object properties we are interested in and an unsigned
integer called counter. The counter is used to allow the recursive execution of our contract
three times. This is needed because we have three JSON properties. Thus, when the
counter is zero, we will get the title; when it is one, we will get the description; when it is
two we will get the signature. After that, we reset it to zero so that the next time we call
the contract, the whole process can restart again. The two private variables are the jobId
and the fee. The first one is used to identify the job that the oracle node needs to run in
order to satisfy our request and the second one is the amount of LINK we are willing to
pay in order to get our request satisfied. We also define an event, called RequestLatestPost
which is used to log to console each response we get from the Chainlink oracle node, by
associating the requestId and the current string received (currString). After the variables,
there are four functions. We will see them in order.

The first function is the constructor method which is called when the contract is
deployed. The first two lines set that we want to use the LINK token and the oracle node
that we want to interact with. They are hardcoded for our proof of concept as there only
is one testnet Chainlink node that can satisfy our request. It is used also to set both the
job ID and the fee we are willing to pay. The fee is 0.1 LINK tokens. Finally, we set the
counter to 0.

The second function is the requestLatestPost and it is the one that a user calls to
get information about the latest post. We first create a request object using the infor-
mation we have, that is, the job ID, the address of the current smart contract which
is needed to get the reply, and the action we want to be performed, in this case this .
fulfill . selector which allows parsing the received JSON object and obtain one string

from one of the properties. We proceed by adding an action to the request, in this
case, we are performing a GET request to our API available at the address https:
//twoâĹŠoracleâĹŠthesisâĹŠwebâĹŠapp.onrender.com/posts/latest. We have
a couple of conditionals, which all depend on the value of the counter. In all cases, we
specify the property we want to get from the JSON object. In particular, if the counter is
zero, we get the title; if it is one we get the description; if it is two we get the signature.
Finally, the function ends by calling a method that sends the request to the Chainlink
oracle node along with the related fee.

The third function is the fulfill function. It allows us to receive the response from

51

https://two−oracle−thesis−web−app.onrender.com/posts/latest
https://two−oracle−thesis−web−app.onrender.com/posts/latest

the Chainlink node. It has two input values, the first one is the ID of the request we
performed and the second one is the string that we just obtained. The function first emits
an event to log the values we just received. Then, there are conditionals that allow us
to update the value of the string variables to the latest value we obtained. The value
we update depends on the current value of the counter. After we update the value, the
counter is assigned a new value in order to update the next string. If the counter value is
0 or 1, we end the function by calling the requestLatestPost function. Thus our contract
calls itself recursively to perform multiple requests and update all of the values it needs.

The fourth and last function is a standard one, which is used to withdraw the LINK
tokens that are still on the contract in case one wants to empty the contract’s balance.

Analysis of Chainlink oracle

We can now analyze the Chainlink oracle through the lens of our research questions.
This oracle is a pull-inbound oracle as in the previous case, as it fetches off-chain data
and is activated from the blockchain. In the case of a Chainlink oracle, the assets to be
implemented vary depending on whether one wants to leverage the decentralized network
as intended; make their own oracle node; or finally on creating a smart contract that
interacts with the Chainlink network as if it were a centralized oracle, but with the right
measures. If we are using a decentralized oracle, then we are in a similar situation as
in the Provable oracle. We just have to implement some functionality that allows the
smart contract to choose the right oracle network and job ID to be run. In case we make
our own oracle node, we need to implement the functionality to fetch the data from the
off-chain world as well as the node and the server themselves. We also need to choose
whether we want to open the oracle node to everyone or not. In the last case, we are
again in a situation similar to Provable, but in this case, we also need to implement a
logic that allows us to bypass the problems inherent to the decentralized nature of the
oracle. This approach is best suited when we are also in control of the data source, as we
would need to have some system to verify that the data did indeed come from the real
source and it was not manipulated by a rogue oracle node. The network assets such as
the Ether and the LINK tokens are managed by the Ethereum blockchain, thus they do
not need to be implemented by us.

The threats to be taken into consideration are again similar to what was found in
the SLR. There are two additional threats. If we are using the decentralized network as
intended, then the additional threat is that the oracle node that we are interacting with can
misbehave or reject our requests. This can be for multiple reasons: some are legitimate,
like in the case we do not have enough funds to pay for the transaction or in the case
that the oracle network was designed to only interact with a limited number of smart
contracts; others are not legitimate like in the case an oracle node tries to provide false
data or is unable to satisfy all of the requests it receives. Just because an oracle node is
misbehaving, it does not mean that the entirety of the network will be misbehaving. The

52

other threat is related to the case we are running our own Chainlink oracle. This opens
up threats related to denial of service and to a centralized point of failure.

The countermeasures to be implemented again depend on the way that we decide
to leverage Chainlink’s technologies. If we run our own Chainlink oracle node, then
we need to decide whether we want to accept requests from all contracts in the network
or not. In the first case, the oracle node would end up earning LINK tokens, and thus
recouping part of its costs, if not outright earning more. But by using this approach, we
may run into the problem of the oracle receiving more requests than it can handle. If
instead, we do not open the node, we reduce the risk of denial of service to near zero,
as the oracle node would only accept requests from our smart contracts. In case we
want to avoid creating and deploying our own oracle node and related jobs, we need to
use already available oracle nodes. In this situation, if we do not own the data source,
the only way to avoid accepting faulty data is to define our risk level acceptance and
use Chainlink as intended. This means that our smart contract needs to query multiple
different oracle nodes for the same information and accept it once it has received enough
confirmation. The smart contract needs also to have some functionality to modify the
set of oracle nodes it interacts with so that they can be updated according to our own
risk level, the cost of querying data from the nodes, and the reputation of the nodes.
Sybil attacks are not a concern, as it is the smart contract developer who chooses which
oracle nodes to use, so a malicious attacker would not be able to simply create multiple
oracle nodes and influence the decision process, as they would have no reputation at the
beginning and they would need to be actively added to the smart contract. If instead
we own the data source, then the best way to secure the data would be to add some
authenticity proof directly into the information being sent to the oracle. The way we
propose is through the use of digital signatures.

4.4 Outbound Oracle
The outbound oracle is implemented in a different way. In particular, in order to read the
blockchain one needs to have an endpoint that acts as a bridge between the blockchain
itself and all of the other pieces of software that wish to interact with it. To be more
precise, an endpoint in Ethereum is an Ethereum full node that can be accessed over the
internet by other software.

A company can easily create and manage its own endpoint, as the work required is
not substantially different from implementing, running, and maintaining a node. For
individuals or even some small-scale companies, this option may not be the best one, as
there are costs associated with running an Ethereum node, especially when it comes to
storage, as the Ethereum blockchain has a significant size and it is increasing: at the time
of writing, it already is over 13 TB [Etha].

In our work, we make use of Infura [Inf], which is a service that provides an Ethereum
endpoint that is accessible for free for our testing purposes. Infura was chosen as it

53

provides a free option and it is compatible with both the Sepolia and Goerli testnets.
They provide an API key which is to be used to query all of the necessary data. The
requests and responses are sent over HTTPS. A sample of the app is available at this
URL: https://outbound-oracle.onrender.com/.

The app interacts with the Chainlink oracle in order to obtain information about the
three strings stored in the smart contract. A very similar app can be made with some
trivial modifications that interact with the Provable oracle instead. The app queries the
information about the strings stored in the oracle and then checks that the obtained digital
signature is valid, and shows the result to the user. This is done for two reasons. The first
one is that in this way the app is both "oracle agnostic" and "endpoint agnostic"; which
means that the security is provided directly by the Data source (as described previously
in this Chapter). Should there be a need to change either the endpoint or the smart
contract, one will need to make small and trivial modifications to the code. The second
reason is that this removes completely the necessity for trust in the oracle and in the
endpoint, and adds an additional layer of difficulty, as an attacker that wishes to attack
our system needs to successfully create a fake signature about the Post that was received
and successfully bypass HTTPS, as the communication between the app and the endpoint
is over HTTPS.

In a similar vein to Section 3.2, we created a small web app with the following
technologies:

- Infura’s endpoint, in particular, the one for the Sepolia network available at https:
//sepolia.infura.io/v3/API-KEY

- Node.js / npm to create and manage the app (version 9.3.1)

- Web3.js which is used to interact with Infura’s endpoint

- crypto.js library which is installed along with Node.js. It is used for verifying the
digital signatures given by the oracle

- Express.js which is used to manage the ports for the server to listen

- Dotenv.js to deal with the environment variables and hide run-time secrets; in this
case, it is the API key

- Nodemon.js to run the app in a test environment safely

- Render.com to deploy the app and manage CI/CD and to make it accessible from
the web at a specific HTTPS-enabled URL

- a GitHub repository for CI/CD available at this URL: https://github.com/
alexcarchiar/thesisOutboundOracleWebApp

54

https://outbound-oracle.onrender.com/
https://sepolia.infura.io/v3/API-KEY
https://sepolia.infura.io/v3/API-KEY
https://github.com/alexcarchiar/thesisOutboundOracleWebApp
https://github.com/alexcarchiar/thesisOutboundOracleWebApp

All of the chosen technologies are either open source, or proprietary but still offered
a free option; the main reason behind the choice of these technologies is that the re-
producibility of this experiment should be easy and accessible to the broadest possible
crowd. There only is one request to the app, which is an HTTPS GET request to the
homepage, that is, the path of the request is empty. This is because, in our scenario, this
app is just a consumer of blockchain data. The development of this app consists of only
one file app. js , as we have no need for routes or middleware. The code is reported in the
appendix in Listing 7. Below is an explanation of the code.

Let us now explain the code. The first few lines import the required packages, in
particular Dotenv.js, Express.js, Web3.js, Crypto.js, and Buffer.js. One line also creates a
web3 object that acts as an interface between this code and Infura’s Ethereum endpoint
for the Sepolia testnet.

After that, we create a variable to store the Ethereum address of the smart contract
we want to interact with. The address is the real address of our inbound Chainlink oracle.

The following object called contractABI contains the ABI code of the smart contract.
This code is generated by the Remix IDE. It is encoded as a JSON object and it contains
the most lines of this file, as it specifies each variable and each method of the contract.
The code is reported in the appendix, as it is long, and reporting it does not add any
insight into our implementation.

Once we are done with the ABI code, we create a contract interface const contract
new web3.eth.Contract (contractABI, contractAddress). It takes both the contract address and

its ABI code to create the object and we use a method of the Web3.js library.
We then use the Express.js library to create an object app which we will use to deal

with the HTTP GET requests.
We define two functions. The first one is an asynchronous function called getInfo

whose purpose is to interact with the smart contract interface and get the required
information. As one can see, we query the contract three times in order to get the
title , the description , and the signature of each post from the contract. The function then

combines the three obtained strings in an array and then returns it.
We define three variables, one is the public key, which comes from the original data

source of the data before it was sent to the smart contract that is queried by this web app.
The other two set the parameters needed for verifying the digital signature, that is, the
algorithm and the string format.

We now define the second function. The second function is verifySignature and its
goal is to get the information from a post, that is, the title and the description, and verify
the respective signature given the public key and the other parameters. The function
returns a boolean, with a value of true if the signature is valid or false otherwise.

We finally define the HTTP GET request to the homepage, in particular the function
that deals with it. We first call the getInfo function to get the array of the strings and we
later parse them to obtain three different strings, one for each element of the array. We

55

now call the verifySignature function with the right parameters and assign the returned
value to a boolean isValid . We can start to build the response to the HTTP GET request.
The response will be a string containing the information that was taken from the smart
contract. The last piece of information that is added is whether the signature was valid or
not, and we use a conditional for that. We then send the response.

The last few lines of code are needed to open up a listening port so that the server
can operate with the rest of the internet.

Analysis of the outbound oracle

We can now analyze the outbound oracle through the lens of our research questions. This
oracle is a pull-outbound oracle, as it fetches on-chain data and is activated from the
off-chain world. In particular, when it comes to the assets to implement for an outbound
blockchain oracle, we only really have the endpoint as a critical element, as it is the
interface between our web app and the blockchain. We are making use of an already
existing endpoint, so in this case, we need to make our API key secure, as otherwise one
would be able to perform requests to Infura’s API using our own key. If this happened,
this would be a security problem, especially when it comes to billing, as the free option
only supports a limited amount of requests, and any company would be paying Infura in
function of the number of requests they need. Other assets to be implemented are the
off-chain business logic and the functionality required by the app.

There are three threats to be taken into consideration. The first one is that of a
malicious endpoint that provides false data. The second one is that of an attacker that
tampers with the communication between the web app and the Ethereum endpoint. The
third and last one is that of an attacker trying to obtain the API key. There still exists
another threat, which is a denial of service (DoS). There can be two services that can be
a victim of a DoS attack: the web app and the endpoint, as they are both centralized.

The countermeasures to be taken in these situations are different and each addresses
one different threat. In particular, in order to protect against DoS attacks, we cannot
really do much to protect against a successful DoS attack on Infura. There are two ways
to mitigate this threat: the first one is to run your own Ethereum node/endpoint, which
incurs higher costs and higher complexity needed to implement, run and maintain the
node; the second one is to use multiple endpoints provided by different companies so
that if one is not working, we have another one to fall back on. If the DoS attack is on
our web app, then the countermeasures are outside the scope of this work, as they are
related to security practices for developing web applications. In order to protect against
an attacker tampering with the communication between the web app and the endpoint,
we can assume the connection to be secure, as we are using the HTTPS protocol, thus
there is no need to take additional measures. The only way to assure that an endpoint is
providing true data is to run the Ethereum node directly instead of relying on some other
company. By using the digital signatures strategy defined earlier in this chapter, we are

56

taking a countermeasure to mitigate this risk as the signature is generated off-chain and
is checked again on the destination web app, thus if the endpoint were to provide false
data, it would be detected. The endpoint cannot generate new posts and new signatures,
but it can provide an old one, that is, it can decide not to provide up-to-date information,
and there really is not any way to mitigate this risk; but it is important nonetheless to
remark that the consequences of this risk are not as bad as in the case of an endpoint
that is able to provide outright false data. The countermeasure to be taken to protect the
API key are related to good software development security practices and are outside the
scope of this work, but in general, we mention that we encourage the use of environment
variables and self-contained environments to run the server on.

4.5 Answer to Research Questions
The results of the work of this chapter allow us to answer the research questions that were
presented in the first section of this chapter. We will now be addressing these questions
one by one.
[RQ2.1] What are the assets to implement for a blockchain oracle?
The assets to be implemented when designing a blockchain oracle are the logic and
information related to the normal operation of smart contracts. In the vast majority of
cases, blockchain oracles are just an interface, and for this reason, the main asset is
information. The specifics may vary in function of the scenario we are facing. According
to the strategy chosen by the institution or company operating the oracle, one may need to
design the data source in a way that provides the security property or may need to design,
implement and maintain oracle nodes and servers to maintain the normal operation of
the smart contracts. This consideration needs to be evaluated from both a technical
perspective and an economical one, as developing, maintaining, and running oracle nodes
has related costs and is a challenge in itself. A similar consideration can be made about
running and maintaining an Ethereum node/endpoint, which is needed in case one wishes
to implement an outbound blockchain oracle. In the case it is preferred to take advantage
of a service that offers an endpoint, then the API key to interact with it becomes an asset
itself, as it is the way that allows to interact with the endpoint and establish the costs for
using it.
[RQ2.2] What are the threats to be taken into consideration?
It is safe to assume that the on-chain data is secure thanks to the security properties that
blockchains provide. At the same time, the security of the data of the off-chain data
source/destination is blockchain-agnostic, as it does not rely on blockchains themselves,
and the security of said systems is out of the scope of this work. There are two main
threats to be taken into consideration. The first one considers that if you are using an
oracle service or a third-party endpoint, such as Provable or Infura, you need to trust and
ensure that said service is providing the right information, and that it is not providing
false information. If instead, you are using a custom-made oracle, then you need to

57

ensure that nobody can send transactions to the smart contract of the oracle that is being
used, otherwise, anyone can send false information. If you are using your own endpoint,
then you need to maintain an Ethereum node and the threat against it is denial of service,
as a single Ethereum node ultimately acts as a server that can be attacked and overrun by
a very large amount of requests.
Especially in the case of someone using a decentralized oracle as if it were a centralized
one, additional threats to be considered are related to the reputation of the decentralized
oracle nodes that one chooses to use and their respective costs. As costs fluctuate over
time, one may need to consider the case of your smart contract not working due to an
increase in costs. Another threat is that of the oracle node denying service, either due to
it being deprecated or somehow attacked or being overwhelmed with requests. And the
last threat to be considered is the case of a job that is not performed by many different
oracle nodes and is thus subject to the threat of not having any kind of oracle node that is
able to perform it thus rendering the smart contract unusable.
[RQ2.3] What are the countermeasures to be implemented?
One important detail to be taken into consideration is whether the oracle and the off-
chain data source/destination are designed separately or jointly. If they are designed
jointly, one can take advantage of the blockchain properties to guarantee the integrity and
authenticity of data. The reason is that the off-chain component can have a blockchain
address used to interact with the oracle on the blockchain, which will also have a specific
address. This means that one can program the oracle smart contract to only interact with
a specific address, thus guaranteeing authenticity through the use of one specific address
and integrity via the blockchain transactions.
If the blockchain and the off-chain component are designed separately, which is the
case we have analyzed in our work, the situation is more complicated, as one needs to
have a component scraping the data and feeding it to the blockchain oracle in a secure
manner, and one cannot simply rely on the blockchain properties. A solution to this is
to implement some authenticity proofs in a way that is cryptographically secure and
sound. There is though a big limitation in the smart contracts, at least Ethereum based,
as the computation and verification of cryptographically secure authenticity proofs are
too computationally heavy to be performed on-chain. Thus one needs to perform said
verification off-chain, which can be a big limitation for smart contracts, especially real-
time ones. A possible solution could be to use a custom trusted smart contract, but the
implementation becomes more complicated as one cannot take advantage of ready-made
technologies such as Provable.
In the case of Chainlink, a possible solution could be to run your own oracle node.
This results in higher costs, but it would be able to have total control over your node,
thus reducing or removing completely some risks, especially the ones related to node
deprecation and cost increases for requests. You would also be able to mitigate denial
of service threats by making the oracle node only able to reply to requests coming from

58

your own smart contracts. Another possible solution is to design the smart contract so
that it is possible to change the oracle node and job that it interacts with, possibly adding
a system to choose between multiple of them. It is also paramount to choose a job that
is performed by multiple oracle nodes, as it would decrease the possibility of it being
deprecated from multiple nodes and ultimately not having any node able to run it.
In the case of our outbound oracle, instead, our solution relies on the fact that data
integrity is provided by the blockchain itself and we trust our chosen endpoint to provide
true information. If we own the endpoint, then we can reasonably trust it to provide
truthful information, otherwise, the countermeasure to be taken in most situations is
to use multiple endpoints and check the information that they all provide so that the
probability of all endpoints providing false information is decreased and eventually
becomes negligible. Another countermeasure, which is the one we proposed in our work,
relies on the design of both the original data source and the inbound oracle that fetches
its data. The original data source provides a digital signature to check the validity of
the data off-chain so that any data consumer can check the validity without worrying
about who or what relayed the data. This removes the need for trust in oracles and can
be closer to the original philosophy of blockchain, but it cannot be applied to all cases as
it requires the data source to provide these digital signatures.

4.6 Limitations
The main limitation of this chapter is the choice of the scenario. The chosen scenario is
that of a centralized source that feeds the oracle publicly available information. This im-
mediately removes a constraint of confidentiality from the environment and the necessity
to manage certificates or a public key infrastructure. Furthermore, the simplicity of the
Proof of Concept may not be enough to picture a system where one might have multiple
data sources, or multiple different types of data coming from the same source.

Furthermore, the smart contract were designed to only have a couple of functions
and state variables. The functions update the data and the state variables keep track of
the latest values that were given to the oracle and the related authenticity proof. The
limited set of allowed interactions with the oracle does not correctly picture a condition
where one might have a more sophisticated design or requirements. We limited the
use of Chainlink to only a single node, and thus we are not taking advantage of the
decentralized properties of the oracle. We are using Chainlink as if it was a centralized
oracle, which it was not really intended for. This means that many of the aspects involved
in using Chainlink - the choice of reputable nodes, the choice of the right job, or the
implementation of one - are not taken into consideration, unlike a real-life scenario.

Another threat to validity is related to the chosen technologies, as this research only
focused on a few very specific technologies, and thus all of the technologies that were
excluded from the analysis are not considered. It is also important to remember that the
work focused on using Ethereum technologies and established solutions or techniques

59

that are common for other public blockchains, thus the discussion may not apply trivially
to permissioned or private blockchains, given the differences that exist between the
different kinds of blockchains.

Our outbound oracle only consisted in a web application that possesses a web3
interface, thus it does not take into consideration many other aspects related to web3
applications, in particular decentralization and data access. Our outbound oracle is also
limited by our design, in the sense that it is intended to work in tandem with our inbound
oracles/smart contracts. This means that our approach is really applicable as long as one
has access to a description of the smart contract it needs to interact with.

60

5 Evaluation of the Models
In this section of our work, we will be addressing the third and final research question
[RQ3] How can one compare the two blockchain oracles?. In this case, the blockchain
oracles are the ones discussed in the previous Implementation section. In order to reply
to the research question, we need to divide it into three subquestions:

• [RQ3.1] What are the evaluation criteria to be considered?

• [RQ3.2] How well does each oracle satisfy the evaluation criteria?

• [RQ3.3] How do the oracles compare to each other?

This chapter is the evaluation phase of our design science approach. This chapter
will be organized into multiple subsections, each one addressing one question. The
first subsection will motivate why blockchain oracles are needed for our scenario. The
second subsection will present the chosen evaluation criteria; the third one will evaluate
the Provable oracle while the fourth one will evaluate the TownCrier oracle. Then, the
following subsection will compare the evaluations of the two oracles. Finally, the last
subsection will reply to the research questions.

5.1 Motivating Blockchain Oracles
In our simple scenario, we have a public data source that is accessible to anyone on the
internet. It is supposed to simulate a common situation, such as the one of a news media
company website, a weather website, or even many others, such as a trading platform
providing prices of publicly traded financial products and assets. There are many more
similar situations that fit into this category that we are not listing here. In many cases,
one might have smart contracts that need data input from one of these sources to operate.
Some decentralized oracles such as Augur [Aug] or Tellor [Tel] provide examples in
their whitepapers. These two oracles are mostly focused on the betting market, even
for real-life events such as elections, sports matches, and other more exotic bets such as
betting on a movie’s box office result. Bets in a blockchain environment can be regulated
as a smart contract: two or more people deposit money to the contract address which
listens to the oracle. Once the oracle provides the result of the bet, the smart contract
pays out the winner.

Aside from betting, another common issue in modern times is that of online misinfor-
mation and disinformation, and while this topic is vast and of difficult resolution, one
common practice is that of Stealth editing [Lee18], performed even by reputable and
trusted sources such as The New York Times or The Washington Post. Stealth Editing
is the practice of editing articles, either their content, the headline, or both, without
mentioning how the article was modified, why it was modified, and without keeping

61

track of older versions. One possible way to combat this practice is to archive articles on
the blockchain since the blockchain is immutable and it would be possible to store all
versions of the same article. This would also make it impossible for a media company to
repudiate an article they published without acknowledging it and issuing corrections. In
order to store the articles on the blockchain, it is imperative to use blockchain oracles,
as they are the interface between the off-chain and on-chain worlds. If articles or other
publicly available data is stored on the blockchain, then one needs an outbound oracle in
order to retrieve all of the on-chain information. Our discussion about articles can be
applied to other pieces of information, such as weather and scientific papers.

The same scenario can be extended to non-publicly available data if one were to
encrypt the data before submitting it to the oracle. But in this case, the security con-
siderations do not differ much from our case, as the main difference is that the data is
encrypted, and thus it would need to be decrypted before it can be accessed. In this case,
in our SLR we have seen how the common practice is to use asymmetric cryptography,
and thus the additional security considerations are related to the safe storage of the key
pair as well as the choice of a cryptographically secure algorithm.

Thus, it is now evident that by using blockchain oracles one can improve the public
trust in publicly available information by allowing for safe storage and versioning, as well
as allowing the public to use the data safely on smart contract applications. Otherwise,
websites can easily repudiate the data they submitted and the smart contracts would be
very limited in scope.

5.2 Evaluation Criteria
The evaluation criteria rely on the scenario being considered. For example, in the case
of someone implementing an access control mechanism, the goals of such a system are
confidentiality and integrity of data as well as the integrity of the access control lists,
as one only wants the admin to modify them. In the case of insurance in the healthcare
domain, there are different concerns, such as the integrity and confidentiality of patient
data, as well as the funds being transferred between insurance companies and patients.

We remind that, using the results of our SLR (Chapter 2), the main threats that we
need to take into account can be grouped into three big categories: the first one is the
impersonation of the data source; the second one is data poisoning of the data being sent
to the blockchain or outside the blockchain; the third one is Denial of Service. In case we
have multiple data sources, such as in the case of decentralized networks like Chainlink
[Chaa] or ASKE [WLS+19], we have an additional threat which consists of the trusted
data source misbehaving. These threats need to always be considered when designing,
implementing, and evaluating blockchain oracles, and thus our evaluation criteria will be
based on them. But in order to have meaningful criteria, we need to first understand the
specificities of our use case.

For this work, we will be considering only our relatively simple case. We have a

62

Table 5. Evaluation criteria by group

Identifier Criterion Group
EV1 How is data integrity provided and satisfied? Security
EV2 How can an attacker impersonate the source of the

data?
Security

EV3 How can an attacker impersonate the oracle service? Security
EV4 How can a malicious web application repudiate data it

has submitted to the oracle?
Security

EV5 How many requests per unit of time can be satisfied? Performance
EV6 How much ether is spent to use the oracles? Performance
EV7 Are there any further limitations? General

Figure 4. Scenario graph presenting the use case implemented by our oracles

centralized data source (which is a web app) that sends data to the blockchain through an
oracle. We assume that the source of data is secure. There are three goals that need to
be satisfied: we want data integrity, as we do not want an attacker to be able to modify
the data being sent into the blockchain; we want to authenticate the source, as we do not
want an attacker to impersonate the source; finally, we want to measure the performances
of the oracle, as we want to be able to send data multiple times. With performance, in
this case, we measure by the gas cost and the number of requests that can be satisfied in
a determined unit of time. We do not need data confidentiality, as in our case the data
source has public data. The evaluation criteria are shown in Table 5.

We will group the evaluation criteria into three groups in order to better refer to them.
The groups are: Security ([EV1], [EV2], [EV3], [EV4]), Performance ([EV5], [EV6])
and General ([EV7]). They are divided into these categories as each category addresses
one major aspect of an oracle design and implementation. The first category is the one
that is the most important to our work, as it addresses the specific security properties
that we are focusing on. The second category addresses the performance aspect, which
cannot be excluded from a complete discussion of an oracle. The cost per request is
also considered as part of the performance aspect. Finally, the last category addresses
miscellaneous aspects that cannot be easily categorized together.

63

Figure 5. TLS Notary graph [TLS] adjusted for our scenario

5.3 Evaluation of Provable Oracle
In this section, each paragraph will address one evaluation criterion.

[EV1] How is data integrity provided and satisfied? The data integrity is provided
by using authenticity proofs. In particular, in our example we chose TLSNotary [TLS],
the proof is given by creating a transcript of the TLS communication between the source
of data and the pair Notary-Provable. Figure 3 shows at a glance how the TLSNotary
authenticity proof is generated. The TLSNotary [TLS] proof makes use of the TLS
properties in order to generate the proof. The proof is generated during the execution of
a standard TLS protocol between a server and a client. The peculiarity is that the TLS
secret share of the client is divided into two parts, one is owned by the client itself and
the other is owned by the Notary. The authenticity proof is a record of the complete
TLS protocol, which can only be completed if the client and the Notary cooperate, as
neither of them holds the entire private TLS key. The assumption is that the Notary is
trustworthy, or at least is considered so by the Verifier, who will verify the obtained
authenticity proof. This puts the trust in the Notary. This problem can be mitigated by
using multiple Notaries and obtaining multiple proofs, or even running your own Notary.

[EV2] How can an attacker impersonate the source of the data? In order for an
attacker to impersonate the source of data, they would need to get the TLS private key of
the data source. Thus this aspect of security is strictly dependent on the security of the
TLS private key. Different data sources will adopt different security measures, so the
security is not easily measurable. The biggest vulnerability here is the human factor, as
humans can be socially engineered to give up secrets.

64

[EV3] How can an attacker impersonate the oracle service? In order for an
attacker to impersonate the Provable oracle service, he or she would need to have access
to the private key of the addresses that Provable uses to satisfy queries and requests from
the different smart contracts. We are in a situation similar to the previous one, where
security is not directly measurable, and the main vulnerability is the human factor.

[EV4] How can a malicious web application repudiate data it has submitted to
the oracle? A malicious web app in order to repudiate the data has two challenges to
overcome. The first one is that a web app does not know whether it is interacting with
a single TLS client or with a Notary-Provable pair, as the pair shares a private/public
key pair. In the case of public blockchain, it is possible for a malicious web app to
query the blockchain and learn whether it was queried by a smart contract or not. This
can only happen a posteriori; that is, the web app cannot learn it is being queried by
a Notary-Provable pair while it is communicating with it. If the web app were able to
discern whether it is interacting with a Notary-Provable proof, it would technically be
able to send fake information in order to generate a valid proof. Since we can assume
that the web app will find out about a proof only afterward, in order to repudiate the data
it would need to generate a new TLSNotary proof by getting access to the private/public
key shares of both the Provable client and the TLS Notary. Furthermore, once the proof
is generated and stored in the blockchain, it cannot be modified, thus in order to repudiate
the data, the web app would need to generate the same exact proof, but with different
data and without having access to the secrets managed by the TLS Notary-Provable pair.
The difficulty would also increase if multiple authenticity proofs are generated, either by
the same contract (as TLSNotary [TLS] recommends) or by multiple contracts querying
the same information.

[EV5] How many requests per unit of time can be satisfied? The number of
requests per time that can be satisfied is dependent on the amount of Ethereum transac-
tions that can be sent. Provable [Pro] provides two main ways to send Provable queries
and they both rely on two strategies: either calling the smart contract multiple times or
making recursive requests. In the first case, the upper limit of the request throughput will
be dependent on how many Ethereum transactions are being performed by the network,
how congested it is, and the gas fee the contract is willing to pay. In the second case, the
throughput is dependent, as always, on gas fees and the congestion of the network, but
there is a further constraint: since the smart contract is sending a request to Provable
and waiting for a reply, we need at least two transactions per each request, one from the
smart contract and one from Provable. Thus in an ideal situation, there can only be one
query for every two Ethereum blocks mined. Furthermore, after testing, we discovered
that Provable only satisfies one query at a time. This means that, if the smart contract
makes one query and then generates a new one before receiving Provable’s response,
only the first query will be satisfied, and the second one will never receive a response.

[EV6] How much ether is spent to use the oracles? The Ethereum cost is made

65

up of two parts, which are both variable. The first one is the ether needed to pay for the
transaction fees in the Ethereum network, both for sending the request and receiving the
response. The other part is instead dependent on the fee that Provable requires for its
services. The first part is dependent on the network congestion and the second one is
dependent on Provable itself and how it chooses the pricing for its services [Pro]. In our
case, the cost is 0.05$ for querying a URL (0.01$) and a TLSNotary proof (0.04$).

[EV7] Are there any further limitations? An additional limitation of Provable is
that the verification of the authenticity proof is too resource expensive, whether using TL-
SNotary or other proof types. Thus the smart contract cannot verify the proof it receives,
and they need to be stored on-chain and externally verified in some other way. Provable
provides some tools available at this URL: https://github.com/provable-things/
proof-verification-tool with guides on how to perform the verification. The chal-
lenge now is to verify the proof from the smart contract automatically, as the manual
verification is relatively simple and the retrieval of the proof from the blockchain is as
well. Furthermore, since the proof is stored on-chain, one can assume that the integrity
of the proof is satisfied as it is provided by the chain.

Another limitation of Provable is related to the query function. As it can only
return strings as results. Also, parsing the result strings is usually a task that is too
computationally heavy for a smart contract, thus in order to get the information that the
contract need there are two possible solutions: either perform one query and store the
result as is, including the pieces of data that are not needed and thus incurring in higher
storage costs; or perform multiple queries where we make use of the Provable parser,
thus reducing the storage costs but increasing the number of transactions needed. In case
we need to also store the proofs, a mechanism needs to be put in place to store them
too. Since the proof stores the communications between the Provable-Notary pair and
the Web source, saving multiple proofs will lead to an increase in storage costs. But the
proofs will always be attesting to the authenticity of similar communications since the
messages from the web source will always include the same data. Thus there can be
differences in the cost-effectiveness of the two strategies in case the excess data to be
stored is bigger than storing multiple authenticity proofs, but in our use case, it was more
cost-efficient to store the entirety of the data received from the API and just one proof.

Addressing our scenario

The Provable oracle addresses many of the aspects of our scenario. We recommend
revising Section 5.1 to see a description of our scenario. The Provable oracle can be used
as a general way to create an archive of articles or other pieces of data. In our simple
smart contract, we simply store the content of the entire article in a variable as is, with
no processing. Every time a new article is submitted to the oracle, the smart contract
replaces the old article with the new one. Since Provable provides query identifiers for
each query, by using them it would be possible to develop more sophisticated storage

66

https://github.com/provable-things/proof-verification-tool
https://github.com/provable-things/proof-verification-tool

techniques that allow storing all of the articles and even multiple versions of the same
article. By pairing the storage of articles with the respective authenticity proofs, no
source would be able to repudiate the articles or any other piece of information. This
would address the Stealth editing practice and increase public trust.

Given that the Provable oracle does not provide any sort of processing of the data
it obtains, the data obtained by the smart contract may not be ready to be used as is
immediately. There are two cases: the data obtained from the Data source API does not
need any parsing or processing, or it does. In the first case, then the smart contract can
utilize the data, but this situation requires the data source API to be designed as such,
which will very rarely be the case. In the second, more common, case, the data will need
to be processed or parsed. This operation cannot be usually performed on-chain, and
thus one would need to be performed so off-chain. In order to perform the off-chain
computations, one needs other oracles, both outbound to send the data to be processed,
and inbound to send back the processed data. This raises the complexity level but may
be needed depending on the scenario. In particular, it would be needed if the data source
provides multiple pieces of data and we only need one for the operation of the smart
contract. An example could be a weather station that provides data from multiple sensors
such as temperature, humidity, wind direction and speed, and more, but the smart contract
only needs to know the temperature. In case we are storing articles, then we may not
need to process data as we would be storing the article in its entirety.

The final consideration is related to the validity of the authenticity proof from
a legal standpoint. While the cryptographic primitives make the authenticity proofs
cryptographically secure, in Provable’s case they are generated by a Notary chosen
by Provable and not by the data source, thus unless the authenticity proofs are legally
recognized, there could be legal implications in using them, and claiming that a website
has indeed repudiated some data or an article. The legal framework of oracles and
cryptographic proofs in general is a novel field and is outside the scope of this work.

5.4 Evaluation of Chainlink Oracle
In this section, each paragraph will address one evaluation criterion.

[EV1] How is data integrity provided and satisfied? The Chainlink oracle network
does not provide data integrity. As Chainlink is a network of oracle nodes, it provides
more flexibility in the design of the smart contract that interacts with it. Thus while
data integrity can not be provided by a single oracle node, Chainlink offers a reputation
system and the possibility of interacting with multiple oracle nodes in order to settle
for the right and truthful information. Thus we can consider that the network properties
provide data integrity as long as multiple nodes are being used. Another solution is to run
our own node that we can trust; in this case, data integrity is provided by the blockchain
itself as the data will be sent through blockchain transactions, which by our assumptions
are secure and have their integrity satisfied. Since our node is trusted, we do not need

67

to have authenticity proof. In the case that one uses authenticity proofs through digital
signatures at the data source layer, he or she would be using the Chainlink network as if
it were a centralized oracle, with the data integrity being provided by the data source.

[EV2] How can an attacker impersonate the source of the data? In the case of
Chainlink, an attacker can only be present at the oracle node layer. It can either be acting
as a Man-In-The-Middle (MITM) between the oracle node and the API and replace the
information being sent from the API to the node, or the attacker can be the oracle node
itself. In the MITM case, the use of HTTPS and multiple nodes is able to mitigate the
occurrence of this attack. In the latter case, the oracle node is the source of the data that
will be given to the smart contract, and thus can simply provide false data at this stage.
If the oracle node is assumed to provide truthful data than an attacker would need to
gain control of it in order to make it misbehave, as the oracle node has an interface that
interacts directly with the blockchain and possesses its own blockchain key pair. If the
attacker gains control of this key pair, then it can easily impersonate the source of data.

[EV3] How can an attacker impersonate the oracle service? An attacker can
impersonate the oracle service by either taking over the oracle node that is being used
by the oracle or by getting access to the private key the oracle node uses to sign its
transactions. In the first case, the security depends on the practices and measures taken
by the maintainers of the node; in the second case, it depends on how the private key is
stored, as Chainlink relies on the Ethereum blockchain which uses 256-bit keys.

[EV4] How can a malicious web application repudiate data it has submitted to
the oracle? In case someone uses Chainlink as intended, the web app can repudiate the
data easily, as Chainlink does not provide any way to bind the data to its source. The web
app just needs to delete the entry in its database. If we are using our own oracle node,
then we would need to design some functionality to provide non-repudiation, otherwise,
the web app could delete the database entry all the same. In the case of our suggested
approach, instead, data non-repudiation is provided through the use of digital signatures.
Assuming that a private key stays indeed private, the only way that one can generate a
digital signature is if they own it. Thus, even if the web app were to delete some data
entries related to some of its posts, the smart contract keeps the signature. As long as the
web app does not change the key pair and keeps the same public key, it is possible to
verify that a signature was generated using the private key of the web app, even though
the web app might delete the related data entry. Using our setup with Render.com and
Node.js, there are two possible ways that the key can be changed so that the web app
can repudiate the data it has sent. The first one is by updating and redeploying the entire
website. In this case, with our measurements, it takes 5 minutes for our web app which
is a minimal proof of concept. This means that in this case the repudiation cannot be
performed in real time. The second way is for the app to already have multiple key pairs
deployed and just changing the key that is used by changing a state variable; in this case,
the attack could be performed in real-time. In a real-life scenario, especially for news

68

companies that have high audiences, it is safe to assume that many users would notice a
change in the public key, thus the attack would not be successful. Furthermore, in our
proof of concept, the public key is just shown as a textual string, whereas in a real-life
scenario the web app would show a certificate signed by a CA, and it would be expensive
and traceable for the web app to obtain multiple certificates for different public keys.

[EV5] How many requests per unit of time can be satisfied? The number of
requests per time that can be satisfied is again dependent on the amount of Ethereum
transactions that can be sent, as in order to activate the oracle one needs to perform a
transaction. Furthermore, one needs to take into account additional transactions that
need to be made to fund the smart contract with enough LINK tokens to provide funding
to pay for the queries. In addition to that, with our approach, we query an oracle node
recursively three times. Since for each query, we need at least two transactions, one
to query the oracle and one to get the reply, we need at least six transactions in order
to perform a full update of the smart contract state. In the end, we need at least seven
Ethereum transactions, one to call the contract and six to update its state, to update the
smart contract state. To these, one needs to add at least two overhead transactions, one to
deploy the contract and one to fund it. As the smart contract consumes its LINK, one
would need to perform other transactions to fund it again. In any case, the upper limit of
the throughput will be dependent on the congestion of the Ethereum network, and given
the high number of transactions required, this approach is not suited for low-latency
purposes, but it is suitable in situations where we can allow for some latency to pass. In
addition to that, if one calls the smart contract while it is being updated by the different
recursive calls, the smart contract will behave in unexpected ways and could be broken;
thus in a production environment, this contract should only be called in a safe manner.
The unexpected behavior happens because if two requests are made to Chainlink at the
same time, then Chainlink will attempt to satisfy both of them.

[EV6] How much ether is spent to use the oracles? Ether is only spent when
deploying the contract, when funding it with LINK tokens, and when calling it. The
amount of Ether needed for the operation of the contract is related only to the gas
required to send small transactions that carry relatively light information, in particular,
a transaction of LINK tokens between two addresses and the information to call the
contract. In the testnet, each oracle request requires 0.1 LINK.

[EV7] Are there any further limitations? There are further limitations to the
Chainlink oracle. In particular, there is an additional asset to be consumed, which is
LINK tokens. LINK tokens on the mainnet have a cost in real currency and need to
be purchased, earned, or acquired in some way in order to interact with the Chainlink
network. Another limitation is that when interacting with the off-chain world, we are
limited by the work that existing Chainlink jobs can perform. This means that we either
have to increase our costs by designing our own oracle node and job or design our smart
contracts to leverage existing jobs in an efficient way, which may mean that we incur

69

a higher number of transactions and thus higher nodes. Finally, we are limited by the
job we are using. In our case, the job we are using does not allow us to store a JSON
object as is, and we forcibly need to parse it and obtain the information we require, which
means that we need to perform more transactions and incur a higher cost.

Addressing our scenario

The Chainlink oracle addresses many of the aspects of our scenario. We recommend
revising Section 5.1 to see a description of our scenario. The Chainlink oracle can be
used as a general way to create an archive of articles or other pieces of data. Our simple
smart contract stores the entire information of an article but it is able to parse it into three
variables: title, description (or content), and digital signatures. This means that with a
similar approach, the smart contract could store and parse multiple pieces of information
coming from a data source, which would be useful in case the data source is a weather
station providing multiple data points and we only really need one or two of them. The
on-chain parsing reduces the complexity level compared to the Provable oracle as we
do not have any need to create a more complex system in order to parse data off-chain.
It is important to remind though that the Chainlink oracle relies on the jobs that can be
performed by different oracle nodes, and thus it may be needed to implement a custom
job or even run a Chainlink oracle should the processing of incoming information require
complex operations that are not already offered by already running Chainlink nodes.

Since the data is already parsed, it means that smart contracts that use it can operate
without the need for additional off-chain processing. It also means that the storage of
articles is of easier implementation, as that information can be more easily and efficiently
paired up with the Chainlink request identifier that is associated with each request. The
Chainlink oracle does not provide natively any sort of authenticity proofs, and thus with
our implementation, it is limited in its use by the websites that digitally sign their data
on their own. Since the signatures are generated by the data source itself, the legal
implications of this oracle may be different compared to the Provable case, but again,
the legal framework for blockchain and digital signatures is still in its infancy in most
countries in the world.

5.5 Comparison Between Provable and Chainlink
Chainlink and Provable are different technologies. Furthermore, Chainlink can be
implemented in three ways, including the one we propose. Table 5 is a summary that
compares these two oracles at a glance.

70

5.5.1 Security

The first difference between the two is that Provable offers data integrity through authen-
ticity proofs. It is possible to choose the type of authenticity proof that one prefers, but
they all work in a similar way. Chainlink does not offer data integrity instead. Provable
and Chainlink are similar when it comes to attackers. In particular, if the attacker wants
to impersonate the oracle service, they would need to obtain the private key used to sign
the blockchain transactions between the oracle smart contract and the consumer smart
contract that queries the oracle. If the attacker instead wants to impersonate the source
of data, both technologies rely on TLS and HTTPS to provide protection against that
threat. It needs to be mentioned, though, that since Chainlink is decentralized, a node
can misbehave and the node itself can be the attacker, which means that the attacker can
impersonate the source of data if it controls the queried oracle node. This cannot happen
in the case of Provable as one always interacts with the same Provable interface. In the
case of Chainlink, one can either interact with always the same oracle nodes, or change
them in function of their reputation, costs, or other considerations the developers of the
smart contracts might have.

This discussion leads us to compare how an attacker might impersonate the oracle
services. This is actually a similarity between the two, as in both cases an attacker can be
successful in impersonating an oracle only if it has access to the private key used to sign
the transactions between the oracle and the consumer smart contract. In Chainlink, unless
some special measures are taken similar to our proposed solution, there are no ways to
allow for non-repudiation of data that is submitted to the oracle. Our solution makes
it impossible for a web app to repudiate data, but it needs the web app to generate the
authenticity proofs by itself. Provable instead through the use of TLSNotary authenticity
proofs is able to provide non-repudiation of data.

5.5.2 Performance

The number of requests per unit of time that can be performed in a unit of time depends in
both cases on the Ethereum network congestion. In our scenario, in all cases, Provable has
a higher throughput, as it requires fewer transactions to satisfy a single query. Provable
only requires two transactions, whereas Chainlink requires at least seven using our own
proposed solution. If one runs their own oracle node, they would be able to create a job
that would perform the request in less than seven nodes, but at the very least it would be
two transactions, one to request data and one to fulfill the request, with an additional one
when needed to fund the consumer smart contract. It is also important to note that, due
to limitations in the Provable API, Provable can only provide strings as results of queries
and they cannot be parsed. An advantage of Chainlink, though, especially if one chooses
a job that can be performed by multiple different oracle nodes, is that it is not limited
by a single service. This means that if Provable is overwhelmed with requests, it may

71

not be able to fulfill them, whereas in the case of Chainlink, the requests are made to
many different oracle nodes and in case a node does not fulfill the request, one can query
another node. The Ether that is spent in both cases is similar, but it is higher for Provable,
especially when demanding authenticity proofs. This is due to the fact that Provable
queries are paid for in Ether, whereas Chainlink queries are paid for in LINK tokens.

5.5.3 General

The main difference is that Provable is a centralized oracle service, whereas Chainlink is
a decentralized oracle service or network. This means that when we are interacting with
Provable, we are always interacting with it in the same way and with the same parameters.
With Chainlink we have more flexibility as when developing a smart contract, we can
choose to interact with different oracle nodes.

Finally, both Chainlink and Provable are limited in similar ways by the computational
resources available to smart contracts when it comes to the verification of authenticity
proofs, digital signatures, and the limitations of their APIs. We argue that Provable is
more limited, as it offers one API as is. In Chainlink, instead, one can change the oracle
nodes their smart contract is interacting with and can even create their own oracle node
with the job specifications and custom API. This means that we have more flexibility
with Chainlink. Furthermore, Provable is a centralized service whereas Chainlink is a
network. Provable is offered by a company, which means that it can be shut down more
easily, in case the company behind Provable wants to deprecate it. It also means that if
Provable starts misbehaving, one needs to make entirely new smart contracts. Chainlink
is instead a network, and should the Chainlink foundation cease to exist, the network can
still continue to function and develop as the protocol would still continue to exist. The
same reasoning applies to whether a specific oracle node or more nodes are taken offline.
And finally, Chainlink always offers a developer the possibility to make their own oracle
node, which is a great advantage over Provable.

After having seen how the two different inbound oracles operate, we can have a
discussion about the use cases that they are both better suited. As our analysis had a
specific use case in mind, there are many similarities between the use cases, but there
are some differences as well that are worth noting. The Provable oracle is suited for a
situation where we have an external data source and we wish to import its data into the
blockchain. It is better suited when we do not possess the data source, as Provable is
able to generate authenticity proofs natively that can be later verified off-chain. Provable,
though, is only able to return strings and is not able to parse them, thus it should be
used either when the API that Provable is interacting with either returns simple pieces
of information or when we need a full object that does not need any parsing. Examples
of simple pieces of information are the price for an exchange pair between currencies;
data points for weather stations such as temperature or humidity; dates or numbers and
other similar situations. The other case is explained by our experiment, as our data

72

Table 6. Comparison between Provable and Chainlink oracles

Criteria Data integrity Data source
impersonation

Oracle service
impersonation

Data repudia-
tion

Requests per unit
of time

Ether spent Further limita-
tions

Provable Native authen-
ticity proofs

Get TLS pri-
vate key of
data source

Get
blockchain
private key of
oracle service

Get shared
private key for
TLSNotary
proof

Dependent on
Ethereum net-
work congestion;
1 request per two
blocks

Fees for 2
transactions +
Provable fee

Centralized
third-party oracle;
query func-
tion limited in
functionality; au-
thenticity proofs
to be verified
off-chain

Chainlink No native data
integrity; pro-
posed from
data source

Get TLS pri-
vate key of
data source

Get
blockchain
private key of
oracle node

No native
counter-
measure;
proposed
through digi-
tal signatures

Dependent on
Ethereum net-
work congestion;
multiple blocks
per request

Fees for 1
Ethereum
transaction

LINK token spent
for oracle node
services; decen-
tralized network;
functionality
limited by oracle
node jobs

source returns a JSON object that contains all of the information needed to identify it, in
particular the title and the description. The main drawbacks related to Provable are two.
The first one is that the authenticity proofs can only be verified off-chain, thus Provable
is not suited in case we need our smart contract to operate automatically without any sort
of human input unless there is an additional trusted oracle that is set up so that it interacts
with the smart contract in order to provide a boolean value depending on whether the
authenticity proof is valid or not. This adds a difficulty layer and the need to run and
implement an oracle and possibly an Ethereum endpoint/node, thus removing most of
the advantages of using an oracle service such as Provable. The second main drawback
of Provable is that it is a fully centralized oracle service, thus it is maintained by a single
company that sets the prices and can go out of business. Thus, should Provable modify
its functionality, go out of business, or set prices that are higher than what the smart
contract is willing to pay, the entire system breaks down, mainly because the consumer
smart contract will not be able to be updated due to limitations in the blockchain.

The Chainlink oracle is again well suited for a situation in which we have an external
data source and we want to fetch its data into the blockchain. Chainlink does not provide
any kind of authenticity proof natively. This means that this oracle is well suited when
we own the data source and thus we can generate an authenticity proof or a digital
signature on it directly. This also applies to the case in which we do not own the data
source, but it still provides data authenticity and integrity through some other means.
The main drawback to digital signatures and authenticity proofs is that, as in the previous
case, these cryptographic objects are too computationally heavy to be verified on-chain,
therefore the verification is to be set up off-chain. A solution could be, as in the previous
case, to build an additional oracle with the purpose of verifying digital signatures and
authenticity proofs. Given the decentralized nature of Chainlink, though, one can make
use of different oracle nodes as long as they perform the same jobs, and market.link

73

market.link

provides a Chainlink node market with information about both the reputation of a node
(ie, how likely it is to provide true information) and the cost of its services. Should
one prefer, one can set up a Chainlink node [Chab] and a relative job to perform the
exact operation that is needed for the specific scenario. In this case, we have a trusted
oracle and thus we remove the need of having authenticity proofs or digital signatures.
A Chainlink node needs to interact with an Ethereum endpoint, but apart from that it
requires fewer resources than running an Ethereum node. The main drawback of this
approach is that we need to trust a specific endpoint to operate truthfully unless we wish
to build our own Ethereum node. Another advantage of having a proprietary Chainlink
node is that you do not need to pay for the services of the node, and if it is open to the rest
of the network other users may pay for your services, and thus it can become a source
of income. Since Chainlink is a decentralized network, another advantage is that if the
consumer smart contract is built to interact with multiple oracle nodes depending on costs
and reputation, as well as the jobs that they can perform, should a node lose its reputation
or go offline, there will be other nodes to fall back on, thus granting more resilience to the
consumer smart contract over time. And finally, for the same reason, Chainlink network
does not depend on a centralized institution that can go out of business, so even if the
Chainlink foundation ceases to exist, the network can still continue operating without it.
The last drawback of Chainlink is that the smart contract and its developers and users
need to interact with both Ether and Link tokens, as Ether is needed when a user interacts
with the smart contract and LINK is needed when the smart contract interacts with the
Chainlink network.

5.6 Evaluation of Outbound Oracle
In this section, each paragraph will address one evaluation criterion.

[EV1] How is data integrity provided and satisfied? The data integrity is provided
by the blockchain itself once the data is on-chain, as the blockchain leverages crypto-
graphic primitives to build a secure system. In our experiment, the original data source of
the data, though, is not the blockchain itself, but it is an off-chain data source. In general,
it is safe to assume that data integrity is provided by the blockchain once the data is
sent on-chain, but in our experiment, our original data source provides data integrity as
well through the use of digital signatures. This also provides data integrity in the case of
a malicious or faulty Ethereum endpoint or in the case an attacker was able to tamper
with the communications between the destination web app and the Ethereum endpoint.
Furthermore, the communication between the web server and the Ethereum endpoint
relies on HTTPS, which provides a level of both encryption and integrity.

[EV2] How can an attacker impersonate the source of the data? An attacker
cannot impersonate the source of data, as the source of data is the blockchain and in
order to be successful, the attacker would need to either modify on-chain data, which
we can consider impossible, or tamper with all HTTPS communications between the

74

endpoint (or endpoints, in case multiple are being used) and the web app. In order for an
attacker to provide false data, it would need to be the endpoint itself. Furthermore, our
technique makes it so that even if an endpoint is providing false data, its validity can still
be checked and thus an attacker cannot impersonate the source of data.

[EV3] How can an attacker impersonate the oracle service? An attacker cannot
impersonate the oracle service, as the oracle service is a web app that is controlled by the
owner and it limits its operation to query the blockchain.

[EV4] How can a malicious web application repudiate data it has submitted to
the oracle? In this case, this criterion does not apply, as it is meant for inbound oracles.

[EV5] How many requests per unit of time can be satisfied? The requests per unit
of time for this oracle are not limited by the blockchain properties but are limited by
the endpoint. This means that the number of requests per time is dependent only on the
endpoint’s capacity to serve a high number of requests. With the free tier option, we can
perform a maximum of 100 thousand requests per day. Through testing, the endpoint
was able to successfully satisfy up to 10 thousand requests per second.

[EV6] How much ether is spent to use the oracles? In this case, our oracle is not
performing any on-chain transaction, as its operation is limited to querying the data from
the blockchain. Thus there is no ether being spent for the operation of the oracle.

[EV7] Are there any further limitations? There are some further limitations. The
first one is the need to have an Ethereum endpoint/node in order for this oracle to operate.
This means higher costs, measured in sovereign currency such as euros or dollars for
the deployment and maintenance of the endpoint. An alternative is to use a third-party
endpoint, and in this case, the costs are related to the payment for the usage of the
third-party endpoint. In this case, the API key used to interact with the endpoint needs to
be stored safely, as otherwise it may be stolen and malicious individuals may perform
requests to the endpoint in our place. Finally, the last limitation is that the trust is shifted
from the oracle to the endpoint, which means that in order to fully trust the endpoint, one
needs to either run the endpoint themselves or use multiple endpoints; both alternatives
end up rising the costs. Our solution, which does not result in higher costs relies on the
fact that the data has a digital signature used to check its validity, and while this approach
may be useful, it requires that the original data source implements it, thus this solution
may not apply to all scenarios.

This outbound oracle is suited for a broad scenario in which we have an external
web application that interacts with a smart contract. It is designed to interact with a
smart contract that stores some data as variables publicly accessible and does not need to
make transactions or other operations. The security aspects are provided by the secure
communication between the web app and the Ethereum endpoint that happen under the
execution of a TLS protocol. Data integrity is provided by the blockchain itself. With
our novel approach, the security of our web app is made endpoint agnostic and does not
need a TLS protocol, as the data integrity and data authenticity are provided by the use of

75

digital signatures. This approach though is applicable only in case the original off-chain
data source already provides an authenticity proof or digital signatures, which is our
situation, or in case the smart contract obtains an authenticity proof in some other way,
as in the case of Provable. Given that there are no costs associated with the blockchain
network, this approach is suited in case the blockchain needs to be queried with high
frequency, with the limitation being the cost to interact with the endpoint, if the endpoint
is a third-party one, or in case the endpoint is a first-party one then the costs are related
to the running and maintenance of one or multiple Ethereum nodes. Finally, this oracle
will query the blockchain on its own any time it needs to update its information. This
means that it is not suited in case one needs an outbound oracle that updates only when
the queried smart contract is updated. In that case, we would need a different approach.

5.7 Answer to the Research Questions
The results of the work of this chapter allow us to answer the research questions that were
presented in the first section of this chapter. We will now be addressing these questions
one by one.
[RQ3.1] What are the evaluation criteria to be considered?
The evaluation criteria to be considered are shown in Section 5.1. In particular, they are
related to two broad categories: data security and costs. Thus the criteria focus on how
data integrity is provided and satisfied; how an attacker can impersonate the data source
or the oracle; how data can be repudiated once it is submitted to the blockchain; how
many requests per unit of time can be satisfied; how much ether is spent for the operation
of the oracle. The last criterion is broad and questions whether there are other further
limitations.
[RQ3.2] How well does each oracle satisfy the evaluation criteria?
We will reply to this question by talking about each oracle individually. The Provable
oracle satisfies successfully most of the criteria that were considered. In particular, it
natively provides data integrity through the use of cryptographically secure authenticity
proofs such as TLSNotary and leverages industry standard protocols such as HTTPS/TLS
and the blockchain public/private key cryptosystem to make sure that no attacker can
impersonate either the data source or the oracle service itself while guaranteeing that
the data source cannot repudiate the data it has submitted to the oracle. The cost of the
oracle is not fixed and varies and it is set up by the Provable company. The main problem
related to Provable is the query function that can only return strings and cannot parse
data, which means that the information that can be gotten from the data source cannot
easily be manipulated by the consumer smart contract.
The Chainlink oracle is a different story compared to Provable. It does satisfy successfully
many of the criteria that were considered, but the main one that is not satisfied is data
integrity, as Chainlink does not provide any way to check data integrity natively. We
proposed a technique to circumvent his problem, but it requires that the data source

76

implements it, which may not be possible in all situations. Chainlink relies on two tokens
to pay for its operations and each oracle node may require a different amount of LINK
token to be paid for its services. The impersonation of both the data source and the oracle
node is similar to the case of Provable, in the sense that an attacker would need to obtain
access to either the HTTPS/TLS private key or the blockchain private/public key pair.
The outbound oracle satisfies successfully all criteria, with the exception of data integrity.
It does not rely on blockchain transactions for its operations, leading to avoiding the use
of ether to pay for operations. The costs are instead dependent on the Ethereum endpoint
used, which can depend on the chosen solution, whether it is a third-party endpoint or
a first-party one. Data integrity is not provided at all, but in our proposed solution it is
provided thanks to the digital signatures that are generated off-chain before the data was
submitted on-chain. This solution satisfies the criteria, but it may not be applicable to
all situations. If the endpoint can be trusted, then the data integrity is provided by the
blockchain itself, and not by the oracle.
[RQ3.3] How do the oracles compare to each other?
In order to reply to this question, we will first compare the outbound oracle to the other
two, and then we will compare the last two.
The outbound oracle is different from the other ones because of the different functions
they perform. The outbound oracle queries the blockchain for data, whereas the inbound
oracles fetch the off-chain world for data to submit to the blockchain. The oracle problem
relates to the trust of the endpoint in the case of the outbound oracle, whereas it actually
relates to the oracle in the inbound case. In the outbound case, the oracle problem can be
removed entirely by relying on a first-party Ethereum node but it will result in higher
cost. Furthermore, the outbound oracle can be made entirely on the web without the need
for smart contracts, which means that it can be updated as time goes on and it does not
perform on-chain transactions. This is compared to the inbound oracles which essentially
are smart contracts, and thus they cannot be modified once deployed and rely on on-chain
transactions. The number of requests per time in both cases has an upper limit, which is
higher in the case of the outbound oracle as it is limited by its endpoint.
The inbound oracles have some similarities and some differences. The similarities
consist in the functionality; in the fact that they are smart contracts that perform on-chain
transactions and thus have a limit on the number of transactions they can perform that
depends on the blockchain network congestion; they both rely on an oracle service in
order to fetch off-chain data. Furthermore, in both cases, the validity of the data can be
checked either via authenticity proofs (Provable) or digital signatures (Chainlink), but
this operation cannot be performed on-chain and can only be performed off-chain. A
difference is that Provable is able to generate the authenticity proofs by itself for a fee,
whereas in the Chainlink case, the proof is generated off-chain by the data source itself,
but it is this way only because we implemented it so, otherwise, it would not happen.
While they both need ether to pay for their transaction fees, Provable requires further

77

payment for their operations in Ethereum and Chainlink requires further payment in
LINK, which is the Chainlink ERC-677 token for the Chainlink oracle nodes network.
Another similarity between the two oracles is that an attacker can impersonate the oracle
service or the data source only if they gain access to either the TLS private key (for the
data source) or the private key of the account that manages the Ethereum smart contracts.
There are further limitations that are different between the two oracles. In the case of
Provable, the query function used to fetch off-chain data only operates with strings and
the parsing operation is too computationally heavy to be performed on-chain. In the case
of Chainlink, it is important to keep in mind that Chainlink is a decentralized network of
oracle nodes and that each node can perform different jobs, thus it is important to choose
a reputable node as well as one that can perform the job that we need. The oracle node
that we use can only be interacted with through the jobs it can perform, and thus it may
happen that there is no job able to perform the exact operation we need, as it was in our
case, or that the only oracle node (or nodes) able to perform it is not reputable.

5.8 Lessons Learned
Implementing and evaluating three oracles gave us insight into the process. In particular,
given the limited computational availability of smart contracts, it is important to devise a
security strategy that leverages both off-chain and on-chain strengths. The best way to
mitigate data poisoning from an attacker is to use authenticity proofs or digital signatures
that leverage cryptographic primitives to attest to the truthfulness of data. The challenge
is that these proofs need to be verified off-chain, thus there is a need to have an Ethereum
node or endpoint to read the blockchain and verify the proofs. The main limitation of the
suggestion above is that oftentimes the data source does not provide authenticity proofs,
thus one needs to sue third-party solutions, such as Provable [Pro] and TLSNotary [TLS];
another solution is to instead deploy your own oracle or oracle node as in Chainlink
[Chad] and then hardcode the requests of the smart contract to it. The security of both the
smart contract and the oracle will then reside in the private keys used for managing the
contracts and the web servers. The best security practice here is to use dedicated hardware
modules to store cryptographic secrets. Man-in-the-middle attacks are a worrying threat,
but in our design, we mitigated it using TLS, which is also the industry standard according
to our SLR. MITM attacks can happen at any point during the communication of different
elements of our process, in particular between off-chain and on-chain ones. Finally,
the oracles we deployed are not suited for either real-time applications, as they require
multiple blocks to get all of their data; nor for high-frequency applications as the cost
per each request is moderately high, over 5 cents per request. These oracles are instead
useful for high-latency applications and for low-frequency ones.

78

5.9 Limitations
The main threat to validity is that this work only focused on a few very specific technolo-
gies with a very specific scenario in mind. Different scenarios and different technologies
may yield different results. Furthermore, we did not take into account the management of
identities or public key infrastructure, as confidentiality was not taken into account given
that the scenario envisioned the sharing of publicly available information. Another threat
to validity is that our research was not able to test the validity of authenticity proofs for
Provable. The reason is that the generation of authenticity proofs and their verification
is resource intensive, and thus the generation is available only on the mainnet. For this
reason, the authenticity proofs were not properly analyzed in this work. When it comes
to the Chainlink oracle, our evaluation only takes into account the case of a data source
generating its own digital signatures, and it implicitly assumes that the signatures are
verified off-chain. In our case, they are verified off-chain by our outbound oracle. The
evaluation of the Chainlink oracle is also limited by the centralized approach, as we are
not using Chainlink as intended.

79

6 Conclusion
In this work, we explored the security properties of blockchain oracles. We conducted a
systematic literature review in order to expand our knowledge on the topic and learn the
state of the art in both industry and academia when it comes to the security practices,
requirements, and scenarios of applications of blockchain oracles. We then chose one
of these scenarios and implemented it using different blockchain oracle technologies in
order to compare them. The scenario we chose was that of a media outlet that acts as a
public data source accessible to any party. The media company publishes articles that
need to be stored on the blockchain in order to take advantage of different blockchain
properties offered by it; in particular data integrity and immutability, which are needed
to combat the practice of stealth editing. We used different technologies, in particular
some blockchain-specific technologies such as oracle services, Ethereum endpoints, and
the Remix IDE. We used web development technologies to develop our data source and
destination, in particular Node.js and Javascript, along with Github and Render.com. We
implemented two pull-inbound blockchain oracles using Provable and Chainlink that
fetch data from a website and store it on-chain. Furthermore, we presented a novel way
of using the Chainlink technology in order to use a decentralized oracle without the need
of trusting any single node, as the data integrity is provided by the original data source
and can be verified off-chain. We also implemented an outbound blockchain oracle to
work in pairs with our inbound oracles, in particular with our Chainlink oracle, in order
to show a complete process, with a flow that starts off-chain, goes on-chain and finally
comes full circle off-chain again. We then defined several evaluation criteria for our
oracles. This provided us with information to objectively compare the oracles. The
strategy that we used can be applied to other pairs of oracles and to scenarios different
from the one we considered. We also used the same criteria to analyze our outbound
oracle in order to have a full understanding of our scenario. The last two sections of this
chapter answer the research questions that motivated this work and the last one provides
leads for future work.

6.1 Answer to Research Questions
This section reiterates our main research questions and objectives. Given the importance
that blockchain oracles already have and will have in the coming years, they play and
will play an ever-increasing role in many different scenarios as they are the interface
between the off-chain and on-chain worlds. Due to their critical aspect, our goals were
to first analyze whether and how the security requirements are satisfied by the different
blockchain oracles; then to identify threats against blockchain oracles and systems using
them in a more general sense; finally, the last goal was to develop technique and strategies
to protect against the threats and implement them. Our research questions were:

80

1. [RQ1] What is the current state of the art for securing blockchain oracles?

2. [RQ2] How to implement two widely used blockchain oracles securely?

3. [RQ3] How can one compare the two blockchain oracles?

6.1.1 Answer to [RQ1]

The answers to the four subquestions in Chapter 2 are the answer to the research question
[RQ1] What is the current state of the art for securing blockchain oracles?

In particular, we saw that there is not much research done on blockchain oracles from
a security point of view. Whenever security aspects are mentioned, their scope is limited
to a specific situation or use case. There are different techniques, either software-based or
hardware-based and they all rely on digital signatures. The main threat is data poisoning
by an attacker feeding false information to the blockchain; other threats are more specific
to the scenario the blockchain oracle was designed for. The main assets to be taken into
consideration are the normal operation of the smart contracts, the data in the blockchain,
and the normal execution of business operations, which depend on the scenario being
considered.

6.1.2 Answer to [RQ2]

We can now use the answers to our sub-research questions in Chapter 4 to answer the
main research question of this subject: [RQ2] How to implement two widely used
blockchain oracles securely?

In order to implement our blockchain oracles, we needed to first choose the tech-
nologies to use, which was done using the results of our SLR. After that, it is important
to define the assets to implement for the blockchain oracle. This operation requires
a complete understanding of the purpose why the oracle is being implemented, with
particular attention to the business logic of the system. The second step is to analyze what
threats are the most probable to happen to our system and the last one is to implement
countermeasures to mitigate them. The threats and the respective countermeasures are
dependent on both the scenario and the chosen technologies, thus we recommend reading
this chapter thoroughly to go in depth.

6.1.3 Answer to [RQ3]

We can now use the answers to our sub-research questions in Chapter 5 to answer
the main research question of this subject: [RQ3] How can one compare the two
blockchain oracles?

The way that we suggest comparing two blockchain oracles involves multiple steps.
The first one is to define evaluation criteria in order to have a definite way to establish

81

metrics and considerations that enable us to have a qualitative or even quantitative way
to compare the two oracles with each other. In Section 5.1 we propose the evaluation
criteria that we used for our analysis. The evaluation criteria that we chose are relatively
general and can be applied to a wide variety of use cases. We also did not assign different
weights to the criteria, but this is an operation that can be performed in case some criteria
are more important than others.

The second step is to gather information about the oracles and analyze them through
the eyes of the chosen evaluation criteria. In this way, it is possible to gather objective
information tailored to our scenario about our oracles. In our analysis, we analyzed two
inbound oracles and one outbound oracle. We recommend reading the relative Sections
5.2, 5.3, and 5.5 to have the full information about them.

The last step is the actual comparison between the oracles, which is performed by
seeing how differently and how similarly the many different oracles satisfy or do not
satisfy the different criteria. We recommend reading Section 5.4 and the reply to the
sub-research question [RQ3.3].

6.2 Future work
This section contains our final remarks as well as our consideration for future research
that should be conducted in this field.

This work shows that there are limitations in the current state-of-the-art research about
the security of blockchain oracles. A good starting point for future work is to reproduce
a similar analysis and implementation of oracles to what was conducted here, but taking
into account different scenarios, as our work only focused on one specific scenario. It
is also paramount to perform similar analyses on other blockchain frameworks, as our
work mostly focused on Ethereum, but most industries are or may be more interested
in similar analyses for permissioned or private blockchains. Our research focused on a
scenario where the off-chain data source provides publicly available data; there needs to
be research done on similar techniques but where the data is confidential and not publicly
available. In addition to that, our off-chain data destination was again a web app, but
this may not always be the case, as it can be any kind of device that is connected to the
internet depending on the situation at hand.

Our systematic literature review showed that the research is mostly focused on
performance improvements and economic incentives when using blockchain oracles or is
focused on decision algorithms for decentralized blockchain oracles. Future work should
also include a systematic literature review of decentralized blockchain oracles, as they
have different properties and characteristics compared to centralized ones. We made use
of a decentralized oracle network in our implementation phase, but the way we used it
was more similar to a centralized paradigm than a decentralized one, as we hardcoded the
query to one specific oracle node and did not implement any kind of decision algorithm
to choose among different oracle nodes.

82

Another future research lead is to find a systematic way of defining when a centralized
oracle is preferred over a decentralized one and vice versa, especially for the scenarios
that are the most common in the industry, such as supply chain and healthcare. We
have seen that centralized oracles have some advantages and disadvantages during
the SLR, and we briefly discussed some differences with decentralized oracles in our
implementation phase. This aspect needs to be expanded upon for decentralized oracle
networks, and there needs to be a way to discern whether centralized oracles are still a
useful option given the existence of decentralized ones. In particular, if one can make a
decentralized oracle node and interact with it as if it was centralized, as we did in our
implementation work, then the question becomes to investigate the difference between
this approach and a fully centralized oracle.

Our work also showed that this field is still going through a period of high-velocity
innovation and development, and thus research written only a few years ago using certain
technologies may already be out of date, as in the case of the TownCrier oracle which
now is a deprecated project. Thus it is important for research to be conducted frequently
as long as the field continues to go through this rapid developmental phase. Furthermore,
it would be beneficial for any security research to focus on the more theoretic and
implementation-agnostic aspects so that the results can stay relevant for longer periods
of time and is not bound to a few very specific technologies.

Our work also proposed a novel approach to make use of a decentralized oracle
network to build secure oracles without the need to trust the different nodes. The approach
we showed is blockchain agnostic and can be applied to many different situations, as
long as the original data source provides authenticity proofs or digital signatures for the
data that is fetched. A future research lead is to replicate the same approach on other
blockchains and networks and to overcome the limitation that the data source needs to
provide an authenticity proof or a digital signature so that this approach can be applied
more broadly and easily with a less restrictive set of conditions.

83

References
[ABAQS+19] Hamda Al Breiki, Lamees Al Qassem, Khaled Salah, Muhammad Habib

Ur Rehman, and Davor Sevtinovic. Decentralized access control for iot
data using blockchain and trusted oracles. In 2019 IEEE International
Conference on Industrial Internet (ICII), pages 248–257, 2019.

[AHuRSS20] Hamda Albreiki, Muhammad Habib ur Rehman, Khaled Salah, and
Davor Svetinovic. Trustworthy blockchain oracles: Review, comparison,
and open research challenges. IEEE Access, PP:1–1, 01 2020.

[Aug] Augur homepage. Augur
https://augur.net/.

[BHP20] Benedikt Berger, Stefan Huber, and Simon Pfeifhofer. Oracleslink: An
architecture for secure oracle usage. In 2020 Second International
Conference on Blockchain Computing and Applications (BCCA), pages
66–72, 2020.

[BTC] Bitcoin whitepaper. Bitcoin: A Peer-to-Peer Electronic Cash System,
Nakamoto, S.
https://bitcoin.org/bitcoin.pdf.

[Cal20a] Giulio Caldarelli. Real-world blockchain applications under the lens of
the oracle problem. a systematic literature review. In 2020 IEEE
International Conference on Technology Management, Operations and
Decisions (ICTMOD), pages 1–6, 2020.

[Cal20b] Giulio Caldarelli. Understanding the blockchain oracle problem: A call
for action. Information, 11(11), 2020.

[Car20] Toni Caradonna. Blockchain and society. Informatik Spektrum,
43(1):40–52, Feb 2020.

[Chaa] Chainlink homepage. Chainlink
https://chain.link/.

[Chab] Running a Chainlink Node. Running a Chainlink Node. Chainlink
Foundation.
https://docs.chain.link/chainlink-nodes/v1/running-a-chainlink-node.

[Chac] Testnet Oracles. Chainlink
https://docs.chain.link/any-api/testnet-oracles/.

84

[Chad] What is a Chainlink node operator? Chainlink
https://blog.chain.link/what-is-a-chainlink-node-operator/.

[CYX21] Lili Chen, Rui Yuan, and Yubin Xia. Tora: A trusted blockchain oracle
based on a decentralized tee network. In 2021 IEEE International
Conference on Joint Cloud Computing (JCC), pages 28–33, 2021.

[CZW+22] Sheng Cao, Qian Zhang, Dongdong Wang, Peng Xiangli, and Xiaosong
Zhang. Hybrid smart contracts for privacy-preserving-aware insurance
compensation. In 2022 IEEE Wireless Communications and Networking
Conference (WCNC), page 1533–1538. IEEE Press, 2022.

[ERCa] ERC-20 token standard. Ethereum foundation, multiple authors
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/.

[ERCb] ERC-721 non-fungible token standard.
https://ethereum.org/en/developers/docs/standards/tokens/erc-721.

[ERCc] ERC677. Github, Ethereum community
https://github.com/ethereum/EIPs/issues/677.

[Etha] Ethereum Full Node Sync (Archive) Chart. Etherscan
https://etherscan.io/chartsync/chainarchive.

[Ethb] JSON-RPC API. JSON-RPC API
https://ethereum.org/en/developers/docs/apis/json-rpc/.

[ethc] Proof-of-stake (pos). Ethereum community
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/.

[FAB21] Asmae El Fezzazi, Amina Adadi, and Mohammed Berrada. Towards a
blockchain based intelligent and secure voting. In 2021 Fifth
International Conference On Intelligent Computing in Data Sciences
(ICDS), pages 1–8, 2021.

[HCL+22] Mingyuan Huang, Sheng Cao, Xiong Li, Ke Huang, and Xiaosong
Zhang. Defending data poisoning attack via trusted platform module and
blockchain oracle. In ICC 2022 - IEEE International Conference on
Communications, pages 1245–1250, 2022.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design science in information systems research. MIS Quarterly,
28(1):75–105, 2004.

[Inf] Infura Homepage. Infura https://www.infura.io/.

85

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing
systematic literature reviews in software engineering. 2, 01 2007.

[KSG+20] Petar Kochovski, Vlado Stankovski, Sandi Gec, Francescomaria
Faticanti, Marco Savi, Domenico Siracusa, and Seungwoo Kum. Smart
contracts for service-level agreements in edge-to-cloud computing.
Journal of Grid Computing, 18(4):673–690, Dec 2020.

[Lee18] Kalev Leetaru. Stealth Editing and Transparency: Why Archiving Fact
Checks Is Vital. RealClearPolitics, Jun 2018.

[Lev22] Olivier Levasseur. Model driven engineering of blockchain oracles,
master thesis, 2022.

[LXSY20] Sin Kuang Lo, Xiwei Xu, Mark Staples, and Lina Yao. Reliability
analysis for blockchain oracles. Computers & Electrical Engineering,
83:106582, 2020.

[MBY+20] Mohammad Moussa Madine, Ammar Ayman Battah, Ibrar Yaqoob,
Khaled Salah, Raja Jayaraman, Yousof Al-Hammadi, Sasa Pesic, and
Samer Ellahham. Blockchain for giving patients control over their
medical records. IEEE Access, 8:193102–193115, 2020.

[MCK19] Hajar Moudoud, Soumaya Cherkaoui, and Lyes Khoukhi. An iot
blockchain architecture using oracles and smart contracts: the use-case of
a food supply chain. In 2019 IEEE 30th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pages 1–6, 2019.

[MCK21] Hajar Moudoud, Soumaya Cherkaoui, and Lyes Khoukhi. Towards a
scalable and trustworthy blockchain: Iot use case. In ICC 2021 - IEEE
International Conference on Communications, pages 1–6, 2021.

[ORA] What is a blockchain oracle? What is a blockchain oracle?, Chainlink,
multiple authors
https://chain.link/education/blockchain-oracles.

[POS] MIT Technology Review. The Merge is here: Ethereum has switched to
proof of stake. Rebecca Ackermann
https://www.technologyreview.com/2022/09/15/1059520/the-merge-is-
here-ethereum-has-switched-to-proof-of-stake/.

[Pro] Official provable documentation. The documentation is available here :
https://docs.provable.xyz/.

86

[RGB] What is RGB? RGB organization, multiple authors
https://www.rgbfaq.com/faq/what-is-rgb.

[SHN22] Alia Al Sadawi, Mohamed S. Hassan, and Malick Ndiaye. On the
integration of blockchain with iot and the role of oracle in the combined
system: The full picture. IEEE Access, 10:92532–92558, 2022.

[SMA] Introduction to smart contract. Introduction to smart contracts, Ethereum
foundation, multiple authors
https://ethereum.org/en/developers/docs/smart-contracts/.

[SY22] Zhiming Song and Yimin Yu. The digital identity management system
model based on blockchain. In 2022 International Conference on
Blockchain Technology and Information Security (ICBCTIS), pages
131–137, 2022.

[Tel] Tellor. https://tellor.io.

[Tes] What are MainNet and TestNet: Key Crypto Development Stages.
Phemex
https://phemex.com/academy/what-are-mainnet-and-testnet.

[TLS] Tlsnotary website. https://tlsnotary.org/.

[Towa] Cornell’s Town Crier Acquired By Chainlink To Expand Decentralized
Oracle Network. Forbes
https://www.forbes.com/sites/darrynpollock/2018/11/01/cornells-town-
crier-acquired-by-chainlink-to-expand-decentralized-oracle-network/.

[Towb] Town crier documentation. https://www.town-crier.org/.

[Web] Web3.js. Web3.js. Ethereum Foundation, 2021.
https://web3js.readthedocs.io/.

[WLS+19] Shuai Wang, Hao Lu, Xingkai Sun, Yong Yuan, and Fei-Yue Wang. A
novel blockchain oracle implementation scheme based on application
specific knowledge engines. In 2019 IEEE International Conference on
Service Operations and Logistics, and Informatics (SOLI), pages
258–262, 2019.

[WP19] Austin K. Williams and Jack Peterson. Decentralized common
knowledge oracles. Ledger, 4, Dec. 2019.

87

[WZSK21] Christopher Wiraatmaja, Yuanyu Zhang, Masahiro Sasabe, and Shoji
Kasahara. Cost-efficient blockchain-based access control for the internet
of things. In 2021 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, 2021.

[ZKL+22] Yinjie Zhao, Xin Kang, Tieyan Li, Cheng-Kang Chu, and Haiguang
Wang. Toward trustworthy defi oracles: Past, present, and future. IEEE
Access, 10:60914–60928, 2022.

88

Appendix

I. Glossary

Blockchain
Smart-contract or smart contract
Cryptocurrency
BTC - Bitcoin ticker
Ether
ETH - Ethereum ticker
NFT - Non-fungible token
Off-chain
On-chain
Oracle
Centralized
Decentralized
Provable
TownCrier
TEE - Trusted Execution Environment
Oracle problem
PoW - Proof of Work
PoS - Proof of Stake
PBFT - Proof of Byzantine Fault Tolerance
IPFS - InterPlanetary File System
HLF - Hyperledger Fabric
IoT - Internet of Things
Decentralized storage
Token
Chainlink
Provable
Infura
Endpoint
Node
Node.js
Web3.js
Cryptography
Digital signatures
Authenticity proof

89

II. Code

Data source
app.js

% I m p o r t i n g a l l o f t h e modules t h a t a r e needed : Express , Mongoose ,
dotenv , Body P a r s e r , Cors and custom Routes module

c o n s t e x p r e s s = r e q u i r e (' e x p r e s s ')
c o n s t mongoose = r e q u i r e (' mongoose ')
r e q u i r e (' d o t en v / c o n f i g ')
c o n s t b o d y P a r s e r = r e q u i r e (' body − p a r s e r ')
c o n s t p o s t s R o u t e = r e q u i r e (' . / Rou tes / p o s t s ')
c o n s t c o r s = r e q u i r e (' c o r s ')

% c r e a t i n g t h e app t o add midd leware s
c o n s t app = e x p r e s s ()

% ad d i ng t h e f o l l o w i n g midd leware s : co r s , Body P a r s e r f o r JSON
o b j e c t s , custom Ro u te r f o r t h e / p o s t s p a t h

app . use (c o r s ())
app . use (b o d y P a r s e r . j s o n ())

app . use (' / p o s t s ' , p o s t s R o u t e)

% d e f i n i n g r e s p o n s e f o r HTTP GET / r e q u e s t
app . g e t (' / ' , (req , r e s) =>

r e s . send ("We a r e on home \ n P u b l i c key i s : \ n "+ p r o c e s s . env .
PUBLIC_KEY)

)

% c o n n e c t i n g web app t o t h e d a t a b a s e
mongoose . s e t (' s t r i c t Q u e r y ' , f a l s e)
t r y {

mongoose . c o n n e c t (
p r o c e s s . env . DB_CONNECTION,

() => c o n s o l e . l o g (' c o n n e c t e d t o db '))
} c a t c h (e) {

c o n s o l e . l o g (e)
}

% open ing p o r t t o be l i s t e n e d t o
c o n s t PORT = p r o c e s s . env . PORT | | 3000
app . l i s t e n (PORT, () => {

c o n s o l e . l o g (` s e r v e r s t a r t e d on p o r t ${PORT} `)
})

90

Listing 4. app.js is the main file of our data source

routes/posts.js

% i m p o r t i n g t h e r e q u i r e d modules : E x p r e s s and i t s R ou te r o b j e c t , t h e
custom P o s t model t o i n t e r a c t w i th t h e d a t a b a s e , t h e c r y p t o g r a p h y
module t o g e n e r a t e d i g i t a l s i g n a t u r e s and t h e do t e nv module t o
i n t e r a c t w i th t h e e x e c u t i o n e n v i r o n m e n t

c o n s t e x p r e s s = r e q u i r e (' e x p r e s s ')
c o n s t r o u t e r = e x p r e s s . Rou t e r () ;
c o n s t P o s t = r e q u i r e (' . . / models / P o s t ')
c o n s t c r y p t o = r e q u i r e (' c r y p t o ')
r e q u i r e (' d o t en v / c o n f i g ')

% d e f i n i n g our c r y p t o g r a p h i c p a r a m e t e r s
c o n s t p r i v a t e _ K e y = p r o c e s s . env . PRIVATE_KEY
c o n s t s i g n i n g _ a l g o r i t h m = ' sha256 '
c o n s t f o r m a t _ s t r i n g = ' hex '
c o n s t p u b l i c _ k e y = p r o c e s s . env . PUBLIC_KEY

% t h i s f u n c t i o n g e t s a l l p o s t s t h a t a r e p r e s e n t i n t h e d a t a b a s e
r o u t e r . g e t (' / ' , a sync (req , r e s) => {

t r y {
c o n s t p o s t s = a w a i t P o s t . f i n d () % t h i s i s used t o o b t a i n a l l

o f t h e p o s t s from t h e d a t a b a s e . The f i n d () method wi th no
p a r a m e t e r s s e l e c t s a l l p o s t s

r e s . j s o n (p o s t s)
} c a t c h (e r r) {

c o n s o l e . l o g (e r r)
r e s . j s o n ({ message : e r r })

}
})

% t h i s f u n c t i o n a l l o w s f o r an HTTP POST r e q u e s t t o be made t o c r e a t e
a new p o s t and s ubm i t i t t o t h e d a t a b a s e

r o u t e r . p o s t (' / ' , a sync (req , r e s) => {
c o n s o l e . l o g (" r e c e i v e d ")
c o n s o l e . l o g (r e q . body)

% g e n e r a t i n g t h e s i g n a t u r e which i s g e n e r a t e d by s i g n i n g a s t r i n g
which i s t h e r e s u l t o f append ing t h e t i t l e and d e s c r i p t i o n

s t r i n g s t o g e t h e r
l e t s i g n e r = c r y p t o . c r e a t e S i g n (s i g n i n g _ a l g o r i t h m)
s i g n e r . u p d a t e (r e q . body . t i t l e)
s i g n e r . u p d a t e (r e q . body . d e s c r i p t i o n)
s i g n e r . end ()
l e t s i g n a t u r e = s i g n e r . s i g n (p r i v a t e _ K e y , f o r m a t _ s t r i n g)

91

% c r e a t i n g a new p o s t o b j e c t w i th t h e r e q u i r e d p a r a m e t e r s
c o n s t p o s t = new P o s t ({

t i t l e : r e q . body . t i t l e ,
d e s c r i p t i o n : r e q . body . d e s c r i p t i o n ,
s i g n a t u r e : s i g n a t u r e

})

% v e r i f i c a t i o n o f t h e s i g n a t u r e t h a t was j u s t g e n e r a t e d and
p r i n t i n g t o c o n s o l e , t h i s i s f o r l o g g i n g p u r p o s e s and can be
removed i n p r o d u c t i o n e n v i r o n m e n t

l e t v e r i f i e r = c r y p t o . c r e a t e V e r i f y (s i g n i n g _ a l g o r i t h m)
v e r i f i e r . u p d a t e (r e q . body . t i t l e)
v e r i f i e r . u p d a t e (r e q . body . d e s c r i p t i o n)
v e r i f i e r . end ()
c o n s o l e . l o g (v e r i f i e r . v e r i f y (p u b l i c _ k e y , s i g n a t u r e , f o r m a t _ s t r i n g)

)

% t h e f o l l o w i n g b l o c k t r i e s t o save save a p o s t t o t h e d a t a b a s e
and l o g s t h e r e s p o n s e , bo th i n t h e s u c c e s s f u l c a s e o r i n a
f a i l i n g c a s e

t r y {
c o n s t saved = a w a i t p o s t . s ave ()
c o n s o l e . l o g (" s a v i n g ")
c o n s o l e . l o g (saved)
r e s . j s o n (saved)

} c a t c h (e r r) {
r e s . j s o n ({ message : e r r })
c o n s o l e . l o g (e r r)

}
})

% t h i s f u n c t i o n g e t s t h e l a t e s t p o s t t o be s u b m i t t e d t o t h e d a t a b a s e
r o u t e r . g e t (' / l a t e s t ' , a sync (req , r e s) => {

c o n s o l e . l o g (" G e t t i n g l a t e s t ")
% t h e f o l l o w i n g b l o c k g e t s t h e l a t e s t p o s t and r e t u r n s i t t h e

u s e r and l o g s i t t o c o n s o l e ; o t h e r w i s e i t l o g s t h e e r r o r
t r y {

% h e r e t h e f i n d method i s s t i l l empty t o s e l e c t a l l p o s t s ;
t h e s o r t method c o n t a i n s a p a r a m t e r t h a t s p e c i f i e s t h a t
t h e o b t a i n e d a r r a y needs t o be s o r t e d i n r e v e r s e o r d e r and

t h e l i m i t method s e l e c t s t h e f i r s t e l e m e n t i n t h e a r r a y ,
which i n t h i s c a s e i s t h e l a s t p o s t t o be s u b m i t t e d

c o n s t l a t e s t P o s t = a w a i t P o s t . f i n d () . s o r t ({ _ i d : −1 }) . l i m i t
(1)

r e s . j s o n (l a t e s t P o s t)
c o n s o l e . l o g (l a t e s t P o s t)

} c a t c h (e r r) {
c o n s o l e . l o g (e r r)

92

r e s . j s o n ({ message : e r r })
}

})

module . e x p o r t s = r o u t e r

Listing 5. routes/posts.js is the file that manages API requests

models/Post.js

% i m p o r t i n g mongoose , which i s r e q u i r e d t o d e f i n e t h e P o s t o b j e c t t o
i n t e r a c t w i th t h e d a t a b a s e

c o n s t mongoose = r e q u i r e (' mongoose ')

% d e f i n i t i o n o f t h e P o s t o b j e c t a s a schema f o r t h e d a t a b a s e
c o n s t PostSchema = mongoose . Schema ({

t i t l e : {
t y p e : S t r i n g ,
r e q u i r e d : t r u e

} ,
d e s c r i p t i o n : {

t y p e : S t r i n g ,
r e q u i r e d : t r u e

} ,
s i g n a t u r e : {

t y p e : S t r i n g ,
r e q u i r e d : t r u e

}
})

module . e x p o r t s = mongoose . model (' P o s t s ' , PostSchema)

Listing 6. models/Post.js is the file that creates the Post object

Data destination
app.js

% i m p o r t i n g t h e r e q u i r e d modules : dotenv , Express , Web3js ,
c r y p t o g r a p h y and b u f f e r module

r e q u i r e (' d o t en v / c o n f i g ')
c o n s t e x p r e s s = r e q u i r e (' e x p r e s s ')
c o n s t Web3 = r e q u i r e (' web3 ') ;
c o n s t web3 = new Web3 (' h t t p s : / / s e p o l i a . i n f u r a . i o / v3 / API−KEY ') ; %

i t c o n n e c t s our Web3 c l i e n t t o t h e I n f u r a e n d p o i n t f o r t h e
s e p o l i a t e s t n e t ; t h e API key i s n o t s p e c i f i e d h e r e as i t i s t o

be k e p t a s e c r e t

93

c o n s t c r y p t o = r e q u i r e (' c r y p t o ')
c o n s t b u f f e r = r e q u i r e (' b u f f e r ')

% t h i s i s t h e c o n t r a c t a d d r e s s o f t h e s m a r t c o n t r a c t we want t o
i n t e r a c t w i th

c o n s t c o n t r a c t A d d r e s s = ' 0
x75aF7066bbB0e791E4424228f94d552274422f6c '

% t h e c o n t r a c t ABI code i s g e n e r a t e d by Remix and i t s p e c i f i e s
t h e f u n c t i o n a l i t i e s o f t h e c o n t r a c t f o r Web3JS

c o n s t c o n t r a c t A B I = YOU CAN FIND IT IN THE APPENDIX

% h e r e we c r e a t e an i n t e r f a c e t o i n t e r a c t w i th t h e o r a c l e u s i n g
t h e c o n t r a c t a d d r e s s and t h e c o n t r a c t ABI code

c o n s t c o n t r a c t = new web3 . e t h . C o n t r a c t (c o n t r a c t A B I ,
c o n t r a c t A d d r e s s)

% h e r e we c r e a t e an e x p r e s s app t o d e a l w i th t h e r o u t e s
c o n s t app = e x p r e s s ()

% we d e f i n e a f u n c t i o n whose g o a l i s t o g e t t h e i n f o r m a t i o n from
t h e s m a r t c o n t r a c t

a sync f u n c t i o n g e t I n f o () {
% each of t h e f o l l o w i n g l i n e s i n t e r a c t s w i th t h e c o n t r a c t

i n t e r f a c e and g e t s one o f t h e s t r i n g s s t o r e d i n t h e
c o n t r a c t

c o n s t t i t l e = a w a i t c o n t r a c t . methods . t i t l e () . c a l l ()
c o n s t d e s c r i p t i o n = a w a i t c o n t r a c t . methods . d e s c r i p t i o n () . c a l l

()
c o n s t s i g n a t u r e = a w a i t c o n t r a c t . methods . s i g n a t u r e () . c a l l ()

% we c r e a t e an a r r a y where we push t h e t h r e e s t r i n g s we j u s t
o b t a i n e d

c o n s t a r r = new Array ()
a r r . push (t i t l e)
a r r . push (d e s c r i p t i o n)
a r r . push (s i g n a t u r e)

% t h e a r r a y i s r e t u r n e d so t h a t i t can be m a n i p u l a t e d by t h e
f u n c t i o n t h a t c a l l s i t

r e t u r n a r r
}

% t h e p u b l i c key i s t a k e n from t h e e x e c u t i o n env i ronment , i n a
r e a l wor ld s c e n a r i o t h i s i s g o t t e n from t h e w e b s i t e t h a t i s
t h e o r i g i n a l d a t a s o u r c e

c o n s t p u b l i c _ k e y = p r o c e s s . env . PUBLIC_KEY

% we a r e s e t t i n g t h e p a r a m e t e r s f o r t h e c r y p t o g r a p h i c a l g o r i t h m s

94

c o n s t s i g n i n g _ a l g o r i t h m = ' sha256 '
c o n s t f o r m a t _ s t r i n g = ' hex '

% t h e v e r i f y s i g n a t u r e f u n c t i o n t a k e s as i n p u t t h e t i t l e , t h e
d e s c r i p t i o n and u s e s them t o v e r i f y t h e v a l i d i t y o f t h e t h i r d
i n p u t , t h e i r s i g n a t u r e

f u n c t i o n v e r i f y S i g n a t u r e (t i t l e , d e s c r i p t i o n , s i g n a t u r e ,
p u b l i c _ k e y , s i g n i n g _ a l g o r i t h m , f o r m a t _ s t r i n g) {
% a v e r i f i e r o b j e c t i s c r e a t e d and t h e n we append t h e two

s t r i n g s t o g e t h e r
l e t v e r i f i e r = c r y p t o . c r e a t e V e r i f y (s i g n i n g _ a l g o r i t h m)

v e r i f i e r . u p d a t e (B u f f e r . from (t i t l e)) % we use t h e B u f f e r
b e c a u s e t h e v e r i f i e r r e q u i r e s a B u f f e r o b j e c t

v e r i f i e r . u p d a t e (B u f f e r . from (d e s c r i p t i o n))
v e r i f i e r . end ()

% we c a l l t h e v e r i f i e r v e r i f y method t o v e r i f y t h e s i g n a t u r e
and r e t u r n a b o o l e a n v a l u e

c o n s t i s V a l i d = v e r i f i e r . v e r i f y (p u b l i c _ k e y , s i g n a t u r e ,
f o r m a t _ s t r i n g)

% t h e o b t a i n e d b o o l e a n v a l u e i s r e t u r n e d f o r m a n i p u l a t i o n
from t h e f u n c t i o n t h a t c a l l s t h i s v e r i f y S i g n a t u r e f u n c t i o n

r e t u r n i s V a l i d

}

% we d e f i n e a f u n c t i o n t o d e a l w i th GET r e q u e s t s coming t o t h e
homepage

app . g e t (' / ' , a sync (req , r e s) => {
% we c a l l t h e g e t I n f o f u n c t i o n t o o b t a i n an a r r a y

c o n t a i n i n g t h r e e s t r i n g s , which h o s t t h e i n f o r m a t i o n
a b o u t t h e p o s t

c o n s t s t r i n g s = a w a i t g e t I n f o ()

% we p a r s e t h e a r r a y t o t h r e e d i f f e r e n t s t r i n g s wi th
m e a n i n g f u l names

c o n s t t i t l e = s t r i n g s [0]
c o n s t d e s c r i p t i o n = s t r i n g s [1]
c o n s t s i g n a t u r e = s t r i n g s [2]

% we c a l l t h e v e r i f y S i g n a t u r e f u n c t i o n by p a s s i n g i t t h e
r e q u i r e d a rgumen t s and s t o r e t h e v a l u e i n a v a r i a b l e

c o n s t i s V a l i d = v e r i f y S i g n a t u r e (t i t l e , d e s c r i p t i o n ,
s i g n a t u r e , p u b l i c _ k e y , s i g n i n g _ a l g o r i t h m , f o r m a t _ s t r i n g)

% we b u i l d a r e s p o n s e t o be shown i n t h e homepage
% t h e r e s p o n s e c o n t a i n s t h e t i t l e

95

l e t r e s p o n s e = " T i t l e : " + t i t l e
% t h e n we add t h e d e s c r i p t i o n
r e s p o n s e += " D e s c r i p t i o n : " + d e s c r i p t i o n

% and t h e n we add t h e s i g n a t u r e
r e s p o n s e += " S i g n a t u r e : " + s i g n a t u r e

% we t h e n check t h e v a l u e o f t h e b o o l e a n t h a t t e l l s us
whe the r t h e s i g n a t u r e i s v a l i d o r n o t

i f (i s V a l i d) {
% i f t h e s i g n a t u r e i s v a l i d , we ment ion i t i n t h e

r e s p o n s e
r e s p o n s e +=" V a l i d S i g n a t u r e "
r e s . send (r e s p o n s e)

} e l s e {
% i f t h e s i g n a t u r e i s n o t v a l i d , we ment ion i t i n t h e

r e s o p n s e
r e s p o n s e +=" F a l s e s i g n a t u r e "
r e s . send (r e s p o n s e)

}
}

)

% open ing up a p o r t t o l i s t e n t o r e q u e s t s
c o n s t PORT = p r o c e s s . env . PORT | | 3000
app . l i s t e n (PORT, () => {

c o n s o l e . l o g (` s e r v e r s t a r t e d on p o r t ${PORT} `)
})

Listing 7. app.js This is the main file of the data destination server

ABI Code

% t h e c o n t r a c t ABI code i s g e n e r a t e d by Remix and i t s p e c i f i e s
t h e f u n c t i o n a l i t i e s o f t h e c o n t r a c t f o r Web3JS

c o n s t c o n t r a c t A B I = [
{

" i n p u t s " : [] ,
" name " : " a c c e p t O w n e r s h i p " ,
" o u t p u t s " : [] ,
" s t a t e M u t a b i l i t y " : " n o n p a y a b l e " ,
" t y p e " : " f u n c t i o n "

} ,
{

" i n p u t s " : [] ,
" s t a t e M u t a b i l i t y " : " n o n p a y a b l e " ,
" t y p e " : " c o n s t r u c t o r "

} ,
{

96

" anonymous " : f a l s e ,
" i n p u t s " : [

{
" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " b y t e s 3 2 " ,
" name " : " i d " ,
" t y p e " : " b y t e s 3 2 "

}
] ,
" name " : " C h a i n l i n k C a n c e l l e d " ,
" t y p e " : " e v e n t "

} ,
{

" anonymous " : f a l s e ,
" i n p u t s " : [

{
" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " b y t e s 3 2 " ,
" name " : " i d " ,
" t y p e " : " b y t e s 3 2 "

}
] ,
" name " : " C h a i n l i n k F u l f i l l e d " ,
" t y p e " : " e v e n t "

} ,
{

" anonymous " : f a l s e ,
" i n p u t s " : [

{
" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " b y t e s 3 2 " ,
" name " : " i d " ,
" t y p e " : " b y t e s 3 2 "

}
] ,
" name " : " C h a i n l i n k R e q u e s t e d " ,
" t y p e " : " e v e n t "

} ,
{

" i n p u t s " : [
{

" i n t e r n a l T y p e " : " b y t e s 3 2 " ,
" name " : " _ r e q u e s t I d " ,
" t y p e " : " b y t e s 3 2 "

} ,
{

" i n t e r n a l T y p e " : " s t r i n g " ,
" name " : " _ c u r r S t r i n g " ,
" t y p e " : " s t r i n g "

97

}
] ,
" name " : " f u l f i l l " ,
" o u t p u t s " : [] ,
" s t a t e M u t a b i l i t y " : " n o n p a y a b l e " ,
" t y p e " : " f u n c t i o n "

} ,
{

" anonymous " : f a l s e ,
" i n p u t s " : [

{
" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " a d d r e s s " ,
" name " : " from " ,
" t y p e " : " a d d r e s s "

} ,
{

" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " a d d r e s s " ,
" name " : " t o " ,
" t y p e " : " a d d r e s s "

}
] ,
" name " : " O w n e r s h i p T r a n s f e r R e q u e s t e d " ,
" t y p e " : " e v e n t "

} ,
{

" anonymous " : f a l s e ,
" i n p u t s " : [

{
" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " a d d r e s s " ,
" name " : " from " ,
" t y p e " : " a d d r e s s "

} ,
{

" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " a d d r e s s " ,
" name " : " t o " ,
" t y p e " : " a d d r e s s "

}
] ,
" name " : " O w n e r s h i p T r a n s f e r r e d " ,
" t y p e " : " e v e n t "

} ,
{

" i n p u t s " : [] ,
" name " : " r e q u e s t L a t e s t P o s t " ,
" o u t p u t s " : [

98

{
" i n t e r n a l T y p e " : " b y t e s 3 2 " ,
" name " : " r e q u e s t I d " ,
" t y p e " : " b y t e s 3 2 "

}
] ,
" s t a t e M u t a b i l i t y " : " n o n p a y a b l e " ,
" t y p e " : " f u n c t i o n "

} ,
{

" anonymous " : f a l s e ,
" i n p u t s " : [

{
" i n d e x e d " : t r u e ,
" i n t e r n a l T y p e " : " b y t e s 3 2 " ,
" name " : " r e q u e s t I d " ,
" t y p e " : " b y t e s 3 2 "

} ,
{

" i n d e x e d " : f a l s e ,
" i n t e r n a l T y p e " : " s t r i n g " ,
" name " : " t i t l e " ,
" t y p e " : " s t r i n g "

}
] ,
" name " : " R e q u e s t L a t e s t P o s t " ,
" t y p e " : " e v e n t "

} ,
{

" i n p u t s " : [
{

" i n t e r n a l T y p e " : " a d d r e s s " ,
" name " : " t o " ,
" t y p e " : " a d d r e s s "

}
] ,
" name " : " t r a n s f e r O w n e r s h i p " ,
" o u t p u t s " : [] ,
" s t a t e M u t a b i l i t y " : " n o n p a y a b l e " ,
" t y p e " : " f u n c t i o n "

} ,
{

" i n p u t s " : [] ,
" name " : " wi thdrawLink " ,
" o u t p u t s " : [] ,
" s t a t e M u t a b i l i t y " : " n o n p a y a b l e " ,
" t y p e " : " f u n c t i o n "

} ,
{

99

" i n p u t s " : [] ,
" name " : " c o u n t e r " ,
" o u t p u t s " : [

{
" i n t e r n a l T y p e " : " u i n t 2 5 6 " ,
" name " : " " ,
" t y p e " : " u i n t 2 5 6 "

}
] ,
" s t a t e M u t a b i l i t y " : " view " ,
" t y p e " : " f u n c t i o n "

} ,
{

" i n p u t s " : [] ,
" name " : " d e s c r i p t i o n " ,
" o u t p u t s " : [

{
" i n t e r n a l T y p e " : " s t r i n g " ,
" name " : " " ,
" t y p e " : " s t r i n g "

}
] ,
" s t a t e M u t a b i l i t y " : " view " ,
" t y p e " : " f u n c t i o n "

} ,
{

" i n p u t s " : [] ,
" name " : " owner " ,
" o u t p u t s " : [

{
" i n t e r n a l T y p e " : " a d d r e s s " ,
" name " : " " ,
" t y p e " : " a d d r e s s "

}
] ,
" s t a t e M u t a b i l i t y " : " view " ,
" t y p e " : " f u n c t i o n "

} ,
{

" i n p u t s " : [] ,
" name " : " s i g n a t u r e " ,
" o u t p u t s " : [

{
" i n t e r n a l T y p e " : " s t r i n g " ,
" name " : " " ,
" t y p e " : " s t r i n g "

}
] ,
" s t a t e M u t a b i l i t y " : " view " ,

100

" t y p e " : " f u n c t i o n "
} ,
{

" i n p u t s " : [] ,
" name " : " t i t l e " ,
" o u t p u t s " : [

{
" i n t e r n a l T y p e " : " s t r i n g " ,
" name " : " " ,
" t y p e " : " s t r i n g "

}
] ,
" s t a t e M u t a b i l i t y " : " view " ,
" t y p e " : " f u n c t i o n "

}
]

Listing 8. ABI Code for Chainlink oracle

101

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Alessandro Chiarelli,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Securing the bridges between two worlds: a Systematic Literature Review of
Blockchain Oracles security,

(title of thesis)

supervised by Mubashar Iqbal, Raimundas Matulevičius and Fabian Fagerholm.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1
available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives, under the Creative Commons licence
CC BY NC ND 3.0, which allows, by giving appropriate credit to the author, to
reproduce, distribute the work and communicate it to the public, and prohibits the
creation of derivative works and any commercial use of the work until the expiry
of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Alessandro Chiarelli
09/05/2023

102

	Introduction
	Related work
	Research motivation and objectives
	Contributions
	Research Method
	Structure of the Thesis

	Systematic Literature Review
	Literature Sources
	Search Terms
	Inclusion and Exclusion Criteria
	Papers Selection
	Information Extraction
	Summary of Selected Articles
	Summary of Results
	Presentation of Results
	Answers to Research Questions
	Limitations

	Background
	Oracle Services
	Ethereum Endpoint and Web3.js
	Difference between Testnet and Mainnet
	Remix IDE
	Web Development
	Components of Blockchain Oracles
	Summary

	Implementing Blockchain Oracles
	Data Source
	Generating Key Pair
	Generating and Verifying Signatures

	Provable
	Chainlink
	Outbound Oracle
	Answer to Research Questions
	Limitations

	Evaluation of the Models
	Motivating Blockchain Oracles
	Evaluation Criteria
	Evaluation of Provable Oracle
	Evaluation of Chainlink Oracle
	Comparison Between Provable and Chainlink
	Security
	Performance
	General

	Evaluation of Outbound Oracle
	Answer to the Research Questions
	Lessons Learned
	Limitations

	Conclusion
	Answer to Research Questions
	Answer to [RQ1]
	Answer to [RQ2]
	Answer to [RQ3]

	Future work

	References
	Appendix
	I. Glossary
	II. Code
	III. Licence

