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Discovering Automatable Routines from UI Logs via Sequential Pattern 

Mining 

Abstract: 

Robotic Process Automation (RPA) is a rapidly evolving technology that allows us to auto-

mate non-value adding tasks (i.e., routine tasks), such as transferring data from one appli-

cation to another. The automation of such tasks allows us to reduce the number of errors 

that occur during its execution and decrease task execution time. However, RPA intended 

to be used for automation routines, but not for their discovering. This thesis proposes a 

method for discovering routines from user interaction log by exploiting sequential pattern 

mining techniques for dealing with noise within the log. Since it is essential to understand 

which of the discovered routines are automatable, the thesis proposes a method for measur-

ing the routine automatability index (RAI). The method is based on identifying if the routine 

actions are automatable by obtaining dependencies between them, more precisely, data 

transformations and functional dependencies. A comparative evaluation with the existing 

approach on synthetic and controlled-setting datasets shows that the proposed method can 

discover candidate routines, identify action dependencies, and measure RAI with acceptable 

execution time. The proposed approach has been implemented in Java, integrated with the 

SPMF pattern mining tool, Foofah data transformation tool, and Tane algorithm for finding 

functional dependencies. 

Keywords: 

Robotic Process Automation, Robotic Process Mining, Pattern Discovery, Automatable 

Routine, Sequential Pattern Mining 

CERCS: P170. Computer science, numerical analysis, systems, control. 
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Automatiseeritavate Rutiinide Leidmine UI Logidest Järgnevus Mustrite 

Kaevandamisega 

Lühikokkuvõte: 

Robotic Process Automation (RPA, Protsesside automatiseerimine robootikaga) on kiirelt 

arenev tehnoloogia, mis aitab meil automatiseerida mitte väärtust lisavaid ülesandeid (nt 

rutiinsed ülesanded), näiteks andmete transfeer ühest rakendusest teise. Selliste ülesannete 

automatiseerimine aitab meil vähendada ülesande läbiviimisel tekkivaid vigu ning samuti 

aitab kahandada ülesandele kuluvat aega. RPA on mõeldud rutiinide automatiseerimiseks, 

aga mitte nende leidmiseks. Seetõttu, esitleb antud uurimustöö meetodit mis aitab leida 

rutiine UI logidest kasutades selleks järgnevus mustrite kaevandamist, et paremini käsitleda 

logides olevat müra. Kõige olulisem on mõista millised rutiinidest on automatiseeritavad, 

ning selle mõõtmiseks pakub uurimustöö välja rutiinide automatiseeritavuse indexi (RAI). 

Meetodi kasutamiseks on vaja aru saada millised rutiinide ülesanded on automatiseeritavad, 

leides nende vahelisi sõltuvussuhteid, täpsemalt öeldes andme muudatuste ja 

funktsionaalsuse sõltuvusi. Võrdlus olemasoleva meetodiga, kasutades sünteetilise ja 

kontrollitud olukorraga andmestikke, näitas et väljapakutud meetod suudab leida vastavaid 

rutiine, tuvastada sõltuvussuhteid ja mõõta RAI aktsepteeritava teostusajaga. Selleks et leida 

funktsionaalseid sõltuvusi andmestikus, teostati uurimistöös pakutud meetodit Javaga, 

lisaks veel integreeritud SPMF mustrite kaevandamise tööristaga, Foofah andmete 

muundamise tarkvaraga ja Tane algoritmiga. 

Võtmesõnad: 

Protsesside Automatiseerimine Robootikaga, Protsesside Kaevandamine Robootikaga, 

Mustrite Avastamine, Automatiseeritav Rutiin, Järgnevus Mustrite Kaevandamine 

CERCS: P170. Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine 

(automaatjuhtimisteooria). 
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1 Introduction 

The following chapter provides a brief overview of the problem of discovering and auto-

mating routines and specifies research questions under the main goal of the thesis. Also, it 

presents a contribution and structural review of the thesis. 

1.1 Problem Statement 

Robotic Process Automation (RPA) is a powerful technology that represents one of the 

emerging business process automation forms [1]. RPA improves the efficiency of the busi-

ness process and increases business quality. The emergence of RPA tools is caused due to 

the fact that most of the business processes contain a large amount of frequent repetitive 

non-value adding tasks. An example of such a routine task is data transferring from one 

information system to another (e.g., transferring finance information from file to web appli-

cation). The main goal of RPA tools is to remove the human factor from completing repet-

itive tasks by executing software robots (bots), that mimic user interactions with the appli-

cation user interface. This approach allows us to perform routine tasks with greater accuracy 

and reliability. However, RPA tools provide solutions only for task automation, and it does 

not solve the problem of efficient routines identification. 

While routine automation is an important task, the following problems can be associated 

with the automation process: 

• At the moment, routines for automation are identified by means of video recordings 

and interviews with the assistance of domain knowledge experts. This process is 

time-consuming and resource-intensive. 

• In order to automate a routine, user interactions with a software system should be 

recorded and collected to the user interaction log (UI log). UI logs, in raw form, 

consists of a long series of UI events (click events, edit events, etc.) without any 

indication of the points in the log where the user starts a new instance of some task 

and where it ends. We call such logs unsegmented, as opposed to segmented logs 

where the log is decomposed into traces, each of which corresponds to a clearly 

scoped execution of a routine. Unsegmented recording of the user interactions pro-

duces a log with a large number of records. Hence, an input for automation is too 

complicated. 

• User interaction logs may contain some noise recorded. By noise, we mean (i) one 

or more events (consecutive or not) that appear in the middle of an instance of a 

routine but are not part of the routine; or (ii) events that appear before the start of a 

routine instance or after its completion. These events are characterized by the fact 

that they do not appear systematically, but are rare. 

• Another problem arises from the fact that the implementation of the bots is an error-

prone process. Therefore, testing of the bots is a time-consuming procedure. 

Since routines observation by video recordings and interviews requires a lot of time, it is 

much efficient to generate UI logs automatically and analyze such logs in order to determine 

routines. 
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Typically, the UI log is presented by a set of sequences of actions performed by a user. Such 

sequences represent a task execution. Hence, sequential pattern mining techniques [2] can 

be used to identify frequent repetitive patterns (also known as routines) from such se-

quences. Sequential pattern mining is an essential topic of data mining that is used in differ-

ent domains such as telecommunications, marketing, and retail [3]. Furthermore, sequential 

pattern mining techniques can be used to discover frequent patterns from action sequences 

that are present in large datasets, such as UI logs. 

We say that a routine is automatable if every step (action) in the routine can be determinis-

tically executed based on available data (i.e., data produced by previous actions). Figure 1 

demonstrates an example of  a sequence of actions repetitively performed on a spreadsheet 

by a user: 

This routine may be repetitive. However, it is not automatable, unless, for every execution 

of this routine, the value of cell C2 after the last action of this routine can be computed from 

the value of cell C1 (which is the only data item produced by a previous action). If the value 

of C2 after the edit is equal to the value of C1, or a sub-string of C1 that can be determinis-

tically computed, then the routine is automatable (e.g., the value of C2 is always equal to 

cell C1 after removing the first token in the string consisting of alphanumerical characters 

plus any preceding or subsequent spaces). It should be noted that the notion of “what can be 

deterministically computed” is defined with respect to a collection of operators, as we will 

see later in the thesis. 

There are several limitations of the sequential pattern mining techniques in the context of 

discovering automatable routines from UI logs. Most such techniques operate on data in 

symbolic representation. In consequence, they are not intended to process complex con-

structs as user interaction actions. Moreover, even if the limitation of processing complex 

structures is overcome, sequential pattern mining is not able to determine if a discovered 

frequent pattern is automatable. 

Another existing approach [4] that constitutes a thesis baseline allows us to discover au-

tomatable routines. However, the main limitation of the approach is the inability to deal with 

noise presented in the UI log and discovering only fully automatable routines (such that each 

routine action is automatable). 

The main problem to be addressed can be formulated as follow: 

“Given a segmented UI log that may contain noise, we need to discover candidate routines 

for automation and determine which routine actions are automatable.” 

The main research question is: 

How to discover automatable routines from UI logs? 

The other research questions are the following: 

[select cell C1 → copy to clipboard → select cell C2 → edit cell C2] 

Figure 1. Example of a sequence. 
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1) How to determine if the routine is automatable? 

2) How to extract routines from UI log amenable for automation? 

1.2 Contribution 

This thesis proposes an approach to discover candidate routines from a User Interaction log 

and to evaluate the automatability of these candidate routines. The proposed solution aims 

to use sequential pattern mining techniques for identifying candidate routines for automa-

tion. Moreover, it exploits a combination of algorithms for discovering syntactical and se-

mantical transformations within routine actions in order to identify if they are automatable. 

Finally, we have conducted qualitative and quantitative evaluations of the proposed solution 

in order to compare it with the baseline approach. 

Chapter 2 presents the basic concepts of RPA and sequential pattern mining techniques. 

Chapter 3 gives an overview of the state-of-the-art of defined problems and analysis of the 

existing solutions. Chapter 4 reports on provided approach architecture with a detailed de-

scription of the routine identification and automatability determining processes as well as 

their implementation. Chapter 5 includes the description of the synthetic and controlled-

setting datasets that were used in evaluation purposes and the results of quantitative and 

qualitative evaluations. Lastly, Chapter 6 concludes the thesis. 
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2 Background 

This chapter provides an overview of the main terms and concepts about robotic process 

automation and sequential pattern mining techniques. 

2.1 Robotic Process Automation 

Robotic process automation is a relevantly new technology that can be defined as a set of 

tools for routine tasks automation that operates on structured data with deterministic out-

comes [5]. The automation of repetitive tasks (so-called routines) is achievable by using 

RPA bots. Such software bots can interact with software applications in order to perform 

the transcription of user interactions with a software application. There are two types of 

RPA bots: attended and unattended bots [6]. 

The attended bots act with the possibility of user interaction. More precisely, the execution 

of the attended RPA bots can be triggered or terminated by the event that was performed by 

the user. Also, the attended RPA bots may provide or receive data that was specified by the 

user during the bot execution. The attended RPA bots are suitable in a situation when it is 

not possible to automate the entire routine. 

The unattended RPA bots are executed without any user intervention. In contrast to attended 

bots, unattended ones are self-triggered, meaning that they are not waiting for commands 

from the user, and work in a continuous manner. Unattended RPA bots are suitable for ex-

ecuting fully deterministic routines. The example of such a routine is a process of data ex-

tractions from a spreadsheet and entering it to the browser form. 

Even though both attended and unattended RPA bots allow us to automate routine tasks, 

they do not solve the problem of identification of candidate routines for automation. In order 

to address this problem, we are using Robotic Process Mining (RPM) techniques [5]. RPM 

is a set of tools for analyzing user interaction records in order to identify candidate routines 

for automation and discovering routines specifications that can be encoded to RPA execut-

able scripts. The RPM involves three mains steps: collecting and preprocessing UI logs, 

identifying candidate routines for RPA from the UI log, and discovering executable RPA 

routines. The thesis focuses on the last two RPM phases: the discovery of candidate routines 

(from a segmented log) and the assessment of the automatability of a candidate routine. 

2.2 UI log 

The UI log consists of sequences of actions, each representing execution of a user task. We 

will refer to these sequences as traces. If a particular sub-sequence of actions within a trace 

occurs across multiple traces, these actions constitute a routine. Each action represents a 

user’s interaction with various IT systems to perform the underlying task. An example of 

such interaction is clicking a button, copying a cell in a spreadsheet, etc. Each action is 

characterized by a trace id (an attribute that maps the action to particular trace), an action 

type (e.g., copy, edit, open), and a timestamp (an attribute that specifies when the action was 

executed). Besides the above characteristics, the action contains other details such as the 

name of the application in which the action was executed, the details of the application 
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element on which the action was performed (e.g., a field label, a button name, URL, Excel 

cell address, value of a field, etc.), called payload. 

Table 1 shows an example of a UI log. The log contains 4 traces. Each action that is pre-

sented in the log has 7 attributes. The log describes the execution of the data transferring 

task from Excel to the browser. Since a sequence that consists of “Copy cell” and “Paste” 

actions is present in every trace, it represents a routine. 

As we have mentioned, the UI log may contain noise actions. Table 1 contains a noise “Open 

New tab” action in the second trace that appears in the middle of an instance of the deter-

mined routine and is not a part of the routine. 

2.3 Sequential Pattern Mining 

As we have mentioned, the second phase of the RPM is the identification of candidate rou-

tines from a UI log. Since the UI log consists of ordered sequences of user interaction action, 

the second phase aims at the identification of repetitive patterns of actions from UI log se-

quences. In that regard, sequential pattern mining techniques can be used. 

Sequential pattern mining techniques solve the problem of discovering interesting subse-

quences in a set of sequences [7]. Consequently, it is possible to apply those techniques to 

the UI log in order to address the problem of identification of candidate routines. 

Sequential pattern mining is used widely in many areas such as bioinformatics, market anal-

ysis, natural language analysis, and web analysis [7]. It concentrates on sequential data anal-

ysis and discovers sequential patterns. Specifically, the goal of sequential pattern mining is 

to identify subsequences in a set of sequences based on defined metrics, for example, on the 

length of the sequence or the sequence frequency. However, in the original problem of se-

quential pattern mining, support metric is used. The support of a sequence 𝑆 is the number 

of sequences from the input database that contain sequence 𝑆. The output of sequential pat-

tern mining is frequent sequential patterns. More precisely, any pattern consists of a 

Table 1. Example of UI log. 

Case Id Timestamp App  Action Type Content Field Id Field value 

1 13:27:50 Excel Copy cell John A1 “John” 

1 13:27:51 Browser Paste John Name “” 

2 13:27:52 Excel Copy cell Liam A2 “Liam” 

2 13:27:53 Browser Open New tab “” “” “” 

2 13:27:53 Browser Paste Liam Name “” 

3 13:27:54 Excel Copy cell James A3 “James” 

3 13:27:55 Browser Paste James Name “” 

4 13:27:56 Excel Copy cell Doe B1 “Doe” 

4 13:27:57 Browser Paste Doe Surname “” 
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sequence of symbolic items. The pattern is frequent if its support is higher then the user-

specified minimum support (i.e., support threshold). 

There are many varieties of sequential pattern mining techniques. One of them is contiguous 

sequence mining. The study in [8] uses this method to find the frequent contiguous se-

quences from biological data sequences. The algorithm of contiguous sequence mining con-

sists of two steps: 

• Find subsequences with indicated length in input sequences to construct a spanning 

tree. Furthermore, save the starting position of the discovered pattern. 

• Filter the found patterns based on a support threshold and join sequences with the 

same length for the generation of a frequent candidate. Then check if a second can-

didate position is before the first candidate and, if so – increase the frequency coun-

ter. Repeat the step for all candidates for producing another frequent candidate. 

However, the described methods tend to be not efficient if the input items contain gaps. For 

solving this problem, it is possible to use gapped sequence mining [9]. Mining gapped fre-

quent subsequence patterns helps discover sequential patterns that contain items separated 

by a gap. The study [9] presents the Gap-BIDE Algorithm implementing gapped sequence 

mining. 

Another type of sequential pattern mining is Periodic Pattern Mining [10]. This method is 

used to discover periodic patterns (frequent sequential patterns that are regularly repeating) 

from input sequences. Besides the pattern-finding, one of the parts of periodic pattern min-

ing is finding periodicity for the patterns. The paper [10] presents an algorithm for discov-

ering different types of periodic patterns, such as full and partial periodic patterns, perfect 

and imperfect periodic patterns, synchronous and asynchronous periodic patterns, patterns 

with sequence and segment periodicity and dense periodic patterns. 

Overall, sequential pattern mining is computationally challenging, especially when mining 

long sequences. Moreover, the resulting output contains too many patterns, especially if a 

defined support threshold is low [11]. However, methods for mining closed sequential pat-

terns cope with that problem. The mined sequential pattern is closed if it does not have 

subpatterns with the same support [11]. It is possible to reduce the computational time and 

avoid generation redundant subsequences by mining closed patterns from the UI log. Con-

sidering that real-life UI logs can represent large databases and contain long sequences, we 

exploit the advantages of closed sequential pattern mining. 
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3 Related work 

In this section, we present the state-of-the-art on the topic of this thesis and provide a survey 

of previous research on discovering automatable routines from user interaction logs. Addi-

tionally, we analyze the main problems and challenges that arise while applying these tech-

niques for discovering automatable routines. Also, we present an overview of sequential 

pattern mining methods and the challenges that come into play while applying sequential 

pattern mining for discovering candidate routines for automation. 

One of the essential parts of this study is a literature review; for finding relevant papers, the 

following web search engines were used: 

• Google Scholar 

• IEEE Xplore 

• Microsoft Academic 

The search query was defined starting from the following keywords: “discovering automat-

able routines”, “automatable tasks”, “sequential pattern mining”, “event logs”, “application 

logs”, “discovering process”. For searching for relevant material, the following queries were 

used: 

• “discovering automatable routines” OR “discovering automatable tasks” AND 

“event logs” OR “application logs”. 

• “discovering process” OR “discovering tasks” OR “discovering routines”. 

• “sequential pattern mining”. 

After the analysis of the found works – irrelevant papers were filtered based on the following 

set of the inclusion criteria: 

• Title and article are clear and demonstrate that the study is connected to discovering 

automatable routines. 

• The paper contains an analysis of routines discovering algorithms. 

After completing the study filtering, more studies that are relevant and cover the topic were 

found. 

Robotic Process Automation receives increasing attention in recent years [1]. However, the 

problem of discovering automatable routines from user interaction logs is not well re-

searched. The issue arises from the need to understand user behavior patterns as a sequence 

of user actions that can be automated. The study in [12] introduces an approach to identify 

sets of actions that frequently occur together in a text scenario (i.e., a textual description of 

user actions). This approach also identifies the action topology – the order of user actions – 

and allows to select the granularity of the identified action sequences. The study describes 

the Sequential Patterns of User Behaviour System (SPUBS) method for discovering user’s 

common behaviors from recorded data. SPUBS allows to identify frequent sets, discover 

action order, relate actions by time, and identify conditions in order to contextualize the 

sequence. However, textual scenarios can be challenging to interpret as user actions because 

they require natural language processing to transform the free (unstructured) text into struc-

tured data such as user actions suitable for analysis. 
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Another study [13] is focused on automatically identifying whether a task described in a 

textual process description is automated. It also uses textual process descriptions as input 

for discovering automatable tasks, which lead to the same issues described above. The ap-

proach described in this paper uses machine learning and natural language processing tech-

niques for identifying whether a task that was described in the textual process description is 

automated or manual. The approach has several disadvantages. At first, it requires prede-

fined features or documentation that do not always exist for the specific system to process. 

Also, for classifying the task, the method proposes to use the SVM machine learning model. 

As a supervised machine learning algorithm, SVM needs a manually labeled training set in 

order to perform classification. It means that the training set should be compiled not auto-

matically but by domain experts or by using conduction user and stakeholder interviews, 

which is time-consuming and error-prone. It leads to a situation when a task that was clas-

sified as automatable is not such in reality. Furthermore, the authors of the work highlighted 

several limitations of the discussed approach, such as the inability to guarantee that suitable 

automation candidates are identified. 

Discovering automatable routines from user interaction logs can be considered as a sub-

topic of process mining [14]. Specifically, [15] provides a review of the technique for the 

automated discovery of process models from event logs. Automated process discovery 

methods take as input event logs and produce a control-flow model of a business process. 

This family of techniques is similar to discovering automatable routines using user interac-

tion logs. The study in [15] provides a review of possible metrics that show how accurate 

models are. The following metrics are used for evaluating automatically discovered process 

models: 

• Complexity. The property that describes how complex the discovered processes 

model is. 

• Precision. Ability to not produce other traces (sequences of events related to a single 

case) by the discovered process model. 

• Generalization. Ability to produce traces that are not in the log but are similar to 

traces of the process that produced the log. 

• Fitness. Ability to produce each trace in the log. 

In addition, the study describes two main problems for automated process discovery that are 

relevant for discovery of automated routines as well: 

• Discovery methods produce large and spaghetti-like models – in case of discovering 

automatable routines, the methods similarly can produce too complicated routines. 

• Discovery methods produce models that either poorly fit the event log or over-gen-

eralize it. 

The paper also provides a systematic review of automated process discovery methods and 

comparative analysis of the approaches. However, these methods do not take into account 

data transferring and produce process models with traces that were not present in the log. 

Overall, it can be used as a good starting point for discovering automatable routines from 

user interaction logs. 
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If the study described above deals with discovering models without conditions under which 

tasks are executed, another recent work on APD [16] provides methods for discovering pro-

cess models with branching conditions. Nevertheless, this approach is not suitable for dis-

covering automatable routines because it produces models that do not perfectly fit the log. 

Moreover, some actions within a routine may contain data transformations (e.g., change of 

the format when transferring values from source application to target application). However, 

the proposed approach does not consider such transformations, and it is impossible to auto-

mate routine without information about data transformations. 

Another related topic is Web Usage Mining [17], which is also a sub-topic of data mining 

and refers to methods for discovering patterns from Web data. In Web Mining, the data is 

not unified. It comes from different sources and source implementations. Web usage mining 

is performed in three steps: 

• Preprocessing. This step consists of preparing data for pattern discovery. Infor-

mation in the data sources should be converted to the data abstraction. Such data 

abstraction is similar to the one that is used for discover-ing automatable routines 

from interactive user logs. At this stage, noise removal is performed by session fil-

tering in order to generate noise-free input for the pattern discovery stage. 

• Pattern discovery. [10] describes six methods that are used for pattern discovery: 

Statistical Analysis, Association Rules, Clustering, Classification, Sequential Pat-

terns, and Dependency Modeling. 

• Pattern analysis. At this stage, the filtering of the discovered patterns is performed. 

Filtering is done based on irrelevant patterns. Relevancy depends on the application 

for which Web Mining was done. 

Some of the Web Usage Mining techniques, such as pattern discovery approaches, can be 

used for discovering automatable routines. However, there is not a direct way to use Web 

Usage Mining techniques in order to discover automatable routines from user interaction 

logs. In addition, unlike data that is used for Web Usage Mining, user interaction logs can 

be extracted not only from a Web application but from Desktop applications as well. 

UI log mining is another approach that solves the problem of analyzing UI logs produced 

by a desktop application. One of the software systems that use UI log mining in order to 

discover and reuse processes that were used to solve tasks is TaskTracer [18]. TaskTracer 

collects data about user interaction in the application. However, the user should manually 

specify what task they are doing, so that each recorded action will be related to a particular 

task. For creating processes, TaskTracer uses a combination of machine learning algorithms, 

data collection, and information visualization. As a result, UI log mining tools deal with 

collecting noise-free event data, but they do not allow us to discover routines from the user 

interaction logs. 

Recent work [4] introduces a well-described method to discover automatable routines from 

UI logs that solves the problem of activation conditions and discovering data transfor-

mations. The method consists of three steps: 



14 

 

• Flat-Polygons Detection. At this stage, UI logs are parsed into a deterministic acyclic 

finite-state automaton, and then the candidate automatable routines (flat-polygons) 

are extracted. 

• Automatable Actions Detection. Each automatable routine candidate produced by 

the flat-polygon detection step is analyzed on the presence of deterministic actions 

(actions that are possible to reproduce by RPA tools). 

• Routine Specifications Detection. At the last stage, the method extracts maximal 

sequences of deterministic actions from automatable routine candidates and discover 

the activation conditions. The output of this step is a set of tuples of activation con-

ditions. 

However, the study has the following limitation: it is not able to deal with noise. It is possi-

ble to cope with that limitation by using sequential pattern mining techniques. 

A study [19] addresses the problem of analyzing UI logs in order to discover automatable 

routines. The study focuses on discovering routines that correspond to copying data from a 

source (e.g., spreadsheet) and forwarding it to the target (e.g., web form). Such routines can 

be interpreted as a process of transformation of one data structure into another. This process 

can be discovered from a set of input-output examples via data transformation techniques 

(e.g., Foofah [20]). Since Foofah has limitations that lead to an increase in execution time 

while discovering data transformations, the proposed approach aims to optimize the Foofah 

algorithm by grouping examples by target and input structure. Grouping examples by target 

refers to decomposing the transformation to the source-to-target level in order to identify 

relations between input and output fields. While grouping examples by target reduces the 

number of input fields that Foofah needs to consider, grouping by input structure concen-

trates on reducing the number of transformation examples given as input. The second opti-

mization focuses on grouping the target examples into equivalence classes, where each class 

represents a different structural pattern. Furthermore, this step is responsible for discovering 

a data transformation by providing to Foofah one randomly selected transformation example 

from the group. 

Another study [21] proposes to take advantage of the knowledge of the back-office staff. 

More precisely, it is possible to monitor user actions performed in the information systems 

in order to record UI log using a series of image-analysis algorithms. Once the UI log is 

created, the study presents an approach that uses it as an input of a process discovery 

algorithm that exploits the process mining paradigm [22]. Overall, the study is focused on 

identifying a part of a business process (e.g., tasks in a process) that may be amenable for 

automation due to them being repetitive. However, the proposed approach does not seek to 

discover fully automatable routines nor to generate executable scripts to automate these 

routines. 
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4 Contribution 

In this section, we present a solution for discovering automatable routines from a UI log. 

The approach consists of two steps: routines identification and routine automatability as-

sessment. The former step discovers candidate routines for automation by applying se-

quence pattern mining. The latter step analyzes identified candidates on the subject of ame-

nability to automation. Figure 2 describes the high-level architecture of the solution. 

The input of the proposed method is a UI log consisting of a collection of sequences of 

actions. The architecture of the solution consists of two modules that are executed one after 

the other. The first module is responsible for the identification of candidate routines for 

automation. This is achieved by mining frequent patterns from the given set of traces. The 

second module identifies automatable routines among the discovered candidates. A candi-

date routine is a (possibly gapped) sequence of actions, without data attributes that occur 

frequently. This latter module calculates a so-called routine automatability index for each 

candidate routine. Some candidate routines cannot be automated by a robotic process auto-

mation script, because the input parameters of some of the actions in the routine cannot be 

deterministically computed from the parameters of previous actions. In other words, a can-

didate routine is deterministic from a control-flow perspective (the sequence of actions is 

always the same) but not from a data perspective. 

The final output of our solution is a set of routine specifications annotated by the routine 

automatability index. A routine specification consists of a sequence of actions that constitute 

a routine and a list of dependencies between routine actions. 

4.1 Routine identification 

Sequential pattern mining techniques can solve the problem of identification candidate au-

tomatable routines. There are many existing sequence pattern mining algorithms (e.g., Pre-

fixSpan [23], CM-SPAM [24], etc.), most of them work with symbolic sequences. In 

sequential pattern mining, the input is a set of sequences, and each sequence is an ordered 

list of transactions, where each transaction is a set of symbolic literals. A symbolic literal 

represents a notation for a fixed value that is atomic (i.e., it cannot be decomposed). In our 

case, however, the sequence consists of actions that are complex objects since they are 

composed of multiple attributes. Therefore, we need to use a symbolic representation of 

sequence actions as input for sequential pattern mining technique. However, we cannot use 

all attributes of the action for its symbolic representation since some of the attributes 

correspond to the data attributes (e.g., content, field value, etc.), which values are unique for 

each task execution. On the other hand, some attributes contain information about the 

elements of the applications that were involved in the action execution. Such attributes are 

called context attributes and are shared among traces that contain the same routine. 

 

Figure 2. The architecture of solution.  
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Therefore, the symbolic representation of the action is the combination of its type and the 

values of its context attributes. 

If we consider the example of the UI log from Table 1, we can notice that the context 

attribute „Field Id“ for the „Copy cell“ action contains the information about the cell 

address. More precisely, the column name is a context attribute value for „Copy cell“ from 

each trace except the last one. The „Copy cell“ action from the last trace has a full address 

as a context. For each „Paste“ action, the attribute „Field Id“ is also a context attribute 

which value equals to „Name“ for each trace, except the last one. The context attribute of 

the action „Paste“ from the last trace has a value that equals to „Surname“. Table 2 

demonstrates the symbolic representation of each sequence from Table 1. 

In order to reduce the number of potential routines to be discovered, we mine only closed 

patterns, and for this purpose, we selected a recently proposed algorithm called CloFAST 

[11]. A closed frequent sequential pattern is a pattern that is not a part of another pattern 

that has the same support. Since each subpattern of the frequent pattern is also frequent, 

mining closed frequent patterns reduce the size of the set of the found patterns and saves 

computational time. Furthermore, we select the CloFAST algorithm because it computes 

gapped sequence patterns. A gapped sequence pattern is a pattern that occurs frequently in 

a set of sequences, but such that the occurrences of this pattern are not necessarily contigu-

ous. For example, if we say that "𝐴𝐵𝐶" is a gapped pattern, it means that the occurrences of 

this pattern are not necessarily all made of the exact sequence "𝐴𝐵𝐶". Occurrences of this 

pattern might look as follows: "𝑨𝑋𝑩𝑪", "𝑨𝑩𝑋𝑌𝑪", "𝑨𝑋𝑩𝑌𝑪", where 𝑋 and 𝑌 are symbols 

that do not belong to the pattern. In our proposal, we rely on gapped patterns in order to 

account for the fact that UI logs may contain noise, as mentioned in Chapter 1. The recent 

study on the CloFAST algorithm [11] has shown that it outperforms other state-of-the-art 

algorithms, especially when mining long sequences. The main idea of the CloFAST algo-

rithm is that it creates sparse id-lists that store the position of the actions, and vertical id-

lists that store the position of a sequential pattern in the input sequence. The algorithm uses 

sparse id-lists for mining closed frequent itemsets that are used for construction closed 

sequence enumeration tree that enumerates the complete search of closed sequences. 

The usage of algorithms for mining closed frequent sequences reduces the number of dis-

covered patterns. However, the disadvantage of gapped sequential pattern mining algo-

rithms such as CloFAST is that they may discover a large number of patterns, due to the 

fact that they allow arbitrary symbols to occur in the middle of a pattern. Many of the 

Table 2. Example of sequences of actions in symbolic representation. 

Sequence Id Sequence actions 

1 CopyCell+A Paste+Name 

2 CopyCell+A Paste+Name 

3 CopyCell+A Paste+Name 

4 CopyCell+B1 Paste+Surname 
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discovered patterns may be irrelevant. For example, CloFAST may discover a pattern "𝐴𝐵𝐶" 

even if the sequence of symbols "𝐴𝐵𝐶" never occurs contiguously in any of the sequences. 

For example, if we consider a set of sequences: "𝑨𝑋𝑌𝑩𝑋𝑌𝑪", "𝑨𝑌𝑋𝑩𝑌𝑋𝑪𝑋𝑌", 

"𝑨𝑋𝑋𝑩𝑌𝑌𝑪𝑋𝑌", CloFAST is likely to discover the pattern "𝐴𝐵𝐶", even though this pattern 

does not occur contiguously. We, therefore, need a way to determine which of the discov-

ered patterns are likely to be candidate routines for automation. Intuitively, a pattern is a 

candidate routine if it occurs frequently, and the occurrences do not have too many gaps 

(i.e., the “noise” is infrequent). To capture this intuition, we use a cohesion metric to rank 

the patterns discovered by CloFAST. The cohesion metric for patterns is high when the 

symbols in the pattern occur contiguously in the majority of cases. Our solution applies the 

ranking approach that is based on the membership-based cohesion score [25]. In order to 

formulate the definition of the membership-cohesion score, we need to explain the concept 

of a minimum outlier based maximum occurrence window. For that, we will be using the 

following definitions: 

Definition 1. Given a sequence 𝑆 and pattern 𝑃 ∈ 𝑆, the occurrence window of 𝑃 denoted 

as 𝑊𝑃,𝑆 is an interval [𝑖, 𝑘] within 𝑆 such that 𝑆𝑖 , 𝑆𝑖+1, . . , 𝑆𝑘  contains 𝑃. 

Definition 2. The outlier is the action from an occurrence window 𝑊𝑃,𝑆 ∈ 𝑆 that does not 

belong to a pattern 𝑃 or which order in the window 𝑊𝑃,𝑆 is not the same as in the pattern 𝑃. 

Definition 3. The outlier based minimum occurrence window 𝑊𝑃,𝑆
𝑂 is an occurrence win-

dow that contains a minimum number of outliers and can be calculated as follows: 

 𝑊𝑃,𝑆
𝑂 = argmin

𝑊𝑃,𝑆

𝑂(𝑊𝑃,𝑆) (1) 

where 𝑂 is a function that returns the number of outliers in the occurrence window 𝑊𝑃,𝑆. 

Definition 4. A minimum outlier based maximum occurrence window 𝑊 is an occurrence 

window that contains maximum elements of the pattern 𝑃 while minimizing the number of 

outliers inside the window and can be calculated as follow: 

 𝑊 = argmax
𝑂(𝑊𝑃,𝑆)

𝐿(argmin
𝑊𝑃,𝑆

𝑂(𝑊𝑃,𝑆)) (2) 

where 𝐿 is a function that returns the length of the outlier based minimum occurrence win-

dow. 

The pattern cohesion score 𝜆𝑃 is a metric that can be calculated as a signed difference be-

tween the pattern length (the number of elements in the pattern) and the median number of 

outliers in the pattern minimum outlier based maximum occurrence windows: 

 

𝜆𝑃 = |𝑃| − 𝑀 (⋃ 𝑂(𝑊𝑖 )

𝑁

𝑖=0

) (3) 
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where |𝑃| denotes the length of the pattern 𝑃, 𝑀 is a function that returns the median value, 

𝑂 is a function that returns the number of outliers, 𝑊𝑖  is a minimum outlier based maximum 

occurrence window from the sequence 𝑆𝑖, 𝑖 = [0. . 𝑁], 𝑁 is a total number of sequences. 

Figure 3 demonstrates an example of cohesion score calculation. Overall, the sequence da-

tabase consists of 3 sequences, and the pattern consists of 3 actions. 

The first sequence minimum outlier based maximum occurrence window does not contain 

any outliers. However, we can observe 1 outlier (“select” action) in the case of the second 

sequence and 3 outliers in the case of the third sequence. The median outliers count equals 

1, and the length of the pattern is 3, which means that the cohesion score of the specified 

pattern is 2. 

Once we have found a cohesion score for each of the patterns, we can rank them by the 

value of the cohesion score in descending order. To select the most valuable patterns, we 

use a cut-off score threshold. The selection of patterns, in this case, is based on the drop-

down value of the cohesion score. The drop-down value 𝛥 is a percentage difference be-

tween the cohesion scores of the pattern with the highest cohesion score (the top pattern) 

and any pattern that is arranged after the top one in a sorted list of patterns. It can be calcu-

lated as follow: 

 𝛥 = 100% − (𝜆𝑃 × 100 ÷ 𝜆0) (4) 

where 𝜆𝑃 is a value of a cohesion score for the given pattern, and 𝜆0 is a value of the cohesion 

score for the top pattern. 

The cut-off score threshold is a minimum value of a drop-down interest. The main idea of 

using a threshold for the drop-down is filtering those patterns whose cohesion score is too 

low in comparison to the cohesion score of the top pattern. 

 

Figure 3. Cohesion score calculation example. 
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Table 3 demonstrates discovered patterns in the descending order of their cohesion score. If 

a cut-off threshold is set to 15%, the last three patterns will be removed. 

Figure 4 shows the cohesion scores over pattern indices and a specified cohesion score 

threshold as a red line. Each pattern that is located lower than a red line will be cut off from 

the resulting list of patterns. The first pattern that is the top pattern has the highest cohesion 

score equals to 30, which means that if a cohesion score of any pattern that is arranged after 

the top one is less then 30 − 30 × 0.15 = 25.5, the pattern will be cut off from the resulting 

list of filtered patterns. 

The output of the routines identification module is a set of closed frequent sequential 

patterns that were mined from the UI log. The set of patterns is sorted by the cohesion score 

value in descending order and does not contain patterns that were cut off based on the 

specified value of the threshold. Each pattern represents a candidate automatable routine 

and is used as an input for the routine automatability assessment module. 

4.2 Routine automatability assessment 

The second module of the solution is responsible for discovering dependencies between 

pattern actions in order to determine if the pattern is automatable. A pattern can be fully 

automatable and partially automatable. The pattern is fully automatable if each action of the 

pattern is automatable. Otherwise, it is partially automatable. The pattern action is automat-

able if it is possible to deterministically compute attribute values of the action. That means 

that the action cannot be automated if the action attribute values are not constant and do not 

depend on the data that captures previously executed actions. Whether the action is automat-

able or not can be distinguished by analyzing a function that defines the values of the action 

attributes on deterministic behavior. We can examine if such a function is deterministic by 

analyzing dependencies within pattern actions. It should be pointed out that we consider two 

Table 3. Patterns cohesion scores example. 

Pattern Index 1 2 3 4 5 6 

Cohesion score 30 29 26 5 6 2 

 

 

Figure 4. Cut-off cohesion score threshold.  
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types of dependencies within pattern actions: syntactical transformations (i.e., data 

transformations) that describe the operations over strings (e.g., split a string by a delimiter, 

merge two strings, etc.) and semantical transformations (i.e., functional dependencies) that 

describe the dependencies between attributes that uniquely determine the value of other at-

tributes. The proposed approach determines transformations consistently, starting with iden-

tifying syntactical transformations and continue for semantical transformations. 

The first submodule of the automatable assessment module refers to discovering data trans-

formations. For that, we are using the data transformation-by-example discovery technique 

called Foofah [20]. Given a set of input-output pairs that describe the data in source and 

target formats, Foofah identifies data transformations that have to be performed to convert 

the data to the required target format. 

Although Foofah allows us to discover complex data transformations, it is computationally 

inefficient. For overcoming that limitation, we are using an approach that was described in 

a recent study [19] that proposes two optimizations that take advantage of the information 

in the UI log. The approach aims to optimize the Foofah algorithm by grouping examples 

by target and input structure. Besides the baseline approach that proposes to analyze data 

transformation for each action that was executed before a given one, an optimization such 

as grouping examples by target allows us to analyze data transformations only for pairs of 

actions that consist of write and read actions. Grouping examples by input structure aims to 

reduce the number of transformation examples given as input by applying the tokenization 

technique. 

In order to discover data transformations within pattern actions, we need to extract a list of 

pairs of write and read pattern actions (i.e., read-write pairs). The read action can be deter-

mined as an action that captures the data (e.g., copy or copy cell actions). The write action 

can be determined as an action that populates data (e.g., edit field or edit cell actions). We 

have considered pairs of reading and writing actions as a subject for the data transformations 

analysis, assuming that each non-writing action can be automated since the values of such 

action attributes are deterministic. The writing action cannot be automated if the data pop-

ulated by that action does not depend on the data that captures previously executed actions 

(i.e., there are no data transformations for writing action). The read-write pair of actions 

consists of the reading action that specifies a source of the data (where data came from) and 

the writing action that specifies the target of the data (where data came to). 

Figure 5 demonstrates the process of obtaining read-write pairs from the pattern in a sym-

bolic representation. For each writing action, we found corresponding nearest read action 

and form a read-write pair. 

 

Figure 5. Example of extraction read-write pairs. 
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Once we have formed read-write pairs, we can analyze the actions within pairs on the pres-

ence of any syntactical transformations between write actions and corresponding read ac-

tion. More precisely, we execute the Foofah algorithm. However, in optimization purposes, 

we need to group each writing action data attributes values into equivalence classes, where 

each class represents a different structural pattern of the input data [19]. After that, we can 

execute the Foofah algorithm for one randomly selected read-write pair per one structural 

pattern. The Foofah input list contains the data that corresponds to the value of specified 

data attributes of the read action. The Foofah output list contains the data that corresponds 

to the values of the data attributes of the writing action. The output of the data transformation 

identification submodule is a set of patterns and read-write pattern pairs that contain a non-

empty list of data transformations. 

It may be the case that for some write actions, that no data transformations have been iden-

tified. Such write actions are then given to the next submodule, which aims to identify 

whether they can be automated by discovering semantical transformations (i.e., functional 

dependencies). 

A functional dependency is a relationship between attributes that uniquely determines the 

value of the attributes by the values of other attributes [26]. For discovering such relation-

ships, we have chosen to use an efficient algorithm named Tane, since experimental results 

demonstrate that the algorithm is efficient on the large datasets [26]. Tane can discover 

functional dependencies by using a small-to-large searching strategy with excluding non-

trivial dependencies (self-dependency) and pruning the search space. An example of the 

functional dependency is a dependency between the country name and the country ZIP code. 

By executing the Tane algorithm using a database that consists of data attributes values of 

each action of the pattern, we will acquire a list of functional dependencies. More precisely, 

the list of data attributes that uniquely determine the values of attributes of the previously 

executed actions. If any writing action from the pattern does not have data transformations, 

we can identify if there are data attribute values of the pattern actions that uniquely deter-

mine the value of data attributes of such writing action. If a writing action has functional 

dependencies on the previously executed actions, the writing action can be automatable. 

Otherwise, the action is non-automatable. 
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Table 4 demonstrates an example of the UI log that contains writing actions whose value of 

the data attribute “Content” cannot be determined by data transformations since there is no 

way to transform the name of the county to the dealing code. 

However, the Tane algorithm will find a functional dependency between the “Content” at-

tribute of the action “Copy” and “Edit” (that corresponds to editing country name field) 

and the “Content” attribute of the action “Edit” (that corresponds to editing dialing code 

field). Such functional dependencies are demonstrated in Figure 6. 

The output of the functional dependencies submodule is a set of patterns and pattern writing 

actions that have no data transformations but have functional dependencies on previously 

executed actions. More precisely, the output of this submodule contains information about 

writing action attribute values that can be uniquely determined by the attribute values of 

actions that were executed earlier in the pattern. 

The last submodule of the automatability assessment is responsible for routine automatabil-

ity index calculation. RAI is a metric that determines the degree of pattern automatability. 

RAI can be calculated as follow: 

 
𝑅𝐴𝐼 =

|𝑃|𝐴

|𝑃|
 (5) 

Table 4. UI log for functional dependencies example. 

Case Id App  Action Type Content Field Id Field value 

1 Excel Copy cell Estonia A1 “Estonia” 

1 Browser Edit Estonia Country “” 

1 Browser Edit +372 Dialing code “” 

2 Excel Copy cell USA A2 “USA” 

2 Browser Edit USA Country “” 

2 Browser Edit +1 Dialing code “” 

3 Excel Copy cell Japan A3 “Japan” 

3 Browser Edit Japan Country “” 

3 Browser Edit +81 Dialing code “” 

 

 

Figure 6. Functioal dndencies example. 
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where |𝑃|𝐴 is the number of automatable actions in a pattern, and |𝑃| is the total number of 

pattern actions. Since the number of automatable patterns lies in the interval from 0 to |𝑃|, 

the RAI value lies in the interval [0, 1]. If the RAI of a pattern equals 1, it means that the 

pattern is fully automatable. If the RAI of a pattern equals 0, it means that the pattern is non-

automatable. 

The output of the routine automatability assessment module is a set of routine specifications 

annotated with the value of RAI. The routine specification consists of the pattern mined at 

the routine identification step, the list of read-write pattern pairs and corresponding data 

transformations and the list of writing actions with a list of actions that uniquely determine 

the value of the writing action attribute values and the map of the writing attribute values 

and corresponding dependee actions’ attribute values. 

4.3 Approach implementation 

4.3.1 Routine identification 

In order to perform sequential pattern mining algorithms on the UI log, we need to parse the 

log file and transform each sequence of the file to the symbolic representation. For such a 

transformation, we need to determine a context for each action. For that, we group UI log 

actions by the action type and determine the number of unique values for each attribute from 

the payload. If the ratio between the number of unique values and the total number of actions 

in the group is higher then 0 and less than a specified threshold and the attribute from the 

payload is not a data attribute, the attribute will be defined as a context attribute. 

Once we have converted the UI log sequences into symbolic representation, we can perform 

sequential pattern mining. For that, we have used the CloFAST algorithm [11], which 

implementation was provided by SPMF1 – an open-source data mining Java library for 

discovering patterns from the datasets. The SPMF implementation of the CloFAST 

algorithm takes as input the value for the minimum pattern support and a file that represents 

a sequence database. The SPMF database should consist of a set of sequences – lists of the 

itemsets. Since itemset is an unordered set of items and the UI log sequences consist of 

actions, our solution specifies itemset as a set of a single action. 

The implementation of the CloFAST algorithm provided by the SPMF library requires a 

specific sequence database format. Each line of a database should represent a single 

sequence, while its elements should have a format of positive integer numbers. The value “-

1“ flags the end of the itemsets. In our case, the value “-1” is used for delimiting actions. 

The value “-2” indicates the end of a sequence. For operation on string data, we are using 

SPMF library aliases: each item of a sequence has positive number alias. Since the action 

name and the context is enough for distinguishing the pattern item, we have defined SPMF 

items as a string literals that contain information about these two action attributes. Each line 

of the SPMF file represents a single UI log trace. 

 
1 https://www.philippe-fournier-viger.com/spmf/ 
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Once we generated a file that contains log sequences in the format of the SPMF dataset, we 

can run the CloFAST algorithm in order to get a file with frequent closed patterns. Each 

mined pattern has support no lower than the specified minimum support value. The output 

of the SPMF CloFAST is a file that contains closed sequential patterns and the information 

about the pattern support in an SPMF format. 

The result of running the SPMF CloFAST algorithm on the formatted UI log is a file that 

contains frequent closed sequential patterns. Each line of the output file represents a pattern. 

Besides the elements of the patterns, the output file contains information about pattern 

support. 

In order to collect the information about the mined patterns that are presented in the output 

file, we should parse each line of the file and transform string representation of pattern 

actions to the set of patterns with specified pattern support. 

Figure 7 demonstrates an example of the execution of the routine identification module. 

More precisely, it presents the UI log input, the middleware SPMF CloFAST output, and 

the output of the algorithm. For the current example, we have set a minimum support value 

to 30%. As we can see from Figure 7, the UI log contains 4 traces, and each trace contains 

3 user interaction actions. 

Overall, the UI log contains two routines that describe copying the value of the name or 

surname, editing the corresponding field and clicking the corresponding button: 

1. copyCell+A; editField+Name; click+SubmitName. 

2. copyCell+B; editField+Surname; click+SubmitSurname. 

Since a minimum support value was set to 30% and a second routine has 25% support value, 

the SPMF CloFAST has mined the first pattern only that has support value equals to 75%. 

Once we have mined closed frequent sequential patterns, we can calculate a membership-

based cohesion score for each pattern. For that, we iterate over the list of UI log sequences 

in symbolic representation and extract minimum outliers based maximum length occurrence 

 

Figure 7. Routine identification workflow example. 
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window for each sequence in the UI log. After iteration over all sequences in the log, it is 

possible to calculate the pattern cohesion score. Given that we have calculated a cohesion 

score for each pattern, we can sort the list of patterns by the cohesion score value in de-

scending order and cut-off the least valuable patterns. Since we have sorted the list of pat-

terns by cohesion score in descending order, the first element of the pattern list is a top 

pattern, which means that this pattern is the most valuable. The first step of the cutting off 

process consists of iterating over the list of patterns skipping the first element of the list, and 

calculation of the drop-down value. If the drop-down value is higher than a specified cut-

off threshold, it means that the difference of the cohesion scores is too high, and the pattern 

should be cut off from the resulting population of patterns. 

4.3.2 Routine automatability assessment 

For determining routine automatability, we execute two algorithms consistently. The first 

algorithm identifies data transformations for each read-write pair of a pattern, while the sec-

ond algorithm identifies functional dependencies for writing actions that do not have data 

transformations. However, before executing the algorithm for data transformation identifi-

cation, we need to extract the read-write pair from each pattern. For that, we execute Algo-

rithm 1. In order to identify if the action is writing or reading one, we need to specify two 

lists. The first list contains action names that can be used for mapping the action to the group 

of reading actions. Similarly to the first list, the second one contains the action names for 

mapping the writing actions. 

The input of the algorithm is a pattern 𝑃, while the output is a list of read-write pairs 𝜌 for 

the specified pattern. For extracting pairs of reading and writing actions, we iterate over the 

pattern actions (line 2), and if the action 𝑎 is reading one, we create a new pair of actions 𝜋 

and set the iterable action 𝑎 as a reading action (lines 4- 6). If the iterable action 𝑎 is writing, 

we call the function 𝑔𝑒𝑡𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟 that returns the last created pair 𝜋, and then we set the 

iterable action 𝑎 as a writing one (lines 7- 10). If the assembled pair is non-empty (i.g., the 

read and write actions are not empty), we add the pair 𝜋 to the list of pattern pairs (line 11). 

Algorithm 1: Read-write pairs extraction 

 input : Pattern 𝑃 

 output : Read-write pairs 𝜌 
1 𝜌 ← ∅; 
2 foreach Action 𝑎 ∈ 𝑃 do 
3  Pair 𝜋 ← ∅; 
4  if 𝑎 is reading action then 
5   Pair 𝜋 ← 〈𝑅 = 𝑎, 𝑊 = ∅〉; 
6  end 
7  if 𝑎 is writing action then 
8   Pair 𝜋 ← 𝑔𝑒𝑡𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟(); 
9   Pair 𝜋 ← 〈𝑅 = 𝑅, 𝑊 = 𝑎〉; 
10  end 
11  if 𝜋 ≠ ∅ then 𝜌 ← 𝜌 ∪ {𝜋}; 
12 end 
13 return 𝜌; 
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Algorithm 2 describes the workflow for data transformation identification. The algorithm 

input is a set of patterns 𝑃 and a list of traces 𝐶 from the UI log. We iterate over a set of 

pattern and for each pattern 𝑝𝑖 we extract a list of read-write pairs by execution Algorithm 

1 and collecting all pattern’s read-write pairs to the list 𝜌 (line 4). 

When we have extracted all read-write pairs of actions from the pattern, we need to collect 

all values from the traces for reading and writing actions from the pairs. For that, we iterate 

over the extracted pattern pairs 𝜌, and for each pair, we iterate over the traces 𝐶 (lines 5- 7). 

If the iterable trace contains the iterable pattern, we extract the values for the reading and 

writing actions in the pair from the trace to the variable 𝜏 and add the pair and corresponding 

values to the list 𝑇 (lines 8- 10). Once we end iterating over the traces, we can add the read-

write pair ⟨𝑅, 𝑊⟩ and the list of values T collected from each trace 𝑐𝑗 to the map Θ (line 13). 

Finally, we can analyze if each pair of each pattern contains data transformations between 

reading and writing actions. First, for each read-write pair and its actions values, we need to 

group writing action values into equivalence classes, where each class represents a different 

structural pattern of the input data [19] (line 16). After that, we can execute Foofah algorithm 

for one randomly selected input-output example from the list 𝑇𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑑  (line 17) and assigne 

the result of Foofah execution to the variable 𝜙. Variable 𝜙 represents found data transfor-

mation for the read-write pair ⟨𝑅, 𝑊⟩. 

Algorithm 2: Data transformations identification 

 input : Patterns 𝑃, Traces 𝐶  

 output : Set Φ = (𝑝𝑖 , 〈⟨𝑅, 𝑊⟩,𝜙〉), where 𝑝𝑖 ∈ 𝑃 
1 Φ ← ∅; 
2 foreach Pattern 𝑝𝑖 ∈ 𝑃 do 
3  Θ ← ∅; 
4  𝜌 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑎𝑑𝑊𝑟𝑖𝑡𝑒𝑃𝑎𝑖𝑟𝑠(𝑝𝑖); 
5  foreach Pair ⟨𝑅, 𝑊⟩ ∈ 𝜌 do 
6   𝑇 ← ∅; 
7   foreach Trace 𝑐𝑗 ∈ 𝐶 then 
8    if 𝑝𝑖 ⊂ 𝑐𝑗 then 
9     𝜏 = (⟨𝑅, 𝑊⟩, ⟨𝑅𝑣𝑎𝑙𝑢𝑒 , 𝑊𝑣𝑎𝑙𝑢𝑒⟩) ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑉𝑎𝑙𝑢𝑒𝑠(⟨𝑅, 𝑊⟩, 𝑐𝑗); 
10     𝑇 ← 𝑇 ∪ {𝜏}; 
11    end 
12   end 
13   Θ ← Θ ∪ {⟨𝑅, 𝑊⟩, T}; 
14  end 
15  foreach ⟨𝑅, 𝑊⟩, 𝑇 ∈ Θ do 
16   𝑇𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑑 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐵𝑦𝑅𝑒𝑔𝑒𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑇); 
17   𝜙 ← 𝑔𝑒𝑡𝐹𝑜𝑜𝑓𝑎ℎ𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠(𝑇𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑑); 
18   if 𝜙 ≠ ∅ then Φ ← Φ ∪ {𝑝𝑖 , {⟨𝑅, 𝑊⟩,𝜙}}; 
19   end  
20  end 
21 end 
22 return Φ; 
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If the transformation were found, we would add them to the resulting list Φ that map the 

pattern, pattern’s read-write pairs, and data transformations for each of the pairs. If Foofah 

does not discover any transformations, the list 𝜙 will not contain any records, and we will 

not add the read-write pair to the resulting list (line 18). 

The next step focuses on the functional dependencies identification within patterns actions. 

The identification is performed by applying Algorithm 3. The algorithm should be executed 

after the data transformations identification since it receives the list Ψ that contains writing 

actions from read-write pairs that do not contains any data transformations. Besides the list 

Ψ, the algorithm receives a set of patterns 𝑃, and a list of traces 𝐶 as an input. First, we 

iterate over the list of mined patterns and for each pattern 𝑝𝑖 we extract all functional de-

pendencies that were found for the pattern actions attributes. More precisely, we create a 

file, each line of which represents values of a specified action attributes and execute the 

Tane algorithm that takes the file as an input (line 4). The input of the Tane algorithm is a 

database of the attributes in a format of comma-separated records without extra whitespaces. 

Once we have found all functional dependencies within the pattern 𝑝𝑖 we can analyze func-

tional dependencies for writing actions from read-write pairs of actions with empty data 

transformations (line 6). Iterating over the list Ψ that contains such writing actions, we need 

to extract all dependee actions for iterable writing action 𝑊 (lines 6- 7). Dependee actions 

are stored into the set of pattern actions dependencies (𝑃𝐹𝐷) and have a relationship with an 

iterable writing action 𝑊. The action 𝑊 can be considered as a depender action for the 

dependees. 

Once we have assembled a depender and dependees pattern actions, we need to collect all 

values of attributes of the dependee actions and a depender action. For that, we iterate over 

each trace 𝑐𝑗 from a list of traces 𝐶 and extract values for attributes of the depender action 

and list of values for attributes of dependee values using 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑒𝑝𝑒𝑛𝑒𝑟𝑉𝑎𝑙𝑢𝑒 and 

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑠 functions respectively (lines 10- 11). After values extraction, 

we can create a map 𝑉 that contains depender action and its values and corresponding de-

pendee actions and their values (line 12). 
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The algorithm returns a set of pairs 𝐹𝐷 that contain the pattern 𝑝𝑖 and the map 𝑉 that con-

tains functional dependencies for the writing actions from the read-write pairs that contain 

empty data transformations (line 17). 

For identification pattern automatability, we need to analyze if each pattern’s action is au-

tomatable. As we have mentioned, we assume that each action is automatable except writing 

actions that were collected to the pairs of reading and corresponding writing actions. By 

execution Algorithm 4 that uses as input the outputs of Algorithm 2 and Algorithm 3, we 

can acquire routine specifications annotated with the value of the RAI metric. The input of 

the algorithm is a set of patterns 𝑃, a set Φ obtained from Algorithm 4 execution, a set 𝐹𝐷 

obtained from Algorithm 4 execution. By iteration over the patterns 𝑃 we extract all writing 

actions from the pattern 𝑝𝑖 to the variable Ω (line 3). Then we extract writing actions that 

occur in data transformations as an action from the read-write pairs or which occur in the 

functional dependencies as a depender action from the list Ω (lines 4- 9). 

Algorithm 3: Functional dependencies identification 

 input : Patterns 𝑃, List Ψ, Traces 𝐶 

 output : Set 𝐹𝐷 = (𝑝𝑖, 𝑉), where 𝑝𝑖 ∈ 𝑃 
1 𝐹𝐷 ← ∅; 
2 foreach Pattern 𝑝𝑖 ∈ 𝑃 do 
3  𝑃𝐹𝐷 = 〈𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑟, 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠〉; 
4  𝑃𝐹𝐷 ← 𝑔𝑒𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠(𝑝𝑖 , 𝐶); 
5  𝛿𝐹𝐷 ← ∅; 
6  foreach 𝑊 ∈ Ψ do 
7   𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠𝑊 ← 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠 ∈ 𝑃𝐹𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑟 = 𝑊; 
8   𝑉 ← ∅; 
9   foreach 𝑇𝑟𝑎𝑐𝑒 𝑐𝑗 ∈ 𝐶 do 
10    𝜈𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑟 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑒𝑝𝑒𝑛𝑒𝑟𝑉𝑎𝑙𝑢𝑒(𝑊, 𝑐𝑗); 
11    𝜈𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑠(𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠𝑊, 𝑐𝑗); 
12    𝑉 ← 𝑉 ∪ {〈𝑊, 𝜈𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑟〉, 〈𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠𝑊, 𝜈𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠〉}; 
13   end 
14  end 
15  𝐹𝐷 ← 𝐹𝐷 ∪ {〈𝑝𝑖 , 𝑉〉}; 
16 end 
17 return 𝐹𝐷; 
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Finally, if we calculate RAI. If the length of the list Ω equals 0, the pattern does not contain 

any non-automatable actions. Consequently, the pattern is fully automatable and RAI equals 

to 1. If some writing actions do not have any dependencies, they cannot be automatable, and 

the RAI value decreases below 1. 

The output of Algorithm 4 is a set of routine specifications. Each routine specification con-

sists of the discovered pattern, a set of read-write pairs with corresponding data transfor-

mations, and a set of functional dependencies for the writing actions. Moreover, each routine 

specification is annotated by the RAI value. 

Algorithm 4: RAI calculation 

 input : Patterns 𝑃, Set Φ = (𝑝𝑖 , 〈⟨𝑅, 𝑊⟩,𝜙〉), Set 𝐹𝐷 = (𝑝𝑖 , 𝑉) 

 output : Routine specifications 𝑅𝑆 = (𝑝𝑖 , Φ, 𝐹𝐷, 𝑅𝐴𝐼) 
1 𝑅𝑆 ← ∅; 
2 foreach Pattern 𝑝𝑖 ∈ 𝑃 do 
3  List Ω ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑊𝑟𝑖𝑡𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(𝑝𝑖); 
4  foreach ⟨𝑅, 𝑊⟩,𝜙 ∈ Φ do 
5   Ω ← Ω\𝑊; 
6  end 
7  foreach 𝑉 = 〈𝑊, 𝜈𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑟〉, 〈𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠𝑊, 𝜈𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑒𝑠〉 ∈ 𝐹𝐷 do 

8   Ω ← Ω\𝑊; 
9  end 
10  𝑅𝐴𝐼 = 1 − 𝐿𝑒𝑛𝑔𝑡ℎ(Ω)/𝐿𝑒𝑛𝑔𝑡ℎ(𝑝𝑖); 
11  𝑅𝑆 ← 𝑅𝑆 ∪ {𝑝𝑖 , 〈⟨𝑅, 𝑊⟩,𝜙〉  ∈ Φ, 𝑉 ∈ 𝐹𝐷, 𝑅𝐴𝐼}; 
12 end 
13 return 𝑅𝑆; 
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5 Evaluation 

This chapter reports on an empirical evaluation of the proposed technique aimed at answer-

ing the following research questions: 

• RQ1: How accurate our technique rediscovers known patterns from an event log, 

both with and without noise? 

• RQ2: How computationally efficient is the technique? 

• RQ3: What is the effect of the support threshold on the quality of discovered patterns 

and efficiency? 

The proposed approach for discovering automatable routines from user interaction logs has 

been implemented in Java as a command-line application2. 

Below we present the datasets description, experimental setup, and evaluation results. 

5.1 Datasets 

In order to empirically evaluate our approach, we use a collection of both synthetic and 

controlled-setting log datasets. Generally, we consider 9 synthetic3 and 3 controlled-setting4 

datasets. 

The synthetic UI logs were generated from Coloured Petri Nets for the baseline approach 

evaluation to correctly discover the automatable routines in the recorded UI log [15]. Syn-

thetic datasets emulate the process of user interaction with web pages and files for data 

transferring. None of the synthetic logs contains noise. For compatibility with our approach 

implementation, we have converted the mentioned logs from XML format to CSV with the 

addition of auxiliary actions necessary for the log processing. 

By contrast to synthetic datasets, controlled-setting datasets represent user interaction logs 

that correspond to real-life scenarios with noise. However, we have recorded controlled-

setting datasets in the laboratory environment with artificial noise generation. Therefore, we 

should consider controlled-setting logs as a pseudo-real. For recording such controlled-set-

ting UI logs, we have used the Action Logger tool [27], which offers relevant actions’ gran-

ularity level. In total, we have recorded 3 logs that describe the same process of transferring 

university students’ data from an Excel file to a web form. Every routine that occurs in the 

first log can be fully automated. The second log captures a routine that is not fully automat-

able. The routines described in the third log are fully automatable, but they contain noise 

(1% of the total number of actions in the log). 

Both synthetic and controlled-setting logs contain the various number of routines that have 

different lengths and complexity. For evaluating synthetic datasets, we have used models 

that are a basis for logs generation as the ground truth. Controlled-setting logs contain pre-

defined routines, which makes it possible to assess the quality of the discovered patterns. 

 
2 The software is available at https://github.com/stdevi/CohesionBasedRoutineDiscovery/tree/develop 
3 The CPNs and synthetic logs are available at https://doi.org/10.6084/m9.figshare.7850918.v1 
4 The controlled-setting logs are available at https://doi.org/10.6084/m9.figshare.12307631.v2 

https://github.com/stdevi/CohesionBasedRoutineDiscovery/tree/develop
https://doi.org/10.6084/m9.figshare.7850918.v1
https://doi.org/10.6084/m9.figshare.12307631.v2
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The properties of all the datasets used in the evaluation are reported in Table 5. More 

precisely, for each log, we have reported the number of unique actions (actions that are 

determined by action name and position in the routine), the number of routine unique 

variants, the number of traces, total number of actions, and average number of actions per 

trace. 

5.2 Experimental setup 

The implemented approach was executed on a PC with Intel Core i5-6200U@2.4GHz CPU 

with 8GB RAM, running Windows 10 and JVM 11. 

In order to evaluate our approach and compare obtained results, we have chosen the most 

recent study [15] on discovering automatable routines from UI logs as a baseline. The study 

has introduced the approach that is divided into three steps. 

The first step is flat-polygons (the candidate automatable routines) detection from the UI 

log. Each flat-polygon is obtained by analyzing each log trace on shared prefixes and suf-

fixes. More precisely, if multiple traces share the same prefix, this prefix will be distin-

guished as an independent sequence or flat-polygon. The same rule applies to shared suf-

fixes. 

The second step of the baseline aims to determine if each action of the flat-polygons is 

deterministic (can be automatable) or not. It is possible to determine if the action is deter-

ministic by analyzing if all action parameters’ values using a constant or deterministic func-

tion. The action parameter using constant function if all parameter values are immutable. 

For discovering deterministic function, the approach implies two methods: looking for 

value-to value dependencies and apply the Foofah tool for finding data transformations. 

Despite the improved Foofah transformation discovery approach that was used by us, the 

baseline is used Foofah for each parameter of the chosen action, and each parameter of the 

Table 5. Properties of the datasets. 

ID Name # Unique 

actions 

#Routines #Traces #Actions #Action per trace 

(Avg.) 

1 Log1 14 1 100 160 1.6 

2 Log2 19 3 1000 16804 16.8 

3 Log3 19 7 1000 15898 15.9 

4 Log4 17 4 100 1600 16.0 

5 Log5 16 36 1000 8775 8.78 

6 Log6 14 2 1000 9998 10.0 

7 Log7 19 14 1500 15838 10.56 

8 Log8 20 15 1500 18809 12.54 

9 Log9 32 38 2000 29818 14.91 

10 Log10 22 2 50 1080 21.6 

11 Log11 22 2 50 1080 21.6 

12 Log12 22 2 50 1090 21.8 
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action encountered previously. Such Foofah usage affects the performance of the baseline 

approach in a negative way. 

In the last step of the baseline, all non-deterministic actions are removed from the flat-pol-

ygons, and removed actions split each fat-polygon into multiple automatable routines. Once 

the automatable routine was discovered, the activation condition for triggering the routine 

should be detected using the JRipper tool. The goal of the JRipper tool is to find a set of 

rules (activation conditions) for the first action of each flat-polygon. 

The comparison of the baseline and our approach has been made in terms of three metric 

groups. The measures from the first group describe qualitative measures, more precisely, 

the number of discovered patterns, the maximum length of the patterns, the average length 

of the patterns, total coverage, and the average routine automatability index. The second 

group contains characteristics of the discovered patterns, more precisely, the average preci-

sion, recall, and f-score. The last group describes computational efficiency metric – execu-

tion time. 

The number of discovered patterns shows how many patterns we have found using both 

approaches. The number of discovered baseline patterns corresponds to the number of au-

tomatable sequences that were found at the last stage of the approach. Such sequences are 

represented by tuples of activation conditions and a sequence of actions. 

The maximum length of the patterns is a measure that compares the ability of each approach 

for discovering long patterns. As was mentioned earlier, a baseline divides each automatable 

routine candidate according to shared prefix, suffix, and splits it by non-automatable actions. 

Consequently, each split decreases the maximum length of the pattern. 

The average length of the patterns indicates a central tendency of the discovered patterns 

lengths. 

The total coverage specifies how much behavior captured in the log can be described by the 

discovered patterns. It is measured in terms of a ratio of actions presented in the patterns. 

The total coverage is a measure in the [0, 1] interval, where 0 means that discovered patterns 

actions are not presented in the log, while one means that discovered patterns match all 

routine unique variants. The total coverage is a cumulative measure since it is made up of 

accumulated patterns coverages, and multiple patterns cannot cover the same action in the 

log. The total coverage (TC) can be calculated as: 

 

𝑇𝐶 = 𝐶(𝑃1) + 𝐶(𝑃1 ⊕ 𝑃2) + ⋯ + 𝐶(𝑃1 ⊕ … ⊕ 𝑃𝑛) = ∑ 𝐶(⊕𝑗 = 1
𝑗 = 𝑖

𝑃𝑗)

𝑁

𝑖=1

 (6) 

where 𝐶(𝑃𝑖) is a coverage of the pattern 𝑃𝑖 and 𝑃𝑖 ⊕ 𝑃𝑗 is a cumulative coverage of the 

patterns 𝑃𝑖 and 𝑃𝑗. 

Execution time shows the time needed to discover a set of automatable routines. The execu-

tion time was measured in seconds. Each experiment was conducted with enabled Foofah 

tool for discovering data transformations. Foth both approaches, we set Foofah timeout to 

20 seconds, it means that if Foofah encounters a 20 seconds timeout, it reports an absents of 
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data transformations. Overall, Foofah brings an overhead in the baseline execution time, but 

it allows us to discover not constant data transformations. 

The average routine automatability index indicates the ratio of the discovered pattern ac-

tions that can be automated. It should be pointed out that the baseline can discover fully-

automatable routines only, which means that automatable routines that were discovered by 

the baseline always have RAI equals 1. 

In order to present the remaining four metrics, it is essential to explain the confusion matrix 

concept in terms of the UI log and discovered patterns. In the field of the statistical classifi-

cation confusion matrix is a layout for visualization of the performance of the algorithm. 

Each row of the matrix represents predicted or discovered actions, while each column rep-

resents actual actions or actions that are presented in the log. The four cells of the confusion 

matrix report on the true-positive, false-positive, false-negative, and true-negative samples. 

True-positive actions are actions that are presented in the log routines that are the ground 

truth for the pattern and, at the same time, are presented in the discovered pattern. 

False-negative actions are presented in the log routines that are the ground truth for the 

pattern, but the same list of actions is missing in the pattern. 

True-negative actions are not presented in the pattern and in the log routines that are de-

scribed by the pattern. The example of such actions is noise, which is also recorded. Since 

evaluated artificial logs are noise-free, the true negatives for such logs will always be 0. 

False-positive actions are presented in the pattern but not in the log routine that is ground 

truth for this pattern. An example of such actions is a noise that is frequently observed in 

the log, so it may be discovered as a part of the pattern. Similar to true-negative actions, for 

the patterns discovered on synthetic datasets, the false-positive metric will always be 0. 

One of the metrics that we have used for the evaluation is precision or positive predictive 

value (PPV). The precision is a fraction of action that is presented in the pattern and in the 

log routine among the discovered actions in the pattern. The precision can be calculated as: 

 
𝑃𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

As we have mentioned, false-positive metric equals 0 in the case of synthetic datasets, which 

means that the precision can be calculated for patterns that were discovered on artificial logs 

as: 

 
𝑃𝑉 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑇𝑃 + 0
= 1 (8) 

Recall, or true positive rate (TPR) is a fraction of true-positive pattern actions amount all 

actions in the log routine that is ground truth for the pattern. TPR can be calculated as: 

 
𝑇𝑃𝑅 =

𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

where 𝑃 is a total number of actions in the log routine. 
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The last metric that was used for evaluation is F-score. F-score is a harmonic mean of pre-

cision and recall. The F-score is calculated as: 

 
𝐹1 = 2 ∙

𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (10) 

Since patterns discovered on the artificial logs do not contain noise, the precision of such 

patterns always equals to 1. It means that the F-score for them can be calculated as: 

 
𝐹1 = 2 ∙

𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁
 (11) 

In the evaluation purpose, we have calculated average values of precision, recall, and F-

score for our approach and the baseline on both synthetic and controlled-setting datasets5. 

5.3 Results on synthetic datasets 

In this section, we report the results on our evaluation of the synthetic datasets. As was 

mentioned earlier, we have evaluated the same nine synthetically generated UI logs that 

were used for the evaluation of the baseline approach. However, for the compatibility with 

our approach implementation, synthetic logs were converted and restructured. 

One of the qualitative improvements to our approach concerns the way of using the Foofah 

tool. In the baseline approach, the Foofah tool takes as an input the array containing all the 

values of one parameter of an action executed before specified action, and the output is the 

set of the values assigned to the specified action parameters. In other words, the baseline 

approach executes Foofah for each parameter of the action where the constant function was 

not obtained and each parameter of each action executed before such action (until data 

transformation function is found). The baseline also emphasizes that Foofah brings an 

overhead in the execution time: when enabling Foofah, the baseline approach becomes up 

to 50x slower. 

Another qualitative improvement to the baseline approach is the ability to identify routine 

automatability index. Since the baseline approach can discover fully-automatable routines 

only, our approach allows us to identify is the discovered pattern is fully automatable or 

partially (in percentage measure). 

 
5 Metrics calculations are available at https://docs.google.com/spreadsheets/d/18do3igE93Tif6 

https://docs.google.com/spreadsheets/d/18do3igE93Tif6KAhKf0lqXTHbf3K5yYxComLqg28hx0/edit?usp=sharing
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The evaluation results for synthetic datasets are presented in Table 6. The table reports the 

dataset ID for which the experiment was conducted, the first row for each log id row corre-

sponds to the result of the baseline approach, while the second row corresponds to the result 

of our approach. The table includes information about the number of discovered patterns, 

the maximum and average length of the discovered patterns, total coverage, execution time, 

and average RAI for our approach only. Each experiment for our approach was conducted 

with the set input parameter – the minimum support at 5%. 

Table 6. Results on synthetic datasets. 

Log 

ID 

#Patterns Length 

(Max) 

Length 

(Avg) 

Total 

coverage 

RAI 

(Avg) 

Execution 

time (s) 

1 
1 14 14.0 1.00 1 3 

1 14 14.0 1.00 1.0 3 

2 
4 5 4.0 0.87 1 62 

2 16 16.5 0.95 0.94 16 

3 
6 6 3.66 0.76 1 224 

4 21 16.75 0.85 1.0 7 

4 
4 4 2.5 0.75 1 79 

4 16 16.0 1.0 0.83 13 

5 
2 2 1.5 0.25 1 49 

10 8 8.0 0.70 0.75 8 

6 
4 4 2.0 0.69 1 80 

2 11 10.0 1.00 0.74 7 

7 
5 2 1.2 0.23 1 50 

4 11 11.0 0.73 0.63 11 

8 
5 13 3.8 0.43 1 549 

9 16 11.0 0.98 0.65 26 

9 
11 4 2.3 0.53 1 1619 

6 18 15.5 0.95 0.81 23 
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From Figure 8, we can see that our approach tends to discover longer patterns, as the length 

of the longest discovered pattern by our approach is larger than the length of the longest 

pattern discovered by the baseline. 

From Figure 9, we can see that besides maximum pattern length, the average pattern lengths 

also tend to be larger. 

 

Figure 8. Comparison of the maximum length of patterns. 

 

  

Figure 9. Comparison of the total coverages. 
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In Figure 10, the baseline and our approach were compared with respect to the total coverage 

metric. Our approach showed the same total coverage for the first dataset and higher total 

coverage for the rest datasets. 

There are several reasons why the maximum pattern length, the average patterns’ length, 

and total coverage is lower on the case of the baseline approach. At first, in the baseline 

approach, the first step is decomposing each log routine into sub-routines based on routine 

branching. It means that instead of analyzing routines as a whole entity, the baseline ap-

proach considers analyzing routine components. Since the length of sub-routines is lower 

than the routine itself, the length of discovered patterns by the baseline is lower. 

Another reason for decreasing the pattern length in the case of the baseline is splitting dis-

covered patterns by non-deterministic actions. Out approach considers discovered routines 

as an immutable entity that cannot be split by branching or non-automatable actions. There-

fore, if the discovered pattern contains non-automatable action, the RAI of the pattern will 

decrease, but the length of the pattern will remain the same. 

 

Figure 10. Comparison of the average patterns’ length. 
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Figure 11 reports execution time (in seconds) for the baseline and our approach. The base-

line approach requires much more time because of Foofah limitations that were mentioned 

before. 

Execution time depends on the complexity of the log, which leads to an increase in execution 

time in the case of ninth and eighth datasets. Nonetheless, our approach required no more 

than 25 seconds for rediscovering log routines. 

Table 7 shows the following evaluation metrics: precision, recall, and F-score. 

Table 7. Evaluation metrics for synthetic datasets. 

Log ID Precision (Avg) Recall (Avg) F-Score (Avg) 

1 
1.00 1.00 1.00 

1.00 1.00 1.00 

2 
1.00 0.29 0.45 

1.00 1.00 1.00 

3 
1.00 0.22 0.35 

1.00 0.81 0.89 

4 
1.00 0.19 0.30 

1.00 1.00 1.00 

5 
1.00 0.17 0.28 

1.00 0.87 0.93 

6 
1.00 0.20 0.32 

1.00 1.00 1.00 

7 
1.00 0.11 0.20 

1.00 0.93 0.96 

8 
1.00 0.27 0.38 

1.00 0.94 0.97 

9 
1.00 0.23 0.36 

1.00 1.00 1.00 

 

 

Figure 11. Comparison of the execution times. 
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As was mention earlier, int the case of synthetic datasets, precision equals to 1 for both 

approaches. As we can see, for each synthetic dataset, our approach outperforms the base-

line. Since our approach can discover log routine entirely despite the baseline approach that 

discovers parts of the routine, the number of false-negative actions for our approach is much 

lower. The other reason why metrics for our approach are al least in half better is the gain 

the patterns’ length. Since our approach can find longer patterns, it increases the number of 

true-positive action, which leads to improvements in the evaluation metrics. 

Besides an evaluation of qualitative and quantitative metrics, we have evaluated the effect 

of changing the minimum support threshold. The minimum support is a parameter in [0, 1] 

interval. All patterns that are mined by sequential pattern mining techniques have support 

lower than the specified minimum support. It means that too lower minimum support can 

lean to discovering too many patterns, while minimum support that tends to 1 leads to dis-

covering only a few patterns from a set of log routines. 

The evaluation of the effect of the minimum support threshold on the results of our approach 

was done on Log2, Log4, Log7, and Log9. A choice of logs is justified by the fact that the 

complexity of each next log steadily increases compared to the previous. More precisely, 

Log2 contains three routine unique variants, while Log9 – 38 routine unique variants. A set 

of experiments was conducted with a minimum support threshold that corresponds to 5, 10, 

25, 50, 75, 100, respectively. 

Figure 12 reports the number of patterns that were discovered by our approach on synthetic 

datasets for a specified set of minimum support threshold. As we can see, decreasing the 

value of the threshold leads to discovering a larger number of patterns. With specified min-

imum support as 100, we have discovered only one pattern for each dataset. However, the 

more complex log is, the larger number of patterns we have discovered with decreasing the 

threshold. 

 

Figure 12. Number of patterns vs. minimum support threshold. 
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Figure 13 reports the total coverage of patterns discovered by our approach versus the spec-

ified threshold. For all considered datasets, the total coverage remains the same or increases 

with decreasing the minimum support. For all datasets, besides Log7, the total coverage 

continuously increases with a tendency to one. Since the Log7 dataset contains 14 complex 

routines, our approach was able to increase the total coverage of discovered patterns up to 

72% by setting the minimum support threshold at 5%. 

In Figure 14, we show the dependency of the F-score and minimum support threshold for 

four synthetic datasets. The results show that, in general, by decreasing a threshold, our 

approach discovers patterns with a higher average F-score. 

The decrease of the minimum support threshold leads to a slight increase in the average F-

score for the Log2 and Log4 datasets. In can be explained by the low complexity of the 

corresponding datasets. Since the average F-score has the value close to one even for the 

maximum threshold that equals 100%, it will not change a lot for smaller thresholds. 

 

Figure 13. Number of patterns vs. minimum support threshold. 

  

 

 

Figure 14. Average F-score vs. minimum support threshold. 
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However, decreasing the threshold for Log7 and Log9 datasets increases the average F-score 

up to 0.82 for the minimum support set at 5%. 

The increase in the total coverage and average F-score is explained by the limited number 

of patterns, which is set by the minimum support threshold. As we have shown on the ex-

ample of synthetic datasets, the lower minimum support leads to increasing the number of 

discovered patterns, hence, to the increase in the total coverage and the average F-score, 

while high threshold decreases those metrics. However, too lower value of the minimum 

support threshold can lead to increasing the running time (in seconds) and memory 

consumption and an extremely large number of frequent sequences [11]. 

5.4 Results on controlled-setting datasets 

Despite synthetic datasets, controlled-setting logs are much more similar to the real-life da-

taset. One of the most important differences is the fact that controlled-setting datasets con-

tain noise. The noise represents events that are irrelevant to the routine that is presented in 

the log. If the baseline approach cannot deal with noise, our approach that mines frequent 

closed sequential patterns can handle noise filtering. Further, we will demonstrate it for the 

Log10 dataset. 

Besides dealing with noise, our approach can discover functional dependencies in the rou-

tine. It increases the number of automatable actions in the discovered patterns, which, hence, 

increases patterns RAI. 

From Table 8, we can see that for each controlled-setting datasets, the maximum pattern 

length, and the average patterns’ length discovered by our approach is higher than by the 

baseline. 

The first datasets contain actions that correspond editing country code field in the Web 

browser. That action depends on the previous one that corresponds to editing the country 

name also in the Web browser. The data about country code cannot be extracted from the 

previous actions directly. However, it depends on the county. It means that editing country 

code action can be automated by using functional dependencies. Since the baseline approach 

was not able to find a deterministic function for that action, the action was marked as “non-

automatable,” and the baseline split the discovered patterns on that action, which decreased 

the maximum and average length of the discovered patterns. For the same reason, the total 

Table 8. Results on controlled-setting datasets. 

Log 

ID 

#Patterns Length 

(Max) 

Length 

(Avg) 

Total 

coverage 

RAI 

(Avg) 

Execution 

time (s) 

10 
3 12 6.3 0.85 1 1419 

2 22 21.0 1.00 1 34 

11 
5 5 3.4 0.76 1 1420 

2 22 21.0 1.00 0.95 28 

12 
15 17 2.93 0.452 1 5979 

2 22 21.0 0.98 1 31 
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coverage of the baseline is slightly lower than for our approach. As we can see, our approach 

has managed to discover functional dependencies as the average RAI equals to one. More-

over, we have found two patterns out of two log routines, which covers 100% of the log. 

The same difference in the evaluation measures can be seen in the case of the Log11 dataset 

since it contains one non-automatable action. It leads to decreasing in maximum and average 

patterns’ length and total coverage. 

For the Log12, the baseline shows the lowest evaluation measures. The noise present in the 

log can explain it. Since the limitation of the baseline, the approach is its inability to deal 

with noise. It discovers fifteen patterns for the Log12 dataset with total coverage equals to 

0.45, while our approach that can deal with noise discover two patterns out of two log 

routines with total coverage equals 0.99. We have reported the average RAI equals to one 

for discovered patterns by our approach, which means that each action of the routine can be 

automatable and, in total, none of the patterns contain a noise. 

Finally, from Table 8, we can see that the baseline execution time is at least 40 times higher 

than our approach execution time. In particular, for Log11, the execution time is 40 times 

higher, and for the Log12 datasets – 50 times higher. It can be explained by the high number 

of actions, which transformation function is not constant, but are determined by complex 

data transformations. 

The results obtained on the Log12 datasets confirm the limitations of the baseline to deal 

with noise. In particular, the baseline execution time on the log with noise is higher in almost 

200 times compared to our approach. 

Table 9 shows the average precision, recall, and F-score metrics obtained for the controlled-

setting datasets. 

We can notice that the F-score for our approach is much higher compared to that of the 

baseline. In general, this and the difference recall implies that our approach is able to dis-

cover patterns with a larger number of true-positive actions – the actions that are presented 

in the log routine and less number of false-negative actions – the actions that are missed in 

the pattern but are presented in the routine. 

Table 9. Evaluation metricsfor controlled-setting dataset. 

Log ID Precision (Avg) Recall (Avg) F-Score (Avg) 

10 
1.00 0.30 0.43 

1.00 1.00 1.00 

11 
1.00 0.16 0.27 

1.00 1.00 1.00 

12 
1.00 0.14 0.21 

1.00 0.98 0.99 
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Figure 15 reports on the number of the discovered patterns by our approach against the value 

of the minimum support threshold. Since the controlled-setting datasets contain only two 

routines, even the hight number of the threshold (75%) allows us to discover two out of two 

patterns. 

We have observed the same situation for the total coverage and the average F-score metrics. 

Even a small minimum support threshold that equals 75% leads to the higher value of the 

total coverage since both routines described in controlled-setting datasets share 11 out of 20 

actions for the first routine and 11 out of 22 actions for the second routine. 

 

Figure 15. Number of pattern vs. minimum support threshold. 
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6 Conclusion 

In this thesis, we have presented an approach that consists of two modules. The first module 

is responsible for the identification of candidate routines for automation from the UI log. It 

exploits sequential pattern mining techniques with a user-specified minimum support 

threshold for discovering closed frequent sequential patterns within a log. Since sequential 

pattern mining operates on datasets of symbolic items, we overcome such a limitation by 

encoding UI log action from complex structural objects to the symbolic representation. We 

have shown the process of ranking of mined patterns based on membership-based cohesion 

score. Moreover, we have presented the cut-off technique that is based on a drop-down pat-

tern value in order to select the most valuable pattern only. 

The second module of the approach is responsible for routine automatability assessment. 

The goal of that module is to identify the degree of automatability for candidate routines for 

automation. We determine if the pattern is automatable by analyzing dependencies within 

pattern actions. More precisely, we consider syntactical and semantical transformations be-

tween action attributes. For discovering syntactical transformation, we exploit the optimized 

Foofah approach on pairs of nearest read and write pattern actions. Foofah allows us to 

discover data transformation between such actions. Once we have found writing actions that 

do not refer to any synthetical transformation, we investigate such actions on semantical 

transformation. Synthetical transformations are presented by functional dependencies – re-

lationships between attributes that uniquely determines the value of the attributes by the 

values of other attributes. Finally, if any of the write action does not refer to synthetical or 

semantical transformation, the action is non-automatable. Furthermore, we have presented 

the RAI metric that corresponds to the degree of the pattern automatability. 

An experimental evaluation was conducted both on synthetical and controlled-setting da-

tasets. It provides a comparative analysis of the thesis approach and the baseline. The eval-

uation has shown that our approach outperforms the baseline, both qualitatively and quan-

titatively. More precisely, it allows us to discover longer routines with shorter execution 

time, determine not only fully-automatable routines but also partially-automated. This ena-

bles us to use the approach in conjunction with both attended and unattended RPA tools. 

Additionally, the evaluation demonstrates that our approach can deal with the noise con-

tained in the UI log. 

At the same time, the provided approach has several limitations. One of the limitations of 

the approach arises from the use of sequential pattern mining. While closed sequential pat-

tern mining techniques have a high performance, it focuses on discovering tasks in which 

actions were executed sequentially. As a result, if a UI log describes a single routine, and 

each log trace contains routine actions in a different order, we may discover multiple vari-

ants of the same routine. Consequently, in order to address the limitation, the postprocessing 

of discovered routines is required. Another limitation of the sequential pattern mining is the 

ability to discover merely frequent patterns. If the UI log contains not frequent routines, they 

will not be discovered by the proposed approach. Another limitation comes up when the UI 

log contains too much noise. It leads to an increase in the number of outlier occurrences in 

the patterns. Hence, the cohesion score of such patterns will drop, which can lead to the 
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situation when the pattern with a high number of outliers will be cut off from the resulting 

set of discovered patterns. 

 



46 

 

7 References 

 

[1]  W. M. P. v. d. Aalst, M. Bichler and A. Heinzl, “Robotic Process Automation,” Bus 

Inf Syst Eng 60, p. 269–272, 2018.  

[2]  R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the 

eleventh international conference on data engineering, 1995.  

[3]  G. M. N, R. Rajeev and S. Kyuseok, “SPIRIT: Sequential pattern mining with 

regular expression constraints,” in VLDB, 1999, pp. 7-10. 

[4]  A. Bosco, A. Augusto, M. Dumas, M. La Rosa and G. Fortino, “Discovering 

automatable routines from user interaction logs,” in International Conference on 

Business Process Management, 2019.  

[5]  V. Leno, A. Polyvyanyy, M. Dumas, M. L. Rosa and F. M. Maggi, “Robotic Process 

Mining: Vision and Challenges,” Business & Information Systems Engineering, pp. 

1-14, 2020.  

[6]  H. Peter, S. Caroline and U. Nils, “Robotic process automation,” Electronic Markets, 

pp. 1-8, 2019.  

[7]  P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh and R. Thomas, “A survey 

of sequential pattern mining,” Data Science and Pattern Recognition, vol. 1, pp. 54-

77, 2017.  

[8]  S. Farzana Zerin and B.-S. Jeong, “A fast contiguous sequential pattern mining 

technique in DNA data sequences using position information,” IETE Technical 

Review, vol. 28, pp. 511-519, 2011.  

[9]  C. Li and J. Wang, “Efficiently mining closed subsequences with gap constraints,” in 

proceedings of the 2008 SIAM International Conference on Data Mining, 2008.  

[10]  G. Sirisha, M. Shashi and G. P. Raju, “Periodic pattern mining-algorithms and 

applications,” Global Journal of Computer Science and Technology, 2014.  

[11]  F. Fumarola, P. F. Lanotte, M. Ceci and D. Malerba, “CloFAST: closed sequential 

pattern mining using sparse and vertical id-lists,” Knowledge and Information 

Systems, vol. 48, no. 2, pp. 429-463, 2016.  

[12]  A. Aztiria, A. Izaguirre, R. Basagoiti, J. C. Augusto and D. J. Cook, “Automatic 

modeling of frequent user behaviours in intelligent environments,” in 2010 Sixth 

International Conference on Intelligent Environments, 2010.  

[13]  H. Leopold, H. van der Aa and H. A. Reijers, “Identifying candidate tasks for robotic 

process automation in textual process descriptions,” in Enterprise, business-process 

and information systems modeling, Springer, 2018, pp. 67-81. 

[14]  W. Van Der Aalst, Process mining: discovery, conformance and enhancement of 

business processes, Springer, 2011.  



47 

 

[15]  A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi, A. Marrella, M. 

Mecella and A. Soo, “Automated discovery of process models from event logs: 

Review and benchmark,” IEEE Transactions on Knowledge and Data Engineering, 

vol. 31, no. 4, pp. 686-705, 2018.  

[16]  M. De Leoni, M. Dumas and L. García-Bañuelos, “Discovering branching conditions 

from business process execution logs,” in International Conference on Fundamental 

Approaches to Software Engineering, 2013, pp. 114-129. 

[17]  J. Srivastava, R. Cooley, M. Deshpande and P.-N. Tan, “Web usage mining: 

Discovery and applications of usage patterns from web data,” Acm Sigkdd 

Explorations Newsletter, vol. 1, no. 2, pp. 12-23, 2000.  

[18]  A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li and J. L. 

Herlocker, “TaskTracer: a desktop environment to support multi-tasking knowledge 

workers,” in Proceedings of the 10th international conference on Intelligent user 

interfaces, 2005, pp. 75-82. 

[19]  V. Leno, M. Dumas, M. La Rosa, F. M. Maggi and A. Polyvyanyy, “Automated 

Discovery of Data Transformations for Robotic Process Automation,” arXiv preprint 

arXiv:2001.01007, 2020.  

[20]  Z. Jin, M. R. Anderson, M. Cafarella and H. Jagadish, “Foofah: Transforming data 

by example,” in Proceedings of the 2017 ACM International Conference on 

Management of Data, 2017.  

[21]  A. Jimenez-Ramirez, H. A. Reijers, I. Barba and C. Del Valle, “A method to 

improve the early stages of the robotic process automation lifecycle,” in 

International Conference on Advanced Information Systems Engineering, 2019.  

[22]  W. Van Der Aalst, “Data science in action,” in Process mining, Springer, 2016, pp. 

3-23. 

[23]  J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M. Hsu, 

“Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern 

growth,” in proceedings of the 17th international conference on data engineering, 

2001.  

[24]  P. Fournier-Viger, A. Gomariz, M. Campos and R. Thomas, “Fast vertical mining of 

sequential patterns using co-occurrence information,” in Pacific-Asia Conference on 

Knowledge Discovery and Data Mining, 2014.  

[25]  H. Dev and Z. Liu, “Identifying frequent user tasks from application logs,” in 

Proceedings of the 22nd International Conference on Intelligent User Interfaces, 

2017.  

[26]  Y. Huhtala, J. Kärkkäinen, P. Porkka and H. Toivonen, “TANE: An efficient 

algorithm for discovering functional and approximate dependencies,” The computer 

journal, vol. 42, no. 2, pp. 100-111, 1999.  



48 

 

[27]  V. Leno, A. Polyvyanyy, M. La Rosa, M. Dumas and F. M. Maggi, “Action logger: 

Enabling process mining for robotic process automation,” in Proceedings of the 

Dissertation Award, Doctoral Consortium, and Demonstration Track at 17th 

International Conference on Business Process Management,(BPM’19), Vienna, 

Austria, 2019.  

 

 

 



49 

 

Appendix 

I. Licence 

Non-exclusive licence to reproduce thesis and make thesis public 

 

I, Stanislav Deviatykh 

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to 

reproduce, for the purpose of preservation, including for adding to the DSpace  

digital archives until the expiry of the term of copyright, 

Discovering Automatable Routines from UI Logs via Sequential Pattern Mining  

supervised by Marlon Dumas and Volodymyr Leno. 

 

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to 

the public via the web environment of the University of Tartu, including via the DSpace 

digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, 

by giving appropriate credit to the author, to reproduce, distribute the work and com-

municate it to the public, and prohibits the creation of derivative works and any com-

mercial use of the work until the expiry of the term of copyright. 

 

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2. 

 

4. I certify that granting the non-exclusive licence does not infringe other persons’ intel-

lectual property rights or rights arising from the personal data protection legislation. 

 

 

 

Stanislav Deviatykh 

15/05/2020 

 


