
UNIVERSITY OF TARTU
Institute of Computer Science, #UniTartuCS

Cybersecurity Curriculum

Edgar Miadzieles

Digital Twin and Blockchain-Driven
Firmware Updates for the Internet of

Vehicles

Master’s Thesis (24 ECTS)

Supervisor: Mubashar Iqbal, PhD

Tartu 2024



Digital Twin and Blockchain-Driven Firmware Updates
for the Internet of Vehicles
Abstract:

Blockchain has gained significant attention as a technology to provide decentralized so-
lutions in various fields. It provides assurances of integrity, authentication, immutability,
and transparency through a decentralized framework, instilling trust and security. The
recent adoption of Digital Twins (DT) has enabled the simulation and testing in a virtual
environment by mirroring the physical entities, their environment, and processes. This
thesis aims to review the Over-the-Air (OTA) firmware update process in the context
of Intelligent Transportation System (ITS) and, more specifically, the Internet of Vehi-
cles (IoV). Current OTA updates depend on client-server architecture, whereas IoV and
ITS benefit from a decentralized solution to remove a single point of failure in terms
of various attacks and network congestion issues. We are using blockchain and DT
technologies to meet the criteria of ITS and IoV of OTA firmware updates for vehicles
in an IoV environment. This thesis presents a systematic literature review of existing
OTA firmware update literature that uses blockchain and DT technologies. Furthermore,
a solution is proposed for the OTA firmware updates, realized using Ethereum and Mi-
crosoft Azure DTs to satisfy the requirements of secure firmware updates for vehicles
in an IoV environment. The proposed solution smart contract is evaluated based on gas
consumption and unit tests. The proposed solution is developed as a console application
and evaluated based on design criteria derived from a systematic literature review and
contextual analysis of the IoV and ITS.

Keywords: blockchain, digital twins, firmware update, internet of vehicles, intelligent
transportation system

CERCS: P170 Computer science, numerical analysis, systems, control
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Digitaalse Kaksiku ja Plokiahelal Põhineva Püsivara Värsk-
endus Sõidukite Internetis
Lühikokkuvõte:

Plokiahel on pälvinud märkimisväärset tähelepanu kui tehnoloogia, mis pakub detsen-
traliseeritud lahendusi erinevates valdkondades. Plokiahela raamistik pakub autentimist,
terviklikkust ja muutumatust tagades usaldust ja turvalisust. Digitaalsete kaksikute
hiljutine kasutuselevõtt on võimaldanud simuleerida ja testida virtuaalses keskkonnas,
peegeldades füüsilisi üksusi, nende keskkonda ja protsesse. Selle lõputöö eesmärk on
uurida püsivara uuendamise protsessi kasutades kaablita sidevahendeid intelligentse
transpordisüsteemi ja täpsemalt sõidukite interneti kontekstis. Praegused kaablita sideva-
henditega tarkvara värskendused sõltuvad klient-serveri mudelist, samas kui sõidukite
internet ja intelligentne transpordisüsteem saavad kasu detsentraliseeritud lahendusest,
mis eemaldab nõrgima lüli tõrke erinevate rünnakute ning võrgu ummistuse mured.
Kasutame plokiahela ja digitaalse kaksiku tehnoloogiaid, et täita sõidukite interneti ja
intelligentse transpordisüsteemi kriteeriume, võimaldamaks kaablita sidevahenditega
püsivara värskendamise protsessi sõidukite interneti keskkonnas olevate sõidukite jaoks.
See lõputöö esitab süstemaatilise ülevaate olemasolevast kaablita sidevahenditega püsi-
vara värskenduste kirjandusest, mis kasutab plokiahela ja digitaalse kaksiku tehnoloogiat.
Lisaks pakutakse välja lahendus kaablita sidevahendiga püsivara värskenduste jaoks, mis
on realiseeritud Ethereumi ja Microsoft Azure Digital Twins technoloogia abil, et rahul-
dada sõidukite interneti keskkonnas olevate sõidukite turvalise püsivara värskenduste
nõudeid. Pakutava lahenduse nutilepingut hinnatakse gaasitarbimise ja ühikutestide
põhjal. Kavandatav lahendus töötatakse välja konsoolirakendustena mida hinnatakse kir-
janduse süstemaatilise ülevaate ning sõidukite interneti ja intelligentse transpordisüsteemi
kontekstuaalsest analüüsist tuletatud disainikriteeriumide alusel.

Võtmesõnad: plokiahel, digitaalne kaksik, püsivara värskendus, sõidukite internet,
intelligentne transpordisüsteem

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction
Internet of Things (IoT) has a multidisciplinary vision that has seen application in
several domains [27]. Although the definition varies on multiple factors, it roughly refers
to a network of interconnected devices ("things"), often with sensor capabilities, that
autonomously communicate data with other things over a network [16][27][38][10].
These devices can range from everyday objects like smart thermostats and wearable
fitness trackers to industrial machines and vehicles. This interconnectedness of devices
facilitates the automation of processes, enhances efficiency, and enables the development
of innovative applications across various industries. The proliferation of IoT has the
potential to enhance the capabilities of Intelligent Transport System (ITS) [58][10].
For instance, IoT in ITS enables the integration of various sensors, actuators, and
other smart devices within transportation infrastructure and vehicles [58][10]. This
integration allows for real-time monitoring, data collection, and analysis to improve
the efficiency, safety, and sustainability of transportation systems [58]. IoT in ITS
facilitates functionalities such as traffic management, vehicle-to-vehicle communication,
remote diagnostics, and monitoring, ultimately leading to enhanced mobility experiences,
optimized transportation networks and a reduction in traffic accidents[8][44][41][10].

In recent times, automotive design has undergone a notable transformation, with
traditional mechanical functions in various vehicle components being substituted by
electronic counterparts [34]. As a result, modern vehicles now feature enhanced elec-
tronic functionalities that offer improved performance and new capabilities. Due to
the increasing complexity of onboard electronic units, there has been a shift towards a
software-defined approach in vehicle design [18]. This shift has introduced the capability
for Over-The-Air (OTA) firmware updates. As a result, vehicle components can now
receive updates remotely, enhancing functionality and safety.

With these advancements, the need for robust vehicle connectivity has become more
pronounced. Today’s vehicles are equipped with the necessary technology to connect
and communicate over networks, marking a key development in the Internet of Vehicles
(IoV). IoV, as a special case of IoT, stands to enhance the safety and efficiency of
transportation [12]. In addition to vehicular connectivity, IoV aims to integrate vehicles
intelligence to provide transportation services on a larger scale [12]. The IoV facilitates
not only the OTA updates but also enables real-time data exchange between vehicles and
infrastructure, further enhancing vehicle intelligence and operational efficiency within
ITS. This integration of connectivity and IoV capabilities is necessary for supporting the
complex software ecosystems of modern vehicles.

This thesis investigates the process of OTA firmware updates utilizing blockchain tech-
nology and Digital Twin (DT) to provide a secure firmware update process. Blockchain
technology, Ethereum, is well-suited for the IoV environment as it enhances system
availability and ensures verifiable transactions and data exchanges. Moreover, Ethereum
provides observability and facilitation of the firmware update process via smart contracts.
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To increase observability and maintenance possibilities we use the DT technology. DT
is a new and emerging technology enabling the virtualization of physical entities, their
relationships with the environment, and processes in the system. This thesis explores
the integration of the aforementioned technologies to improve the security, availability,
and monitoring of the OTA firmware update process for modern vehicles in an IoV
environment. Furthermore, we propose an OTA update process incorporating Ethereum
and DT technology and provide an evaluation of the components and process.

1.1 Problem Statement
The implementation of OTA firmware updates within the IoV presents various security
challenges considering attacks like rogue updates, replay attacks, Denial-of-Service
(DoS), eavesdropping attacks, impersonation attacks, and modification attacks [50]. For
instance, traditional OTA update mechanisms often depend on a client-server model,
which inherently includes a single point of failure for DoS, where server outages could
render the firmware update feature inoperative [4]. Moreover, a large number of vehicles
accessing the server simultaneously for updates can lead to network congestion. On
the other side, vehicles do not always have connectivity in order to perform the update
[13]. The availability of the firmware update can be vital to improve the overall safety
of the vehicle. Vehicular OTA firmware updates must ensure availability and resistance
to DoS attacks. It is important that the update process upholds integrity, authenticity,
and authorization to mitigate impersonation-, modification-, eavesdropping- and rogue
attacks. Each update must maintain integrity to ensure that no unauthorized modifications
compromise the software. Additionally, the authenticity of each firmware update must
be verified to confirm that it is genuine and comes from a trusted source. Proper
authorization mechanisms must be in place to ensure that only authorized entities can
initiate and apply updates. Finally, the firmware update process mitigates rollback and
replay attacks by providing mechanisms to check the package order validity. By following
the aforementioned details, the primary focus of this work is to investigate the secure
management of firmware updates across an extensive network of connected vehicles
(e.g., IoV in our case). It is not practical to examine the firmware update across every
potential configuration of a physical vehicle’s systems. This increases the likelihood of
software malfunctions. Therefore, it is crucial to implement robust oversight, monitoring,
and simulation of the updates to ensure security and proper functioning.

The envisioned solution involves leveraging DT and blockchain technology to address
these challenges. DT can provide a dynamic, virtual model of each vehicle, enabling
simulation of the update process. Vehicle DT, configured according to the physical
vehicle, enables monitoring and oversight of the update process. Concurrently, blockchain
technology offers a decentralized and immutable ledger, ideal for securely recording and
facilitating firmware updates, ensuring integrity and availability in a verifiable manner.
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1.2 Research Questions
The primary research question of this thesis is as follows. How to build a digital twin
and blockchain-enabled firmware update system for the Internet of Vehicles? To address
the primary research question, the following questions have been outlined:

RQ1 What are the latest advancements contributing to the current state-of-the-art in
firmware updates within IoT systems?

RQ2 How can OTA firmware updates be adjusted to meet the unique connectivity and
security challenges present in the IoV ecosystem?

RQ3 How to implement blockchain and DT-based OTA firmware update?

RQ4 What are the performance, robustness, and security outcomes of implementing a
blockchain and DT-based OTA firmware update system?

Table 1. Design-science guidelines and their descriptions from [23].

Guideline Description
DG.1 Design as an Artifact Design-science research must produce a viable artifact

in the form of a construct, a model, a method, or an
instantiation.

DG.2 Problem relevance The objective of design-science research is to develop
technology-based solutions to important and relevant

business problems.
DG.3 Design evaluation The utility, quality, and efficacy of a design artifact must

be rigorously demonstrated via well-executed evaluation
methods.

DG.4 Research Contributions Effective design-science research must provide clear and
verifiable contributions in the areas of the design artifact,

design foundations, and/or design methodologies.
DG.5 Research Rigor Design-science research relies upon the application of

rigorous methods in both the construction and evaluation
of the design artifact.

DG.6 Design as a search process The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying

laws in the problem environment.
DG.7 Communication of research Design-science research must be presented effectively

both to technology-oriented as well as
management-oriented audiences.
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1.3 Research Method
This thesis uses the methodology of design-science research. The design-science method
is rooted in engineering and is fundamentally a problem-solving process [23]. Design
science aims to understand the underlying problem and the solution by building and
application of an artifact [23]. The guidelines in Table 1 specify the requirements of
design-science research that are used in this thesis. The artifact DG.1 in this thesis is the
proposed solution in Section 5. This thesis finds the DG.2 by reviewing the context of
IoV and ITS in Section 3. The proposed solution is evaluated (DG.3) based on selected
criteria in Section 6 and further discussion in Section 7. The research contribution (DG.4)
and research rigor (DG.5) is based on providing the foundation in Section 2, Section 4
and Section 3 to produce a proposed solution and its evaluation in Section 5 and Section 6.
The design guidelines DG.6 and DG.7 are achieved by finding the requirements for
the proposed solution as well as the descriptive diagrams and high-level architectural
overviews and descriptions of the proposed solutions and technologies used.

1.4 Contributions
Considering the proliferation of the IoV paradigm, the infrastructure introduces many
security and network challenges. This thesis aims to provide and analyze a firmware
update framework for IoV using blockchain in combination with DT technology. Four
main contributions are made. The contributions are as follows:

• RQ1 aims to highlight the current cases and solutions for implementing a blockchain-
enabled firmware update model and a DT-enabled firmware update model in an
IoT system in Section 4.

• In order to answer RQ2 we review the IoV and ITS paradigms and find the criteria
for vehicular OTA firmware updates in the context of IoV. Additionally, a summary
of the proposed OTA firmware update system is given in Section 3.

• Based on the findings of current implementations of blockchain and DT-enabled
OTA firmware updates and the OTA firmware update criteria in the context of IoV,
the proposed model is implemented as a proof of concept in order to answer RQ3
in Section 5.

• In order to answer RQ4, we evaluate the proposed solution based on the OTA
firmware update requirements in an IoV environment. Secondly, we evaluate the
functionality of the created smart contract using unit tests and static analysis, and
provide a gas cost evaluation based on different cases. Finally, two scenarios are
presented where the proposed solution OTA update process is showcased.
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1.5 Thesis Structure
The thesis is structured as follows. Background in Section 2 describes the main technolo-
gies and concepts used in this thesis. It explains the concept of blockchain and its types
and discusses the definition of DT. Section 3 introduces the concept of IoV and ITS. An
overview is given for the components involved in OTA firmware updates for vehicles. The
systematic literature review is performed in Section 4 reviewing DTs and blockchain in
the context of OTA firmware updates. In Section 5 the solution for OTA firmware update
is proposed using blockchain and DT. The solution is evaluated in Section 6 in terms
of security, functionality, and performance in terms of gas consumption. Discussion in
Section 7 lays out the benefits and issues with the proposed solution. Finally, Section 8
concludes the thesis with a summary of the thesis.

2 Background
This section describes the technologies used in the proposed OTA firmware update
solution in Section 5 and contributes to design-science guidelines DG.4 and DG.7
from Table 1. We use blockchain and InterPlanetary File System (IPFS) to enable a
decentralized OTA firmware update process. First, we provide an overview of blockchain
in Section 2.1. Additionally, this section categorizes and describes various types of
blockchains, with a detailed examination of Ethereum, Hyperledger Fabric (HLF), and
IOTA. We have examined the chosen blockchain platform and the rationale behind its
selection for integration into our project in Section 2.1.5. We discuss IPFS in Section 2.2.
To enable oversight and monitoring of the OTA firmware update process we are using
DT technology, which is discussed in Section 2.3. We provide a definition and describe
architectures used for a DT. Finally, an overview is given in Section 2.4 to highlight the
importance of chosen technologies.

2.1 Blockchain
Blockchain is one of the main technologies we use in this thesis for the proposed solution
of OTA firmware updates in the IoV system. A blockchain is composed of blocks, with
a block consisting of multiple transactions [37]. New blocks can be appended to the
previous blocks with a hash value of the previous block. A nonce, which is a random
number for verifying the hash, and a timestamp [37]. The block is added to the chain if
the nodes on the network agree on the validity of the block, which is achieved using a
consensus mechanism. During this process, a blockchain is formed with an immutable
state with every participant of the network reaching the current state of the blockchain.

A consensus mechanism is a protocol for the majority of the network participants to
agree on the state of a blockchain. Bitcoin uses Proof of Work (PoW) as its consensus
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mechanism, where participants of the network called miners try to solve a complex
cryptographic puzzle requiring significant computational effort [32]. Proof of Authority
(PoA) is another consensus mechanism that relies on chosen confirmed validator nodes
explicitly allowed to create new blocks to validate the transactions or new blocks added
to the chain [35]. Proof of Stake (PoS) is a consensus algorithm that selects validators to
create a new block based on the amount of currency they hold and are willing to stake or
lock up as collateral [32].

A smart contract is code that is deployed on the blockchain on a specific address.
Because the smart contract is deployed on the blockchain, it inherits properties of
the blockchain like immutability, transparency, and decentralization, and once a smart
contract has been executed, it cannot be reverted. The network’s consensus mechanism
allows for the collective verification of each contract’s execution. Smart contracts are
used for agreements among parties without the need for a central authority and can be
used for voting systems, identity verification, and financial services, among others.

2.1.1 Types of Blockchains

Blockchain can be categorized into three types: public or permissionless, private or
permissioned, and hybrid [39]. These blockchain types share similar properties of
working on the Peer-to-Peer (P2P) network, are decentralized, distributed, use consensus,
and have the ability to initiate, receive, and verify transactions [39]. Below we discuss
the types of blockchains:

• Public or permissionless blockchains are open blockchain networks where any
party can participate and have access to the network. Public blockchains offer high
decentralization and distribution, no centralized regulations, and full transparency
of the system and they are pseudonymous by nature. The nodes within the network
rely on a distributed consensus mechanism, determined by the network, to validate
transactions. The two primary types of consensus mechanisms are PoW and PoS.
Some of the common public blockchains are Ethereum, Bitcoin, and Cardano
among others.

• Private or permissioned blockchains are restricted and work on closed systems
where the participants of the system need explicit permission to join the network.
The transactions within the network are not accessible to other parties except
the nodes participating in the network. Private blockchains are considered to
have high transactional throughput and low decentralization. Private blockchain
consensus models prioritize speed, control, and permissioned access. For example,
HLF uses pluggable consensus mechanisms that are best suited for the network
and application considering that privacy, confidentiality, and trust are important
between the parties.
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• Hybrid blockchains also known as consortium blockchains, combine public and
private blockchains. This combination enables higher customization and provides
the possibility of giving different levels of privacy and decentralization capabilities
to different participating parties. These types of blockchains may offer higher
transactional throughput while offering security and scalability.

2.1.2 Ethereum

Ethereum is a public blockchain platform that extends beyond simple cryptocurrency
transactions by facilitating the execution of smart contracts and the development of
decentralized applications. Instead of a distributed ledger, Ethereum is a distributed
ledger that is described as a distributed state machine. Ethereum native cryptocurrency
Ether (ETH) serves as a method for compensating the participants for computational
work or execution, validation, and broadcasting transactions to the network. The primary
components of the Ethereum platform include the following:

• Ethereum Virtual Machine (EVM) is the runtime environment for smart contracts
which allows execution in a decentralized and global manner and specifies the
protocols for transitioning states between blocks.

• Smart Contracts are snippets of code that are deployed on the blockchain on
an address that is executable when the preconditions set by the contract are met.
Deploying smart contracts and executing its functionality that introduces state
change requires gas.

• Gas is used as a measurement of computation required to execute a transaction and
acts as a fee. This mechanism is required to ensure that Ethereum is not vulnerable
to spam.

• Ether (ETH) is the native currency of Ethereum blockchain.

• Consensus Mechanism of Ethereum blockchain is currently PoS.

• Accounts: Ethereum has two types of accounts: An externally owned account and
a contract account. Externally-owned account has a public and private key and can
initiate transactions. Contract accounts are controlled by the smart contract code,
don’t have private keys, and act only when executing contract code.

• Transactions are cryptographically signed actions initiated by externally owned
accounts that change the state of the network. Creating transactions on the network
requires fees. There are three types of transactions:

– Regular transactions are transactions from one account to another.
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– Contract deployment transactions for deploying contracts on the blockchain.

– Contract execution transactions for interacting with smart contract func-
tionality.

• Nodes run Ethereum client software that participates in the Ethereum network
where a node consists of the execution client, which executes the transactions in
EVM and stores the latest state of the network, and the consensus client which
employs the PoS consensus mechanism to facilitate network consensus based on
data verified by the execution client. Ethereum nodes are categorized into two
types:

– Full nodes that perform a block validation from a specific starting block or
from the genesis block.

– Light nodes that only download block headers and rely on a full node for
requesting the block information.

2.1.3 Hyperledger Fabric

HLF is an implementation of a distributed ledger platform for running smart contracts,
called Chaincode, that is run by peers. HLF was established as a project of the Linux
Foundation in early 2016 [7]. HLF has two kinds of peers: validating peers, who are
responsible for transaction validation and ledger maintenance, and non-validating peers,
which function as a proxy to connect transaction-issuing clients to validating peers [7].
HLF is a permissioned blockchain with a pluggable consensus and is meant for enterprise
use mostly where privacy and confidentiality between parties are important.

Since HLF is a permissioned, private blockchain, it needs a mechanism to grant and
validate access to identities within the network that sign new transactions. This is handled
by the Membership Service Provider which also enrolls new members to the network.
HLF stores its data on the ledger, which consists of a world state and the blockchain
where the world state holds the current state of the ledger values and the blockchain,
which serves as a transaction log. The ledger may be further scoped per channel, where
the channel is a mechanism to isolate or privatize the ledger and transactions to only a
specific set of participants.

2.1.4 IOTA

IOTA is a recent distributed ledger technology that focuses on zero cost, and fast transfers
and is aimed for the Internet of Things [45]. Unlike traditional blockchains, which are
composed of sequential blocks, IOTA stores the data in a directed acyclic graph (DAG)
called Tangle, where each new transaction references two previous transactions where
immediate consensus is not necessary [45]. The transaction-adding node checks for a

14



double spend or inconsistency of chosen references and does a light PoW before adding
the new transaction. If a transaction receives additional references or approvals it is
considered to have a higher level of confidence [45].

IOTA previously relied on the consensus mechanism of PoA which is achieved by
the coordinator node. The consensus of IOTA demanded that a confirmed transaction
is referenced directly or indirectly by the coordinator which sends signed blocks called
milestones [45] [25]. This has been considered a fault in IOTA in terms of decentralization
and scalability and also opens a possibility for a single point of attack [45]. On September
12, 2023, IOTA replaced the coordinator with a decentralized validator committee in
order to avoid an unusable network when the coordinator is down [24]. The validator
committee is an intermediary step, before IOTA 2.0, where the PoA mechanism is finally
replaced by an on-tangle permissionless proof of stake voting mechanism [24]. The
smart contracts in IOTA require gas to operate.

2.1.5 Blockchain Platform Choice

In the proposed solution we choose the Ethereum platform over other blockchain tech-
nologies. Ethereum was chosen mainly because of the maturity and decentralization
aspects of the platform. As one of the earliest and most successful blockchain platforms,
Ethereum benefits from significant network effects with wide adoption and continuous de-
velopment. Moreover, Ethereum benefits from extensive tooling options for development
and testing. Ethereum operates on a permissionless, decentralized network, providing
robust security features and is less susceptible to a single point of failure. Furthermore,
Ethereum was the most used blockchain platform for firmware update solutions in an
IoT environment as was found in the SLR in Section 4.5.1.

2.2 IPFS
InterPlanetary File System (IPFS) is an open-source peer-to-peer distributed file system
[5] where data is shared among multiple nodes. IPFS replaces location-based addressing,
like URL, with content-based addressing and content can be accessed using a content
identifier (CID). One of the advantages of IPFS is serving on-demand content. If many
users access the same file, it can be distributed from all nodes that have it, not from a
single server. IPFS uses Kademlia, a type of Distributed Hash Table (DHT) optimized
for use in decentralized peer-to-peer networks. It’s a system that helps locate the peers
on the IPFS network that have the specific data being looked for. This setup allows for a
highly effective and self-managing network that remains stable even as nodes frequently
join or leave. IPFS builds a Merkle-directed acyclic graph, creating cryptographically
hashed links between objects [5]. This provides tamper resistance and verifiable data
fetching. Once content has been added to the network it cannot be deleted. The only
deletion possible is local.
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2.3 Digital Twin
Digital twin is a relatively new technology that has gained momentum in recent years.
The concept has evolved during the years changing the definition based on its application.
Generally, DT is a virtual replica of the physical asset or process. DT follows the
replicated entity through its lifetime by sharing near real-time data. DTs are used for
simulation, monitoring, and predictive analysis of the physical asset without direct
involvement with the physical counterpart.

2.3.1 Definition

DTs originated in the United States military aerospace industry and have now found
usage in transportation, industrial production, education, and other industrial sectors
[55]. The concept was first presented by M. Grieves in the context of Product Lifecycle
Management (PLM) in 2002 and had the properties that are considered to define today’s
DT [15]. Similar concepts have been introduced before that mimic the information input
from the physical world by D. Gelernter called "Mirror Worlds" and a system where a
physical entity has a virtual counterpart by K. Främling at al [46]. Gathered from the
works of [46] [55] the concept has further evolved during time as follows:

• The name "digital twin" was first used by NASA in 2012 for the simulation of a
physical system that makes use of virtual models, real-time sensors, and historical
data to mirror the physical twin.

• In 2013, DT technology was conceptualized as a concept that uses data-driven ana-
lytics and various physical models to accurately replicate the operational conditions
of a specific entity.

• Definition of DT from a function perspective in order to simulate, predict, and
control the feedback from the physical entities.

• Refinement of product description in DT where simulations should reflect the
digital model properties and behavior more realistically.

• Additional update from an architectural perspective where the DT is not limited to
entities but linked relationships.

The definitions of DT are various, and there is no consensus on what exactly a DT
should be and which properties it should have. The rough definition of a DT is that it
is a virtual model or simulation of a physical environment or object that represents the
exact state given identical conditions that stores the historical data as well as exchanges
on the real-time data where the states of the physical and virtual are the same. The
lack of consensus on the definition means that DTs can currently have characteristics
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based on the level of integration or completeness, however, they share these common
characteristics as pointed out by [46]:

• High-fidelity: The DT is a near-identical copy of the physical entity or environ-
ment that mimics its appearance, state, and functionality. Depending on the DT
completeness, the fidelity might be very accurate.

• Dynamic: The DT is not a static representation of a state but follows the changes
of the physical counterpart.

• Self-evolving: Similarly to the previous definitions of "dynamic" criteria, the
virtual entity changes according to the changes of the physical counterpart.

• Identifiable: Each physical entity with its relations has at least one unique virtual
counterpart that is related to the physical entity.

• Multiscale: The DT copies the physical counterpart and its relations on multiple
levels, ranging from geometry to physical phenomena related to the entity.

• Multidisciplinary: DT encompasses a wide range of fields like computer science,
mechanics, electronics, etc.

• Hierarchical: DT consists of multiple components like physical devices and their
environment with links to other devices and phenomena, which are all integrated
within a virtual system.

2.3.2 Architecture

Due to the evolving definition of DTs, the integration and architecture can also consist of
various levels and architectural models. Initially, the architecture was laid out as a 3D
system [46] as depicted in Fig. 1. This system consists of three components: physical,
virtual, and connection. Fig. 1 shows (a) the definition of a digital model, where the data
is shared manually in both directions. Secondly, a digital shadow, as described by [46],
is depicted as (b) in Fig. 1, where the automatic data is sent to the virtual model and
manual data to the physical object. A DT definition where the data flow is automatic in
both ways is shown by (c) in Fig. 1.

The 3-dimensional DT model was extended to a 5-dimensional model [49] consisting
of physical, virtual, service, and data components and a connection between these
components. Fig. 2 shows that the data is shared by the physical, virtual, and service
components of the system using connections (d), (e), and (f). The component interactions
are shown as (a), (b) with (c) also mapping the data between virtual and physical
components in Fig. 2. The virtual component consists of sub-components in four
dimensions, including the geometry model, physics model, behavior model, and rule
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Figure 1. Three-dimensional DT architecture with communication flow types and direc-
tions, adapted from [46].
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Figure 2. Five-dimensional DT showing communication directions between the compo-
nents, adopted from [49].

model, and evolves with the physical part. The service layer can enhance the physical
and virtual systems by providing optimization strategies and control for the system.

In terms of hierarchies, DTs can be classified into unit level, system level, and system
of systems level based on their implementation and functionality [48]. These levels
may be attributed to hierarchies of the system or entity in question. In the example of a
production-like system, the system of system level might be attributed to the production
floor and the machines, where the machine is the system and machine components are
the unit level [49]. The same hierarchy might hold true where the specific equipment or
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machine might be viewed as a system of systems with inner subsystems and the functional
execution units like motors as a unit level [49]. The same reasoning applies to other fields
and disciplines like mechanics, chemistry, electronics, etc. The actual implementation
and tooling used to create a DT depends on the problems and requirements of the
application or scenario.

2.4 Significance of Using Blockchain and DT in IoV
Implementing OTA firmware updates for software-defined components in vehicles is
becoming increasingly common. The conventional client-server architecture depends
on the server being secure, available, and capable of handling the volume of requests.
This introduces issues of potential downtime, network congestion, and in many cases a
single point of failure. Using a distributed technology for issuing new firmware updates
can potentially solve these issues. The sharing and storage of firmware metadata can be
facilitated by distributing the responsibility for its availability. Smart contracts can be
designed to manage firmware update procedures. The blockchain network ensures that
the smart contract functionality is executed correctly. The immutable and timestamped
records on a blockchain offer a method of auditability and provide a simple process for
tracing issues.

DT is used in many scenarios and applications to improve operational or product-
related decision-making. The technology provides the possibility to optimize or design
processes and products in a virtualized environment, potentially reducing cost and
increasing the speed of development. DTs can be used to follow the product through
its whole life cycle, providing improved oversight for maintenance and utility. With
data-driven solutions, the issues of a real-life asset can be mitigated or predicted based
on the virtualized product behavior. In general, DT serves as a solution for monitoring
and analyzing the properties and behavior of an asset with unique conditions, eliminating
the need for direct interaction with or reliance on the physical device itself.

2.5 Summary
In this section, we discussed the technologies we use for the proposed solution in
Section 5. We defined different types of blockchains like public, private and hybrid
blockchains. We covered the different aspects of Ethereum, IOTA, and HLF. The chosen
platform for the proposed solution is Ethereum, mainly for its maturity, decentralization
and security aspects. We covered IPFS, which is a decentralized peer-to-peer storage
system and suitable for the proposed solution. DT technology and concept were covered
in detail to give an overview of the definition and provide the different architectures of
DTs. The use case of the technologies in the context of OTA firmware update in an IoV
environment is further discussed Section 3 and in the conducted systematic literature
review Section 4.
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3 Use Case: IoV
In the background Section 2 we introduce the technologies taken under consideration
as a part of the proposed firmware update process. This section aims to answer RQ2:
How can OTA firmware updates be adjusted to meet the unique connectivity and
security challenges present in the IoV ecosystem?. We review the problem relevance
according to DG.2 from Table 1. We explore the concept of the IoV and its connection
to ITS in Section 3.1. The benefits of relocating firmware update processes closer to
the vehicles within this system are emphasized. Moreover, the IoV context is reviewed
from the networking perspective. In Section 3.2 we give an overview of the current state
of vehicle components and OTA firmware updates. Additionally, the requirements and
criteria for the vehicle firmware updates are found. Finally, we introduce the proposed
solution for OTA firmware updates in the IoV system as a summary in Section 3.3.

3.1 IoV Context
ITS refers to the application of advanced information and communication technologies to
the field of transportation to improve transportation safety, efficiency, and sustainability.
ITS is not limited to highway traffic, it provides services for air transport systems, water
transport systems, rail systems, etc [40]. From the standpoint of road transport vehicles,
ITS aims to enhance safety, traffic efficiency, and traveler information using traffic
management systems, vehicle-to-everything communications, smart parking solutions,
electronic toll collection systems, etc. As transportation management is becoming more
data-driven, it requires vehicles to have a connection to their environment, other entities
within the system, and the possibility to process and store data that exceeds the limitation
of a single vehicle.

VANETs are a subset of mobile ad-hoc networks specifically designed for enabling
connectivity using vehicles on-board-units (OBU) in the form of vehicle-to-vehicle
(V2V), Vehicle-To-Infrastructure (V2I) through the Roadside Units (RSU) or Vehicle-to-
Everything (V2X) [33]. V2X is a broader term that encompasses both V2V, V2I, vehicle-
to-pedestrian, etc. VANETs are considered to be conditional networks because the
vehicles as nodes are temporary and random and the performance is affected by vehicular
density and distributions [12]. Another problem with VANETs is the limited capacity for
processing information collected by vehicles and other actors of the VANET network
making them suitable for small-scale services such as collision prevention or other
notification services [9]. To integrate vehicles into ITS and target the aforementioned
limitations, the vehicles need to have connectivity and computational resources on a
larger scope, marking the transition from VANETs to IoV.

IoV integrates VANETs as a part of its system and forms an integration and informa-
tion exchange between humans, vehicles, and the environment. IoV integrates vehicle
intelligence with networking and computing capabilities beyond VANETs [12]. IoV
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Figure 3. Abstract representation of IoV components, layers, and data communication
flows between components and layers.
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stands to serve as a technology to realize the demands of ITS by providing information
for various ITS applications like road safety, management and control of traffic [12].
Fig. 3 presents a conceptual representation of the Internet of Vehicles (IoV), illustrating
how vehicles establish vehicle-to-vehicle and vehicle-to-infrastructure (V2I) connections.
These interconnected vehicles and infrastructure components collectively form the IoV,
which is further integrated into the broader internet through cloud connectivity, show-
casing a layered architecture encompassing vehicles, infrastructure, the internet, and the
cloud. IoV allows to move the processing of big data generated by actors within the
system from data processors like vehicles to technologies that provide scalable storage
and more processing power through a communication layer with various networking
technologies like Wifi, dedicated short-range communications (DSRC), 4G, 5G, etc.

Utilizing real-time traffic solutions through connected vehicles produces a large
amount of spatio-temporal data as it depends on the location and time [12]. Paradigms
like cloud computing, edge computing, or fog computing have been considered to offload
the computation and data-intensive operations to decrease the load of centralized data
centers forming additional layers between the vehicle and the server [12]. For IoV
networks, it is advantageous to shift a portion of the computation and network traffic
closer to the end-user, thereby meeting the demands of network services at the periphery,
where direct interaction occurs. In terms of the use case of blockchain-enabled OTA
firmware updates, the blockchain nodes can be positioned closer to the consumers given
they have enough storage and networking capabilities to update the nodes to the latest
states. Another advantage of blockchain in the context of IoV and ITS systems is its
ability to support a decentralized and transparent communication framework. This
enables a comprehensive oversight of data, while also ensuring that the blockchain ledger
can be audited and reviewed for enhanced trust and integrity.

3.2 Current State of OTA Updates
Over the past decades, the software has grown exponentially alongside the Electronic
Control Units (ECUs), which replace the mechanical functions of different units within
the vehicle [34]. The ECUs are connected via Controller Area Network or Local In-
terconnect Network [13]. Together with the sensors, power distribution, and wiring,
they form the electronic system (E/E) architecture [18]. Due to the rising complexity of
onboard E/E architecture in a vehicle, model-based development has taken precedence to
handle the growing requirements of vehicle system updates and development by Original
Equipment Manufacturers (OEMs) increasing integration of OTA updates [18].

At present, OTA software updates are available through cellular networks [13] and
require end-to-end connectivity in a client-server relationship to receive the update
packages. The system for OTA updates has been researched in several papers with most
of them targeting the issues of authentication, integrity, and confidentiality by proposing
slight variations of the server-client model [13]. The general overview of the process is
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depicted in the Fig. 4, where the vehicle, through a network connection enabled by a cell
site, receives the update from the OEM server.

The current proposed development standard Adaptive Platform of the AUTomotive
Open System ARchitecture (AUTOSAR) Adaptive Platform provides recommendations
for service-oriented communication between the software components [1]. Firmware
updates are one of the goals of AUTOSAR Adaptive Platform provided by the Update
and Configuration Management (UCM) which handles the update requests and sup-
ports software packages from different suppliers. Retrieving updated statuses from the
ECU is also a part of the specification. Firmware Over-The-Air (FOTA) is covered in
AUTOSAR document [2] which specifies a FOTA target and UCM subordinate which
receives the ECU software from the FOTA master ECU and a backend server that pro-
vides the firmware image. The FOTA master is also responsible for initial verification,
authentication, integrity, and authenticity checks of the firmware.

Figure 4. Generally used client-server OTA firmware update system with data communi-
cation between the vehicle (the client) and OEM server (the server) mediated via cell
sites.

Another OTA update framework Uptane [28] is implemented by several automotive
suppliers like Lear Corporation, OTAinfo, and Advanced Telematic Systems. Uptane
provides customizability and security by dividing ECUs into primary ECUs with more
computing power to verify the metadata and image and a resource-constrained secondary
ECU that performs either full or partial verification. The image is also divided into
directors for identifying the images necessary for updates and an image repository
containing all versions of ECU software components. Another principle is securely
signing the metadata of the update. However, researchers have pointed out, that Uptane
is vulnerable to rollback attack [20].

The aforementioned techniques and frameworks are among many proposed [20] and
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no single OTA update framework has been universally adopted. However, as described
by [20], the installation procedure, generally, involves a Telematics Control Unit (TCU),
also known as gateway ECU that downloads the update package from the server and
distributes the package to the appropriate ECU after the package verification. Combined
from [20], AUTOSAR, and Uptane a comprehensive overview of the essential criteria,
challenges, and prerequisites for OTA updates for a vehicle can be compiled as such:

• Reliability and validation: ECUs in vehicles are interdependent, a failure in
update may cause the vehicle to malfunction.

• Authenticity: Firmware is verified to be genuinely from the claimed source or
originator and is not altered by unauthorized entities.

• Integrity: Firmware data, delivered via the OTA update process, is unaltered, and
free from unauthorized modifications or corruptions. A verification mechanism
should be in place to check the integrity of firmware.

• Authentication: The firmware update process hinges on the vehicle’s ability to
authenticate the update package.

• Protection of the update transaction: Traceability of update installations is
critical, especially for safety updates and when addressing potential faults, ne-
cessitating verification of update authenticity by the OTA backend and target
ECU.

• Availability: Safety-critical update packages need to be readily available to the
target devices.

• Update status from ECU: The ECU must be able to respond with the update
status if firmware was installed or failed.

3.3 Proposed Solution
Following the requirements stated in Section 3.2 we propose a system for OTA firmware
updates for vehicles within the IoV system. To satisfy these requirements, we incorporate
blockchain for integrity, authenticity, and authentication and DTs for validation and
reliability. The firmware update status and verification is saved on the blockchain. The
firmware updates for vehicles in an IoV system can take advantage of the decentralized
IPFS and Ethereum networks increasing availability of the firmware update information
for the vehicles.

The proposed solution, covered in Section 5, uses Ethereum smart contracts to store
the firmware update metadata. Every vehicle is issued a smart contract. The firmware
metadata is stored on the smart contract as a package. The packages have a reference to
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the upcoming update forming a linked list. This is how the package ordering is achieved.
The package consists of ECU firmware metadata compiled by the vendor of an ECU
of the vehicle. This information is encrypted and shared with the manufacturer. The
manufacturer compiles the updates into a package, encrypts the package, and adds it to the
smart contract. The encrypted firmware is added to IPFS. The location of the firmware
is embedded in the firmware metadata. Important smart contract functionality that
changes the state of the smart contract is only allowed by the vehicle or the manufacturer.
The firmware package structure provides the vehicle with the assurance of firmware
authenticity, integrity, and authentication.

The vehicle polls these packages from the smart contract. The vehicle can verify the
packages that have been signed by the manufacturer and decrypt the metadata. Each ECU
metadata is read from the firmware metadata package and the vehicle can download the
firmware from IPFS. Each ECU can, in turn, perform verification of the firmware, decrypt
it, and install it. The installation fails or completes successfully. This information is
added to the smart contract package information. Smart contract notifies the manufacturer
via an event, that the vehicle has completed the firmware processing. This firmware
update process can now be executed for the DT. DT uses the same smart contract to
fetch the necessary data just like the vehicle. This provides the manufacturer oversight
of the firmware updates and the ability to respond with the next steps for the vehicle if
the vehicle firmware update fails. The verification of the smart contract by the vehicle
and DT update process traceability provides oversight of the firmware update process.

3.4 Summary
This section aimed to answer the research question RQ2. We presented the unique condi-
tions of the OTA firmware update process in an IoV environment. Vehicles within the IoV
environment have intermittent connectivity to the RSUs and the internet featuring V2V,
V2I, and V2X communication. The vehicle’s internal components have become more
software-defined making the OTA firmware update process more convenient for the vehi-
cles. Taking advantage of the connected vehicles and software-defined components we
can propose a firmware update process that is decentralized and secure. Decentralization
allows us to omit the client-server architecture, avoid single point-of-failure issues, and
move the update process closer to the vehicle. The requirements for the OTA firmware
update process in an IoV context presented in this section is referenced to create a more
decentralized solution in Section 5. The technologies used in the proposed solution are
discussed in Section 2.
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4 Systematic Literature Review
In this section, a Systematic Literature Review (SLR) is conducted to identify the latest
advancements in the context of firmware update processes in IoT systems that use
blockchain and DT technologies as a part of the process. This section is part of the
design-science guidelines DG.4, DG.5, DG.6 from Table 1. From the perspective of using
these technologies for firmware updates, the main contributions of the aforementioned
technologies are reviewed and summarized in order to provide an overview of the
firmware update framework design, design goals, and use cases. Furthermore, blockchain
attributes and constructs are extracted to outline the specific implementation details of
the technology. The results from the SLR are used to define the design choices of the
proposed solution in Section 5. The SLR methods and structure were guided by the
Kitchenham review guidelines [26].

The focus of the review is to answer the research question RQ1: What are the
latest advancements contributing to the current state-of-the-art in firmware updates
within IoT systems? The research question was divided into two sub-questions to gain
an understanding of the relevancy of incorporating DT and blockchain technologies into
the firmware update process in IoT systems.

RQ1.1 How does blockchain contribute to the firmware updates in the IoT systems?

RQ1.2 How does DT contribute to the firmware updates in the IoT systems?

In Section 4.1 we provide the search queries used to find the related research. Selec-
tion criteria used to filter the relevant papers is given in Section 4.2. Literature selection
in Section 4.3 describes the selection process of the papers. Relevant data extraction
strategy is described in Section 4.4. The results of the SLR are given in Section 4.5 based
on data extraction strategy.

4.1 Search Queries
The primary data sources for the literature review are IEEE Xplore, ACM, ScienceDirect,
and Springer databases. We also use literature search engines, e.g., Scopus and IEEE
Xplore, to search the relevant studies from the aforesaid databases. The reason for choos-
ing these databases is the availability of up-to-date technology and engineering-focused
research, including topics like blockchain, IoT, and DT and their combined literature.
The targeted search queries were difficult to compile, since terms like "firmware", might
also be used as "software". Updates or modifications of the software might also be
considered as device management. Considering these constraints, the search resulted
in a more relaxed query searching from the title, keywords, and abstract. For literature
review question RQ1.1 the search terms are the following: (iot OR "internet of things"
OR iov OR "internet of vehicles") AND blockchain AND ((software or firmware) AND
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update) targeting literature that broadly captures blockchain technologies used in IoT
with the focus on firmware updates. For question RQ1.2 the query used was ("digital
twin" AND ( "software update" OR "firmware update" OR "device management")) in
regards to the search for literature containing technologies and solutions that can enable
firmware updates in a DT framework.

4.2 Selection Criteria
The characteristic of a relaxed query is that it yields a broad range of results. The focus
of the selected Exclusion Criteria (EC) is to limit the search to literature that is recent,
select only literature in English, exclude grey literature, and consider papers that are
not limited in detail. Inclusion Criteria (IC) are compiled to find literature focused on
blockchain-enabled firmware updates and DTs as a part of the firmware distribution
system. Furthermore, the most benefit is gained if the literature explains how the use
of the aforementioned technologies is relevant and beneficial to the firmware update
process. The inclusion and exclusion criteria are presented below:

Inclusion criteria

• IC1: Literature related to blockchain-enabled firmware updates.

• IC2: Literature using DTs as a part of firmware distribution.

• IC3: Literature discusses the benefits of blockchain- and DT-enabled firmware
updates.

Exclusion criteria

• EC1: Exclude literature not in the English language.

• EC2: Exclude literature published before 2017.

• EC3: Exclude literature shorter than five pages.

• EC4: Exclude grey literature.

The IC was chosen to find literature that explicitly discusses blockchain- and DT-
enabled firmware updates in order to find papers that answer questions RQ1.1 and RQ1.2.
Moreover, this SLR is interested in the benefits that these technologies provide for the
use case of firmware updates. Chosen selection criteria are the basis of the data extraction
in Section 4.4. The EC focuses on recent literature in English language. Additionally,
the chosen EC focuses on papers with detailed descriptions of the implementations
of aforementioned technologies and, therefore, excludes literature that is shorter than
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five pages. The combination of chosen inclusion and exclusion criteria should provide
literature that covers blockchain- and DT-enabled firmware updates in an IoT environment
in detail.

4.3 Literature Selection
The literature selection process is presented in Table 2. The initial literature was searched
using the aforementioned search keywords and queries, which resulted in 301 papers
in total. This is the sum of papers from both previously stated databases with included
duplicates. After applying the exclusion criteria EC1-4, 246 papers remained, counting
the duplicates. The 246 remaining papers were checked for duplicate papers, where
duplicate papers were filtered out, leaving 188 papers.

Inclusion criteria IC1, IC2 and IC3 were applied for the unique papers based on
abstract where, during the process, according to EC3 and EC4, literature shorter than
5 pages as well as grey literature were excluded leaving 35 papers. Snowballing and
reverse snowballing methods were used to find additional related papers, resulting in 45
papers. After full-text reading 21 final papers remained.

Table 2. Literature selection process and count of papers after each step.

Process Count
Search results based on initial queries 301
Apply EC1, EC2, EC3 and EC4 246
Remove duplicates 188
Filter by IC1, IC2 and IC3 based on abstract. Apply EC3 and EC4 35
Snowballing and reverse snowballing 45
Filter by IC1, IC2 and IC3 based on full-text reading 21

4.4 Data Extraction Strategy
Data extraction items for review sub-question RQ1.1 were chosen for two categories.
Firstly, to give an overview of the design goals, benefits, and features provided by the
architecture that integrates blockchain. The items are listed and a short description is
given in Table 3. Furthermore, a short summary of the implementation is compiled
during data extraction to explain the different approaches taken that enable the features
extracted. Secondly, the use case and specific blockchain-related information was chosen,
as outlined in Table 4. This was done to offer a detailed perspective on blockchain
technology implementation as a part of the process of updating firmware. The data
extraction items for sub-question RQ1.2 are compiled to find which DT technologies
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are used, what role they play in firmware update life-cycle, and which industry they are
applied in. The items are listed in Table 5 with their corresponding descriptions.

Table 3. Design goals of blockchain-enabled firmware update data extraction items
targeting question RQ1.1.

Item Description
Reference Research paper reference
Firmware integrity Integrity of delivered firmware update data
High availability Receiving the firmware update data does not depend on a

single source
Firmware authenticity Firmware data can be authenticated by the receiving end

device
Efficient key generation Primarily important for resource-constrained devices for

encryption and decryption functionalities
Financial incentive System specifies blockchain-based financial incentives

upon proof of delivery
Firmware update records The status and history of updates are stored on the

blockchain
Privacy Privacy of end nodes is considered as part of the system

Table 4. Blockchain information and use case data extraction items for RQ1.1.

Item Description
Use case The context to which the system was intended for
Blockchain Blockchain technology
Blockchain type Permissioned, public, private, etc
Consensus Consensus algorithm
Smart Contract Whether the system uses smart contracts
Cryptography Cryptography methods used in the framework to achieve firmware

authenticity
Reference Research paper reference

4.5 SLR Results
The literature review for RQ1.1 shows that a considerable amount of literature was
dedicated to solving the IoT end device firmware updates via a blockchain-enabled
system. Namely, blockchain-enabled firmware update-related papers were 15 out of 21
total papers. The results for data extractions are given in Table 6 for design goals and
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in Table 7 for the blockchain attributes. Literature in the context of firmware updates
using DT as a part of the system was found in 6 papers. The results of data extraction
for question RQ1.2 are presented in Table 8. The next subsections contain the results for
both literature review sub-questions as well as individual literature summaries.

Table 5. DT as part of firmware update data extraction items targeting question RQ1.2.

Item Description
Reference Research paper reference
Use case The industry where the DT technology was researched or applied.
Life-cycle stage which stage of the firmware update was the DT used in
Purpose Core role or feature DT is implemented within the system
DT technology Specific DT technology mentioned in the literature

4.5.1 RQ1.1: How Does Blockchain Contribute to the Firmware Updates in the
IoT Systems?

The results of the data extraction for design goals and features presented in the Table 6
show, that the main benefits provided by the blockchain-enabled firmware updates
were firmware integrity and firmware authenticity of which only 3 papers focused on
efficient key-generation targeting resource-constrained devices. Although blockchain can
provide auditability through storing the firmware version statuses, as well as firmware
update process information, as an immutable record, only 9 out of 15 reviewed papers
implemented the feature and stored records of firmware statuses on the blockchain. One
of the justifications for using blockchain as a part of the firmware update process was
to eliminate the issues of the currently used client-server update system, removing the
problem of a single point of failure. Nevertheless, high availability was found to be
the priority of 8 reviewed papers. High availability was achieved by using Swarm [51],
IPFS [47] [36] [43], BitTorrent [29], unspecified decentralized storage network [31]
with a suggestion to use IPFS or BitTorrent. Smart Contracts are a crucial element
for establishing financial incentives. This integration is featured in five of the articles
examined. Only 3 papers focused on privacy of the end-node or IoT device.

The majority chose an established blockchain with a smart contract feature like
Ethereum as a part of the system as seen in Table 7. Works using Ethereum did not
explicitly state the type of the blockchain. So the known "public" type of Ethereum
was used in this SLR. The type of the blockchain was specified other than "public"
for Ethereum if the work specifically stated it. Some of the papers do not explicitly
specify the consensus mechanism used when the blockchain was used as Ethereum.
This is due to the fact that little focus was placed on the consensus mechanism in the
papers in general. The main focus was placed on the architecture of the firmware update
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process using Ethereum. The consensus mechanism of Ethereum was updated from
proof-of-work to proof-of-stake (PoS) in September 2022. In these cases, the consensus
mechanism was deducted from the date of the paper. Some of the papers did not specify
the consensus mechanism of the network in the proposed architecture. In these cases, the
Ethereum PoW or PoA based on the date was used. Furthermore, systems based on a
consortium blockchain like [4] did not mention any consensus mechanism; a PoA-like
consensus is achieved in which only selected nodes can verify the blocks similarly to
[43]. In addition to PoA, [29] uses a PoW consensus mechanism implemented on a
custom blockchain. A custom blockchain implementation in [21] had the consensus
mechanisms PoW, PoS, or PBFT given as a choice without a concrete implementation.
A Kafka CFT-based consensus mechanism is launched in [22] as a transaction ordering
service and Raft is used in [42] with both papers using a Hyperledger Fabric blockchain.
The choice of cryptographic methods was mainly different for papers which considered
resource-constrained devices as a part of their system using Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) in [4] [47] and Double Authentication Prevention Signature
(DAPS) and Outsourced Attribute-Based Signature (OABS) in [57]. The use cases
ranged from IoT, Wireless Sensor Networks (WSN), and LoRaWAN to a smart city in
Ethereum blockchain implementations. Consortium and custom blockchains were used
for autonomous vehicles, IoT, IIoT, and embedded devices networks. Hyperledger Fabric
was the choice of blockchain for IoT and smart city systems.

Table 6. System design goals data extraction results for RQ1.1 based on Table 3.

Reference Firmware
integrity

High
availability

Firmware
authenti-

city

Efficient
key-

generation

Financial
incentive

Firmware
update
records

Privacy

[51] ✓ ✓ ✓
[47] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[53] ✓ ✓ ✓
[57] ✓ ✓ ✓ ✓ ✓ ✓
[14] ✓ ✓ ✓ ✓
[29] ✓ ✓ ✓
[56] ✓ ✓
[31] ✓ ✓ ✓ ✓ ✓
[30] ✓ ✓ ✓ ✓
[36] ✓ ✓ ✓ ✓
[42] ✓ ✓ ✓
[4] ✓ ✓ ✓ ✓ ✓ ✓
[43] ✓ ✓ ✓
[21] ✓ ✓
[22] ✓ ✓

Witano et al. [53] developed a blockchain-based firmware update protocol compliant
with the Open Connectivity Foundation specifications to bolster patch integrity and
security. The protocol engages three entities: the Manufacturer (a full node) creating
smart contracts with update metadata, the IoT Gateway (a lightweight node) retrieving
and downloading the update, and the IoT device which, upon a client’s update request,
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Table 7. Blockchain and use case data extraction results for RQ1.1 based on Table 4.

Blockchain Blockchain type Consensus Smart Contract Cryptography Use case Ref.
Ethereum Public PoW ✓ PKI IoT [51], [53], [56]

WSN / IoT [30]
DAPS / OABS / PKI IoT [57]
PKI / Symmetric LoRaWAN [36]

PoS ✓ CP-ABE / PKI IoT [47]
Private PoW ✓ PKI / Symmetric Smart City [14]

PoA ✓ PKI IoT [31]
Custom blockchain Permissioned Not covered ✓ CP-ABE / PKI Autonomous Vehicles [4]

PoA ✓ PKI IoT [43]
PoW, PoS, or PBFT PKI IIoT [21]

Public PoW and PoA PKI Embedded Devices [29]
Hyperledger Fabric Private Raft PKI IoT [42]

Permissioned Kafka CFT-based ✓ Not covered Smart City [22]

checks for and receives the patch via the IoT Gateway. Notably, the IoT device’s firmware
state is not stored on the blockchain.

This work [51] proposes a firmware update protocol that aims to provide firmware
integrity, malicious code resistance, DDoS resistance and mitigate bandwidth issues.
The system architecture consists of a genesis node, which creates the smart contract
determining the firmware update upload initiator. The manufacturer node uploads the file
to the distributed server with the help of other nodes. The nodes perform an out-of-chain
antivirus and return the result to the smart contract. Smart contract assigns a node to
upload the scanned file to the distributed server and save the address to the smart contract.
IoT devices can request available updates and file addresses from the nodes for download.
The IoT device firmware state is not stored on the blockchain.

Another work of [47] proposes a framework designed to enhance the security and effi-
ciency of firmware updates, offering features like confidentiality, integrity, authenticated
updates, streamlined authentication, and robust availability. The manufacturer announces
updates on the blockchain and uploads them to a decentralized cloud storage system.
Updates are delivered to IoT devices through a smart contract, which also ensures secure
payment upon successful delivery. IoT devices decrypt updates using encryption based
on device attributes and signal successful installation to the IoT owner, who then confirms
it on the blockchain. This system provides a secure, transparent, and efficient method for
managing firmware updates and transactions.

Zhao et al. work [57] introduces a privacy-focused model for software updates
in IoT devices using smart contracts, ensuring unforgeable proof-of-delivery, fairness,
authentication, and integrity. The IoT device vendor manages a list of devices, assigning
a unique secret key to each. Updates are distributed through a smart contract, with a
transmission node responsible for downloading and encrypting the update before sending
it to gateways hosting the IoT devices. A double authentication preventing signature and
attribute-based signature are employed for secure verification and decryption between the
transmission node and the IoT device. Upon successful delivery, the transmission node
is rewarded through the smart contract, reinforcing the system’s security and efficiency.
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Gong et al. [14] presented a system that aims to provide confidentiality, integrity,
availability, auditability, and authentication capabilities. It includes a vendor node,
blockchain nodes, a management node, and two types of end nodes, one of which is
resource-constrained. End nodes periodically transmit encrypted messages detailing
their firmware status and update requests to the management node. Firmware is obtained
directly from the vendor, and the system records firmware statuses on the blockchain for
improved security and tracking.

A firmware update scheme by paper [29] outlined a custom blockchain network that
includes various nodes: a standard node (an embedded device), a blockchain node, a
vendor-operated verification node, and a vendor node. In this system, the standard node
generates an authenticated firmware update request using a pre-shared public key. This
request is sent across the network, leading to the receipt of a metadata file containing
details for firmware downloading. The standard node then proceeds to download the
firmware from network participants using a peer-to-peer mechanism, streamlining the
update process.

The paper’s [56] objective is to address and mitigate various security threats, including
firmware modification attacks, impersonation attacks, man-in-the-middle attacks, and
replay attacks. The framework it proposes involves five key participants: the vendor, a
broker, blockchain nodes, an IoT gateway, and the IoT device itself. Updates are initiated
in two ways: either through a push request from the vendor via a smart contract, which
blockchain nodes verify, or a pull request directly from the IoT device through the IoT
gateway. The firmware is then sourced by the IoT gateway from either the vendor or
a third-party repository, as directed by the vendor’s smart contract, and subsequently
transmitted to the IoT device.

To address the issue of file availability in peer-to-peer sharing, especially for less
popular files, paper [31] introduces a protocol that offers a solution by incentivizing inde-
pendent peers. This incentive is provided through cryptocurrency payments, facilitated by
smart contracts initiated by the vendor, in exchange for a proof-of-distribution submitted
by the distributor. The protocol employs a modified version of the Zero-Knowledge Con-
tingent Payments (ZKCP) protocol, which resolves the fair exchange problem. Within
this system, the IoT device holds only a portion of the blockchain data and relies on
information from a trusted full node that participates in the blockchain network. This
approach ensures both the efficiency of the network and the integrity of the transactions.

Paper [30] proposes an incentivized system for software update delivery and target
device discovery to overcome the performance issues of OTA delivery of software updates
and lossy channels of wireless communication. The software update patch is encrypted
by the vendor and decryptable by the recipient using a preshared key. Double encryption
is used between the transporter and receiver. The receiver can decrypt the patch by
initializing a smart contract receipt for payment. The transporter can then reveal the key
in order to receive the payment.
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The security framework in paper [36] is designed to guarantee integrity, confidential-
ity, availability, and authentication, with a specific emphasis on low-powered devices that
have limited resources in a Long-Range Wide Area Network (LoRaWAN) architecture.
A firmware update service (FUS) and manufacturer create smart contracts with firmware
update metadata. The firmware is deployed by the manufacturer to the IPFS network.
FUS can then send the encrypted firmware to the LoRaWAN network, which in turn
sends it to the gateway of end devices. The device decrypts, verifies, and installs the new
firmware. The update status is stored in the blockchain smart contract.

Seo et al. [42] propose a blockchain-based software update framework where IoT
devices without an internet connection can be automatically updated using UAV verifying
each other using the public key and bloom filter. Participants vendor, gateway, IoT device,
and UAV register in the private blockchain network, verified by the membership service
provider, share and record the firmware statuses.

A consortium blockchain consisting of manufacturer nodes, who have the write
permissions on the blockchain and are responsible for update initiation and AVs partici-
pating in the blockchain to receive updates as specified by smart contracts is proposed in
paper [4]. The system takes advantage of the CP-ABE encryption in order to decrypt the
firmware update messages and zk-SNARK for proof of delivery with an incentive. AVs
can also share the updates with other AVs within the system and gain a reputation.

Another permissioned consortium blockchain network is proposed in [43] with a key
generation center that manages the public keys of participants and revokes accesses of
malicious participants. The author node uploads the firmware update manifest file to
the blockchain using a verification node and the firmware data to IPFS. The IoT device
periodically checks for updates from a verification node authenticated by its public key.

He et al. work [21] proposes a firmware update architecture in an IIoT environment
with a monitoring module that receives and compares trusted snapshots that are generated
by software developers and stored on the blockchain. The IIoT devices receive their
updates via gateways to reduce the computational overhead of a blockchain and report
the firmware update results to an administrator which communicates with the monitoring
module to detect system anomalies.

A firmware update system of [22] uses HLF. Using smart contracts, the vendor pushes
a transaction with the firmware hash to the blockchain which is later transferred to the
IoT device. The IoT device can then verify the firmware file using the smart contracts
verify operation and send the firmware update status to the blockchain. The status can be
later queried from the blockchain by the vendor.

4.5.2 RQ1.2: How Does DT Contribute to the Firmware Updates in the IoT Sys-
tems?

DT literature mainly discussing the firmware update process was limited and a total of 6
related papers were found. DTs are incorporated into the life-cycle of firmware updates
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mainly for two reasons: pre-deployment testing, post-deployment for monitoring, or both.
In the pre-deployment stage, the DT was mainly used by supplying pre-existing data
from the previous system inputs and outputs or testing by simulation. Pre-deployment
was used in all reviewed literature. The post-deployment stage was mainly used for
monitoring current system statuses and resolving system failures or rollbacks. Testing the
new firmware was the purpose of all reviewed papers. DTs as cost-reduction mechanisms,
were discussed in [3] and [6]. Monitoring was considered as functionality in literature
where DT was used in post-deployment scenario [6] [17] [19] [52]. DTs were used for
dependency information specifically in [19] where a knowledge graph was created to ease
monitoring. Although testing the behavior of the system before and after deployment
was the main focus of all considered papers, security was specifically mentioned in 4 of
the reviewed documents [3] [17] [19] and [11].

Table 8. DT data extraction results for RQ1.2 based on Table 5.

Reference Use case Life-cycle stage Purpose DT technology
[3] IoT pre-deployment cost-reduction,

security, testing
not discussed

[6] IIoT pre- and
post-deployment

cost-reduction,
testing,

monitoring

Azure

[17] IoV pre- and
post-deployment

testing, security,
monitoring

CARLA

[19] Smart Home pre- and
post-deployment

security, testing,
monitoring,
dependency
management

Orange Thing’in

[11] IIoT pre-deployment security, testing not discussed
[52] IoV pre- and

post-deployment
testing,

monitoring, root
cause analysis

SimulIDE

An overview of the OTA software updates in the IIoT was analyzed in [3] to show
which parts are most updated after device deployment, provides a step-by-step approach
for software updates in the IoT system and quantifies the energy cost of each step. The
software update process is divided into two phases: Software module management and
secure software rollout. DT was used for pre-deployment behavioral verification as a
part of the first phase to see if the network behaves as expected in a simulation. DT can
be used to identify bugs, version incompatibilities, and performance issues before new
software rollout.

The challenge of monitoring the setups of different customer environments initiated
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authors of [6] to propose a method for keeping the DT and virtual representations of the
environments up to date by the example of relays. The firmware update of a relay device
notifies the update status on every step to the DT keeping it updated. The DT can be used
to simulate the real device for later product testing.

Paper [17] presents a continuous, contract-based strategy for designing, validating,
and deploying modular updates in automotive systems with diverse variations. This
approach encompasses both a structured process and a comprehensive methodology
tailored to enhance the adaptability and efficiency of updates in complex automotive
environments. They propose a UPDateable Automotive Test dEmonstratoR (UPDATER),
which serves as a prototype for developing, deploying, and monitoring automotive OTA
updates. DT is implemented to test the system during the verification phase to see if the
system, after a firmware change, behaves according to the predefined contract.

Firmware updates as a part of the framework, [19] are using DTs to build a decision-
support framework for inferring a topology of threatening dependencies in IoT systems
in the context of device management. A knowledge graph of dependencies is exposed as
a DT feature and represents current devices and dependencies, allowing for monitoring
and system failure resolution.

DT application for mitigating potential attacks and malicious firmware updates is
discussed in [11]. Before the firmware update takes place, the new firmware is first
emulated on a virtual Active Neutral Point Clamped (ANPC) inverter with signals from
the Digital Signal Processor (DSP). If the new firmware is malicious, it is rejected or
applied if not malicious.

In the context of software-defined systems within the AV industry, a firmware update
concept based on DTs is included in the architecture in [52]. Data analysis is divided
into two parts, direct comparison of pre- and post-update data and using simulations that
imitate the intended behaviour and actual outcome comparison. This enables the testing
of the new firmware before production and conduction of root cause analysis.

4.6 Summary
Integrating blockchain into the process of firmware updates in an IoT system mainly
provides assurance of firmware integrity, firmware authenticity, high availability, and
the ability to store immutable update records for later verification or monitoring. The
technology of smart contracts enables a built-in mechanism for updating metadata trans-
actions and the network participants to gain financial incentives from active participation
in the firmware update process. Permissioned, private, and public networks are suitable
with different consensus mechanisms depending on the framework setup. Although, in
many cases, the consensus mechanism was not directly specified. The use case differs
based on the framework where an IoT network with restrained resource devices can
take advantage of encryption mechanisms that are computation-efficient or delegate the
computation-intensive tasks to their respective trusted gateways.
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Using DTs in the context of firmware updates is limited. DTs are used for testing and
monitoring the firmware update during the whole deployment life-cycle. Pre-deployment
phase offers a cost-effective way of testing the firmware in a virtual environment under
different scenarios with either simulated or preexisting data. Continuous monitoring
of the firmware changes can be done post-deployment phase to notice and solve any
further issues. Testing in a virtual environment also offers a containerized mechanism
to notice any security and other issues related to the firmware update. The proposed
solution in Section 5 uses findings from this section as well as Section 3 to create an OTA
firmware update process in the context of IoV. These findings include the requirements
for a firmware update in the IoV context, proposed solutions from different papers, and
the benefits that blockchain and DT provide.

5 Proposed Solution
In this section, we aim to answer the question RQ3: How to implement blockchain
and DT-based OTA firmware update?. The proposed solution is the design-science
artifact according to DG.1 from Table 1. The design of the solution is communicated by
providing high-level overviews via diagrams according to DG.7 from Table 1 to provide
a clear understanding of the solution. We are going to provide a detailed discussion of the
proposed OTA firmware update solution for vehicle ECUs in an IoV system. This section
is the precursor for the evaluation in Section 6, where the implementation components
are evaluated. In Section 5.1, we describe the components and entities of the system and
provide a description of their roles and functions. In Section 5.2, assumptions are given
for the components and processes to scope the proposed solution. Additionally, the design
goals for the proposed system are stated. Section 5.3 explains the high-level architecture
as well as the smart contract and the firmware update process. Section 5.4 describes the
implementation. The implementation defines how IPFS, blockchain network, and DT are
set up. Lastly, the console applications are implemented as simulations of the system
components like vehicle, manufacturer, and DT.

5.1 Component Descriptions
This section outlines the key components involved in the OTA firmware update process
for vehicles in the proposed solution. It describes the roles and functionalities of each
component. The overview includes a variety of elements, from the vehicle and its ECUs
to supporting technologies like blockchain nodes and IPFS servers. These components
are referenced directly and as a conceptual entity. The components of the system are
listed below:

• Vehicle: Vehicle is an actor of the system with multiple ECUs that are subject to
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the OTA firmware update. The vehicle in the proposed system is composed of the
gateway ECU and secondary ECU.

• Gateway ECU: Otherwise known as Telematics Control Unit, is the ECU within
the vehicle that provides connectivity services between the vehicle and external
networks. In this case, the trusted blockchain nodes and IPFS server. The gateway
ECU is responsible for the connectivity to IPFS and blockchain and firmware
package verification and redistribution to other (secondary) ECUs. Gateway ECU
is also responsible for verification of the installation status of the firmware package.
The vehicle manufacturer controls the private and public key of the gateway ECU.

• Secondary ECU: This ECU is a module within the vehicle that is the end recipient
of the firmware update.

• Ethereum node: Trusted Ethereum blockchain node that the vehicle queries
firmware update information from and be used for updating the smart contract.
The blockchain node holds the blockchain state and is able to use the Ethereum
contract functionality.

• Vehicle manufacturer: The vehicle manufacturer is the manufacturer of the
vehicle and issuer of blockchain contracts that specify the details for firmware
updates. The manufacturer is also responsible for generating the firmware update
packages for the vehicle and adding them to the smart contract.

• Vendor: Vendor of the vehicle ECU. The Vehicle can consist of ECUs from
different vendors not limited to the vehicle manufacturer. The vendor provides the
ECU firmware data to the vehicle manufacturer.

• Digital Twin: The virtual copy of the vehicle. DT is updated based on the
blockchain state. DT instances is created for the vehicle and the secondary ECU.

• IPFS node: IPFS is used as the storage for firmware data and the trusted IPFS
node is used for adding and retrieving the firmware data.

• Smart contract: Ethereum smart contract specifies the firmware update order and
holds the firmware metadata. The smart contract and the blockchain also serve as
a record-keeping mechanism for firmware updates.

• Package: Firmware update units is referred to as packages. The package specifies
the metadata for the firmware update like encryption details and firmware data
locations. The package is also referred to as the metadata stored on the smart
contract.
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5.2 Design Goals
As can be seen from Table 6 the most value to be gained from a blockchain-enabled
firmware update is from gaining firmware integrity, high availability, firmware authen-
ticity and retaining firmware update records. These values are also reflected at the end
of Section 3.2. These are the areas the implementation is going to focus on. High avail-
ability and firmware update record features are achieved by using IPFS and blockchain.
The implementation uses public-private key pairs for firmware signing and verification
as well as encrypting symmetric keys to encrypt the firmware data ensuring firmware
authenticity and integrity. The smart contract allows only authenticated updates to it.
The state-changing functions of the smart contract is limited to the manufacturer and the
vehicle. The vehicle can check if the correct package was received and receive update
statuses from ECU. Based on the findings from Section 4.5.2, the most value gained
from DTs is monitoring and testing. In order to improve the status monitoring of the
firmware update, a DT of the vehicle is created in the Microsoft Azure environment. The
manufacturer is able to update the DT based on the smart contract state. DT provides
oversight of the update near real-time by listening to events of the smart contract on the
blockchain. Additionally, the DT instance can be used to simulate the firmware update
for testing in a virtual environment.

Each vehicle has a corresponding smart contract. The smart contract stores the
firmware update metadata and the vehicle verification of the update in its state. A single
firmware package may contain updates for multiple ECUs. This potentially means
that the updates can be tested and deployed as a package to increase the reliability and
functionality of the vehicle as a whole. The firmware metadata for each ECU can be
created by the vendor of the ECU and packaged by the manufacturer. The firmware
packages have links referencing the previous and next firmware packages to achieve
ordering for the updates. These links can be changed by the manufacturer by adding
new packages. If the vehicle encounters an error, it does not continue the update until a
new package is added to resolve the issue. The implementation relies on the following
assumptions and requirements:

• Trusted blockchain node: The vehicle does not have the full or partial blockchain
state. It uses a trusted blockchain node in order to fetch the updates and update
the smart contract. The gateway ECU has secure access to one or many trusted
blockchain node(s). The communication between the gateway ECU and the
blockchain should ideally employ a Transport Layer Security (TLS) connection
to mitigate man-in-the-middle (MiTM) attacks, ideally, complemented by an
authentication method to ensure authorized access. The list of addresses for trusted
blockchain nodes may be added and removed as required; however, establishing a
connection to a trusted node is desirable for guaranteeing the integrity of the data,
ensuring it remains unaltered and reliable. The secure communication channel
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is a desirable condition for production environments, but is not reflected in the
evaluation simulations.

• Encryption: The ECUs in the vehicle have enough computational capacity to
perform encryption, decryption, verification, and signing the firmware metadata
and firmware data. The key generation process for the evaluation implementation
is described in Section 5.4.3. Encryption methods for resource-constrained ECUs
were not considered. This is a consideration due to the fact that in a real scenario,
some ECUs might not employ encryption at all and rely on a separate ECU to
handle the load of the computation. The on-board vehicle ECU variants can be
multiple and have to be accounted for separately based on the case. These scenarios
are not considered in the proposed solution and evaluation.

• Preshared values: The system relies on preshared keys for all ECUs in a vehicle
that participate in the firmware update. Sensitive values are stored securely and
inaccessible from any third party, for example in a hardware security module
(HSM) in the production. The gateway ECU stores the manufacturer’s public key,
its own private key, and the address of the smart contract. Secondary ECUs store
the vendor’s public key and their own private key. The vendor has access to its
own private key and the public keys of the ECUs they issue. The manufacturer
stores its own private key, the public keys of vehicle gateway ECUs, and the smart
contract addresses that correspond to its vehicles.

• Firmware installation: The firmware installation implementation in this thesis is
simulated. If the firmware is verified, the integrity and authenticity are checked and
the firmware can be decrypted by the ECU, the firmware installation is considered
to be successful.

5.3 Architecture
This section describes the architecture of the OTA firmware update implementation. The
high-level overview of the components and their relations can be seen on Fig. 5. The
components are categorized into storage, virtual environment, physical environment,
manufacturer, and vendor. Storage consists of two systems: IPFS and blockchain with
each corresponding trusted node. The physical environment encapsulates the vehicle and
the major components (ECU and gateway ECU) of the vehicle. The DTs belong to the
virtual environment where each entity of the vehicle from the physical environment has a
corresponding virtual copy.

The communication channels show the unordered data flow between the components
of the system on Fig. 5. According to the DT architecture, the flow of the data should not
only include storage and service, but bidirectional flow between the physical and virtual
environment as seen on Fig. 2. This is left out of the current solution architecture because
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it is not relevant to the firmware update flow. However, any other communication might
still happen between the physical and virtual entities which is out of the scope of this work.
Communication channel (a) on Fig. 5 is used by the vendor to share the metadata and
encrypted data of the firmware update for ECUs with the manufacturer. Communication
channel (b) marks the communication between the manufacturer and the firmware data
storage system. Manufacturer uses IPFS to store the firmware data and smart contracts on
the Ethereum blockchain to store the metadata of the firmware package. Communication
channel (c) between the manufacturer and virtual environment is important to notify the
DT of the status of the update. The DT itself cannot decrypt the verification data of the
update status by the vehicle, it can only be decrypted by the manufacturer. If channel
(c) produces a successful update message, the virtual environment can use channel (d)
to update the firmware based on the storage state. Channel (e) is used by the physical
vehicle to query firmware metadata from the smart contract and firmware data in IPFS.

Figure 5. Proposed solution implementation architecture overview showing components
and data flows between components.
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Figure 6. Proposed solution firmware package metadata structure.

5.3.1 Firmware Metadata

The firmware metadata is stored on the smart contract within a package. Each package
and thus metadata entry in the smart contract corresponds to a single firmware update
package for the vehicle. The metadata contains fields that are used to confirm that the
firmware update is meant for the specified vehicle. Secondly, it provides a way to verify
that the order of the package is correct. Other fields provide the location, decryption, and
authentication of the data.

The schema of the metadata is presented in Fig. 6. At the top level, the metadata has
information about the vehicle ID (vehicleId) assuring that the metadata corresponds with
the vehicle. Additionally, it stores the current package ID (packageId) and the previous
package ID (previousPackageId) to verify the package order to ensure that the package
requested from the blockchain node corresponds to the package ID in metadata. Because
the order is mainly defined in the smart contract state, there has to be a way to verify,
that the requested package is actually received and that the package received is actually
the next in order for the firmware updates. The vehicle checks if the previous package
ID corresponds to the currently installed package on the vehicle. In case the response
from the Ethereum node is incorrect, the vehicle does not proceed with the update.

Secondary ECU metadata is stored as an array of records where a single entry is
shown with a grey background in Fig. 6. Each array entry corresponds to a separate
ECU. Using the id field, the vehicle can check if the ECU is installed on the vehicle.
The resourceLocation field holds the location of the firmware data. In our case, it is the

42



IPFS content identifier. The sigHex field stores the signature of the encrypted firmware,
signed by the vendor. Field nonceHex is the initialization vector used in the encryption
of the firmware data. Field encKeyHex is the symmetric encryption key, encrypted by the
vendor using the ECU public key. The authentication tag is stored under authTagHex. All
fields suffixed with "Hex" are base16 encoded. All the symmetric keys used are a random
32-byte value. The initialization vector is a random 12-byte value. The symmetric
encryption is done using aes-256-gcm mode of operation. All metadata is encrypted
by the manufacturer with a symmetric key. The details for decryption are stored on the
firmware package in the smart contract. The format of the encryption details for the
metadata in smart contract package is similar to the metadata encryption and is discussed
in Section 5.3.2.

5.3.2 Solidity Smart Contract

The solidity smart contract is the main driver for the OTA firmware update metadata
delivery and state. The contract is created by the vehicle manufacturer to set firmware
update metadata for a specific vehicle and track the statuses of the update processing.
During the creation of the contract, the blockchain address of the vehicle manufacturer
and the blockchain address of the vehicle are stored on the contract. A firmware package
can be added only by the vehicle manufacturer and is added to a linked list of packages
within the contract where every package specifies the next package. These packages are
available for the vehicle to query.

1 constructor(address vehicle_) {
2 owner = msg.sender; // Manufacturer
3 vehicle = vehicle_;
4 none = 0x00..;
5 initial = none;
6 }

Listing 1. Solidity smart contract constructor function.

The smart contract is developed as a hardhat project3. The full code of the smart
contract can be found in the hardhat project via the link in Appenix I. The contract
has 4 modifiers that allow only authorized usage of the contract. Modifier onlyOwner
is applied to functions that are only allowed to be executed by the owner, the vehicle
manufacturer. Similarly onlyVehicle allows function executions only by the vehicle. The
third modifier packageIdUnique checks if the package ID to be added is unique in the
contract. The modifier onlyOwnerOrVehicle allows both the manufacturer and vehicle
to execute the functions. The contract constructor shown in Listing 1 on lines 1-6 is

3https://github.com/edgarmiadzieles/thesis_hardhat
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initialized with a special none value set to a hexadecimal 32-byte 0 value. Ethereum
solidity language has no null value, so the value represents an empty entry.

The firmware packages are stored in a mapping, where the key is the package
ID, and the value is the firmware package, as seen on lines 21 and 32 in Listing 8.
Combined, package and mapping consist of the following fields. The firmwareMeta
field contains the firmware metadata shown in Fig. 6 and line 2 in Listing 8. The field is
encrypted using symmetric key generated by the manufacturer. The key field, as shown
in line 3 in Listing 8, is formed of initialization vector, authentication tag and encrypted
symmetric key. The first 12 bytes are reserved for the nonce. The next 16 bytes are
the authentication tag. The remaining 32 bytes are the encrypted symmetric key. The
symmetric key is encrypted using the vehicle public key. Field metadataSig contains
the bytes of a vehicle manufacturer signed sha256 hash of firmwareMeta field. The
vehicle checks this information to verify that the package was indeed created by the
manufacturer. The field metadataSig corresponds to line 4 in Listing 8. Field packageId
is the unique identifier for the package is set on line 21 to the mapping on line 32 in
Listing 8. The status (line 5 in Listing 8) can be PROCESSED or PENDING. The
PENDING status packages are considered not yet installed. Packages with the status
PROCESSED are processed by the vehicle. This means the vehicle has either installed
the package successfully or processed the package resulting in an error. The status is
accompanied by the verification field. When the vehicle has processed a package, it
sets verification data, readable by the manufacturer to verify the state of PROCESSED
packages. This field (line 6 on Listing 8) can indicate a successful install or error data
related to the package processing. To increase the security, verification value can be
encrypted by the vehicle using symmetric encryption and manufacturer public key. The
decryption data can be part of the verification field value similar to the key value on
line 3 on Listing 8. This won’t be implemented in the evaluation, however, might be
necessary for the production deployment. On line 7 in Listing 8, nextId specifies the next
package to be processed, forming a linked list. This linked list formation is achieved
by the function addPackage (shown on lines 11 - 30 in Listing 8). The function expects
previous and next package IDs. The previous package ID is added as the nextId of the
previous package and the next package ID points to the next package. This enables
changing the order in case a package installation fails for the vehicle.

The functionality of the smart contract explained next can be found on the project4.
Initially, the vehicle queries the getInitial function in order to get the initial update. If the
update is the none value, the first package has not been added yet. If the initial package
exists and has been processed, the function getNextPackageId can be queried with an
argument of the last installed package ID. If any new packages have been added and
linked, this function returns the next package ID. To get the package details getPackage
function is used. The function returns the information necessary for the vehicle to

4https://github.com/edgarmiadzieles/thesis_hardhat
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complete the update. Only the vehicle is able to execute the function packageProcessed,
which marks the package with the requested ID into the PROCESSED status and adds
the firmware update verification data. Using this function, the smart contract triggers an
event notifying the manufacturer of the processed firmware update. The manufacturer
can then use the getPackageVerification function to get the verification data of a specific
package.

Figure 7. Proposed OTA firmware update solution sequence showing update process
steps between major components of the system.

5.3.3 Update Process

This section describes the proposed process of OTA firmware update delivery for a
physical vehicle and updating the DT based on verification data from the physical vehicle.
The update process is shown in Fig. 7 as a sequence diagram. The update information is
periodically requested by the vehicle for the initial or next package ID from the smart
contract. This step is shown as step (a) in the diagram. The smart contract either responds
with a "none" response or a package ID that is the next package to be processed, as shown
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in step (b). If the package ID was a "none" response, the update sequence terminates and
the process begins again after some timeout.

The package ID response is other than "none" when the vendor (which can also be the
manufacturer) issues firmware for an ECU and shares the encrypted data and metadata
with the manufacturer. The ECU metadata shared is described in Section 5.3.1 except
the resource location (IPFS CID). The manufacturer receives the encrypted firmware
and then uploads the firmware or multiple firmware data to IPFS. IPFS responds with
a CID for each firmware data added to IPFS. The manufacturer creates the firmware
package metadata described in Section 5.3.1. The package is created for the vehicle and
added to the smart contract. The metadata package is compiled by adding the CID from
IPFS by manufacturer. The manufacturer generates a new package ID which is added to
the metadata along with a reference to the previous package ID and the vehicle ID. The
metadata is encrypted using a symmetric key (line 3 on Listing 8). The authentication
tag and nonce is stored within the key field on the package. The manufacturer adds
the package using the smart contract of the vehicle with the key and signature of the
encrypted firmware metadata under the same package ID that was added to the metadata.
If the package is an intermediary package, then the next package ID can be added and
linked to the next package. Otherwise, the next package ID has the "none" value.

Upon receiving a package ID response from the smart contract in step (b) on Fig. 7
that was other than "none" the vehicle can request the metadata based on the package
ID in step (c). Smart contract responds with the firmware metadata, the key, signature,
and status in step (d). If the package data is verified by the vehicle, it requests firmware
data from IPFS in step (e). In step (f) IPFS responds with the firmware data based on
the request from the vehicle. If the vehicle processes the update package in step (g), it
compiles a verification for the manufacturer and call the smart contract to update the
package verification field in step (h). Smart contract sends a packageProcessed event in
step (i). The manufacturer listens to the smart contract event in step (j). The manufacturer
can have an overview of the update processes of a vehicle and react to any failed firmware
update. In step (k) the manufacturer can now choose to initiate the update process for
the DT of the vehicle. Step (l) states that the vehicle DT repeats steps (a) - (g) similar
to the vehicle to update its own firmware. DT omits the steps after (g) as they are only
necessary for the physical vehicle and initiating the update sequence for the twin.

The same update process can be applied to the DT instead of the physical vehicle.
This would omit steps after (g) and replace the vehicle with the DT. The IPFS and
blockchain, in this case, would be in a separate environment created for the DT setup in
order to analyze the process before applying the update to the physical vehicle. Similarly,
real data on the blockchain and IPFS can be used to analyze the process in a DT setup.
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Figure 8. Vehicle and headLightSystem devices in Azure IoT Hub.

5.4 Implementation
In order to demonstrate the proposed OTA firmware update process, two use cases have
been considered. Firstly, the process of updating the physical vehicle. This process is
based on the description in Section 5.3.3 in which the vehicle receives an update and the
manufacturer updates the DT. Secondly, a process where the vehicle in Fig. 7 is replaced
with vehicle DT and steps after (g) are omitted. The second use case showcases the
example of the update process where the physical vehicle is not considered and mainly
for update testing purposes. A simple scenario for both use cases is going to be the same:
A vehicle that has a secondary ECU which is a headlight system. The headlight system
ECU is going to produce different beam intensities based on the simulated "firmware
installation" and ambient light value. In the next subsections, we are going to discuss
the Ethereum, IPFS (Section 5.4.1) and DT (Section 5.4.2) setup. Finally, console
applications are going to be described in Section 5.4.3.

5.4.1 Ethereum and IPFS

The proposed solution relies on IPFS and Ethereum blockchain components. A local
IPFS node was used to ease the testing and development. The local environment was
considered sufficient to showcase the firmware update process. The IPFS node is created
using docker "ipfs/kubo:latest"5 image. The IPFS node startup script is shown in Listing 2.
This script serves as the entry point: the default executable for the container. The node
is assigned a unique swarm key on lines 2-4 in Listing 2 to create a separate network
for the implementation. The swarm key is taken from the environment values. The API
port 5001 and gateway port 8080 on lines 9 and 10 in Listing 2 are configured in the
script and later exposed in docker. The script configures the IPFS node to allow PUT,
POST, and GET methods from any origin on lines 13 and 14 in Listing 2. This allows
the manufacturer and vehicle gateway ECU to create a connection to the node and use
the HTTP RPC API of the IPFS node. The node is started on line 15 in Listing 2.

5https://hub.docker.com/layers/ipfs/kubo/latest/images/sha256-1b1751061941d0d41
bc034075435c9e48e912c6322558e329305b4b30fb65eac?context=explore
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1 !/bin/sh
2 echo "/key/swarm/psk /1.0.0/" > /data/ipfs/swarm.key
3 echo "/base16/" >> /data/ipfs/swarm.key
4 echo $SWARM_KEY >> /data/ipfs/swarm.key
5 if [ ! -f /data/ipfs/config ]; then
6 ipfs init
7

8 ipfs config Routing.Type dhtclient
9 ipfs config Addresses.API /ip4/0.0.0.0/tcp/5001

10 ipfs config Addresses.Gateway /ip4/0.0.0.0/tcp/8080
11 fi
12 ipfs bootstrap rm --all
13 ipfs config --json API.HTTPHeaders.Access -Control -Allow -Origin '["*"]

'
14 ipfs config --json API.HTTPHeaders.Access -Control -Allow -Methods '["

PUT", "GET", "POST"]'
15 exec ipfs daemon

Listing 2. IPFS docker image configuration startup script.

Ethereum blockchain implementation is based on Truffle Suite’s Ganache6. Ganache
creates a private Ethereum blockchain for local development and testing and has a
graphical interface (Fig. 9). This is sufficient to implement the proposed solution to
demonstrate the firmware update process as Ganache supports the features necessary
for this demonstration and evaluation. These features include creating and using smart
contract functions and listening to events of the smart contracts. Ganache sets up 10
accounts by default with 100 ETH initially as seen in Fig. 9. These accounts are used
as the blockchain accounts for the manufacturer and the vehicle. Ganache exposes the
network’s RPC server endpoint which can be used to make connections to the node. The
blocks in Ganache are auto-mined.

5.4.2 Digital Twin

The DT environment consists of a vehicle DT called vehicle and the headlight system
ECU DT called headLightSystem. The implementation environment is realized using
Microsoft’s Azure platform and a screenshot of the nodes can be seen in Fig. 10 on
the left. The vehicle has two properties: lastUpdateState and version. The version is
the package ID value from the firmware update which shows the current version of the
installed firmware package. Based on the status, the boolean lastUpdateState shows the
last processed update state as true or false, meaning successful update or failed. The
vehicle has a relation to the headLightSystem. Headlight system DT headLightSystem has
3 properties as pictured on Fig. 10 on the right: ambientLight, beamIntensity and version.
These values are going to change based on updates from the console applications. The

6https://archive.trufflesuite.com/ganache/
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Figure 9. Screenshot of Ganache graphical interface which is used as the Ethereum
blockchain for proposed solution implementation.

DT instances are defined using the Digital Twins Definition Language (DTDL). The
definition is shown in Listing 5 where the headlight system DT is defined in lines 1-11
and the vehicle is defined on lines 12-22 with the previously mentioned properties. DT
instances vehicle and headLightSystem are created out of their respective definitions.

1 import { Mqtt } from 'azure -iot -device -mqtt ';
2 import { Client , Message } from 'azure -iot -device ';
3 const client: Client = Client.fromConnectionString(

deviceConnectionString , Mqtt);
4 const message: Message = new Message(JSON.stringify(telemetry));
5 client.sendEvent(message);

Listing 3. IoT device message event sending script to send messages to IoT devices in
Azure.

Similarly, devices for vehicle DT and headLightSystem DT are created in Azure IoT
Hub. The devices can be seen on the screenshot in the list on Fig. 11. The connections to
these devices are going to be used to send messages from the console applications to the
IoT Hub (Listing 3). The deviceConnectionString in Listing 3 on line 3 is the primary
connection string of the device in IoT Hub found under device identity in Azure back
office. The telemetry value on line 4 in Listing 3 represents the message being sent to the
IoT Hub in JSON format. Two types of messages are going to be sent: a message that
contains new values for vehicle DT properties and a message that contains values for the
headLightSystem DT properties. The message is being set on line 5 in Listing 3. Sending
the IoT device messages creates events in the Event Hub. Using the connection data from
the endpoint configuration, messages can be consumed by Azure Function App.
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Figure 10. DT instances in Microsoft Azure Digital Twin Explorer with selected vehicle
DT.

Azure Function App function is created to consume the message from Event Hub.
The function is written in TypeScript and Visual Studio Code7 code editor with Azure
Functions extension installed. The function definition is shown in Listing 9. The function
accepts Azure Event Hub messages and acts on messages that are related to IoT devices
vehicle and headLightSystem. These messages are defined as types on lines 14 - 23 in
Listing 9. The device context information is derived from the context argument on line
31 in Listing 9. Based on the device from the context, a type of either headLightSystem
or vehicle is assigned to the message on line 35 or 56 based on the if statements on
lines 34 or 55 in Listing 9. The values from the message, corresponding to each type, is
extracted and mapped for the DT as the replace value function. Lastly, the associated DT
is updated, as can be seen on lines 52 or 69 in Listing 9. The ID of the device in Azure
IoT Hub and DT are the same. This way, the function can derive the device ID from the
context and assign the value to the associated DT directly.

The full flow of updating the DT is shown in Fig. 12. The console application
sends the message with either vehicle or headLightSystem properties data using the
respective IoT Hub device connection. Azure IoT Hub has a default endpoint that directs
the messages to Azure Event Hub. The function app then consumes the messages and
updates the DT based to the message and context.

7https://code.visualstudio.com/
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Figure 11. Vehicle and headLightSystem devices in Azure IoT Hub.

Figure 12. The process of updating DT properties from the console applications.

5.4.3 Console Applications

The console applications are used to simulate the vehicle ECU, vehicle gateway ECU,
manufacturer, vendor, and the DT of the vehicle. The main function of the console
applications is to showcase the update process and provide the ability to evaluate the
process in a practical manner. The console application is part of a single project. The
project link is available in Appenix I. The modules are generally divided into the module
of the simulated entity and the script that uses the module instance and functions for
the simulation. Console application scripts and modules are written in TypeScript. The
project is compiled using "npx tsc". This produces compiled scripts and modules in the
"dist/" folder of the project. Each script is executed separately, utilizing Node.js v20.11.1
as the execution environment. Node.js was chosen for the console applications because it
supports Ethereum smart contract functionality using Ether.js library8. This setup allows
for individual script testing and operation. The development and execution environment
is a 64-bit Linux Fedora 36 workstation with 32 GiB of RAM and AMD Ryzen 5 3600X
12 thread processor.

Initially, the private and public keys are generated using the ssh-keygen tool using the
command: "ssh-keygen -t rsa -b 2048 -m PEM". Command "ssh-keygen -f id_rsa.pub -e
-m PEM > publickey.pem" is used to generate the public key in PEM format. Program

8https://docs.ethers.org/v6/
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ssh-keygen9 is an authentication key generation, management, and conversion utility.
This process is repeated for the vendor, manufacturer, and the vehicle’s ECUs. The
values are stored for each entity in the ".env" file of the console application at the root of
the project. The vendor public key is shared with the vehicle ECU. The manufacturer’s
public key is shared with the gateway ECU. The gateway ECU public key is shared with
the manufacturer. The ECU public key is shared with the vendor. The private keys of the
blockchain account for the vehicle and manufacturer are known only to the according
entity and the public keys are known publicly for the manufacturer and vehicle.

The vendor module "src/vendor.ts" is responsible for creating the metadata for the
vehicle ECU. The module has a single function encryptFirmware that accepts 3 argu-
ments: ECU public key, its own private key, and hexadecimal encoded firmware data.
The vendor script "src/vendor_script.ts" calls the vendor module function to generate and
log the metadata, which is JSON formatted for convenience. The vendor’s responsibility
within the update flow is described in Section 5.3.3.

1 firmwareSim(num) {
2 // Firmware is a hex encoded value which is parsed into integer.
3 const firmwareNum = parseInt(this.firmware , 16)
4

5 // Simulates the firmware , where num is the ambient light value and
6 // the return value is the beamIntensity.
7 if (firmwareNum > num) {
8 return 10;
9 } else {

10 return 15;
11 }
12 }

Listing 4. Firmware simulation function of the ECU.

The ECU module "src/ecu.ts" is the recipient of the firmware data that the vendor gen-
erated. The ECU module is initialized by the gateway ECU script "src/gateway_ecu.ts"
to simulate the vehicle ECU and is also used as the DT representation separately. The
ECU module has the following functionality. The constructor accepts the initial firmware
version, the vendor’s public key, its own private and public keys, and its ID. The initial
firmware is hard-coded and set to "aa". This function is used to create the instance of
the ECU. The update function is called in order to update the ECU instance. It accepts
hex-encoded arguments which include the firmware, vendor-signed firmware signature,
nonce, symmetric key used for encryption of the firmware, and authentication tag. The
function tries to verify the firmware and check its integrity and authenticity. After ver-
ification, it decrypts the firmware and "installs" (updates the firmware variable of the
module) and updates the version variable. The function getVersion allows to request the

9https://linux.die.net/man/1/ssh-keygen
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current version of the firmware from the ECU. The function firmwareSim is a simple
ECU firmware simulation function that takes an integer as the argument and compares
it to the firmware variable. The code is shown in Listing 4. Since the firmware is a
hex-encoded value, the firmware is parsed into an integer on line 3 in Listing 4. The
function checks if the given number is lower than the parsed integer of firmware value
on line 7 in Listing 4. For our use case of headLightSystem, the argument represents the
value of ambientLight and the result of the function is the beamIntensity.

1 {
2 "@id": "dtmi:example:HeadlightSystem;1",
3 "@type": "Interface",
4 "displayName ": "Headlight System",
5 "contents ": [
6 {"@type ":" Property","name ":" ambientLight ","schema ":" integer"},
7 {"@type ":" Property","name ":" beamIntensity ","schema ":" integer"},
8 {"@type ":" Property","name ":" version","schema ":" string" }
9 ],

10 "@context ": "dtmi:dtdl:context;2"
11 }
12 {
13 "@id": "dtmi:example:Vehicle;1",
14 "@type": "Interface",
15 "displayName ": "Vehicle",
16 "contents ": [
17 {"@type": "Relationship ","name": "hasHeadlightSystem ","target ": "

dtmi:example:HeadlightSystem;1"},
18 {"@type": "Property","name": "version","schema ": "string"},
19 {"@type": "Property","name": "lastUpdateState ","schema ": "boolean

"}
20 ],
21 "@context ": "dtmi:dtdl:context;2"
22 }

Listing 5. DT definitions in Digital twins definition language used to create DTs in
Azure.

Gateway ECU module "src/gateway_ecu.ts" is the central firmware update process
mediator of the vehicle. It holds the state of the current firmware package ID, the
secondary ECUs, and the smart contract information. The constructor of the module
accepts all initialization information for the update process to be possible. It accepts the
manufacturer’s public key, its own private and public keys, the smart contract address,
its own blockchain private key, the Ethereum provider instance, the Application Binary
Interface (ABI) of the smart contract, secondary ECU instances, and the vehicle ID.
The getUpdate function is used to retrieve the initial or next package ID from the smart
contract. It uses the smart contract functions getInitial and getNextPackageId. The
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function getPackage retrieves the package information from smart contract using smart
contract’s getPackage function. The function parsePackage parses package data from
getPackage function. It also verifies the firmware metadata package signature and checks
if the update is in PENDING or PROCESS status to decide whether to continue with the
update. Finally, returns the decrypted metadata information. The function checkVehicleId
checks if the vehicle ID in the metadata corresponds to the gateway ECU vehicle ID.
The function checkPackageId checks if the metadata package ID field corresponds to
the requested package ID from the smart contract. The function checkPreviousPackage
checks if the metadata previous package ID corresponds with the currently installed
package ID of the gateway ECU. The function updateEcus accepts the secondary ECU
firmware metadata from the smart contract firmware metadata package and updates the
secondary ECUs based on the information. Additionally, checks if the secondary ECU
ID exists within the gateway ECU instance and downloads the firmware from IPFS based
on secondary ECU metadata. The function updateEcus uses the secondary ecu update
function to update the secondary ECU’s firmware. The function setPackageId updates
the package ID variable in the gateway ECU if the update is successful. The function
packageProcessed calls the smart contract function packageProcessed after processing
the firmware metadata package.

Gateway ECU script "src/gateway_ecu_script.ts" acts as the simulation of the physical
vehicle. It initializes the gateway ECU and its secondary ECU. Then checks for an update
multiple times in a minute. The flow of the execution is based on Section 5.3.3 and real-
izes the vehicle steps. First, it checks for a new package ID using GatewayEcu.getUpdate.
The update process continues if the response includes a new package, otherwise restarts.
Next, get the package using GatewayEcu.getPackage. Parses the package to get the
metadata GatewayEcu.parsePackage. If the parsing fails, it restarts the process. Runs the
package checks using GatewayEcu.checkPackageId, GatewayEcu.checkPreviousPackage
and GatewayEcu.checkVehicleId. Updates the ECUs based on the firmware update pack-
age using GatewayEcu.updateEcus. Stores the processing of the firmware update using
GatewayEcu.packageProcessed.

The manufacturer "src/manufacturer.ts" is responsible for creating the firmware
metadata package with createMetadata function. The function addToBlockchain adds
the metadata to the smart contract and function uploadFirmware adds the firmware data
to IPFS. This functionality is called by the "src/manufacturer_script.ts" which automates
the process by accepting the output from the vendor script "src/vendor_script.ts". The
module for a standalone DT instance of the vehicle "src/gateway_ecu_dt_script.ts" is
used for the simulation of firmware updates on the DT before the physical vehicle. This
is used for firmware update simulation to verify the process and test the firmware in
a virtualized environment before actual deployment. The IPFS client is realized in
IpfsClient "src/ipfs_client.ts" and is a helper for adding and retrieving firmware from
IPFS using the node detailed in Section 5.4.1. The SymCrypt "src/sym_crypt.ts" module
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is used by other modules as a helper for cryptographic functions. Provides functions for
symmetric encryption and decryption, encryption with public key and decryption with
private key as well as signing data with private key and verification of signed data. The
DT simulation script "src/app.ts" acts as the manufacturer, which listens to the smart
contract event and updates the DT instance based on the firmware update. It realizes the
steps (j) - (l) discussed in Section 5.3.3. If the update process failed for the simulated
(physical) vehicle, the update is sent to the DT, where the lastUpdateState is set to false.
In case the update succeeds, the script executes steps step (l) discussed in Section 5.3.3
for the DT similar to the gateway ECU script execution.

5.5 Summary
This section describes the components of the system and their purpose. The design goals
of the proposed system were given based on findings from Section 4 and Section 3. We
described the architecture of the proposed OTA firmware update solution and detailed
the functional components. A high-level overview of the firmware update flow was given.
Finally, we reviewed the implementation details where all the previously described
components were used and implemented as console applications. Additionally, the func-
tionality required to update the DT instances in Azure was discussed. The architecture
of the OTA firmware update process and its implementation discussed in this section is
used in the evaluation in Section 6. Evaluation consists of evaluating the components of
the implementation and scenarios based on the console applications.

6 Evaluation
In this section, we focus on design-science guideline DG.3 from Table 1 and aim to
answer RQ4: What are the performance, robustness, and security outcomes of
implementing a blockchain and DT-based OTA firmware update system?. We
evaluate the proposed solution in three parts. In Section 6.1 the proposed smart contract
is evaluated with a static analysis tool slither. Secondly, unit tests are created to test the
smart contract business logic. The cost of operations of the smart contract is given in
Section 6.2 based on different scenarios. The implementation of the proposed architecture
for the OTA firmware update process is evaluated based on a scenario of successful
recovery from a failed update in Section 6.3. Furthermore, the scenario, implemented as
a console application, is compared to the design goals stated in Section 5.2.

The evaluation criteria used in this section are based on security and performance.
The criteria for security is based on the design goals stated in Section 5.2. We evaluate the
proposed solution based on firmware integrity, authenticity, and authentication. Checks
are done to ensure that the correct package was received. Moreover, traceability and
records of the update transactions, monitoring and reliability, and firmware update
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validation are evaluated. The performance is evaluated based on the gas consumption of
the proposed solution.

6.1 Smart Contract Analysis
The proposed smart contract is evaluated using Slither10 and unit testing using Hardhat11

Ethereum development environment. Slither is a framework written in Python3 that
performs static analysis on the contract and runs a suite of vulnerability detectors. The
Slither static analysis tool helps in analyzing security vulnerabilities and code quality
issues in smart contracts written in Solidity. In order to run Slither, a Python virtual
environment is created using "python -m venv ~/python-slither". Slither is installed
using pip "pip install slither-analyzer". Finally, slither is executed on the hardhat project
containing the smart contract source code "slither .".

1 INFO:Detectors:
2 Firmware.constructor(address).vehicle_ (contracts/Firmware.sol#28)

lacks a zero -check on :
3 - vehicle = vehicle_ (contracts/Firmware.sol#30)
4 INFO:Slither :. analyzed (1 contracts with 94 detectors), 1 result(s)

found

Listing 6. Smart contract static analysis tool Slither analysis results.

The slither analyzer shows a single detected issue as shown in Listing 6. The log
shows that there is no zero-check on the input of the vehicle address in the constructor.
This is not considered an issue as the initiation of the contract is performed by the
manufacturer. The manufacturer can make sure that the construction of the contract
receives the correct public address of the vehicle. This function is not reusable after the
initial deployment of the contract and thus, cannot be modified and is considered not an
issue.

Hardhat enables to write automated tests with integration of ethers.js12 to interact
with the Ethereum contract and Mocha13 to run the tests. Slither analyzed the contract for
vulnerabilities and did a static analysis of the contract. The unit tests evaluate the business
logic. The smart contract provides the functionality of authenticated requests from the
manufacturer and vehicle. The authenticated function calls and Ethereum blockchain
provide integrity of the data stored on the smart contract. In order to ensure the correct
functionality of the smart contract to achieve integrity and authenticity, authentication
unit tests are created. The contract is deployed for each unit test using the created deploy

10https://github.com/crytic/slither
11https://hardhat.org/
12https://docs.ethers.org/v6/
13https://mochajs.org/
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function. The function returns the deployed contract, the owner (manufacturer), the
vehicle address for which the contract was created, and an additional vehicle address
for testing. The test cases are listed below. All function names mentioned in the list are
defined in the contract. The contract tests can be found in the hardhat project14. The
following list describes the unit test components:

• "deploy": This is a deployment helper function used in all test cases.

• "initial package set to ’none’": Executes the getInitial function to check if the
initial package id is set to the ’none’ value.

• "initial package retrievable only by the owner, vehicle": Checks if the function can
only be executed by the owner or vehicle the contract was deployed for.

• "owner able to add package": Checks if the owner can execute the addPackage
function successfully.

• "only owner able to add package": Checks if only the owner is able to add the
new package to the contract. If any other party calls the function, it returns
"unauthorized".

• "allow unique package ID only": Tries to add a second package with the same
ID. Tests if the function execution is reverted with the error "packageID already
exists".

• "packageProcessed only allowed by the vehicle": Only the vehicle can execute the
packageProcessed function. The test returns "unauthorized" for the owner or other
executors.

• "packageStatus return package status": Checks if the packageStatus function
actually returns the requested package status. Both PROCESSED and PENDING
statuses are tested.

• "returns nextPackageID if there is a new package": If a new package has been
added and the previous package has the next package ID set, the execution of
getNextPackageId returns the ID of the next package.

• "nextPackageId none if no new package": Function nextPackageId returns the
value "none" if there are no new packages for the requested package ID.

• "package can be inserted and old omitted": The packages are structured as a linked
list, where the previous package has the next package ID. This function tests, if a

14https://github.com/edgarmiadzieles/thesis_hardhat
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new package can be added while replacing an older package without deleting it.
Three packages are created with each pointing to the next. The middle package is
then replaced by executing addPackage, which replaces the first package’s next
ID with the currently added package, and the current package points to the last
package.

• "only owner allowed to retrieve package verification": Checks if the owner of the
contract is the only party who can execute this function.

• "getPackage returns package information": Checks if requesting getPackage by a
package ID returns the correct package data.

• "getPackage allowed by owner and vehicle only": Tests if the function getPackage
can only be executed by the owner or the vehicle the contract is assigned for.

The smart contract tests are executed by running "npx hardhat test". Failed tests
would mean that the business logic does not perform as expected and there might be an
issue when the smart contract is deployed for the vehicle. The test execution succeeded
in all 14 cases as shown in Listing 7. Based on the unit tests the contract allows only
authenticated function calls for functions that store data on the smart contract. The
ordering functionality of firmware update packages is achieved.

1 OK initial package set to 'none ' (602ms)
2 OK initial package retrievable only by owner , vehicle
3 OK owner able to add package
4 OK only owner able to add package
5 OK allow unique package ID only
6 OK allow unique package ID only
7 OK packageProcessed only allowed by vehicle (43ms)
8 OK getPackageStatus return package status
9 OK returns nextPackageId if there is a new package

10 OK nextPackageId none if no new package
11 OK package can be insterted and old ommitted (51ms)
12 OK only owner allowed to retrieve package verification
13 OK getPackage returns package information
14 OK getPackage allowed by owner and vehicle only
15 14 passing (978ms)

Listing 7. Hardhat firmware smart contract unit testing results.

6.2 Smart Contract Cost Estimation
In this section, smart contract functionality and deployment costs are evaluated. The
computational and storage computation in Ethereum smart contract functions and de-
ployment requires gas. Gas is used as a measurement of computation required to execute
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a transaction. The actual cost of the execution is calculated in Ether. However, the
Ethereum native currency, Ether, is usually too large of a unit to calculate the cost of a
transaction. Ethereum uses denominations, where, for example, the unit Wei, where 1
Ether is equivalent to 1e18 Wei. Similarly, 1 Ether is equivalent to 1e9 Gwei. We use
Gwei as the unit for the cost calculations. With EIP-155915, Ethereum introduced a base
fee which changes per block alongside a priority fee (tip) for miners. The higher the
priority, the faster the faster the transaction is expected to be processed. Additionally,
the gas required can vary greatly depending on the input size and data already stored in
memory. Adding additional data to the memory increases the gas consumption [54].

The cost of executing smart contract functions and deployment can be very volatile.
Ethereum gas price changes based on the congestion of the network. Meaning transac-
tions can be significantly cheaper when the network is less congested. To calculate the
gas, we are using the tool hardhat-gas-reporter16. This tool calculates the gas cost based
on given test cases. The test cases have been added for each function that uses gas in the
smart contract. Functions that are of type pure or view do not modify the state and do
not cost any gas. The calculation to estimate the cost in Gwei is ((base fee + priority fee)
* gas). We use 20 Gwei as the unit of gas cost. The only functions that require gas, are
addPackage and packageProcessed. Deployment of the contract also requires gas. Other
functions are view or pure functions and do not require any gas.

The gas amount for deployment of the contract does not vary and requires a fixed
amount of gas. The gas required to deploy the contract is 1291897. The Gwei cost is
25837940. Gas amount of addPackage and packageProcessed can vary greatly on the
state of the contract and the input data length. Since packageProcessed depends on a
package being added to the contract, these cases are resolved by adding the package
and calling packageProcessed in every test case. The cases for gas estimation for
packageProcessed and addPackage have been split into two categories of which each has
3 cases. The categories are "minimal" and "average". The "minimal" category considers
a package for a single ECU. The verification field value is a 512-byte length hexadecimal
in all cases. The "average" category considers a package with data for 3 ECU’s. Each
category is divided into 3 cases. Case (1) considers the gas cost for the initial package
upload. Case (2) estimates the gas cost for 10 packages. Case (3) estimates the gas for
100 packages. The gas costs are given as an average.

The results from Table 9 show, that the cost between cases in both categories varies
very little. Adding additional packages to the contract does not produce a significant
cost increase considering adding a single package up to 100. Adding additional ECU
metadata to the package increases the cost significantly, as the metadata for a single
ECU amounts for the most of data within the package. Testing the gas consumption
for verification data shows, that the cost of the verification for each case and category

15https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
16https://www.npmjs.com/package/hardhat-gas-reporter
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Table 9. Gas cost estimation results for different scenarios and use cases of the firmware
update Ethereum smart contract.

Category, Case addPackage Gas/Gwei packageProcessed
Gas/Gwei

minimal, (1) 1505532 / 30110640 229358 / 4587160
minimal, (2) 1507837 / 30156740 229354 / 4587080
minimal, (3) 1508072 / 30161440 229357 / 4587140
average, (1) 3118247 / 62364940 229358 / 4587160
average, (2) 3120557 / 62411140 229357 / 4587140
average, (3) 3120786 / 62415720 229356 / 4587120

is almost fixed. If the verification has a fixed size the memory consumption gas cost is
almost irrelevant in our cases. However, this varies based on the verification data size.

The gas estimation shows that it is relatively costly to update even a single ECU
with the proposed format of smart contract. The cost rises significantly if the multiple
ECUs are to be updated within a single firmware package. This cost might become
unmanageable if the fleet of vehicles is large. Since the cost of gas rises when the network
is congested, it becomes even more costly to issue updates. This can, to some extent, be
mitigated if the firmware package is moved to the IPFS network or other decentralized
storage solutions keeping only the location of the firmware data on the blockchain.
The same can be true for the verification data. In our testing we used a fixed-length
verification, however, depending on the case, this verification might consume more or
less storage on the blockchain. Similarly to the firmware package, the verification could
be moved to another storage technology and use the field to provide the location of the
verification.

6.3 OTA Firmware Update Scenario
The evaluation of the console application considers a scenario in which the vehicle under-
goes three firmware update processes in Section 6.3.1. The first process is successful, the
second fails and the third one recovers from the failed state. During the updates, the DT is
monitored and updated based on the smart contract state of the physical simulated vehicle
updates. The second evaluation involves the process of updating the DT in Section 6.4.
The first update succeeds, the second fails and the third succeeds again.

6.3.1 Scenario Description

The evaluation for the console application is conducted based on the setup discussed in
Section 5.4. The scenario involves steps (a) - (l) from the Section 5.3.3. In this scenario
we simulate all entities and steps of the firmware update process from start to finish. The
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scenario showcases the vehicle receiving and successfully processing the firmware update
after which the DT is updated. The next firmware update fails. Then third replaced
package firmware update resolves the previously failed state to demonstrate the ability
to replace existing packages on the smart contract by introducing new ordering. The
console application scripts are executed to create the packages, add them to the smart
contract. The simulation scripts gateway ECU, manufacturer, and DT are listening to the
events on the smart contract. The video of the scenario is available in Appendix II. The
order of execution is stated below:

• Smart contract is deployed on the local Ganache Ethereum blockchain. The smart
contract address is shared between all used scripts.

• The vehicle simulation can now start polling the update events by running script
"dist/gateway_ecu_script.js" with required arguments, which includes the smart
contract address. The script starts polling the smart contract for the initial update.
The script is referred to as vehicle simulation from this point.

• The DT simulation script "dist/app.js" is started. It listens to the smart contract
firmware update processed events and sends headLightSystem messages to the
device in IoT Hub which eventually updates the DT properties based on the process
described in Section 5.4.2. The DT simulation script is referred to as DT simulation
from now on.

• Vendor script "dist/vendor_script.js" creates the sequential ECU firmware metadata.
ECU firmware metadata from vendor script is used to create the full firmware
metadata by the manufacturer script "dist/manufacturer_script.js". The script
execution adds the firmware to IPFS and updates smart contract packages.

Figure 13. Azure DT instance value changes based on DT simulation messages.
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Figure 14. Vehicle simulation telemetry messages sent to Azure IoT devices to update
DTs as console output.

Initially, the messages, produced by the DT simulation are updating the DT instance
in Azure. The properties of the headLightSystem and vehicle are changed accordingly
Fig. 13. The version of the ECU, ambientLight and beamIntensity are updating according
to console log messages of the DT simulation (Fig. 14). The first package addition by the
manufacturer to the smart contract results in the vehicle simulation to start the process of
updating its firmware. The process is shown in Fig. 17. The vehicle simulation fetches
the package from the contract in step (a) on Fig. 17. It proceeds to validate and decrypt
the process in step (b) on Fig. 17. It compares the package ID from the received metadata
to the requested package ID in step (c) on Fig. 17. The previous version is checked to
confirm that the package is the next in order in step (d) on Fig. 17. Vehicle simulation
checks the vehicle ID to confirm that this package is meant for the vehicle in step (e) on
Fig. 17. It proceeds to download the firmware from IPFS for ECU in step (f) in Fig. 17.
ECU verifies the firmware in step (g) on Fig. 17. ECU update is called in step (h) on
Fig. 17. The ECU processes the firmware. In the case of the first package of our scenario,
the package is successful, and processVerification is called in the smart contract in step
(i) on Fig. 17. The smart contract processVerification function sends an event which is
captured by the DT simulation. In the case of the first package, the update was successful.
DT simulation performs (a) - (h) steps from Fig. 17 to install the firmware and update the
Azure DT instance.

The second package contains modified metadata for the ECU. The manufacturer adds
the package to the smart contract which is then requested by the vehicle simulation using
the smart contract getNextPackage function. The ECU encounters an error in step (g) on
Fig. 17 when trying to verify the signature of the data. The installation is aborted and
the firmware is not applied. Step (h) is omitted. The verification reports a failed update
state in the smart contract in step (i) in Fig. 17. The DT simulation does not initiate the
full update process but report the last state of the update of the vehicle. The Azure DT
vehicle instance reports a false lastUpdateState for the update as shown in Fig. 15.

The manufacturer issues a corrected firmware update package and updates the smart
contract. The vehicle simulation requests the next id of the last successful update and
repeats steps (a) - (i) from Fig. 17. The DT simulation now proceeds in turn with steps
(a) - (h) from Fig. 17 and updates the Azure DT instances reporting a successful update
as shown in Fig. 16. The firmware package of the ECU in this scenario consisted of
32 bytes of hexadecimal formatted version value concatenated with the hexadecimal
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bytes of the firmware. The simulation of the ECU firmware is described in Section 5.4.3.
The DT simulation generates a random number between 0 and 500 and executes it as
an argument in the ECU function firmwareSim. The function returns the new value for
beamIntensity by comparing the parsed integer value of firmware and the given randomly
generated input. This allows us to check if the firmware was installed and if the behavior
is expected.

Figure 15. Vehicle Azure DT state after unsuccessful update shows lastUpdateState as
false.

Figure 16. Vehicle Azure DT state after successful update shows lastUpdateState as true.
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Figure 17. Full flow of successful vehicle simulation OTA firmware update process.

6.3.2 Scenario Evaluation

The simulation in the previous section successfully completed the update for the vehicle
simulation and set the verification on the smart contract. The manufacturer was able
to receive the notification from the blockchain and pass it to DT simulation. The DT
simulation then proceeded with the update. The updated data was shown in the Azure
DT instance providing oversight of the vehicle and its functionality. In case of the failed
update, the DT was showing a failed state, and a new package was issued for the vehicle
simulation. The failed package on the smart contract was successfully replaced and the
vehicle simulation could successfully update its firmware. The process was repeated for
DT simulation and the result was shown in the Azure DT instance.

The simulation shows that the update process is traceable and the DT provides
oversight of the update status. The DT simulation simulates the update by performing
the same steps of the firmware update as the vehicle, providing assurance of the vehicle’s
successful update state, and the DT accurately represents the vehicle. The list below
shows the implementation scenario comparison with evaluation criteria based on design
goals stated in Section 5.2:

• Authenticity: According to the contract, as described in Section 6.1, only the
manufacturer can add the firmware. In case a malicious package was sent to the
vehicle, the signature of the package is verified. ECUs can verify the signature of
the firmware based on the metadata provided.

• Integrity: Based on the signature and authentication tag of the firmware package,
the vehicle can make sure that the firmware package has not been tampered with.
The firmware signature for the ECUs is checked with the same method.

• Authentication: The firmware package and firmware symmetric encryption keys
can only be decrypted by the vehicle private key or the ECU private key accord-
ingly.
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• Correct package: Comparison of the requested package ID and package ID from
the metadata verifies, that the package ID requested corresponds with the package
ID received. Comparing the previous package ID from the metadata provides
assurance, that the package received is the next in-order update package. This
mitigates the possibility of receiving a valid package that is out of order within the
smart contract. Checking the vehicle ID within the firmware metadata assures that
the package was indeed intended for the vehicle requesting the update.

• Availability: The decentralized nature of IPFS and blockchain provides high
availability for firmware requests. It also potentially mitigates issues, where the
server (in case of client-server architecture) is unreachable when the vehicle wants
to perform an update. However, the vehicle is limited to the requests to trusted
blockchain and IPFS nodes. This can potentially create a bottleneck if multiple
vehicles are trying to reach the same trusted nodes.

• Update status from ECU: In the current simulation, the ECU verifies the firmware
before performing the update. However, the case of a faulty installation of the
firmware and rollbacks was not considered.

6.4 Firmware Update Simulation With Digital Twin
DT enables testing the firmware in a virtualized environment before the firmware is
deployed for the physical vehicle. This can potentially eliminate faults in the firmware
update process for the physical vehicle and increase the reliability of the update. This
scenario simulates steps (a) - (g) from the Section 5.3.3. The vehicle in this process is
replaced with the vehicle DT. The scenario uses a similar OTA firmware update flow as
the Section 6.3. The first firmware package succeeds. The second firmware package
fails due to ECU not being able to verify the firmware. Third, the replaced package
is successfully updated the simulated vehicle. The video of the process is available in
Appendix II.

A new smart contract is deployed on the local Ganache Ethereum blockchain. The
address is shared between all used scripts. The vehicle DT simulation is realized in
script "dist/gateway_ecu_dt_script.js". This script queries the smart contract for new
updates. Additionally, it sends simulated telemetry messages to the devices in Azure.
The properties of the headLightSystem are changed according to the messages. The
manufacturer script "dist/manufacturer_script.js" is again used to add the firmware to
IPFS and firmware packages to the smart contract. The vehicle DT script polls the smart
contract for new packages periodically. The firmware update process follows steps (a) -
(i) in Fig. 17. The first firmware update succeeds and the DT is updated accordingly. The
second firmware update data is faulty and the secondary ECU update results in unverified
firmware. This state is updated on the DT in Azure. The third package replaces the
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second package and the vehicle DT firmware update succeeds. This process of testing
the firmware updates in a virtualized environment allows the manufacturer to test the
firmware update process safely. It gives assurance of the reliability of the update and
the update process in general for the physical vehicle. Given that the firmware update
successfully works in the virtualized environment, the manufacturer can proceed to
deploy the firmware update for the physical vehicle.

6.5 Summary
In this section, we have conducted a static analysis of the smart contract of the proposed
solution using Slither. Slither found one issue stating that the constructor of the smart
contract lacks a zero check on the input argument. This is regarded as not an issue
since the manufacturer is deploying the contracts and can check the argument before
deployment. Additionally, unit tests were created to check the functional validity of the
smart contract. The unit tests verify that the smart contract functions that modify its state
can only be used by the vehicle or manufacturer and that the ordering of the packages is
correct. A performance evaluation was conducted to test the cost of the smart contract
functions and deployment. The tests were divided into separate scenarios and cases. The
results show that maintenance and deployment of the smart contract are costly, even when
updating a single ECU. The cost rises significantly if there is a big fleet of vehicles and
amount of update metadata. The last evaluation consisted of two scenarios using console
applications. In the first scenario, the vehicle console application receives updates from
the manufacturer, and the DT is updated according to the Ethereum blockchain state. It
shows that the proposed solution allows recovery from a faulty update by issuing new
firmware metadata on the Ethereum blockchain. The firmware update process is repeated
for the DT which also shows the faulty state in case of a failed update. The authenticity,
integrity, and correct package can be verified by the vehicle by installing authenticated
firmware. The vehicle can verify that the firmware package is the one that the vehicle
requested and can receive update statuses from the ECU. The scenario was repeated that
included only DT. This was an evaluation to show that the firmware can be tested on the
DT before the actual firmware update on the physical vehicle, increasing the reliability
of the firmware update. The results are discussed further in Section 7 bringing out the
limitations and challenges of the proposed solution.

7 Discussion
This section provides additional discussion in the context of design-science design
evaluation guideline DG.3 from Table 1. This work reviews the OTA firmware updates
for vehicles in the context of the IoV. The shift of vehicle ECUs becoming more software-
defined has introduced the ability for software updates for individual ECUs. Moreover,
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connected vehicles have introduced the capability of vehicles receiving updates over the
air without manual intervention. This poses new security challenges for secure firmware
updates. One of the issues highlighted is the dominating server-client architecture of
firmware updates. The problems regarding the architecture are network congestion
and downtime. Moreover, the unique connectivity environments in an IoV system
might benefit from a firmware update framework, where the firmware updates can be
decentralized and potentially closer to the end vehicle receiving the update. This thesis
addresses these issues by considering the Ethereum blockchain and distributed storage
system IPFS in order to mitigate these issues. Additionally, it is important to develop a
good oversight and monitoring system for the vehicles receiving updates. Specifically,
in case the vehicle setups might be various. This thesis discusses the usage of DTs to
overcome this issue. DTs can enable monitoring of a system that is a virtual copy of
the physical entity. The firmware updates can be simulated in a digitalized environment
without the intervention of the physical entity. In this section, the results of the evaluation
of the proposed framework are discussed related to the research questions in Section 7.1.
The limitations and challenges of the system are discussed in Section 7.2. Finally,
potential future work is discussed in Section 7.3

7.1 Answer to Research Questions
This thesis posed 5 research questions and 2 sub-questions. The questions and their
related sections are shown in Table 10. The thesis started by asking the main question
How to build a DT and blockchain-enabled firmware update system for the Internet
of Vehicles?. In order to answer this question, three additional questions were formed.
Question RQ1 (Table 10) focuses on the current advancements in state-of-the-art OTA
firmware updates in and IoT environment in Section 4. This question was divided into
2 sub-questions in Section 4: RQ1.1 and RQ1.2 (Table 10). We posed the question to
review if blockchain and DT technologies have been proposed for firmware updates.
Additionally, what are the benefits of using these technologies for firwmare updates.
Section 4 examines the latest research to give an overview of the latest literature on
blockchain and DT-enabled firmware updates in an IoT environment. It extracts the
relevant features and use cases of the technology in question and provides a summary
of the reviewed literature. Blockchain technology was mainly used to achieve firmware
authenticity, integrity, high availability, and storage of firmware update records. DTs
mainly provided and were used for monitoring and testing features.

In order to scope the thesis for the use case of IoV, it was necessary to understand the
conditions for firmware updates in the context of IoV and ITS. Section 3 focuses on the
question RQ2 (Table 10). It provides an overview of the unique networking conditions
of an IoV environment and the current state of the vehicle OTA firmware updates.
Additionally, it extracts the requirements for OTA firmware updates for vehicles. The
review showed that OTA firmware updates in an IoV system benefit from decentralized
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solutions to omit a single point of failure. Moreover, a decentralized solution brings the
update process closer to the vehicle. Furthermore, the requirements were found for an
OTA firmware update solution for vehicles.

Section 4 and Section 3 were used as the basis for creating the proposed solution
in Section 5. The aforementioned sections answered the questions RQ1 and RQ2 to
form the basis for answering question RQ3 in Section 5. The firmware updates in IoV
context required a robust and secure firmware update mechanism that ensured firmware
integrity, high availability, authenticity, authentication and ability to monitor and test
the firmware. The proposed solution was created using Ethereum smart contract and
IPFS for firmware delivery and storage to aim for a secure and decentralized firmware
delivery mechanism. We answered RQ4 by evaluating the proposed solution architecture
by testing the smart contract with unit tests and static analysis tool in Section 6. The
smart contract gas cost evaluation shows that the operations of the proposed solution are
too costly. Console applications simulated a scenarios for vehicle and DT OTA firmware
update. The simulation scripts showcased the integrity, authenticity, authentication,
correct update package order, availability and overall function of the process update flow.
Additionally, testing the firmware update pre-deployment and monitoring of the update
process was successfully presented.

Table 10. Research questions and related sections.

RQs Question Section
RQ1 What are the latest advancements

contributing to the current
state-of-the-art in firmware updates

within IoT systems?

Section 4: Systematic Literature Review

RQ1.1 How does blockchain contribute to the
firmware updates in the IoT systems?

Section 4.5.1: How Does Blockchain
Contribute to the Firmware Updates in

the IoT Systems?
RQ1.2 How does DT contribute to the firmware

updates in the IoT systems?
Section 4.5.2: How Does DT Contribute

to the Firmware Updates in the IoT
Systems?

RQ2 How can OTA firmware updates be
adjusted to meet the unique connectivity

and security challenges present in the
IoV ecosystem?

Section 3: Use Case: IoV

RQ3 How to implement blockchain and
DT-based OTA firmware update?

Section 5: Proposed Solution

RQ4 What are the performance, robustness,
and security outcomes of implementing

a blockchain and DT-based OTA
firmware update system?

Section 6: Evaluation
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7.2 Limitations and Challenges
The proposed solution was based on the findings from the conducted SLR. There were
limitations to conducting SLR. The search queries and results generalized the term
"firmware" by including "software" updates. Otherwise, the results would produce sig-
nificantly less results. Furthermore, the search term "firmware or software update" could
sometimes produce results related to device management with topics being searched for.
Another limitation is related to limited studies found related to firmware updates and DTs.
Papers included mentioned DTs, however, the technologies used for implementation
or evaluation purposes can be considered to not fit the evolving definition of DT fully.
Some papers mentioned DTs, however did not specify a concrete DT technology. The
blockchain update frameworks in IoT environments did not mention a concrete consensus
mechanism and in some cases, the consensus mechanism had to be derived. Similarly, a
selection of works focused mainly on the architecture and unspecified blockchain technol-
ogy. Specific blockchain technology was in some cases mentioned as the technology that
would fit the purpose of the proposed architecture. Ethereum is considered a public-type
blockchain. However, only some reported the environment specifically related to the
private or public blockchain used so the publicity of the blockchain was again specified
based on the general specification of Ethereum.

The proposed solution and implementation have multiple limitations. Firstly, smart
contracts need to be created for and used by every vehicle. According to the gas cost
evaluation in Section 6.2, the gas cost was relatively high. This would mean significant
costs for the manufacturer. Additionally, vehicles need to have enough Ethereum funds to
operate. The cost could be lowered by storing less data on the smart contract and moving
it to a different storage like IPFS. The proposed solution also relies on trusted blockchain
nodes. This means that the vehicle must have at least (but not limited to) one available
trusted blockchain node. If multiple vehicles try to access the node simultaneously it
might introduce too much load in terms of computation or network congestion for the
node. Having multiple trusted nodes is in this case a must. The same applies to the IPFS
nodes. However, the latter could be partially addressed by the vehicle acting as the node
itself storing only limited necessary data. This could also improve the availability of
files between the vehicles if every vehicle has IPFS node functionality. Another issue
with decentralized solutions is giving control of the firmware update process to other
involved parties. Issues with the Ethereum blockchain or IPFS like congestion or gas
price increase affects the overall functionality of the firmware updates. Resolving these
issues depends more on the participants using the technologies than the manufacturer of
the vehicles. Additionally, the privacy of the vehicles was less considered in the proposed
solution. The proposed solution might be considered only pseudonymous.

The proposed system relies on relatively computation-heavy encryption schemes.
This would not work for resource-restrained ECUs within the vehicle. Computationally
intensive operations can be replaced with a lighter encryption scheme or be offloaded to
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more capable ECUs. This would depend on the different ECUs on the vehicle. Encrypting
individual firmware with different symmetric keys means that the encrypted firmware
file cannot be shared among vehicles with similar ECUs. Encrypting the firmware file
with the same keys might expose the firmware if only one of the ECUs is compromised
in a way, where the symmetric key is derived. Both versions have their benefits and
drawbacks. One would improve the security ensuring no encrypted firmware file would
be similar and in another case, the storage requirements would be significantly lower.

Another challenge with the proposed solution is keeping the DT in sync. Deriving the
firmware status from the blockchain might produce some delays. In case the DTs receive
real-time data from different sources, which means race conditions have to be taken into
account. One of the solutions might be to always include the firmware version of the
vehicle with the data being given to the DT or the application governing the twins. This
would ensure that the messages are ordered correctly regarding the versioning. If the DT
shares data with the vehicle, a similar issue might occur, where the vehicle already might
have updated the version but receives outdated version data from the twin. Furthermore,
DTs in the implementation hold the same encryption keys as the vehicle, which might be
a security issue if the DTs were to be compromised. Storing different keys for the DTs
would potentially mean a different smart contract and firmware storage and encryption
solution.

The proposed solution was only tested locally using auto-mined transactions. In-
troducing the framework real network still needs to be tested. Moreover, the console
applications only accounted for limited scenarios. Console applications were meant to
showcase and test the proposed solution process. Scenarios and edge cases would be var-
ious in the production environment and would have to be taken into account. Real-world
scenarios introduce many challenges related to networking and vehicle conditions. For
example, it would be beneficial to use trusted IPFS and Ethereum nodes that are closer to
the vehicle. This would mean deploying multiple nodes in many different locations.

7.3 Future Work
The proposed system relies on the Ethereum blockchain and IPFS for storage and
firmware delivery. The proposed solution requires gas to operate. Minimizing the data
stored on the smart-contract can reduce this limitation, however not entirely. Other
blockchain frameworks that have similar smart contract capabilities can be considered
that do not have similar limitation can be considered to avoid gas costs completely.
Regarding IPFS, the vehicle could act as a IPFS node and download limited files to avoid
the necessity of a trusted node. Additionally, other storage solutions like BitTorrent can
be considered for decentralized storage solutions. A robust data delivery mechanism
for versioning and real-time updates could be considered for DTs. The current solution
produces delays in keeping the DTs up to date because the state is received from the
blockchain. In the current solution, the DTs require the encryption keys of the ECUs of
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the physical vehicle, potentially DTs could rely on encryption keys other than the real
vehicle to avoid sharing the encryption details. Different, less computationally intensive
encryption schemes or offloading the decryption process to a trusted ECU can be tested
on the proposed solution to overcome the issues of resource-constrained devices. Finally,
the proposed solution or variants could be tested in networking conditions that resemble
more closely real scenarios.

8 Conclusion
The recent shift towards software-defined ECUs within a vehicle and the new connectivity
capabilities have enabled vehicle firmware updates over the air. Additionally, IoV has
presented new connectivity paradigms for vehicles, providing additional operational
capabilities to ITS. Utilizing real-time traffic solutions in the context of ITS produces a
large amount of spatio-temporal data. It is beneficial to offload the computation to edge
servers and move the computation closer to the source. In the case of this thesis, the
general client-server architecture for OTA updates could be replaced by a decentralized
solution. This thesis investigated the process of OTA firmware updates in an IoV system
by incorporating the Ethereum blockchain, DT technology, and IPFS. We reviewed the
architecture of IoV and the current state of OTA update processes for vehicle ECUs
and found the requirements for vehicular firmware OTA update processes. The SLR
was conducted to find the current state-of-the-art blockchain and DT-based firmware
update systems. The SLR data extraction found the design goals and capabilities of a
decentralized update solution in IoT systems. Based on these findings we proposed a
decentralized OTA firmware update process based on Ethereum blockchain, DTs, and
IPFS. This solution was realized as a console application to showcase the update process
for the simulated physical vehicle and DT instance.

The evaluation of the proposed solution shows that a smart contract can be used for
the secure transfer of firmware metadata packages between the vehicle and the manu-
facturer. Moreover, encrypted metadata and firmware can be securely shared between
authenticated parties in a decentralized system achieving firmware integrity, high avail-
ability, authenticity, authentication, and firmware update record storage. Additionally,
the firmware update can be simulated on with DTs before updates to gain firmware
update reliability assurance and monitoring during the update of the physical vehicle.
However, the gas cost of the smart contract functions proved to be costly. The encryption
schemes used and solution implementation do not consider resource-constrained ECUs.
A decentralized solution based on the Ethereum blockchain produces delays in updating
the DTs which might lead to race conditions if additional data is received by the DTs
from other sources. This solution was only tested as a simulation and requires testing in
a scenario that resembles the real-world conditions.

Consideration of future work might include developing the OTA firmware update
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framework using different types of blockchains, where gas cost is a smaller issue or
doesn’t involve payments at all. Use cases where resource-constrained devices are
involved might be considered. Full privacy, not only pseudonymous privacy, of the
vehicles, can be taken under consideration. The proposed solution relies on gateways for
IPFS nodes. Elimination of the concept by moving the operations in a computationally
and storage-effective manner to the vehicle could increase the operational efficiency
and reliability of the system. Developing and testing the applications in real-world
environments should also be considered.
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Appendix

I. Resources
Console applications repository
This repository holds the project that is described in Section 5.4.3. The project setup and
use case is described in the "readme" file. Additionally, it holds the IPFS docker-compose
definition.

Repository: https://github.com/edgarmiadzieles/thesis

Solidity contract hardhat project
This repository stores the smart contract described in Section 5.3.2 and unit tests de-
scribed in Section 6.1

Repository: https://github.com/edgarmiadzieles/thesis_hardhat
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II. Demo Videos
Video of evaluation scenario firmware update process for simulated vehicle and DT
based on Section 6.3:
The video shows the initiation of the vehicle simulation and DT. The manufacturer script
is used to add firmware update packages to IPFS and blockchain. The device messages
are shown as a log in Azure Function app monitor and Azure Digital Twin explorer
shows the DTs.

Video URL: https://www.youtube.com/watch?v=YMxsj7EL0K4

Video of evaluation scenario firmware update process for DT Section 6.4:
The video shows the initiation of the DT simulation. The manufacturer script is used to
add firmware update packages to IPFS and blockchain. The device messages are shown
as a log in Azure Function app monitor and Azure Digital Twin explorer shows the DTs.

Video URL: https://www.youtube.com/watch?v=ZB0kCQmCBBc
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III. Proposed Solution Code

1 struct Package {
2 bytes firmwareMetadata; // Stores the firmware metadata
3 bytes key; // The encrypted symmetric encryption key
4 bytes metadataSig; // Signed firmwareMetadata , by the

manufacturer
5 Status status; // Can be PROCESSED or PENDING
6 bytes verification; // Filled by the vehicle after processing the

update
7 bytes32 nextId; // Next package ID
8 bool set; // A way to check the existence of a package entry in

the map
9 }

10

11 function addPackage(bytes memory firmwareMetadata_ , bytes memory key_
, bytes memory metadataSig_ , bytes32 packageId_ , bytes32
previousId_ , bytes32 nextId_) external onlyOwner packageIdUnique(
packageId_) {

12 Package memory package = Package(
13 firmwareMetadata_ ,
14 key_ ,
15 metadataSig_ ,
16 Status.PENDING ,
17 "",
18 nextId_ ,
19 true
20 );
21 packages[packageId_] = package;
22

23 if (initial == none) {
24 initial = packageId_;
25 }
26

27 if (previousId_ != none) {
28 packages[previousId_].nextId = packageId_;
29 }
30 }
31

32 mapping(bytes32 => Package) private packages;

Listing 8. Partial solidity smart contract showing main functions for package addition
and storage
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1 import { app , InvocationContext } from '@azure/functions ';
2 import { DefaultAzureCredential } from "@azure/identity ";
3 import { DigitalTwinsClient } from '@azure/digital -twins -core ';
4

5 const adtInstanceUrl = process.env["AZURE_DT_INSTANCE_URL"];
6

7 if (! adtInstanceUrl) {
8 console.error(" Application setting \" AZURE_DT_INSTANCE_URL \" not

set");
9 }

10

11 const cred = new DefaultAzureCredential ();
12 const client = new DigitalTwinsClient(adtInstanceUrl , cred);
13

14 type headLightSystem = {
15 ambientLight: number ,
16 beamIntensity: number ,
17 version: string
18 }
19

20 type vehicle = {
21 lastUpdateState: boolean ,
22 version: string
23 }
24

25 export async function eventHubTrigger2(message: unknown , context:
InvocationContext): Promise <void > {

26 context.log('Event hub function processed message:', message);
27 context.log('EnqueuedTimeUtc =', context.triggerMetadata.

enqueuedTimeUtc);
28 context.log('SequenceNumber =', context.triggerMetadata.

sequenceNumber);
29 context.log('Offset =', context.triggerMetadata.offset);
30

31 const deviceId = context.triggerMetadata.systemProperties["iothub
-connection -device -id"];

32 context.log(deviceId);
33

34 if (deviceId == 'headLightSystem ') {
35 const hls: headLightSystem = message as headLightSystem;
36

37 const updateTwinData = [{
38 op: "replace",
39 path: "/ ambientLight",
40 value: hls.ambientLight
41 },
42 {
43 op: "replace",
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44 path: "/ beamIntensity",
45 value: hls.beamIntensity
46 },
47 {
48 op: "replace",
49 path: "/ version",
50 value: hls.version
51 }];
52 await client.updateDigitalTwin(deviceId , updateTwinData);
53 }
54

55 if (deviceId == 'vehicle ') {
56 const veh: vehicle = message as vehicle;
57

58 const updateTwinData = [{
59 op: "replace",
60 path: "/ version",
61 value: veh.version
62 },
63 {
64 op: "replace",
65 path: "/ lastUpdateState",
66 value: veh.lastUpdateState
67 }];
68

69 await client.updateDigitalTwin(deviceId , updateTwinData);
70 }
71 }
72

73 app.eventHub('eventHubTrigger2', {
74 connection: "eventhubConnectionString",
75 eventHubName: 'iothub -name ',
76 cardinality: 'one ',
77 handler: eventHubTrigger2,
78 });

Listing 9. Azure Event Hub message consumer function. Updates the according digital
twin instances in Azure
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