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Self-Supervised Image Denoising Using Transformers

Abstract:
Self-supervised image denoising is a computer vision task that implies image noise
removal without access to clean data. This problem is critical to many domains, such
as medical imaging, where clean images are often unobtainable. The absence of the
true signal determines the main challenge, therefore self-supervised image denoising
demands for specific model engineering. Modern solutions for this task mainly rely on
convolutional neural networks, and there has been very limited research on the applica-
tions of rapidly developing transformer models to this task. To close this research gap,
we adopt a ready-made transformer-based image restoration model for self-supervised
image denoising and compare it to the convolutional counterparts. Apart from that,
we propose a novel transformer autoencoder architecture, which not only shows more
stable performance regardless of the noise type but also is the first model to prove the
concept of zero-convolution end-to-end network for self-supervised image denoising.
This work highlights the advantages and limitations of transformers in self-supervised
image denoising and provides a conceptual foundation for further development in the
field.
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Juhendamata piltide mürapuhastus transformeritega
Lühikokkuvõte:
Piltide mürapuhastus juhendamata viisil on masinnägemise ülesanne mille puhul ei ole
võimalik mudeli treenimiseks kasutada müravabu pilte. Selline meetodika on olululine
mitmetes valdkondades nagu näiteks meditsiiniline kujutamine, kus tihti ei ole võimalik
müravabu pilte koguda. Juhendamata mürapuhastuse muudabki keeruliseks müravabade
pildite puudumine ja seega vajab see mudelispetsiifilist lähenemist. Kaasaegsed müra-
puhastus lahendused põhinevad peamiselt sidumnärvivõrkudel ja väga vähe on uuritud
kuidas transformerid selle ülesandega hakkama saavad. Sellest lähtuvalt kohandatakse
magistritöös olemasolevaid pildi taastamise transformereid juhendamata mürapuhastuse
ülesande jaoks ja võrreldakse neid vastavate sidumnärvivõrkudega. Peale selle kirjelda-
takse töös uudset autokodeerijaga transformeri arhitektuuri, mis hoolimata müratüübist
saavutab stabiilsemaid tulemusi kui muud mudelid. Samuti on see esimene ‘end-to-end’
juhendamata mürapuhastuse närvivõrk, mis ei kasuta ühtegi sidumoperatsiooni. Käes-
olev magistritöö toob välja transformerite eelised ja puudused mürapuhastuse ülesande
kontekstis ja loob kontseptuaalse aluse valdkonna edasiseks arenguks.

Võtmesõnad:
Piltide mürapuhastus, Närvivõrgud, Juhendamata õppimine

CERCS: T111 - Pilditehnika; P176 - Tehisintellekt
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1 Introduction
Image denoising is a computer vision task that seeks to reconstruct the underlying signal
from the images corrupted by noise. Typical methods for this task include classical image
restoration algorithms (e.g., filtering) or supervised convolutional neural networks that
are trained on pairs of noisy examples and the respective clean ground truth images. It is
also possible to approach this task in a self-supervised manner when all the data present
is noisy, and neither clear images nor alternative noise copies are available. Despite
being challenging, self-supervised image denoising is highly valuable for a vast variety
of domains because clear images are hardly obtainable in real-world tasks, including
medical image restoration.

State-of-the-art solutions for self-supervised image denoising [49, 54, 58, 41, 39, 52,
66] typically use convolutional neural networks as backbones because of their invaluable
benefits for image processing [27]. At the same time, since the first introduction of the
Transformer architecture [35] for the natural language processing domain, transformers
have been successfully applied to images [46] and have been developing rapidly ever since
in application to a multitude of computer vision tasks, taking the lead from convolutional
models. However, transformers have not yet found good use in self-supervised image
denoising.

In this work, we aim to research the applicability of transformer-based models for
the task. We build our solutions on the basis of Swin Transformer [56] — a powerful
contemporary multi-purpose vision model. First, we integrate a Swin Transformer-based
image restoration model (SwinIR) [55] directly into two frameworks for self-supervised
image denoising — Noise2Self [39] and Noise2Self [52] and compare its performance to
the conventional convolutional backbone used in the original works. Second, we develop
the idea and design the first self-sufficient fully-transformer model for self-supervised
denoising — SwinIA, which will work end-to-end as a simple image autoencoder without
the need for external frameworks. We thoroughly test the models on a vast range of
datasets with different kinds and levels of noise and reach new state-of-the-art results on
several benchmarks.

In Section 2, we will give an overview of the image denoising task, describing the
main kinds of noise and common classical denoising solutions. Then we will deliver the
background behind the primary deep learning methods and describe how they have been
applied to image denoising in supervised and self-supervised fashion. In Section 3, we
will motivate the current work by reflecting on the background from the previous section.
In Section 4, we will give details on the solutions we used for the current work, from
the integration of SwinIR to the design of our own SwinIA model. We will also report
auxiliary tools we used for development, training, and documentation. In Section 5, we
will describe the experiments we conducted and their results, comparing the scores to
the prior solutions and providing examples. In Section 6, we will discuss the results and
speculate on the advantages and limitations of the investigated models.
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2 Background
In this section, we present the background information on the current work. We start with
the explanation of the denoising task, moving on to the overview of the methods that
solve it: from classical unsupervised and supervised methods to deep learning solutions,
including self-supervised algorithms.

2.1 Image denoising
Image noise is a term referred to random perturbations of signal in bitmap images.
Such a defect is very common for bitmap images, it arises at any of the stages of
image acquisition and processing due to apparate limitations and hindering environment
conditions. Image denoising, which aims to remove noise from images, is one of the
typical tasks in the computer vision domain. It is indispensable for image reconstruction
and can find many usages in medical image analysis, where noise reduction might be a
key factor for reliable diagnostics.

2.1.1 Types of noise

There are several main types of noise determined by the noise model, here we briefly
describe the most common ones, give possible reasons for their occurrence, and provide
examples (see Figure 1).

(a) Original image (b) Gaussian noise (c) Salt and pepper
noise

(d) Poisson noise

Figure 1. Illustrated types of noise on an example image.

Gaussian noise is a kind of additive noise that is characterized by adding random
normally distributed values to pixels (eq. (1)).

X = S +N,N ∼ N (µ, σ2) . (1)

Here X , S, and N denote pixel value, true signal, and noise component, respectively.
The noise is a random, normally distributed variable, therefore it is parametrized by mean
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µ and standard deviation σ of the Gaussian distribution. Typically, Gaussian noise is
assumed to be zero-mean, thus it is centered around 0 and the perturbations are equally
likely to be positive and negative, with the noise level determined by σ.

Gaussian noise typically appears during the image acquisition procedure due to the
limited capability of the sensor in troubled conditions, such as low illumination. Gaussian
distribution is usually accurate in representing real-world random processes, therefore it
may well describe natural physical conditions, for instance, high temperature affecting
atom vibrations [25].

Salt and pepper noise is distinguished by a small partition of pixels of maximum
(salt) and minimum (pepper) intensity randomly scattered over an image. Salt and pepper
noise is parametrized by pw, pb — the probabilities of imputing a pixel with white and
black values. This kind of noise may be explained by faulty pixel-level elements of the
sensor and errors in data transmission or storage when the original pixel value is simply
lost and imputed [25]. Sometimes random black pixels, i.e., pepper, are called Bernoulli
noise with a parameter p, being the probability of occurrence of a black pixel.

Poisson noise is a type of image noise that is caused by the statistical properties of
photon detection in imaging sensors. This often happens in low-light conditions due
to the discretization of the electric signal. Determined by statistical fluctuations in the
number of emitted photons, the noise follows Poisson distribution, commonly used to
describe random processes involving counting [25].

X = Poisson(S · α) (2)

The formula in eq. (2) represents the observed pixel intensity value in the presence of
Poisson noise. S is the true underlying pixel intensity value (signal), and α is a scaling
factor that determines the overall level of noise in the image. The observed intensity X
is a random variable that follows a Poisson distribution with mean λ = S · α.

2.1.2 Classical denoising methods

Classical image denoising methods involve explicit filtering or smoothing of the image
to reduce noise while preserving image features and details. The procedure is usually
deterministic and often requires prior knowledge of the noise model and careful choice of
parameters. We briefly describe the most popular classical methods of image denoising
in the following paragraphs.

Filtering methods. In filtering methods, an image is filtered by a window of fixed
size. Such a filter can be implemented with a simple aggregation function, such as
averaging or median. Thus, each pixel is imputed by the value aggregated from its
neighborhood. Window aggregation can be also performed in a weighted averaging way,
for instance, by convolution with a Gaussian kernel, when every pixel is imputed by
the normally-weighted average of the convolved window, or Bilateral filter [6], which
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Figure 2. An example of non-local means patches comparison. Here, weights w(x, y1)
and w(x, y2) will be greater than w(x, y3) and w(x, y4), because the patch centered in x
is more similar to the patches centered in y1 and y2.

assigns neighborhood weights accounting for both spatial distances and differences in
color intensities. The latter is believed to preserve edges and patterns in the image. Mor-
phological operations, e.g., opening and closing, can also find their usage in denoising,
as they may be considered a way to reduce single-pixel noise, such as salt and pepper.

Filtering image properties. Denoising can be done by filtering out certain parts of a
specific image property range. For instance, total variation denoising algorithms assume
that the noise is characterized by an excessive variation of the signal and thus the image
is smoothed by limiting the variation in the image. Under the assumption that noise
is represented by certain frequencies in the image, denoising can be done by filtering
the image in the frequency domain obtained after Fourier transform [3] or excluding
low-magnitude wavelet coefficients acquired by wavelet transform [22].

Non-local means. The Non-local means method [11] removes noise from an image
by comparing similar patches of pixels instead of individual pixels. The method works
by calculating a weighted average of the pixels in the image, where the weights are based
on the similarity between the patches according to eq. (3).

û(x) =
1

Z(x)

∑
y∈Ω

u(y)w(x, y) (3)

This formula represents the estimated denoised value of the pixel at location x, which is
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Figure 3. BM3D image denoising algorithm steps [13].

calculated by averaging the values of similar pixels within a search window Ω centered
at x. The weights of each pixel in the averaging process are determined by the weight
function w(x, y), which measures the similarity between the patch centered at x and the
patch centered at y, as in Figure 2. Z(x) is a normalization constant that ensures the sum
of the weights is equal to one.

Block-Matching and 3D filtering. Block-Matching and 3D filtering (BM3D) [13] is
a two-stage algorithm for image denoising that exploits the idea of redundancy in images.
It is assumed that a noisy image can be decomposed into a combination of a sparse
component (consisting of edges and structures) and a noise component. The complete
algorithm is presented in Figure 3.

In the first stage, the noisy image is divided into overlapping blocks, and each block
is compared to all the other blocks in the image to find similar blocks. The similarity is
measured by calculating the Euclidean distance between the 2D block vectors formed
by the pixels of the blocks. The similar blocks are then grouped together to form a 3D
group, where the third dimension is the block index. A 3D transform (e.g., discrete
cosine transform) is applied to each group, and the transform coefficients are thresholded
to obtain a sparse representation of the group. The thresholded coefficients are then
inverse-transformed to obtain the denoised block.

In the second stage, a Wiener filter is applied to the denoised blocks to further reduce
the noise. The filter parameters are estimated from the noisy image and the denoised
blocks.

The final denoised image is obtained by overlapping the denoised blocks and taking
the weighted average of the overlapping pixels.

2.1.3 Evaluation

Denoising methods can be compared by evaluation on a denoising dataset, which consists
of paired noisy and clean images(xi, yi). During the evaluation, the images produced by
the method ŷi are compared to the clean images yi. There are three main metrics that are
commonly used in image denoising benchmarks.
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MSE. Mean squared error, or MSE, measures the average squared difference between
the output of the algorithm and the ground truth clean image:

MSE(ŷi, yi) =
1

|P|
∑
p∈P

[ŷi(p)− yi(p)] , (4)

here P denotes the set of pixels in the image, over which the MSE is computed, and ŷi(p)
and yi(p) denote the values at pixel p in images ŷi and yi, respectively.

PSNR. Peak signal-to-noise ratio, or PSNR, measures the ratio between the maximal
possible pixel intensity value and the intensity of noise in the image. PSNR is calculated
through MSE as follows:

PSNR(ŷi, yi) = 10 · log10
(

M2

MSE(ŷi, yi)

)
, (5)

where M denotes the maximal possible pixel intensity value. For example, for 8-bit
images, M equals 255, and for images normalized to [0, 1] range, M equals 1.

SSIM. The structural similarity index measure, or SSIM [10], was proposed as a
universal measure to compare two images. It consists of several components, which
include luminance, contrast, and structure, and can be reduced to the following formula:

SSIM(ŷi, yi) =
(2µŷiµyi + c1)(2σŷi,yi + c2)

(µ2
ŷi
+ µ2

yi
+ c1)(σ2

ŷi
+ σ2

yi
+ c1)

, (6)

where µŷi , µyi and σŷi , σyi denote pixel mean value and variance in images ŷi and
yi, respectively, σŷi,yi denotes covariance between the two images, and c1 and c2 are
constants that correct the denominator factors in case they are too small.

The minimal value for all three metrics is 0, and SSIM is the only normalized metric
out of the three and always ranges from 0 to 1. The score is better the lower the MSE, or
the greater the PSNR or SSIM. In practice, the most commonly used metrics are PSNR,
a task-specific version of universal MSE, and SSIM, the metric that might give additional
information about the algorithm’s ability to retain structural values.

2.2 Deep learning
Classical methods have limited efficiency because of their explicit nature and disregard
for image context. On the contrary, deep learning methods open broader opportunities
for sophisticated denoising solutions. Before going into details about task-specific
architectures, in this section, we describe key deep learning concepts, from a formal
definition of a deep learning model and its training and optimization to the evolution of
artificial neural networks relevant to our work.
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2.2.1 Deep learning conception

A neural network is a machine learning model that was inspired by a biological neural
circuit. Mathematically, it is considered a function approximator that consists of multiple
linear and nonlinear transformations. Such a model can be represented by a function of
the form:

y = f(x|θ), (7)

where x and y are model inputs and outputs, and θ is a vector of trainable parameters, or
weights.

The training process for a deep learning model involves adjusting the values of the
parameters θ to minimize a loss function L(f |θ) that measures the difference between
the model’s predictions and the true outputs. To adjust the parameters θ, the gradient of
the loss with respect to the parameters ∇θL(f |θ) is computed using backpropagation [4],
which involves recursively applying the chain rule of calculus:

∂L
∂θi

=
∂L
∂y

· ∂y
∂θi

, (8)

where ∂L
∂y

is the partial derivative of the loss with respect to the output y, and ∂y
∂θi

is the
partial derivative of the output with respect to the parameter θi.

The gradients are then used to update the parameters θ using an optimization algo-
rithm, usually based on the gradient descent algorithm, which is performed according to
the following equation:

θt+1 = θt − α∇θtL(f |θt) (9)

where θt and θt+1 are the parameter values at time steps t and t+ 1, respectively, α is the
learning rate. This process is repeated for a certain number of iterations or until the loss
converges to a satisfactory level.

The gradient descent algorithm is computationally inefficient because it is computed
on the whole dataset, which can be very big. In the context of neural network training
optimization, this version of gradient descent is called batch gradient descent. A more
computationally light version of it is called stochastic gradient descent (SGD) [1]. In
SGD, the gradient is computed on one example from the data during each iteration. This
approach is fast and has relatively acceptable convergence, yet it may be too radical. The
version of the algorithm that is most commonly used is mini-batch gradient descent. It
combines both ideas and computes the gradients on small partitions of data — mini-
batches. Mini-batches are usually randomly sampled from the data, and the processing
of one mini-batch is usually called a step or an iteration. Normally yet not necessarily,
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Figure 4. Learning rate (LR) scheduling examples. The training is set up for 50 epochs,
the initial learning rate is set to 10−3 for both schedulers, the final learning rate for cosine
annealing is set to 10−6, and the lambda scheduler is set to decrease the learning rate by
half every 5th iteration.

the whole data is shuffled and split into non-overlapping mini-batches. The processing
of the dataset over a number of mini-batches is called an epoch.

There are several modifications of mini-batch gradient descent that have been de-
veloped for faster training convergence and avoiding classical caveats, such as local
minimums and plateaus. For instance, Momentum [8] is a popular optimization algorithm
that uses a moving average of the gradients to update the parameters, thus gaining velocity
in parameter updates. Adagrad [17] adapts the learning rate for each parameter separately
and adjusts the learning rate based on its past gradients. Adam [23] is an optimization
algorithm that combines the ideas of momentum and Adagrad. In general practice, Adam
is the most popular default choice that establishes fast and sound convergence in a lot of
cases.

Optimizer is also typically combined with a learning rate scheduler. This means that
the learning rate is adjusted at each epoch according to a specific schedule. For example,
scheduling can be simply done by decreasing the learning rate by an equal coefficient
for every certain number of iterations, this is often called lambda scheduling. Another
type of scheduling is cosine annealing [32] when the learning rate is decreased by a
cosine schedule from an initial value to a set final value. These types of scheduling are
illustrated in Figure 4.
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2.2.2 Multilayer perceptron

We start the overview of deep learning models with the most basic neural network —
multilayer perceptron (MLP), which is also called a feed-forward or a fully-connected
neural network. This architecture emerged from the concept of the perceptron [2] — one
of the first prototypes of an artificial neuron. Essentially, the perceptron can be described
as a thresholding function that receives a weighted sum of inputs:

y = f(x · w + b), (10)

here x · w represents a dot-product between the input vector x and weight vector w, b is
the bias term. f is an activation function that returns 0 or 1, in the simplest case it is a
thresholding step-function.

This idea can be generalized to a linear layer with m inputs and n outputs, where
each of the outputs is computed as follows:

∀j = 1 . . . n : yj = f

(
m∑
i=1

xi · wij + bj

)
, (11)

here wij represents a weight of input xi in the computation of output yj and bj denotes the
bias term for each output. Therefore, the computation of a linear layer can be optimized
with vector operations:

y = f(xW + b), (12)

here W is a weight matrix of size m× n, x is a row vector of inputs of size m, and y and
b are row vectors of size n of outputs and biases, respectively.

Figure 5. Multilayer perceptron.
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Layers can be stacked one after another forming an MLP with several hidden layers
(Figure 5). The outputs of the previous layer serve as inputs for the next layer, and each
of the layers has separate parameters W and b and is computed as in eq. (12). Non-linear
activation functions play a primary role in such stacking: without non-linearity two
consequent layers would still do a linear transformation that can be represented with one
transformation matrix, and, thus, one linear layer.

There are multiple types of non-linearity, in the list below and in Figure 6 we show
the fundamental ones:

• Sigmoid function: f(x) =
1

1 + e−x
;

• Hyperbolic tangent: f(x) = tanh(x);

• Rectified Linear Unit (ReLU): f(x) = max(0, x);

• Gaussian Error Linear Unit (GELU) [31]: f(x) = xP(X ≤ x), X ∼ N (0, 1).

Figure 6. Activation functions.

Seemingly simple, ReLU is computationally cheap, does not suffer from vanishing
gradients as sigmoid and hyperbolic tangent functions do, and generally leads to a faster
convergence [21]. This made ReLU and its variants the default choice in practice. For
example, GELU [31] is widely used in transformer models [40, 46], which will be
discussed further.
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2.2.3 Convolutional neural networks

When it comes to image analysis, the need for a specific solution arises. MLPs are able to
process images, but they suffer from two main problems. First, a linear layer is unaware
of the neighboring district around the pixel, it simply processes an image as a flattened
sequence of pixel values. Besides, if we slightly shift or scale the image, this will go
unnoticed by the human eye, but an MLP will consider this as a completely different
image. Apart from the lack of context, MLPs suffer from image dimensionality. One
linear layer has Ω(n2) trainable parameters, where n is the input size. This is critical for
images because the number of pixels also grows quadratically with the increase in image
resolution.

A convolutional neural network (CNN) [5] is a highly efficient architecture for image
analysis. The core idea of CNNs is in the usage of convolutional filters, which are capable
of image feature extraction, such as edge detection. A convolutional layer is composed
of a set of convolutional filters with trainable parameters. Each convolutional layer
applies a set of filters to the input image and then uses a non-linear activation function to
generate a set of output image representations — feature maps. A convolutional layer is
parametrized by kernel size, and optionally by padding, additional pixels that are added
around the image, and stride, the length of a step that the filter takes going over the image.
The latter two modifications are needed to tune the size of the output. In a CNN, a series
of convolutional layers are used to detect increasingly complex patterns in an image.

In addition to convolutional layers, CNNs often include pooling layers, which are used
to reduce the spatial size of the feature maps and make the network more computationally
efficient. Pooling layers normally perform simple aggregation operations (such as
maximization or averaging) over non-overlapping windows. CNNs can also include fully
connected layers, which are used to make the final classification decision based on the
extracted features.

Figure 7. LeNet model architecture [5].

One of the first successful applications of CNNs was LeNet-5 architecture, introduced
by Yann LeCun et al. in 1998 [5]. LeNet-5 was designed for handwritten digit recognition
and consisted of several convolutional layers, pooling layers, and fully connected layers,
the detailed architecture is illustrated in Figure 7.
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Model #parameters top-1 accuracy top-5 accuracy

AlexNet [21] 60M 63.3% 84.6%

VGG-16 [24] 138M 74.4% 91.9%

GoogLeNet [28] 6.8M — 93.3%

ResNet-50 [30] 25M 75.3% 93.3%
ResNet-101 [30] 40M 78.3% 94.0%

DenseNet-121 [33] 5M 75.0% 92.3%
DenseNet-201 [33] 20M 77.4% 93.7%

EfficientNet-B1 [43] 7.8M 78.8% 94.4%
EfficientNet-B3 [43] 12M 81.1% 95.5%
EfficientNet-B4 [43] 19M 82.6% 96.3%
EfficientNet-B7 [43] 66M 84.4% 97.1%

Table 1. ImageNet [15] top-1 and top-5 accuracy for milestone CNN models.

CNNs have undergone a great evolution over the past two decades. This rapid
evolution was driven by attempts to improve the size and efficiency of models, along with
their score in the ImageNet challenge [15], a large-scale image classification competition.
The key milestones of the development of CNNs are listed below, and their ImageNet
scores and numbers of parameters are presented in Table 1.

AlexNet (2012) [21]. AlexNet was a deeper and more complex network compared
to LeNet. AlexNet used ReLUs as activation functions and dropout regularization to
prevent overfitting. The authors also introduced the Local Response Normalization, when
the close ranges channels are normalized. Also, it was the first CNN model to utilize
several GPUs.

VGGNet (2014) [24]. The VGGNet architecture consisted of up to 19 layers, which
allowed it to learn more complex features than previous architectures. The key idea of
the VGGNet was in the utilization of sequences of smaller 3× 3 convolutional filters as
an efficient substitute for large kernels.

GoogLeNet (2015) [28]. GoogLeNet used a combination of convolutional layers with
different filter sizes, pooling layers, and inception modules parallelizing convolutions
with different filter sizes that allowed the network to learn features at different scales.

ResNet (2016) [30]. ResNet introduced the concept of residual connections, also
known as skip connections or shortcuts, that allowed the network to learn very deep
representations by mitigating the vanishing gradient problem. The network became
much deeper, with more than 50 layers (and later with more than 150 layers), this
was possible because each layer of the network was given an opportunity to learn the
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identity function if it was considered redundant during training. Also, ResNet utilized
Batch Normalization [26] that normalizes inter-layer representations over mini-batches
to prevent the distribution shifts and vanishing gradients.

DenseNet (2017) [33]. DenseNet introduced dense connections between convolu-
tional layers: each layer aggregated the outputs of all its predecessors. Dense connections
allowed the network to learn from all preceding layers in the network, which improved
the flow of information and reduced the number of parameters.

EfficientNet (2019) [43]. EfficientNet was designed in a combination of model
scaling, compound scaling, and neural architecture search to achieve state-of-the-art per-
formance on image recognition tasks with a significantly smaller number of parameters.

2.2.4 U-Net

CNN models listed above showed competitive performance in image classification.
However, such tasks as semantic segmentation and denoising required a conceptually
different network that would be able to produce outputs of the same size as the input
image, which is unfeasible for a plain CNN that uses downsampling and fuses local
features to obtain global context.

Figure 8. The U-Net architecture. Each block in the scheme represents a series of convo-
lutional layers. The blocks’ height and width indicate relative feature map resolution and
the number of channels, respectively.

U-Net [27] is one of the most popular multi-purpose image analysis architectures,

18



which is widely used for semantic segmentation and other computer vision tasks. It
consists of several convolutional layers, hierarchically stacked together into a downsam-
pling encoder and an upsampling decoder with residual connections at each level, the
architecture is illustrated in Figure 8.

The encoding part is a conventional CNN with several groups of convolutional layers
and downsampling pooling layers between them. As in most CNNs, the number of
channels grows with the decrease in feature map resolution. The encoder is followed
by a bottom block with additional convolutional layers. In practice, any of the CNNs
described in Section 2.2.3 can be used as an encoder for U-Net models.

The decoding part is organized into a series of upsampling blocks that gradually
increase the resolution of the feature maps, followed by a final convolutional layer that
outputs the segmentation map. Each upsampling block in the decoder consists of an up-
sampling operation, a concatenation operation with the corresponding feature maps from
the encoder, and a series of convolutional layers that process the concatenated feature
maps. The upsampling operation is typically performed using transposed convolutional
layers, which are convolutional layers with specific padding added around individual
pixels and the whole image and a corresponding stride.

2.2.5 Transformers

First introduced in the seminal paper "Attention Is All You Need" by Vaswani et al. in
2017 [35], the Transformer architecture has become the state-of-the-art approach for
many NLP tasks, including machine translation, text classification, and language mod-
eling. Transformers are particularly well-suited for handling long-range dependencies
between words in a sequence, and they do not require sequential processing, making them
highly parallelizable and efficient. Their success in NLP has also led to their adoption in
other areas of artificial intelligence, including computer vision and speech recognition.
Before going into details about transformers in vision, which is the main focus of the
current work, it is important to understand how transformers work and what makes them
so efficient for processing sequential data.

The major component of the Transformer model is the multi-head self-attention
(MHSA, or MSA) mechanism. It allows the model to attend to different parts of the
input sequence during the encoding and decoding process.

Self-attention (Figure 9a) is performed on a sequence of tokens embedded into
triplets — query Q, key K, and value V . A set of attention weights is computed to
indicate how each word in a sequence influences all other words. These attention weights
are computed by comparing each query to every key in the sequence via dot-product and
generating a score that reflects the degree of similarity between each pair. The scores are
additionally scaled down by a square root of dimensionality because of the exploding
nature of dot-product values. The scores are then normalized using a softmax function,
which produces a probability distribution over the entire sequence. Once the attention
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(a) Scaled dot-product self-attention [35]. (b) Multi-head self-attention [35].

Figure 9. Multi-head self-attention mechanism visualization [35].

weights have been computed, they are used to compute a weighted sum of the input
sequence, where each value is multiplied by the corresponding attention weight. All
self-attention operations can be written in a single formula as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (13)

here dk is the dimensionality of Q,K and V .
In order to diversify the mechanism, the embeddings are split channel-wise into parts

(attention heads), over which the independent attention is computed, see Figure 9b. The
heads are merged back after the attention computation, and a linear layer is applied to
the result.

The complete original Transformer architecture (Figure 10) proposed by Vaswani et
al. [35] consists of an encoder that extracts representations from a sequence and a
decoder that generates the output sequence, word by word.

The encoder takes an input sequence of tokens and maps each token to a high-
dimensional vector representation (input embedding). The encoder processes the input
sequence through a sequence of transformer blocks, each of which is constituted by
the MSA mechanism together with a feed-forward neural network and element-wise
addition shortcuts around them, each followed by a layer normalization [29], which
normalizes the output channel-wise. The output of the encoder is a set of context-aware
representations of each token in the input sequence.

The decoder uses a similar attention mechanism as the encoder, but with an added
mask that prevents the decoder from attending to future tokens in the output sequence.
The decoder receives the encoded input sequence and an initial token as input, and
generates the output sequence one token at a time. At each time step, the decoder
additionally attends to the encoder’s output to generate a context-aware representation of
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Figure 10. Transformer encoder-decoder architecture [35].

the input sequence. The decoder then uses this representation, along with the previously
generated tokens, to predict the next token in the output sequence. The process is repeated
until the decoder generates the entire output sequence.

Since MSA is unaware of the order of the tokens, a transformer does not have explicit
representations of sequence order. Therefore, to enable the model to take into account
the order of the words in the input sequence, positional encodings are added to the
input and output embeddings. Each word in the input sequence is assigned a unique
positional encoding vector added to its corresponding input embedding. The positional
encoding vectors are designed to be sinusoidal functions of different frequencies and
phases, allowing them to capture the relative position of words in the sequence. The
choice of sinusoidal functions is motivated by the ability of these functions to model
periodic patterns. However, sinusoidal functions are not the only option, and there are
multiple ways to create positional encodings [59].

Transformer models are large and powerful, therefore they are suitable for unsuper-
vised pre-training for whole data domains on vast corpora. One of the first transformer
models that successfully incorporated unsupervised pre-training for texts was BERT
(Bidirectional Encoder Representations from Transformers) [40].
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Figure 11. BERT pre-training and fine-tuning [40].

(a) BERT MLM objective [50]. (b) LAE objective [50].

Figure 12. Building token representations in BERT and T-TA [50].

The main novelties of BERT were its pre-training objectives, such as masked language
modeling (MLM) and next sentence prediction (NSP) tasks (see Figure 11), as well
as the use of a transformer architecture with bidirectional attention. These techniques
significantly improved the performance of the model on various NLP tasks, establishing
a new state-of-the-art for several benchmarks.

In the MLM objective (Figure 12a), a certain percentage of words in the input
sentence is randomly masked, and the model is trained to predict the masked words based
on their context within the sentence. This encourages the model to learn representations
that capture the relationship between different words and phrases in the sentence.

In the NSP objective, the model is trained to predict whether two input sentences are
consecutive or not. This helps the model learn to understand the relationship between
different sentences in a text and capture the context and meaning of the entire passage.

In addition, the authors introduced a novel method for incorporating positional
information into the input embeddings, which is now known as learned positional
embeddings. Unlike the fixed sinusoidal positional encodings used in the original
Transformer paper, the positional embeddings in BERT are learned during pre-training
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(a) Diagonally masked MSA [50]. (b) T-TA transformer block [50].

Figure 13. T-TA model architecture [50].

and can be fine-tuned during downstream tasks. This approach was found to be effective
in capturing fine-grained positional information and further improved the performance.

BERT allowed for learning a deep understanding of natural language with later
application to downstream tasks. However, if the main goal is to learn rich token
representations, which might be required for such tasks as text ranking, BERT would
be capable of doing this utilizing the MLM objective, but it would be too slow, as it is
possible to mask out only a small partition of tokens. Transformer-based text autoencoder
(T-TA) model proposed by Shin et al. [50] addressed this issue. The idea proposed in
this work is to build token representations for each token at once using the language
autoencoding (LAE) objective (compare the two objectives in Figure 12).

The LAE objective assumes that the output for each token is built upon all other
tokens in the sequence. Thus, the only absent connections between inputs and outputs are
for the corresponding tokens — this establishes the condition of self-unawareness [50].
Compared to BERT, this allows building the representations for all tokens at once.

Obviously, this concept demands considerable changes to the Transformer architec-
ture (Figure 13). In order to hide the tokens’ own values from their representations, an
additive diagonal mask is applied to the attention matrix. This ensures that the attention
weights of the tokens to their own values are zeros after the softmax function.
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Figure 14. ViT architecture [46].

This change is enough for one transformer block. However, the power of transformers
comes when they are stacked together, and the diagonal mask is simply avoidable by the
permutation of neighboring tokens in two consecutive blocks. To tackle this issue, the
authors proposed the mechanism of input isolation [50]. Only queries are propagated
through transformer blocks, and keys and values are frozen at the input embedding
stage and never change further. This ensures that context-aware representations never
participate in one dot product, which mitigates the risk of learning permutation. In
addition, the initial queries are built only from positional embeddings, so the queries are
separated from the data.

According to the results presented in the original paper, T-TA achieved performance
competitive to that of BERT with much faster training convergence.

2.2.6 Transformers in computer vision

Inspired by the success of transformers in NLP, researchers explored the possibility of
adapting the architecture for image processing tasks. They realized that images could
be represented as a sequence of patches, and each patch could be considered as a token,
just like in NLP. By treating image patches as tokens, they could apply a transformer to
process them and perform various computer vision tasks.

This led to the development of the Vision Transformer (ViT) [46], which replaces
the convolutional layers of traditional computer vision models with self-attention layers,
enabling the model to learn global relationships between different patches of an image.
This approach has shown remarkable results in several image classification benchmarks
and has paved the way for using transformers in other computer vision tasks.
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(a) Window shifting operation [56]. (b) Two consecutive Swin Trans-
former blocks [56].

Figure 15. Window shifting in Swin Transformer [56].

The ViT architecture (Figure 14) consists of two main components: a patch embed-
ding module and a transformer encoder.

The patch embedding module takes an image as input and divides it into a grid of
non-overlapping patches. Each patch is then linearly projected to a low-dimensional
vector using a fully connected layer and summed with trainable positional embeddings.
The resulting vectors are treated as tokens and are fed into the transformer encoder.

The transformer encoder processes the sequence of vectors in a similar way to the
transformers for natural language. The only difference is in normalization layers: in ViT
they come before MSA and MLP layers, not after them. As usual, several transformer
encoder blocks are stacked one after another. The output of the last transformer encoder
layer is then passed through a linear classifier to predict the class of the input image.

ViT showed state-of-the-art performance for image classification, albeit it was not a
good choice for many other computer vision tasks. The reason for this is the patch size
(16× 16 by default), which limits the sequence length to acceptable numbers yet ensures
that the main information is preserved. Such size is far from pixel level, which makes
ViT hardly applicable to object detection, semantic segmentation, and other tasks that
require local context. Even though there were examples of using ViT as an encoder for
these tasks, e.g., SETR [60] for semantic segmentation, it showed inferior performance
compared to the models powered with a local context that came out later. One of the
ways to move closer to the pixel level is to limit the attention mechanism to certain parts
of the image, i.e., to have local attention.

One of the most successful architectures that address the challenge of local attention
is Swin Transformer, which was proposed as a universal encoder for image analysis [56].
One of the unique features of the Swin Transformer is its use of the window attention
mechanism. In window attention, the input feature map is divided into non-overlapping
windows of a fixed size, and self-attention is applied only within each window. Such a
limitation allows for patch size reduction (4×4 by default), but it also establishes a border
between the windows, yet there are neighboring patches at the border that would benefit

25



Figure 16. Swin Transformer architecture [56].

(a) ViT [46, 56]. (b) Swin Transformer [56].

Figure 17. Comparing patches and windows in Swin Transformer to ViT [56].

from mutual attention. To tackle this problem, Swin Transformer introduces window
shifting operation (see Figure 15) — the windows are shifted in every second block by
half of the window size, which allows the model to capture long-range dependencies
efficiently. Such a modification is called (shifted) window multi-head self-attention, or
(S)W-MSA.

Another important aspect of the Swin Transformer is its use of relative positional
encoding, which allows it to capture more complex patterns in the input data. Unlike
previous transformer models, which use fixed positional encodings to represent the
position of each element in the input sequence, the Swin Transformer uses learned
encodings that are relative to the position of other elements in the same window.

Nevertheless, the local windows might not capture all the relevant information for
the task, especially when dealing with large images. To solve this problem, the Swin
Transformer applies a hierarchical window attention mechanism, where the patches are
flattened and further grouped into larger ones in a hierarchical manner. This allows
the model to attend to both local and global information effectively. Thus, the whole
architecture (Figure 16) is organized in stages, each of which consists of several Swin
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(a) BEiT masked image modeling [53].

(b) Examples of masked autoencoding on ImageNet [15] validation set. In each group of three
photos, there is a masked input, an output from the model, and a ground truth image [63].

Figure 18. Transformer-based masked image modeling approaches [53, 63].

Transformer blocks, and patch merging is applied between the stages to flatten and group
neighboring patches. The outputs of the stages can now be used for a multitude of
computer vision tasks, and the last output would still be suitable for image classification
(see Figure 17b).

In efforts to adapt transformer models to vision, there have been successful attempts
to organize unsupervised pre-training for images. For example, BEiT [53] adapted the
masked language modeling objective of BERT to images. The idea of BEiT (Figure 18a)
was to mask rectangular blocks of patches in an image and predict tokenized versions
of the masked patches (visual patches). Such training does not require any ground truth
data, which allows one to train a powerful large transformer encoder on a vast image
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base. The pre-trained model can then be used for downstream tasks, the simplest one is
image classification.

He et al. [63] developed the idea of BEiT and applied masked image modeling to
pre-train an encoder for an image autoencoder model. They used masking more radically,
masking out as much as 80% of tokens and the tokens for masking were chosen arbitrarily
(Figure 18b). The results showed that even a small partition of tokens is enough for a
transformer to understand an image and restore it in relatively good detail.

These works proved that transformers are capable of unsupervised pre-training on
image data, however, this pre-training remains on the level of patches.

2.3 Denoising with deep learning
In this section, we describe the key ideas and methods that are applied for image denoising
using deep learning models. We start with supervised models and move to the ideas of
self-supervised image denoising, specifically focusing on blind-spot image denoising.

2.3.1 Supervised denoising

In a supervised setting, image denoising is mainly done with an autoencoder-like model
that inputs and outputs images of the same size, e.g., U-Net [27]. The simplest way
to supervise such training is to use a dataset of pairs of noisy and clean images, this
approach is often called Noise2Clean, or N2C (Figure 19). The loss function used during
training is typically an MSE between the model’s output and the ground truth clean
image:

L(f |θ) = E(x,y)[MSE(f(x|θ), y)] = E(x,y)

[
∥f(x|θ)− y∥2

|P|

]
, (14)

here P denotes the set of pixels in an image, over which the MSE is computed, and E(x,y)

is the expected value over the whole data.
Theoretically, Noise2Clean training can be performed on any image dataset, in which

the images are used as ground truth and their noisy versions are generated from the
input. Such noise is called synthetic. Opposed to synthetic, natural noise datasets contain
images with noise that occurs in real-world scenarios. One of the major difficulties with
these data is that the noise there is can be comprised of different modalities and levels,
which impedes the applicability of parametric models. Ground truth for such datasets is
hardly obtainable and is typically present in the form of images taken with an enhanced
acquisition procedure and/or better conditions. Another way of obtaining ground truth
for natural noise datasets is by averaging several noisy images of the same scene.

Training on clean images is not the only option for supervised image denoising. In
some cases, it is possible to obtain several noisy copies of the same scene. For instance,
Noise2Noise, or N2N, is a model that is supervised by pairs of different noisy copies of
the same image [38].
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Figure 19. Noise2Clean supervised image denoising.

Noise2Noise uses the same training scheme as Noise2Clean, except for the ground
truth — instead of clean images, the ground truth is represented by different corrupted
images of the same scene. Thus, the dataset is comprised of pairs of noisy images (xi, x

′
i)

under the assumption that the underlying clean signal for each pair is the same:

E(x,x′)(x
′|x) = y, (15)

here x and x′ represent input and target noisy copies, respectively, and y is the unavailable
true signal.

Although convolutional models are the most common choice for supervised image
denoising, transformers were also successfully applied for the task: SwinIR architec-
ture [55] recently established state-of-the-art performance on a variety of benchmarks.

SwinIR is entirely based on Swin Transformer with minor modifications. It utilizes
patches of size 1×1, i.e., each pixel is a patch, the authors claim that this is the only patch
size suitable for image denoising. The windows, thus, have lower pixel resolution than
in Swin Transformer, yet it does not affect the performance as in image denoising fine-
grained details and textures matter more than the global context. Besides, the hierarchical
structure of Swin Transformer is completely abandoned in SwinIR — patches are never
grouped, and the output resolution is retained until the end of the network.

The complete architecture of SwinIR (Figure 20) consists of several groups of Swin
Transformer blocks parametrized as described previously with a convolutional layer for
additional smoothing and feature merging. There is a residual connection skipping each
group and the whole set of groups. The network ends with additional convolutions that
form the final output and reduce the number of channels.
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Figure 20. SwinIR model architecture [55, 69].

Other transformer-based architectures for supervised image restoration include
Uformer [67], which is comprised of transformer blocks in a U-shaped structure and uses
the mechanism of modulators to enhance the multi-scale processing, and Restormer [68],
which incorporated depth-wise convolutions inside of the MSA and a gated form of MLP
in the transformer.

2.3.2 Self-supervised image denoising

Self-supervised image denoising develops the idea of training without clean data even
further. Self-supervised methods aim to reconstruct the uncorrupted signal from a noisy
image only, without any additional data. This approach is invaluable for datasets with
natural noise in various domains, such as medical imaging, where clear ground truth
images are hardly ever available.

Self-supervised image denoising models usually require specific changes in model
architecture, data processing, or training pipeline. For instance, Noisier2Noise [48] and
Recorrupted2Recorrupted (R2R) [58] apply additional noise to the data during training
to emulate the Noise2Noise method without additional noisy copies of the same data.
These approaches show competitive performance, yet they are limited to known noise
sources — the additional noise applied to the image should match the noise model that is
present in the data.

There were other ways to adapt the Noise2Noise idea for noisy datasets without clean
or noisy paired images. Neighbor2Neighbor [54] took a noisy image and subsampled it
into two slightly different copies, treating one of them as an input and another — as a
target. Self2Self [49] trained the model by applying Bernoulli dropout to noisy images
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(a) Full local receptive field leads the net-
work to learn the identity function [41].

(b) Restricted receptive field in a BSN [41].

Figure 21. Blind-spot network (BSN) design for image denoising [41].

and comparing the output to the original values of dropped pixels. At the inference stage,
Self2Self aggregated the outputs of several corrupted copies for more robust results.

Another influential approach to self-supervised image denoising is to design a blind-
spot network (BSN), which was contemporaneously introduced in Noise2Void [41] and
Noise2Self [39]. Conceptually, a BSN is a deep learning model for image denoising that
tries to predict the value of each pixel by its neighborhood, treating the pixels’ own value
as a blind spot. If the real pixel’s value is not masked, the network will simply learn the
identity function, as the loss will be computed on the input that the model can reproduce
(compare the subfigures in Figure 21). Although BSP loses information about the pixel’s
own value, it is virtually possible to restore the pixel from its neighborhood, assuming
that the pixel is similar to its neighbors and E [noise] = 0. Therefore, such a setup works
if the noise is zero-mean, independent, and identically distributed.

BSN would require a sophisticated model architecture, for example, in CNNs, it is
impossible to just mask out the center in convolutional kernels: a model would simply
learn pixel permutation as the filters are applied to neighboring pixels several times.
To avoid complicated architecture design, the authors of Noise2Void and Noise2Self
proposed using a simple U-Net as a backbone and masking a small random partition of
pixels J ∈ P in the image during each iteration. The loss was also modified, and an
MSE would be computed only along the masked pixels:

L(f |θ) = EJEx

[
∥f(xJ c |θ)(J )− x(J )∥2

|J |

]
, (16)

here x is the noisy image, and xJ c is the input image with a mask on J , the expected
value is computed over possible masks J and over data, y is not present in the loss as
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Figure 22. Noise2Void/Self (top) and Noise2Same (bottom) frameworks architecture and
training settings [52].

there is no ground truth in self-supervised training. The difference between Noise2Void
and Noise2Self lies in the masked pixel imputation: Noise2Void imputes the pixel with
its random neighbor [41], whereas Noise2Self makes the pixel black and applies synthetic
noise to it [39].

Noise2Same [52] further developed the idea of Noise2Self in order to enhance the
performance of the BSN. The authors introduced an additional model pass without
masking (Figure 22). The loss was also modified to a compound sum of losses:

L(f |θ) = λrecLrec(f |θ) + λinvLinv(f |θ), (17)

Lrec(f |θ) = Ex

[
∥f(x|θ)− x∥2

|P|

]
, (18)

Linv(f |θ) = EJ

√
Ex

[
∥f(x|θ)(J )− f(xJ c |θ))(J )∥2

|J |

]
, (19)

here Lrec is the reconstruction loss computed as an MSE between the input and the
output of the unmasked run, Linv is the invariance loss that is computed as a root of MSE
between the unmasked and masked runs over the set of mask pixels, and λrec and λinv

are hyperparameters that regulate the strength of each loss component.
Blind2Unblind [66] is another self-supervised image denoising scheme that utilized

several model runs, it has recently established state-of-the-art performance. The main
difference between this approach and Noise2Same is that instead of one random mask,
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(a) Training phase [66]. (b) Inference
phase [66].

Figure 23. Blind2Unblind image denoising [66].

Blind2Unblind creates a set of masks Ωy with Global Masker Ω(·). Each mask hides a
certain pixel in every s× s neighborhood. By default, s = 2, therefore, Blind2Unblind
processes 4 masked copies and assembles the output from them using Global Mask Map-
per h(·). Additionally, the model processes the whole image without the gradient, and
the losses are computed between the two outputs (Lrev — re-visible loss), and between
the noisy input and the masked output (Lreg — regularization loss), see Figure 23.

There are several other worth-mentioning works that implemented the idea of BSN
without masking. Laine et al. [42] implemented a BSN using four model branches for
0◦, 90◦, 180◦, 270◦ image rotations. The convolutions in each branch have a receptive
field limited to a certain direction and the final image is shifted by one pixel to hide
the center pixel values. Honzátko et al. [47] adopted dilated convolutions to build a
fully-convolutional BSN architecture. Wu et al. [51] also utilized dilated convolutions
to create a network for unpaired noisy-clean learning — Dilated BSN, or DBSN. This
method’s main limitation was the restriction of the noise model, as one of the key stages
of the network is noise parameter estimation.

So far, there has been limited research on the application of transformers to self-
supervised image denoising. Denoising Transformer (DnT) [64], for example, uses
the R2R training scheme and utilizes a transformer-based model with 2D MSA and
additional convolutional feature extractors. This model, however, was proposed for
single-image training and was not tested on larger denoising datasets. Another attempt to
use transformers was in Context-aware Denoise Transformer (CADT) [71] combined
the ideas of SwinIR [55] and Blind2Unblind [66]: they used Swin Transformer blocks,

33



yet at the level of patches, and Blind2Unblind masking scheme to train the denoising
network. However, they claimed that the transformer alone is not enough for denoising
and introduced additional convolutional context extraction. Thus, the features from Swin
Transformer and convolutional feature maps are fused to produce the result.
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3 Motivation
The solutions for self-supervised image denoising discussed above mainly concentrate
on framework architecture, while using a conventional U-Net as a denoising network
backbone [49, 48, 54, 41, 39, 52, 58, 42, 66]. U-Net shows good results, but it loses
in comparison with state-of-the-art transformer models in supervised training. There-
fore, there is room for experiments with transformer models as backbones in the self-
supervised setting. We chose to integrate SwinIR [55] model into two frameworks —
Noise2Self and Noise2Same, as these frameworks do not require backbone modifications
and do not propagate the same input through the backbone more than two times, which
is crucial for a heavy transformer model.

Another solution that is missing among the contemporary architectures is a true blind-
spot network, a model that would establish the concept of reconstructing each pixel from
its neighborhood at once without explicit image masking [41, 39, 52, 66] or multiple runs
through the backbone [52, 66, 42]. Besides, there has been no self-sufficient transformer
architecture for self-supervised image denoising — existing solutions [64, 71] still rely
on convolutions. Combining the two demands, we came up with the SwinIA — Swin
Transformer-based Image Autoencoder, the first fully-transformer end-to-end model for
self-supervised image denoising that requires neither data manipulations nor auxiliary
forward passes and can be trained with a single-component MSE loss [70].
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4 Methods
In this section, we give details on the methods applied in the current work. First, we
describe the integration of the SwinIR model into the Noise2Self and Noise2Same
frameworks. Second, we propose a novel image autoencoder architecture for self-
supervised image denoising based on Swin Transformer (SwinIA) [70]. Finally, we
document the technologies used in our work.

4.1 Self-supervised image denoising with SwinIR
We integrated SwinIR into the framework that supports both Noise2Self and Noise2Same
modes (Figure 24). We took the original SwinIR with six groups with six Swin Trans-
former blocks and a 3 × 3 convolution in each group [55]. We removed inner input
normalization as the normalization is already done in the framework and discarded the
shortcut connection from input to output as it was not motivated in the original paper and
affected the performance in self-supervised training [69].

Figure 24. Proposed framework architecture, it combines Noise2Self [39] (blue flow)
and Noise2Same [52] (red flow) and uses SwinIR as a backbone [69].

Following SwinIR [55], we use embedding dimensionality of 96 with 6 attention
heads. To avoid unnecessary padding, we use windows of size 8× 8 instead of 7× 7, as
we train on images of size 64× 64.

To obtain a random pixel mask for both model modes, we mask random 0.5% of
pixels and impute them with zero-mean Gaussian noise with σ = 0.2. For Noise2Same
mode, we use λinv = 2 to equalize loss components.
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4.2 SwinIA
In this section, we describe the proposed SwinIA architecture. We start with the model
design, formulating the main idea and the architecture requirements. Then we describe
the architecture bottom-up.

4.2.1 Design

The idea of SwinIA is to create a true BSN which would be trained by a simple MSE
loss between input and output:

L(f |θ) = Ex∥f(x|θ)− x∥2. (20)

The model should not require any additional forward passes or any data manipulations.
Any classical denoising backbone would simply learn an identity function in such a
setting, so it is the architecture that should establish the blind-spot property.

(a) Language autoencoding with self-
unaware tokens [50, 70].

(b) Image autoencoding with self-unaware
patches [70].

Figure 25. Self-unaware autoencoding in text and images [70].

We adapt the idea of language autoencoding objective with self-unaware tokens
from T-TA [50]. The transformer architecture that we propose is trained with self-
unaware patches when each patch does not attend to its own value (compare subfigures
in Figure 25), which establishes the blind-spot property on the level of patches. We also
follow the idea of SwinIR [55] to use window self-attention with 1× 1 patches to ensure
the blind-spot property on the pixel level.

To implement the idea of a true fully-transformer BSN described above, we formulate
the following list of architecture requirements.

Self-unawareness. This is the main requirement to establish the blind-spot property:
in every block of the network, none of the pixels should be able to access either their
own values or the values of the pixels that accessed its value.
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(a) Swin Transformer and SwinIA window shifting approaches. Pairs of
adjacent pixels that never participate in the same self-attention in Swin
are enumerated 1− 8 [70].

(b) Shuffle group partition example for shuffle S = 2. A window of size
M ×M = 2× 2 shuffle groups is partitioned into 4 shuffle groups [70].

Figure 26. SwinIA design decisions [70].

Pixel level. Image denoising requires pixel-level interactions, so the transformer
blocks should operate on pixel-size patches.

Continuous field of view. The window shifting scheme of Swin Transformer leaves
several pairs of adjacent pixels unaware of each other under the restriction of input isola-
tion (Figure 26a). Taking this into account, we demand that neither of the neighboring
pixel interactions can be neglected.

Long-range interactions. Input isolation restriction cancels the receptive field
growth essential to Swin Transformer. Therefore, there must be a mechanism to establish
a broader context for each pixel.

38



Figure 27. SwinIA MSA, transformer block, and residual group architecture [70].

Encoder-decoder structure. The output of the network should be an image, therefore
different encoder levels should be properly decoded to ensure the restoration of the local
context.

4.2.2 Architecture

Here we give a detailed description of SwinIA architecture in a bottom-up approach [70].
We will explain key architectural solutions referring to the requirements formulated
above.

Transformer block. SwinIA transformer block (Figure 27) follows the idea of
T-TA as a diagonal mask is applied to self-attention and only queries are propagated
through the transformer [50]. As in Swin Transformer, SwinIA uses window MSA [56].
Combined, these ideas satisfy the requirements of self-unawareness and pixel level.

Another distinguishing feature of SwinIA is that it operates at the level of shuffle
groups — square groups of pixels of size S × S. Each shuffle group is treated as a single
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Figure 28. SwinIA model architecture [70].

token for self-attention. By adjusting S, we can make SwinIA transformer blocks operate
at the pixel level (S = 1) or in the broader context (S > 1). This allows us to enlarge the
attention windows to gain long-range interactions. The window size M now corresponds
to a square window of size M ×M shuffle groups.

Following the omnipresent practice in vision transformers, we normalize the tokens
before self-attention (shuffle group layer normalization — SGLN) and MLP blocks.
There is an additional layer normalization after the MLP, which improved the performance
of the model (see ablation study in Section 5.5).

In our experiments, we use the embeddings of size 144, windows of size 8× 8 for
each shuffle group size, and 16 attention heads in every transformer block.

Residual group. SwinIA residual group (Figure 27) consists of four transformer
blocks. This number is determined by the number of shifts done in the cyclic shifting
scheme that we propose (see Figure 26a). The window is first shifted by half of the
window size to the right, then to the bottom, then to the left, and finally back up.
Such a shifting scheme satisfies the requirement of continuous field of view, which was
unobtainable with the shifting scheme of Swin Transformer.

To achieve self-unawareness through input isolation, the keys and values that come
as inputs to the residual group are never changed and only query is propagated through
the transformer blocks. Additionally, there is a shortcut around each transformer block
in the group. The shortcut is performed as two operations, concatenation and channel
reduction back to the original number of channels, as concatenation doubles the channel
dimension.

Full model. The complete SwinIA model (Figure 28) has an encoder-decoder
structure that forms a U-shape. This allows to extract features on different levels and use
them to form the final pixel-level output. Each encoder and decoder block is a residual
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group described above. Before the encoder, an input image is separately embedded into
key and value, while query is formed from the trainable positional embeddings matrix.
These embeddings are also added to the keys and values.

The encoder consists of three blocks with shuffles S = 1, 2 and 4. The inputs are not
passed down through the encoder and are the same for each encoder block. Otherwise,
with increasing S, shuffle groups aware of their neighborhood will assemble into bigger
tokens, inside of which exists a certain mutual correspondence between the parts, which
contradicts the requirement of self-unawareness.

The decoder consists of two blocks with shuffles S = 2 and 1 that correspond to
the similar encoder blocks, the block with S = 4 is treated as a bottom block. Unlike
the encoder, the decoder sequentially propagates tensors through blocks, because S
decreases by this flow and self-unawareness retains. The input of each decoder block is
comprised of the output from the previous block and from the corresponding encoder
block, these outputs are combined via concatenation and channel reduction.

Additionally, there is a skip connection around each residual group with concatenation
and channel reduction.

4.3 Technologies used
In this section, we describe the technologies and instruments we used to implement the
models, organize training and logging, and create visualizations and documentation.

4.3.1 Implementation and training

All models were implemented in Python 3.8.3 with PyTorch 1.12.1 [34] with einops [65]
library for most operations of tensor reshaping and dimensions permutation. The training
was accelerated with NVIDIA V100 32GB GPUs and NVIDIA A100 80GB GPUs (driver
version: 470.57.02, CUDA version: 11.4).

For training logging and visualization, we used Weights & Biases (W&B) soft-
ware [45]. Through W&B we also visualized training and validation examples and
compared the models.

4.3.2 Visualization and documentation

We visualized the denoising examples using matplotlib [14] library. More complex re-
sult visualizations and model architecture diagrams were drawn using diagrams.net [57].

The text of this thesis was written using Overleaf editor [20]. We used the assistance
of ChatGPT [61] when writing the background section (Section 2). This language model
was used to enrich the text variety and to make the overview paragraphs more readable.
To correct grammatical errors and misused vocabulary, we used Grammarly [16].
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5 Experiments and results
In this section, we describe the experiments that we performed. We start with the general
training and testing settings (Section 5.1). Then we continue to details and results of the
experiments that we completed. We conducted a series of experiments on datasets that
consisted of clean images, to which we applied synthetic noise for training while keeping
clean images unavailable for the model. These results are presented in Section 5.2. We
also used prepared mixed noise datasets from Noise2Self [39] and Noise2Same [52]
papers, these results are presented in Section 5.3. In addition, we tested the model
on natural noise data (Section 5.4). In Section 5.5, we describe an ablation study on
different training settings and model parameters. Finally, in Section 5.6, we report failed
experiments that are worth mentioning.

When presenting the results, we will highlight wherever possible separate groups for
supervised methods (N2C [27] and N2N [38]) and methods that achieve the blind-spot
property via backbone architecture. The latter is done for a fair comparison of our
SwinIA model with other true-blind spot methods.

5.1 Training settings
We follow Noise2Same [52] and Blind2Unblind [66] in most of the training settings.
We train models for 50000 iterations (there are several exceptions, they are mentioned
in the experiments section) with Adam optimizer [23]. During each iteration, a model
processes 32 random images of size 64 × 64 cropped from the training dataset. Each
crop is scaled to the [0, 1] range and independently standardized to µ = 0 and σ = 1,
except for the experiments with Poisson noise. Then, several random augmentations are
applied, including rotation and vertical and horizontal flipping.

In Noise2Self and Noise2Same models training (both with U-Net and SwinIR inside),
we use lambda learning rate scheduling with an initial learning rate of 4 · 10−4 and
learning rate decay by half every 500th iteration. In SwinIA training, we use cosine
annealing learning rate scheduling with an initial learning rate of 10−3 and final learning
rate of 10−6, as it is recommended for transformers in image restoration [62]. We also
apply padding to images so that they become divisible by 8 (the window size) in SwinIR,
and by 32 (the window size multiplied by the maximum shuffle group size) in SwinIA.

5.2 Synthetic noise
Following Blind2Unblind [66], we conduct a series of experiments on a range of clean
image datasets by applying noise to them as a special augmentation for training. The
clean data is still unavailable for the training. In the following subsections, we describe
the experiments on grayscale and sRGB data.
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5.2.1 Grayscale synthetic noise

We use BSD400 [36] dataset for grayscale denoising training. It consists of 400 grayscale
natural images of different resolutions. For testing, we use BSD68 [9] and Set12 datasets,
consisting of 68 and 12 images, respectively. As in Blind2Unblind [66], we do several
testing iterations for each dataset, providing the average value as a result. We repeat
BSD68 4 times and Set12 20 times, obtaining 272+240 = 512 images in total. We apply
zero-mean Gaussian noise with σ = 15, 25, 50, the experimental results are presented in
Table 2, and example visualizations are in Figure 29, Figure 32, and Figure 33.

Noise Type Method Network BSD68 Set12

Gaussian
σ = 15

N2C [27] U-Net [27] 31.58/0.889 32.60/0.899

R2R [58] U-Net [27] 31.54/0.885 32.54/0.897
Noise2Self† [39] U-Net [27] 30.63/0.843 29.88/0.840

Noise2Same† [52] U-Net [27] 30.85/0.850 30.02/0.849
Noise2Same† [52] SwinIR [55] 30.80/0.848 30.11/0.850

Blind2Unblind [66] U-Net [27] 31.44/0.884 32.46/0.897
Ours† SwinIA [70] 31.07/0.856 30.37/0.857

Gaussian
σ = 25

N2C [27] U-Net [27] 29.02/0.822 30.07/0.852

R2R [58] U-Net [27] 28.99/0.818 30.06/0.851
Noise2Self† [39] U-Net [27] 28.88/0.789 28.37 0.799

Noise2Same† [52] U-Net [27] 29.13/0.800 28.54/0.814
Noise2Same† [52] SwinIR [55] 29.06/0.798 28.57/0.814

Blind2Unblind [66] U-Net [27] 28.99/0.820 30.09/0.854
Ours† SwinIA [70] 29.17/0.801 28.72/0.817

Gaussian
σ = 50

N2C [27] U-Net [27] 26.08/0.715 26.88/0.777

R2R [58] U-Net [27] 26.02/0.705 26.86/0.771
Noise2Self† [39] U-Net [27] 26.19/0.664 25.56/0.692

Noise2Same† [52] U-Net [27] 26.75/0.714 26.13/0.744
Noise2Same† [52] SwinIR [55] 26.60/0.708 25.93/0.734

Blind2Unblind [66] U-Net [27] 26.09/0.715 26.91/0.776
Ours† SwinIA 26.61/0.706 26.03/0.736

Table 2. Denoising results on grayscale images with synthetic Gaussian noise. The results
are presented as average PSNR (in dB)/SSIM scores. In each series of experiments, the
best score is highlighted in bold, and the second-best score is underlined. † denotes our
implementations of the models that we evaluated ourselves [70].

As part of Noise2Same, SwinIR shows relatively comparable performance to that
of U-Net, overcoming Blind2Unblind on BSD68 with strong noise. SwinIA mostly
outperforms Noise2Self/Noise2Same models, beating the state-of-the-art Blind2Unblind
model on BSD68 with higher noise levels.
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Noise Type Method Network KODAK BSD300 SET14

Gaussian
σ = 25

N2C [27] U-Net [27] 32.43/0.884 31.05/0.879 31.40/0.869
N2N [38] U-Net [27] 32.41/0.884 31.04/0.878 31.37/0.868

CBM3D [12] — 31.87/0.868 30.48/0.861 30.88/0.854
Self2Self [49] U-Net [27] 31.28/0.864 29.86/0.849 30.08/0.839
N2V [41] U-Net [27] 30.32/0.821 29.34/0.824 28.84/0.802
Noisier2Noise [48] U-Net [27] 30.70/0.845 29.32/0.833 29.64/0.832
R2R [58] U-Net [27] 32.25/0.880 30.91/0.872 31.32/0.865
NBR2NBR [54] U-Net [27] 32.08/0.879 30.79/0.873 31.09/0.864
Blind2Undlind [66] U-Net [27] 32.27/0.880 30.87/0.872 31.27/0.864
Noise2Same† [52] U-Net [27] 30.77/0.841 29.50/0.834 29.53/0.827
Noise2Same† [52] SwinIR [55] 30.91/0.839 29.63/0.828 29.81/0.822

Laine19-mu [42] U-Net [27] 30.62/0.840 28.62/0.803 29.93/0.830
Laine19-pme [42] U-Net [27] 32.40/0.883 30.99/0.877 31.36/0.866
DBSN [51] DBSN [51] 31.64/0.856 29.80/0.839 30.63/0.846
Honzatko20 [47] U-Net [27] 32.45/ — 31.02/ — 31.25/ —
Ours† SwinIA [70] 30.12/0.819 28.40/0.789 29.54/0.814

Gaussian
σ ∈ [5, 50]

N2C [27] U-Net [27] 32.51/0.875 31.07/0.866 31.41/0.863
N2N [38] U-Net [27] 32.50/0.875 31.07/0.866 31.39/0.863

CBM3D [12] — 32.02/0.860 30.56/0.847 30.94/0.849
Self2Self [49] U-Net [27] 31.37/0.860 29.87/0.841 29.97/0.849
N2V [41] U-Net [27] 30.44/0.806 29.31/0.801 29.01/0.792
R2R [58] U-Net [27] 31.50/0.850 30.56/0.855 30.84/0.850
NBR2NBR [54] U-Net [27] 32.10/0.870 30.73/0.861 31.05/0.858
Blind2Undlind [66] U-Net [27] 32.34/0.872 30.86/0.861 31.14/0.857
Noise2Same† [52] U-Net [27] 30.78/0.835 29.49/0.823 29.34/0.817
Noise2Same† [52] SwinIR [55] 31.28/0.840 29.85/0.826 29.66/0.813

Laine19-mu [42] U-Net [27] 30.52/0.833 28.43/0.794 29.71/0.822
Laine19-pme [42] U-Net [27] 32.40/0.870 30.95/0.861 31.21/0.855
DBSN [51] DBSN [51] 30.38/0.826 28.34/0.788 29.49/0.814
Honzatko20 [47] U-Net [27] 32.46/ — 31.18/ — 31.25/ —
Ours† SwinIA [70] 30.30/0.820 28.40/0.785 29.49/0.809

Table 3. Denoising results on sRGB images with synthetic Gaussian noise. The results
are presented as average PSNR (in dB)/SSIM scores. In each series of experiments, the
best score is highlighted in bold, and the second-best score is underlined. † denotes our
implementations of the models that we evaluated ourselves [70].

5.2.2 sRGB synthetic noise

For color denoising training, we use 44328 sRGB images from ImageNet validation
set [15] with resolutions varying from 256 × 256 to 512 × 512. For testing, we use
KODAK [7], BSD300 [9], and Set14 [18] datasets. The datasets consist of 24, 100, and
14 images, and we repeat them for evaluation 10, 3, and 20 times, respectively. Thus,
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Noise Type Method Network KODAK BSD300 SET14

Poisson
λ = 30

N2C [27] U-Net [27] 31.78/0.876 30.36/0.868 30.57/0.858
N2N [38] U-Net [27] 31.77/0.876 30.35/0.868 30.56/0.857

Anscombe [19] — 30.53/0.856 29.18/0.842 29.44/0.837
Self2Self [49] U-Net [27] 30.31/0.857 28.93/0.840 28.84/0.839
N2V [41] U-Net [27] 28.90/0.788 28.46/0.798 27.73/0.774
R2R [58] U-Net [27] 30.50/0.801 29.47/0.811 29.53/0.801
NBR2NBR [54] U-Net [27] 31.44/0.870 30.10/0.863 30.29/0.853
Blind2Undlind [66] U-Net [27] 31.64/0.871 30.25/0.862 30.46/0.852
Noise2Same† [52] U-Net [27] 27.73/0.747 26.69/0.714 26.78/0.735
Noise2Same† [52] SwinIR [55] 27.70/0.735 26.72/0.713 26.71/0.728

Laine19-mu [42] U-Net [27] 30.19/0.833 28.25/0.794 29.35/0.820
Laine19-pme [42] U-Net [27] 31.67/0.874 30.25/0.866 30.47/0.855
DBSN [51] DBSN [51] 30.07/0.827 28.19/0.790 29.16/0.814
Honzatko20 [47] U-Net [27] 31.67/ — 30.25/ — 30.14/ —
Ours† SwinIA [70] 29.51/0.805 27.92/0.775 28.74/0.799

Poisson
λ ∈ [5, 50]

N2C [27] U-Net [27] 31.19/0.861 29.79/0.848 30.02/0.842
N2N [38] U-Net [27] 31.18/0.861 29.78/0.848 30.02/0.842

Anscombe [19] — 29.40/0.836 28.22/0.815 28.51/0.817
Self2Self [49] U-Net [27] 29.06/0.834 28.15/0.817 28.83/0.841
N2V [41] U-Net [27] 28.78/0.758 27.92/0.766 27.43/0.745
R2R [58] U-Net [27] 29.14/0.732 28.68/0.771 28.77/0.765
NBR2NBR [54] U-Net [27] 30.86/0.855 29.54/0.843 29.79/0.838
Blind2Undlind [66] U-Net [27] 31.07/0.857 29.92/0.852 30.10/0.844
Noise2Same† [52] U-Net [27] 27.44/0.738 26.36/0.700 26.37/0.721
Noise2Same† [52] SwinIR [55] 27.09/0.713 26.29/0.695 26.27/0.713

Laine19-mu [42] U-Net [27] 29.76/0.820 27.89/0.778 28.94/0.808
Laine19-pme [42] U-Net [27] 30.88/0.850 29.57/0.841 28.65/0.785
DBSN [51] DBSN [51] 29.60/0.811 27.81/0.771 28.72/0.800
Ours† SwinIA [70] 29.06/0.788 27.74/0.764 28.27/0.780

Table 4. Denoising results on sRGB images with synthetic Poisson noise. The results
are presented as average PSNR (in dB)/SSIM scores. In each series of experiments, the
best score is highlighted in bold, and the second-best score is underlined. † denotes our
implementations of the models that we evaluated ourselves [70].

the test set amounts to 240 + 300 + 280 = 820 images. For SwinIA training, we follow
Blind2Unblind [66] and increase the number of training steps to 80000.

Following Blind2Unblind [66], we experiment with these datasets by applying zero-
mean Gaussian noise with σ = 25 and σ ∈ [5, 50] (the results are in Table 3) and Poisson
noise with λ = 30 and λ ∈ [5, 50] (the results are in Table 4).

In Noise2Same experiments, SwinIR outperforms U-Net in Gaussian denoising,
especially with a varying σ parameter. In Poisson noise removal, all Noise2Same experi-
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Figure 29. Denoising examples from BSD68 [9] and Set12 grayscale datasets with
Gaussian noise (µ = 0, σ = 25), ImageNet [15, 52], and HànZì [52] prepared datasets
with mixture noise. There are six columns with noisy input, denoising results from
Noise2Self (N2Self) [39], Noise2Same (N2Same) with U-Net [52] and SwinIR [69] as
backbones, SwinIA, and ground truth images. Each denoising result has a caption with
PSNR (in dB) for this image [70].

ments showed lower performance than concurrent methods, while SwinIA maintained
the performance on par with other true blind-spot networks. Comparing Noise2Same and
SwinIA, the latter was slightly worse with Gaussian noise, yet it showed stable scores
regardless of the noise model.

5.3 Prepared mixed synthetic noise
Prepared noisy data was taken from Noise2Same [52] repository to compare the results
with those presented in the paper. These datasets were prepared by Noise2Self [39] and
Noise2Same [52] authors, thus, the noisy copies are generated and saved before training.

HànZì dataset of hand-written Chinese characters contains 13029 characters and
consists of 78174 [0, 1]-ranged noisy images of size 64× 64. Each image was corrupted
with a mixture of zero-mean Gaussian noise with σ = 0.7 and Bernoulli noise with
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Method Network ImageNet [0, 255] [52] HànZì [0, 1] [39]

Poisson λ = 30
Gaussian σ ∈ [5, 50]

Bernoulli p = 0.2
Gaussian σ = 0.7
Bernoulli p = 0.5

N2C [27] U-Net [27] 23.39/ — 15.66/ —
N2N [38] U-Net [27] 23.27/ — 14.30/ —

NLM [11] — 18.04/ — 8.41/ —
BM3D [13] — 18.74/ — 10.90/ —
Noise2Void [41] U-Net [27] 21.36/ — 13.72/ —
Noise2Self† [39] U-Net [27] 21.33/0.574 14.16/0.512
Noise2Self†‡ [39] SwinIR [55] 19.41/0.470 12.18/0.388
Noise2Same† [52] U-Net [27] 22.85/0.625 14.85/0.542
Noise2Same† [52] SwinIR [55] 22.95/0.626 14.24/0.510

Laine19 [42] U-Net [27] 20.89/ — 10.70/ —
Ours† SwinIA [70] 23.36/0.638 14.35/0.556

Table 5. Denoising results on images with mixed synthetic noise. The results are
presented as average PSNR (in dB)/SSIM scores. In each series of experiments, the
best score is highlighted in bold, and the second-best score is underlined. † denotes our
implementations of the models that we evaluated ourselves. ‡ denotes clipping gradient
norm to 1.0 [70].

p = 0.5. The data is randomly split into training and test sets with a ratio 9 : 1 [39].
Another mixed noise dataset was made of 50000 images from the ImageNet validation

set. 60000 crops of size 128× 128 were cropped from the first 20000 images. Then the
images were exposed to the mixture of Poisson noise with λ = 30, zero-mean Gaussian
noise with σ = 60, and Bernoulli noise with p = 0.2. Another two subsets of ImageNet
validation of size 1000 images each are used for validation and testing [39].

Noise2Self [39] also used BSD datasets with training on BSD400 and testing on
BSD68 with Gaussian noise (µ = 0, σ = 25). However, we have already conducted such
experiments in Section 5.2.1, where the training scheme was more reasonable as the
noisy images were not prepared beforehand. Therefore, we did not use these data in this
section.

The results for these experiments are presented in Table 5 and visualized in Figure 29,
Figure 34, and Figure 35. Noise2Self with SwinIR as a backbone failed in comparison to
the original Noise2Self. The reason for this might be in gradient norm clipping applied
in this experiment. Without clipping, the gradients exploded at the very beginning of the
training, likely due to the stochastic nature of Noise2Self training, as loss is computed
on an exiguous partition of pixels. Noise2Same with SwinIR outperforms the original
Noise2Same on ImageNet data while failing on HànZì. The reason for the latter might
be the strong noise level on HànZì data and the lack of high-frequency structures.
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Figure 30. Detailed structure restoration comparison between Noise2Same with U-
Net [52] and SwinIR [69] as backbones. The structure is zoomed in for comparison.
Additional parts of the image for comparison that include color spots and fractured lines
are highlighted with arrows.

SwinIA shows state-of-the-art performance on both datasets, yielding the best score
only to Noise2Same on HànZì data in PSNR, while still beating it in SSIM. Besides,
SwinIA outperformed Noise2Noise on both datasets and reached a score close to that
of a strongly supervised Noise2Clean on ImageNet. Compared to another true BSN by
Laine et al. [42], SwinIA showed +2.47dB PSNR on ImageNet and +3.65dB PSNR on
HànZì.

We noticed the difference in the PSNR-SSIM score relation between convolutional
and transformer backbones. In some cases, transformers show lower PSNR than convolu-
tional U-Net backbone, but better SSIM at the same time. We assume that transformers
are more capable of fine texture restoration, whereas CNNs are prone to smooth detailed
parts of an image. We show an example of such a comparison in Figure 30. The same
behavior is demonstrated in grayscale images: in Figure 29, the image from Set12 in
the second row has a striped pattern, which is mostly smoothed by U-Net, yet it is more
distinguishable in the experiments with SwinIR and SwinIA.

5.4 Natural noise
Apart from synthetic noise, we used natural noise datasets in experiments. We conducted
experiments on Fluorescent Microscopy Denoising (FMD) datasets [44] that contain a
natural mixture of Gaussian and Poisson noise. We took Confocal Fish, Confocal Mice,
and Two-Photon Mice subsets from the dataset. Each subset consists of 20 views, each
view contains 50 images of the same scene. The ground truth for each view is obtained
by averaging the 50 images. We leave the 19th view for testing and use all other views
for training.

Since the datasets are small and consist literally of only 20 different views, we adjust
the training settings, lowering the number of steps to 20000 and setting up a weight decay
rate of 10−8.

The results of the experiments with natural noise are presented in Table 6 and
visualized in Figure 31. SwinIR does not give any improvement to the Noise2Same

48



Method Network Confocal Confocal Two-Photon
Fish Mice Mice

N2C [27] U-Net [27] 32.79/0.905 38.40/0.966 34.02/0.925
N2N [38] U-Net [27] 32.75/0.903 38.37/0.965 33.80/0.923

BM3D [13] — 32.16/0.886 37.93/0.963 33.83/0.924
N2V [41] U-Net [27] 32.08/0.886 37.49/0.960 33.38/0.916
NBR2NBR [54] U-Net [27] 32.11/0.890 37.07/0.960 33.40/0.921
Blind2Undlind [66] U-Net [27] 32.74/0.897 38.44/0.964 34.03/0.916
Noise2Self† [39] U-Net [27] 31.96/0.877 36.45/0.960 31.61/0.910
Noise2Same† [52] U-Net [27] 32.36/0.893 37.64/0.960 33.55/0.917
Noise2Same† [52] SwinIR [55] 32.07/0.881 37.44/0.959 33.39/0.914
CADT[71] CADT[71] 32.52/0.895 38.21/0.962 33.64/0.914

Laine19-mu (G) [42] U-Net [27] 31.62/0.849 37.54/0.959 32.91/0.903
Laine19-pme (G) [42] U-Net [27] 23.30/0.527 31.64/0.881 25.87/0.418
Laine19-mu (P) [42] U-Net [27] 31.59/0.854 37.30/0.956 33.09/0.907
Laine19-pme (P) [42] U-Net [27] 25.16/0.597 37.82/0.959 31.80/0.820
Ours† SwinIA [70] 31.79/0.871 37.65/0.960 33.25/0.915

Table 6. Denoising results on fluorescent microscopy images with natural noise. The
results are presented as average PSNR (in dB)/SSIM scores. In each series of experiments,
the best score is highlighted in bold, and the second-best score is underlined. For Laine et
al. [42], G stands for Gaussian noise, and P stands for Poisson noise. † denotes our
implementations of the models that we evaluated ourselves [70].

model in this data, showing slightly lower scores for all three subsets. However, SwinIA
shows the best performance among the true blind-spot solutions, outperforming all
models by Laine et al. [42], except for a minor loss in PSNR on Confocal Mice data.

We also set up the experiments for Smartphone Images Denoising Dataset (SIDD) [37],
which contained high-resolution sRGB images, where each pair of images was shot in
the same scene on a smartphone and on a professional camera. However, all our models
managed to learn the identity function on these data. The reason behind this is that the
noise in these images is spatially correlated [51], while most of the methods we use
assume that the noise is pixel-level and spatially uncorrelated. Obviously, Noise2Self and
Noise2Same methods easily restore masked pixel value from its neighboring pixels in
such a setting. SwinIA also operates on the pixel level, yet there is room for experiments
with shuffle group size, which, in theory, could help to overcome the spatial correlation.

5.5 Ablation study
In this section, we describe the ablation study that we performed during SwinIR in-
tegration and SwinIA design. We give reasons for the ablations and summarize the
results.
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Figure 31. Denoising results on fluorescent microscopy denoising (FMD) dataset [44].
Each pair of rows contains an example from a part of the dataset and a zoomed patch
for comparison, and there are six columns with noisy input, denoising results from
Noise2Self (N2Self) [39], Noise2Same (N2Same) with U-Net [52] and SwinIR [69] as
backbones, SwinIA, and ground truth images [70].

5.5.1 SwinIR

SwinIR [55] uses patches of size 1, while patch size equals 4 by default in Swin Trans-
former [56]. The authors did not perform an ablation study of window size with regard
to this change. They adopted the window size equal to 7 from Swin Transformer. Thus,
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window resolution in pixels was implicitly reduced from 28× 28 to 7× 7.
We investigated the opportunity to increase the window size in order to obtain a field

of view similar to that of Swin Transformer. In Table 7, we show the scores of SwinIR
in Noise2Self and Noise2Same modes with window sizes of 8 and 16. The sizes were
chosen to avoid unnecessary padding for training crops of size 64× 64.

HanZi ImageNet
Method Window size PSNR SSIM PSNR SSIM

Noise2Self 8 12.18† 0.388† 19.41† 0.470†

16 13.57 0.475 20.21† 0.493†

Noise2Same 8 14.24 0.510 22.95 0.626
16 14.35 0.513 23.05 0.635

Table 7. SwinIR window size ablation study. PSNR (in dB) and SSIM scores are
compared across window sizes of SwinIR in each method separately, and the best scores
are highlighted in bold. † denotes the experiments where gradient norm was clipped to
1.0 [69].

Even though a window size of 16 showed superior scores in all of the experiments,
multiplying the window size by the factor of 2 increases the computational complexity by
4 times. In the situation of limited resources and knowing that SwinIR by itself demands
by orders of magnitude more resources than U-Net, we consider the improvement coming
from this parameter change insignificant.

5.5.2 SwinIA

First of all, we conducted an ablation study on the key architectural concepts that we
combined in our SwinIA model. We took our best scoring model on ImageNet data and
tested its variants without each design feature. The design features that we tested in this
ablation were:

• Cyclic shifting scheme of 4 consecutive window shifts instead of diagonal shifts
from Swin Transformer;

• Cosine annealing learning rate scheduling instead of lambda;

• Additional shuffle group layer normalization before self-attention;

• Shuffle groups instead of utilizing all transformer blocks on pixel level;

• U-shaped structure instead of a plain sequential pixel-level scheme as in SwinIR.
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Table 8 shows that all the architecture concepts substantially contributed to the best
score. The last two experiments, with only pixel-level transformers without shuffle
groups, did not converge, so the score was unobtainable, with or without a U-shaped
structure.
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No Cyclic shift ✓ ✓ ✓ ✓ ✓ 23.10/0.623 -0.26/-0.015
No Cosine LR ✓ ✓ ✓ ✓ ✓ 23.16/0.627 -0.20/-0.011
No SGLN ✓ ✓ ✓ ✓ 23.30/0.631 -0.06/-0.007
No Shuffle groups ✓ ✓ ✓ ✓ —
No U-shape ✓ ✓ ✓ —

Table 8. SwinIA design decisions ablation study on ImageNet dataset with mixed
noise [52]. The first line represents our baseline with chosen design decisions and the
rest of the lines are ablations for each decision [70].

We also separately verified other architectural decisions that did not play a major part
in our reasoning process. We tested a model without shortcuts around each transformer
block, as they were not used in SwinIR [55], by which our model was inspired. We also
trained a model without layer normalization at the end of transformer blocks, as it is not
common for transformers in vision [46].

HànZì [39] ImageNet [52]

Our best 14.35/0.556 23.36/0.638

No shortcuts 14.36/0.559 23.24/0.624
No last norm 13.91/0.543 23.40/0.638

Table 9. Additional ablation study for SwinIA transformer group architecture details on
HànZì [39] and ImageNet [52] mixed noise datasets [70].

Table 9 shows that each of the changes improved the score on one of the datasets.
However, at the same time, it substantially degraded the performance on the other dataset.
Therefore, we decided to proceed with the most stable solution and kept both changes in
the model.
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5.6 Failed SwinIA experiments
While designing the SwinIA model, we tested a large variety of configurations for
different architectural concepts. Eventually, not all of the ideas we had proved their
utility. Here, we mention the ideas that seemed promising but did not find their place
in the final architecture [70]. This list could be valuable for possible future work on the
model.

Noise2Same training scheme. We implemented a SwinIA variant that allows for
training in two forward passes, as it is done in Noise2Same [52]. During the masked
pass, we utilized SwinIA without any changes. During the unmasked pass, we canceled
the diagonal attention mask, allowing the tokens to access their own values, and loosened
the input isolation, propagating keys and values through the transformers starting from
the second block. In this setting, we computed the original Noise2Same compound loss
between the two outputs. This training had convergency issues, we speculate that this is
due to the considerable modality shift between the two forward passes through the same
model. However, we do not eliminate the possibility of returning to this idea in future
work.

Dilated attention. As an alternative to pixel shuffle, we considered dilated window
attention as a mechanism to increase the receptive field under the restriction of input
isolation. However, the interactions between non-adjacent pixels violated the importance
of the continuous field of view and produced sharp single-pixel artifacts.
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6 Discussion
Our experimental results indicate that transformers are capable of image denoising in a
self-supervised manner. We experimented with a state-of-the-art transformer backbone
for image restoration integrated into classical frameworks and with our own model that
does image denoising without outer frameworks. Thus, we can evaluate the performance
of transformers both as a backbone and as a standalone blind-spot network.

SwinIR integrated into Noise2Self did not show good results as the model did not
converge on high noise levels and required an additional constraint on gradient value.
This indicates that the stochasticity of Noise2Self, determined by its single-component
loss on a small partition of pixels, is harmful to a complex transformer model.

As a part of Noise2Same, SwinIR showed performance comparable to that of U-Net,
overcoming its results in some cases, for instance, on sRGB data with Gaussian or
mixed noise. Besides, we have shown that SwinIR is more capable of restoration of
fine structures and patterns (Figure 30). However, such an improvement comes at a
considerable computational cost, the details of training and inference time are presented
in Table 10 and the complexity of the models is compared in Table 11 in Appendix II. We
have also shown that SwinIR denoising can be further improved by increasing window
size, albeit it would demand quadratically more resources due to window MSA time
complexity.

SwinIA came as a good proof of concept and showed decent results on all benchmarks,
which was not the case with Noise2Same that degraded on Poisson noise data (Table 4)
regardless of the backbone. This proves that SwinIA is designed in such a way that it
does not require knowledge of the noise model, unlike many solutions for self-supervised
image denoising, including true blind-spot approaches. This property is essential, for
example, no matter how much better SwinIR is compared to U-Net in supervised denois-
ing, its capabilities become limited once it is put into a denoising framework. SwinIA is
the first convolution-free architecture that is capable of self-supervised denoising done
by model properties solely and optimized by tuning a simple MSE.

The only assumption that we are yet to eliminate for SwinIA is the spatial uncor-
relatedness of noise. As it was shown in failed experiments with SIDD in Section 5.4,
SwinIA is able to learn an identity function on spatially correlated noise, since it operates
on the pixel level. Therefore, we leave this idea for future work and it is yet to determine
whether increasing the initial shuffle group size will overcome this requirement.

All in all, SwinIA is subject to further development, which can not only help the
model to generalize to different kinds of noise better but also to improve the scores,
establishing a new state of the art in self-supervised image denoising. In addition, we
hypothesize that SwinIA might be developed into a powerful general-purpose computer
vision encoder capable of efficient self-supervised pre-training.
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7 Conclusion
Self-supervised image denoising is invaluable for the industry. It allows for image quality
enhancement when clean images are unavailable, which is crucial for such domains
as medical imaging, where image analysis plays a key role in a variety of processes.
In this work, we managed to fill the gap in modern research about transformers in
self-supervised image denoising by thoroughly testing a ready-made solution within an
existing framework and designing a novel transformer-based blind-spot architecture. Our
results show that one can definitely benefit from using transformers for the task, yet
the computational costs have to be taken into account. Apart from the insights into the
performance of transformers in self-supervised denoising, we provided a novel proof-
of-concept network, which is valuable for the further development of self-supervised
transformers in computer vision.
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Appendix

I. Visualization

Figure 32. Denoising examples on BSD68 dataset [9] of grayscale natural images with
Gaussian noise (µ = 0, σ = 25). There are six rows with example images and six
columns with noisy input, denoising results from Noise2Self (N2Self) [39], Noise2Same
(N2Same) with U-Net [52] and SwinIR [69] as backbones, SwinIA, and ground truth
images. Each denoising result has a caption with PSNR (in dB) for this image [70].
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Figure 33. Denoising examples on Set12 dataset of grayscale natural images with
Gaussian noise (µ = 0, σ = 25). There are six rows with example images and six
columns with noisy input, denoising results from Noise2Self (N2Self) [39], Noise2Same
(N2Same) with U-Net [52] and SwinIR [69] as backbones, SwinIA, and ground truth
images. Each denoising result has a caption with PSNR (in dB) for this image [70].
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Figure 34. Denoising examples on ImageNet denoising dataset [52] of sRGB natural
images with mixture of Poisson noise with λ = 30, zero-mean Gaussian noise with
σ = 60, and Bernoulli noise with p = 0.2. There are six rows with example images
and six columns with noisy input, denoising results from Noise2Self (N2Self) [39],
Noise2Same (N2Same) with U-Net [52] and SwinIR [69] as backbones, SwinIA, and
ground truth images. Each denoising result has a caption with PSNR (in dB) for this
image [70].
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Figure 35. Denoising examples on HànZì denoising dataset [52] of grayscale hand-
written Chinese characters with mixture of zero-mean Gaussian noise with σ = 0.7
and Bernoulli noise with p = 0.5. There are six rows with example images and six
columns with noisy input, denoising results from Noise2Self (N2Self) [39], Noise2Same
(N2Same) with U-Net [52] and SwinIR [69] as backbones, SwinIA, and ground truth
images. Each denoising result has a caption with PSNR (in dB) for this image [70].
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II. Resources and complexity

Dataset
N2Same[U-Net] N2Same[SwinIR] SwinIA
TT (h) AIT (ms) TT (h) AIT (ms) TT (h) AIT (ms)

Synthetic (sRGB) [42, 54, 66] 4 26 20 3263 15 941
Synthetic (grayscale) [66] 2 12 19 869 13 605

ImageNet [52] 1 14 18 2601 15 765
HànZì [39] 1 5 13 30 14 42

Microscopy [42, 54, 66] 1.5 20 4 7025 5 845

Table 10. Comparison of training time (TT) in hours, and average inference time (AIT) on
the test set in milliseconds of Noise2Same [52] and SwinIA (ours) on various datasets [69,
70].

Criterion N2Same[U-Net] N2Same[SwinIR] SwinIA

Number of trainable parameters 5.564M 4.610M 2.369M
FLOPs per grayscale image 64× 64 5.001G 18.978G 10.117G

Table 11. Comparison of the numbers of parameters and floating point operations per
second (FLOPS) between Noise2Same [52] with U-Net and SwinIR backbones, and
SwinIA (ours). The FLOPS are documented for inference time, therefore this number
doubles when training in Noise2Same mode with two forward passes [69, 70].
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