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Abstract

Waste is a growing concern for global sustainability, affecting everything

from economic development to human health. Effective waste management

is critical for mitigating the harmful effects of waste accumulation on soci-

ety. In this thesis, we develop MIDAS, an innovative sensing approach for

effective household waste management. MIDAS builds on the fact that peo-

ple need to touch objects when they are throwing them away and that these

interactions result in thermal footprints on the objects’ surface. By exam-

ining the dissipation of the respective thermal footprints, it is possible to

identify the waste material and support effective sorting and recycling prac-

tices. We validate our approach through extensive empirical benchmarks,

demonstrating that MIDAS can recognize a wide range of materials and

generalize variations in the people interacting with objects. Our solution

paves towards improved sustainability by offering an innovative solution for

classifying materials and optimizing household waste management practices.

CERCS: P170 Computer science, numerical analysis, systems, control

Keywords: thermal imaging, waste management, mobile computing, per-

vasive computing, recycling solutions, IoT

Inimesest eraldunud soojusliku kiirguse kasutamine

kokkuvõte: Jäätmed on kasvav probleem globaalsele jätkusuutlikkusele,

mõjutades kõike alates majanduslikust arengust kuni inimeste terviseni.

Tõhus jäätmekäitlus on väga oluline kahjulike jäätmete mõjude leevendamiseks

ühiskonnas. Selles magistritöös arendame MIDAS, mis on innovatiivne lähen-

emisviis majapidamisjäätmete tõhusale käitlemisele. MIDAS tugineb fak-

tile, et inimesed peavad objekte puutuma, enne kui need ära visatakse ning



nende tegevuste koosmõjude tagajärjel tekivad esemetele soojuslikud jäljed.

Uurides vastavate soojuslike jälgede hajumist, on võimalik kindlaks teha

jäätme materjal ning toetada tõhusaid sorteerimis- ning taaskasutusharju-

musi. Me kinnitame lähenemisviisi läbi ulatuslike võrdlusaluste, näidates,

kuidas MIDAS suudab kindlaks teha ulatuslikku valikut erinevaid materjale

ning tuvastada muutuseid, kui inimesed objekte puudutavad. Meie lahen-

dus aitab saavutada jätkusuutlikkust, pakkudes materjalide tuvastamiseks

uudset lahendust ja majapidamisjäätmete käitlemisele parimat lahendust

leida.

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

Märksõnad: termopildistamine, jäätmekäitlus, mobiilne andmetöötlus, kõike-

hõlmav andmetöötlus, ringlussevõtu lahendused, IoT
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1

Introduction

Accumulation of waste is a growing concern for global sustainability, with both the

volume and complexity of waste are increasing every year. According to a report by

the World Bank, an estimated 2:01 billion tonnes of waste is produced each year, which

contributes to approximately 5% of annual greenhouse gas emissions (3). Besides

a�ecting climate, waste is detrimental to natural ecosystems (4) and a�ects �ora and

fauna, and even human health (5). Projections suggest that the amount of waste

produced by a person in a single day will continue to grow, reaching an estimated0:88

kg per person by2050, which is a 19%increase from the current average of0:74: kg per

person (3). As these projections show, the amount of waste is not likely to decrease

soon, making e�ective waste processing and management critical for counteracting its

harmful e�ects. Waste management and recycling solutions are critical to overcome

global concerns (6), such as pollution of natural ecosystems (4), climate change (5),

and reduction rate of generated waste per person (7). Waste causes pollution that

a�ects �ora and fauna, and even human health (8). The main issue with waste is its

incremental and accumulative generation over the years. Indeed, lands and underwater

areas are �lled with waste that decomposes over long periods of time (9), from decades

to centuries-for instance, the great paci�c garbage patch. More cumbersome, it is

expected that by 2025, the generation of waste per person daily increases from1:2

kg to 1:5 kg, which makes the problem of waste management very relevant.Waste

managementis critical for counteracting the harmful e�ects of waste accumulation and

improving global sustainability. Internet of Things and emerging sensor technologies can

potentially facilitate this process by assisting people in waste management decisions and
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1. INTRODUCTION

optimizing existing waste management processes (10). Currently, however, technological

means for supporting waste management are limited, with the main approach being

manual recycling and regulatory constraints (11). While recycling practices can mitigate

negative concerns from waste accumulation, they are prone to human error and provide

only a coarse categorization of waste and waste production (12). The best practices also

need to educate the citizens, public awareness on environmental education by promoting

a positive attitude towards the environment. Although there are some previous e�orts

on using IoT and sensor technologies, e.g., using cameras or other sensor modalities,

during waste sorting or as part of the trash bins (13), the adoption of these techniques

has remained low due to the need for specialized hardware or operating conditions

(e.g. unobstructed view of objects). These solutions also fail as they can only be

applied late during the waste management chain, making reuse costly and limiting the

usability (14, 15). As a result, many materials are unlikely to be reused, resulting in

further waste accumulation. With the recent accumulation of used respiratory masks

and other PPE (Personal protective equipment) equipment becoming a signi�cant waste

concern (16).

We aim to exploit the capability of state-of-the-art technique, thermal sensing, which

is an emerging technology that measures object re�ectivity (17). To produce an image

of it or locate the object, it utilizes heat generated from an object (18). Costs and

size are declining as thermal cameras become more popular and cheaper, although

e�ciency and image resolution are increasing, opening up new application areas in

recent years. Several studies have shown the reliability and usefulness of the thermal

imaging technique (19, 20), with these cameras being reasonably simple to use and

o�ering a quick way to detect defects in buildings (21, 22), pipeline irregularities (23),

bridge deck delamination (24). It also allows data to be collected and an object to be

analysed. Thermal cameras are robust, discrete, and easy to install (25).

In this thesis, we contribute by developing MIDAS as a novel sensing solution for

categorizing household waste and supporting early prevention of disposed materials into

mixed waste. MIDAS takes advantage of the fact that people need to touch objects when

interacting with them. As a result of the human touching the item, the object's surface

contains a thermal �ngerprint, which dissipates over time, with the object's material

a�ecting the rate of dissipation. MIDAS captures these e�ects using a thermal camera
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1.1 Contributions

and constructs a thermal dissipation �ngerprint that can be used to categorize materi-

als and support waste management. We validate MIDAS through rigorous benchmark

experiments that consider a wide range of materials. As part of the study, we also

conduct a user study with 18 participants to demonstrate that MIDAS generalizes to

human temperature variations. Our results indicate that human-emitted radiation can

be used to characterize di�erent object materials. To prove that MIDAS is not limited

to supporting waste management, we also present an application of our technique for de-

tecting abnormal human temperature for supporting health applications. MIDAS thus

o�ers a novel sensing approach that is highly useful for optimizing waste management

solutions and can also help a broader range of innovative applications.

1.1 Contributions

The following sums up the contributions:

ˆ Novel method: We develop MIDAS as a novel sensing approach for characterizing

materials using thermal dissipation footprints and demonstrate usefulness of MIDAS

in household waste classi�cation.

ˆ Novel insights: We demonstrate that current state-of-the-art techniques based on

computer vision are limited and only capable of recognizing products that are not

mixed with other waste items. We also highlight the importance of analyzing objects

at the level of material properties to increase robustness of results.

ˆ Improved performance: We perform rigorous benchmarks demonstrating that MI-

DAS signi�cantly improves the classi�cation of waste materials of di�erent sizes and

shapes and works robustly across di�erent persons.

1.2 Outline

This thesis is structured as follows:

ˆ Chapter 2 reviews the state-of-the-art about infrared thermal imaging, its limita-

tions as well as its application in computer systems. Moreover, we also demon-

strate how existing sensing techniques based on automated computer vision and

light-sensing fail in waste management systems.

5



1. INTRODUCTION

ˆ Chapter 3 describes the di�erent types in which waste is classi�ed and presents

a feasibility analysis of material characterization using human-emitted thermal

radiation.

ˆ Chapter 4 describes the thermal imaging processing pipeline and methodology

used in this thesis.

ˆ Chapter 5 describes the experimental testbed designed to capture video footage

of thermal footprints for di�erent objects materials.

ˆ Chapter 6 presents our �ndings

ˆ Chapter 7 discusses the implications and limitations of our work

ˆ Chapter 8 presents the summary and conclusion of our work

6



2

State of the Art

This chapter reviews thermal imaging, which is the groundwork of this thesis and

presents an overview of recent research that we consider relevant for this study. We

start by showing a background knowledge of the detection sensors, focusing on the

thermal sensing technique and how it has been applied in computer systems. We then

review previous knowledge on material sensing and waste management, and recycling

systems through thermal imaging. We also demonstrate how existing sensing techniques

that are based on automated computer vision (13, 26) and light-sensing (27) fail in

categorizing waste, especially when the objects are mixed with other waste items. In

our work, we attempt to overcome these limitations.

2.1 Passive sensing (IR Thermal imaging)

According to J. Fraden, �a sensor is a device that receives stimulus or an input signal

and responds with an electrical signal bearing a known relationship to the input� (28).

Sensors can be found in most electrical devices and are designed to support various

applications, such as surveillance, tracking, monitoring, and mapping. Currently, there

are two categories of sensors, active and passive sensors. An active sensor provides a

source of light while also transmitting and detecting energy simultaneously. Conversely,

passive sensors do not provide illumination to produce output signals and measure

variations based on natural emission (29). Thermal imaging falls in this last category.

Infrared Thermal imaging, also known as Infrared thermography, is the recording

and measurement of heat radiation using specialized cameras. These cameras work in an

7



2. STATE OF THE ART

environment without ambient light and can penetrate thick fog such as smoke and haze.

The �rst Thermal cameras were initially developed for military purposes in the 1950s

and 1960s and have since evolved, enabling applications that were impossible to do easily

in the past due to the high cost of production and limited availability. Thermal cameras

are similar to digital photographic cameras but record thermal infrared radiation (TIR).

Infrared radiation is invisible to the human eye as it occurs beyond the red end of

the visible light spectrum (Table 2.1 describes the di�erent light spectrum). However,

thermal radiation is located within the infrared range of the electromagnetic spectrum

(30). The visible wavelength range from0:4 � 0:78�m while infrared radiation has a

longer wavelength, ranging from0:78 � 1000�m (31); Thermal cameras operate in the

infrared band of the electromagnetic spectrum with wavelengths between2 � 14�m .

The infrared spectrum which is subdivided into near-infrared (NIR) 0:78� 2:5�m , mid-

infrared (MIR) 1:3 � 8�m and far-infrared (FIR) 7:5�m and 13�m (32), and are used

for monitoring temperatures of di�erent range from -50 to 2000� C. All objects with a

temperature above absolute zero (-273� C) emit infrared radiation, and not only objects

we think of as warm emit infrared radiation (IR). Thermal imaging determines an

image temperature based on the absolute temperature of the object (Figure 2.1 shows

an example of this). The image is formed based on the object's heat signature and

records the items' current signatures based on their heat pattern. During operation

through image analysis, the thermal infrared camera heats-up, making it a thermal

radiation source. They have an inbuilt thermometer and perform radiometric calibration

at regular time intervals to make up for this. In the course of calibration, frames are

lost because a plate of known temperature is inserted in front of the sensor during this

process.

2.2 Thermal detection types

Thermal detection is a mechanism that changes some of a material's measurable prop-

erties due to the rise in temperature of that material caused by electromagnetic radi-

ation absorption (17). The resistive bolometric e�ect, the pyroelectric e�ect, and its

modi�cation (known as either the bias enhanced pyroelectric e�ect or the ferroelectric

bolometer) and the thermoelectric e�ect (17) are the most important. However, there

8



2.2 Thermal detection types

Figure 2.1: Example of a thermal image from a plastic bottle that is exposed to ambient
heat.

Table 2.1: The electromagnetic spectrum(2)

Wave Wavelength (meters) Frequency (Hz)

AM Radio 102 106

FM, TV 1 108

Radar 10� 2 109

Infared 10� 6 1013

Visible Light 10� 7 1015

Ultraviolent (UV) 10� 8 1016

X-Rays 10� 10 1018

Gamma Rays 10� 14 1021

are several thermal detection mechanisms. Uncooled thermal detectors have been devel-

oped primarily with thermal and ferroelectric microbolometer detectors (using Barium

Strontium Titanate (BST) as detector material, which su�ers from halo e�ect) (33).

Due to their advantages over ferroelectric detectors, microbolometers have the most

signi�cant market share.

9



2. STATE OF THE ART

2.3 Advantages and limitations of thermal imaging

Although thermal cameras cannot perform person identi�cation in contrast to visible

light cameras, it is both an advantage and a limitation. When preserving the indi-

vidual's identi�cation is paramount, thermal cameras can be used in such situations.

However, if the individual's identity is requested, it must be integrated with a visible

light camera. Furthermore, thermal cameras are favored over visual cameras in most

outdoor situations. They record a very high performance where there is temperature

di�erence associated in object to be detected, such as emerging �re, integrated night

vision thermal camera to see human activities or motion in cross border checkpoints,

increased or abnormal body temperature di�erences in heat transfer in materials. This

is because thermal cameras are sensitive to emitted radiation and produce an image

with little or no distortions at night or harsh weather conditions such as snow, rain, or

fog. Regarding temperature measurements, thermal cameras are useful when measuring

the temperature over a large area compared to point-based methods. However, the ac-

curacy of temperature measurement is considered not as accurate as contact methods.

Finally, a key limitation of existing imaging techniques is that they focus on external

characteristics of re�ection or absorption, which are dependent on the shape, color, and

other properties of the items rather than capturing only intrinsic characteristics of the

materials themselves. Thermal images cannot be captured through certain materials

like water and glass. These materials are highly re�ective in the thermal spectrum as

opaque, which is a signi�cant disadvantage for situations where individuals' images in

cars need to be captured.

2.4 Application in computer systems

With thermal imaging becoming popular, this section brie�y discusses thermography as

a useful technology in di�erent �elds. This detection technique is used in computer sys-

tems, which uses sophisticated image analysis algorithms and a computer to reconstruct

the images to show heat patterns.

10



2.4 Application in computer systems

2.4.1 Medical thermography

Computer systems are used for image processing and monitoring of thermal radia-

tion changes. In a medical analysis, thermography based computer-assisted detec-

tion/diagnosis (CAD) systems help to screen for fever patients in places with a high

volume of people, such as airports and border crossings (34, 35). The early detection of

the diabetic foot, speci�cally, CAD systems for diabetic foot (36), help prevent compli-

cations and amputation. They have also been shown to reveal tumors in an early stage,

most notably breast cancer (37). Medical issues such as the behavior of ciliary muscle of

the human eye (38), the periodic �uctuation in skin temperature (39) or the measuring

of blood �ow rate in super�cial veins (40), can be studied from thermal images.

2.4.2 Facial analysis

An individual's face is a biometric trait that can be applied in an automated computer-

based security system for authentication purposes. Experts are investigating and devel-

oping methods for the improvement of face recognition (41). Humans' stress levels can

be detected using thermal imaging based on their face's heat radiation. The thermal

facial analysis was used for deception detection (42). Pavlidis et al. (43) also proposed

this technique to capture anxiety.

2.4.3 Fire detection and military

With �re�ghters' inability to see through smoke quickly, they can be robbed of their

most essential commodities (sight) when they �ght �res and, as such, handicapping

their ability to perform e�ectively, �nd the hot spot, and locate victims. Identi�cation

of objects that could pose a risk is of great importance. A �re detection system can be

used for mobile robots (44) by locating the hot spots, the robot is directed to the �re

source. Arrue et al. (45) proposed an alternative real-time infrared-visual system for

forest �re detection, composed of both thermal and visual cameras and meteorological

and geographical information. In the military, Price et al. (46) presented the Gun-

�re Detection and Location (GDL) system for military applications to detect gun�re.

Gun�re is detected in Mid-Wave IR (MWIR) imager and validated by acoustic events.

11



2. STATE OF THE ART

2.4.4 Aerial thermography

With UAV (Unmanned aerial vehicle) becoming more popular and improving in so-

phistication and reliability, various studies have investigated methods of using drones

for problem-solving, be it in the delivery service industry (47), video surveillance (48),

rescue(49), which can perform the mission with increasing levels of complexity which

is sometimes considered dangerous by humans. Thermal sensors have been integrated

into some UAVs for tracking and monitoring the behavior of certain physical property

and temperature changes over time. Remote sensing in Unmanned aerial vehicle (UAV)

which aids data collection has developed rapidly from a researching stage to a more

practical approach, which is applied in various �elds (50). The authors in (51), used

aerial thermography to perform dense crowd detection e�ectively. They proposed re-

gion of interest (ROI) extraction and a two-stage blob based approach for pedestrian

detection, by �rst extracting pedestrian blobs using the regional gradient feature and

geometric constraints. The detected blobs are classi�ed utilizing Support vector ma-

chine (SVM) technique with a hybrid descriptor. Furthermore, in archaeology, UAVs

collect aerial imagery from speci�c altitudes at di�erent weather conditions at any given

time. J. Casana et al. (52) propose aerial thermography to detect archaeological sites.

The camera was sensitive to 0.05� C temperature increments and recorded 640 by 512

pixel video at 8-bit radiometric resolution. Pedestrian survey and subsurface testing

were carried out, which was proceeded by aerial imaging to detect surface and subter-

ranean features not immediately visible from ground level. The thermal imagery was

consistently successful at detecting nearly all archaeological features that were previ-

ously recorded through Pedestrian survey and subsurface testing, where other remote

sensing techniques had failed repeatedly.

2.5 Material sensing

Materials have di�erent characteristics of di�erent properties, which can be exploited

to categorize them. Examples include the use of variations in WiFi signal propagation

characteristics to identify liquids (53), and the use of surface tension to characterize

liquids (54, 55). The most common material sensing approach relies on di�erent light

spectrum parts and measures either re�ection or absorption at di�erent frequencies.

Examples range from the use of green light sensing to detect plastic waste (56) to the
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use of near-infrared sensing to facilitate medicine adherence (57) and the use of hy-

perspectral imaging for estimating sugar content in drinks (58). Also, deep learning

approaches for detecting di�erent material types from re�ection patterns at di�erent

wavelengths have been proposed (59). Other works have used smartphone cameras to

analyze liquids' (54, 55), identifying objects via material re�ection (60), and to learn the

quality of food using RFID (Radio-frequency identi�cation) stickers (61). These meth-

ods operate by transmitting light at near-infrared frequencies (780� 2500nm) through

the production and measuring absorption properties at the di�erent wavelengths (62).

In spectroscopy, Near-infrared sensing was also used to facilitate medicine management

in elderly care (57). Green light-sensing has also been used to characterize waste un-

derwater (56). Our work extends these works by using infrared spectrum to estimate

internal characteristics of materials related to heat dissipation.

2.6 Waste management and recycling systems

The most common IoT-based approach for waste management is to use computer vi-

sion (13, 26). Several sensor-based systems exist to detect, sort accurately, and separate

the waste (63, 64, 65). Other methods, such as hyperspectral based sorting (HSI) (66),

and spectroscopic analysis (67) also have been proposed. IoT was also seen in combi-

nation with infrared sensing to communicate to waste managers (27). Gundupalli et al.

used thermal imaging technique for the classi�cation of dry recyclables (68), obtained

from municipal solid waste (MSW) in recycling plants. Randomly selected MSW was

kept in a hot dark chamber and heated up to generate radiation. They obtained a clas-

si�cation success rate in the range of 85�96 percent for various materials. Classi�cation

of metallic fractions (MFs) and non-metallic particles (NMFs) of e-waste using thermal

imaging-based technique operated in the long-wave infrared range (LWIR,8 � 15�m )

was also proposed in recent literature (69). They obtained a classi�cation success rate

in the range of 84�96 percent. In contrast to the prior literature, we study the early

identi�cation of waste material by piggybacking the human-emitted thermal radiation.

Our approach aims to classify waste before it gets mixed with others, such that the

separation of waste for recycling becomes less problematic.
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2.7 Existing approaches for waste detection (Baselines)

In this section, we demonstrate how existing sensing techniques based on automated

computer vision (13, 26) and light sensing (27) fail in categorizing waste, especially

when the objects are mixed with other waste items.

2.7.1 Computer vision analysis

Experiment: We �rst attempt to classify household waste using computer vision and

train a state-of-the-art Convolutional Neural Networks (CNNs) model using the publicly

available TrashNet dataset (70). We focus exclusively on the plastics category which

contains 626 images of plastic waste for training the deep learning model. The dataset

has images where the individual pieces are shown against a white background. As such

images do not match realistic recognition settings, we supplement the dataset with an

additional 767images from the Japan Agency for Marine Earth Science and Technology

(JAMSTEC) Deep-sea Debris Database dataset.

Collected images were annotated manually by drawing a rectangle box around the

waste material in images. We labeled the TrashNet plastic items as "trash" and the

JAMSTEC plastic items as "plastic". Both datasets were augmented by adding noise,

hue, blue, horizontal �ip, and vertical �ip modi�cations to each original image, resulting

in a total of 6985 for model training input. We created and trained the PlasticNet model

using Google Collab server GPU, with 100k iterations and a batch size of 12, running

TensorFlow Lite 1.15. For the base training model, ssd_mobilenetv2_oidv4 was used.

Results: For validation, we used 31 images depicting real tossed plastic waste (1).

In total, 33 separate waste items were present in the 31 images. The deep learning

model managed to identify 23 of the 33 items, obtaining 69.7% in accuracy. Figure 2.2

highlights the main limitation of the model, being unable to identify mixed waste items.

Although the trained model was primarily focused on plastics, such �ndings suggest that

the application of using deep learning models and image vision for real-life tossed waste

materials remains limited.

2.7.2 Light re�ectivity analysis

Experiment: Re�ectivity analysis of materials is a highly adopted technique to classify

di�erent waste types (27). We next classify materials using light re�ectivity measured
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(a) (b)

(c) (d)

Figure 2.2: Trained model PlasticNet, discriminating plastics against other object mate-
rials (trash) (1)

through a photoresistor connected to the analog input pin of an Arduino MEGA ADK.

The photoresistor captures light changes based on its resistance exposure to the light

intensity of the re�ected material. As a light source, we rely on a red laser diode (wave-

length 650 nm). The object was located2 cm away from the light source, depicting a

practical usage of the sensor in transport belts and smart bins (13). We took measure-

ments with the sensor for di�erent materials (selection described in Section 3.2) during

1 min from two di�erent places of the object selected randomly.

Results: Figure 2.3 depicts the results and compares them to two baseline backgrounds

(white and black). We can observe that light can characterize di�erent materials with

low variations, but that di�erent parts of the same material can be characterized very

di�erently, e.g., Cardboard Cup-1 and Cardboard Cup-2. This is because end-products

consist of di�erent materials and colors, both a�ecting its properties. A key limitation
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Figure 2.3: Light re�ectivity values of di�erent materials measured with a photo-resistor.

is that this approach requires a very short distance between the material and the sensor

to classify the material accurately. Another limitation is that the light beam can cover

a limited area, leaving most of the object untreated.

2.8 Summary

In this chapter, we presented a literature review about state-of-the-art passive sensing

(IR thermal imaging). We introduced thermal cameras, which are used to perceive ther-

mal infrared radiation that is invisible to the human eyes. There are di�erent detection

mechanisms for thermal cameras, with microbolometers and ferroelectric detectors pri-

marily used to create thermal sensors that are uncooled. Although thermal cameras

have their disadvantages, their strengths outweigh their limitations, one of which is

their ability to see in dark or harsher conditions. Night vision systems, for example, act

like the human eye; they identify and greatly magnify tiny quantities of visible light.

Night vision cameras are wholly useless in a totally dark room, because the subject is

completely blind due to no light source. Thermal cameras, on the other hand, do not
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see visible light, but see heat radiation and sense material temperature variations that

are re�ected back by the object being measured.

Furthermore, we explored how state-of-the-art methods focused on computer vision

and light re�ectively fared as household waste was classi�ed. Computer vision deep

learning model managed to classify 23 of the 33 objects, achieving 69.7% accuracy.

Re�ective analysis of light shows that light could characterize various materials with

low di�erences, but that it is possible to characterize other parts of the same material

di�erently. The basic drawback of this method is that it requires a very small dis-

tance between the sensor and the material to reliably classify the material. Finally,

by illustrating the signi�cance and usefulness of this approach in a similar domain, we

introduced the actual research in thermal sensing related to this study

To evaluate whether thermal radiation can be also used to classify di�erent types of

materials, in the next Chapter, we introduce multiple household objects and conduct

an analysis to verify its feasibility.
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3

Feasibility Analysis

This Chapter describes the most common classi�cation of municipal solid waste (25).

By selecting relevant waste items, we then conduct a controlled experiment to determine

whether thermal imaging can be used to classify their material types. In particular, we

analyze the fading time of residual thermal radiation that is acquired by the material

object (waste) after being touched by a person.

3.1 Material selection

3.1.1 Plastic material

Plastic has become dominant in the consumer marketplace, which has been a useful and

versatile material for various applications. Economic growth and increased demands on

plastics have led to the accumulation of plastic solid waste (PSW) in land�lls. They

account for a large amount of municipal solid waste (MSW) in developed and developing

countries, resulting in environmental problems. Packaging materials are designed for

immediate disposal and constitute the largest market sector of plastic resins (71). With

considerably di�erent types of plastics, such as Polyethylene terephthalate (or PET),

High-density polythene (0.941� density <0.965), Polyvinyl chloride (or PVC), Low-

density polyethylene (LDPE) and Polypropylene (PP), Polystyrene (PS). PET belongs

to the polyester family and is used in beverage, food, and other liquid containers. On

the other hand, HPDE is a thermoplastic material composed of carbon and hydrogen

atoms joined together forming high molecular weight products, can withstand higher

temperatures, and are usually have a stronger intermolecular force and tensile strength
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than LDPE (0.910 <density <0.925) (72). Cellulose acetate, a form of plastics are

found in a cigarette with �lters, which makes it almost impossible to decompose within

a short period (73).

3.1.2 Rubber material

Rubber is of di�erent types such as nitrile, silicone, natural rubber (NR), �uorocarbon

rubber, styrene-butadiene rubber (SBR), ethylene-propylene-diene monomer (EPDM)

rubber (74). There is an increase in rubber waste globally due to the never-ending

demand for rubber products and usage in household products, medical, engineering,

industrial, etc. Furthermore, rubber in so many applications has resulted in a growing

volume of rubber waste, which poses major environmental problems, as the constant

increase of discarded rubber makes disposing of rubber products worse. We all have a

responsibility in making sure various forms of waste are discarded appropriately. For

example, disposed rubber gloves in garbage has contributed to the amount of waste

rubber generated worldwide (75), which could be attributed to a lack of environmental

awareness in society. Sources of waste generated by rubbers include discarded rubber

gloves, balloons, rubber bands, shoe soles, scrape tires, inner tubes, condoms, etc.

3.1.3 Glass and ceramic material

Based on its chemical composition, glass is classi�ed into three types: soda-lime glass

(which is widely used in making bottles and jars, Flat glass, Tableware), Pyrex or

borosilicate glass is highly heat resistant (can resist thermal shocks for use in labo-

ratories, Glass �ber, Wool insulation Ovenware), Lead crystal glass (used in Crystal

tableware, Television screens, and display screen equipment) (76). However, glass con-

tainers and bottles are the most commonly used form of packaging beverages, food,

and commodity items. This has contributed signi�cantly to the municipal solid waste

stream in our society. On the other hand, ceramic is used in making a variety of prod-

ucts ranging from tiles, cement, �ower pots, etc. Just as glass, ceramic contributes to

MSW in the environment and should be recycled adequately.
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3.1.4 Metal material

Sophisticated metallic products with speci�c chemical and physical properties have been

developed to satisfy basic human needs. Large quantities of metal waste emanate from

the growing production and manufacture of goods and services for human comfort.

Metal is among one of the pollutants, which cause severe threats to humans and the

environment (77). Metals can be classi�ed as ferrous, or non-ferrous. Metals that have

an iron with carbon as its main constituent is considered ferrous. Ferrous materials are

usually stronger and harder and are used in daily life products. Some common ferrous

materials include alloy steel, wrought iron, carbon steel, cast iron, and Stainless steel.

On the other hand, non-ferrous metals do not contain a great amount of iron. Ex-

amples of non-ferrous materials are copper, aluminum, zinc, lead, Nickel, Tin etc (78).

Globally, there has been a steady increase in demand for portable electronic equipment

like mobile phones, cameras, Notebook, etc. This demand has led to an increase in

lithium-ion batteries' production and consumption of lithium-ion batteries (79). Most

phone batteries are made of metal elements such as lithium, cobalt, manganese (80).

3.2 Thermal emmisivity of materials

We next demonstrate that heat transfer of thermal radiation from humans can be used

to opportunistically characterize di�erent household objects. We demonstrate that the

dissipation time of a thermal footprint correlates with the emissivity coe�cient � of

di�erent materials and can be used to characterize a wide variety of di�erent objects.

We measure the thermal footprint's dissipation using a thermal phone CAT s60, and

a certi�ed thermometer FLIR TG267. The measurement setup is described in detail

in Chapter 5. Secondly, as di�erent (mixed) materials form household objects, e.g.,

a cardboard cup is made with cardboard and coated with plastics or wax to prevent

the absorption of liquids, we conduct experiments where the objects are held by a

human hand for �xed periods before being placed on a plain surface so that the thermal

footprint can be analyzed. We measure the thermal footprint dissipation time until the

object reaches equilibrium with the ambient environment.
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3.2.1 Thermal footprint dissipation

Testbed: We measure the dissipation time of a thermal footprint in di�erent plastic

materials, which correspond to standard resin identi�cation codes (RIC). These plastics

correspond to common materials, used in everyday plastic products and have well known

emissivity coe�cients ( � = 0:90 - 0:97). We consider LDPE (Low Density Polyethylene),

HDPE (High Density Polyethylene), PP (Polypropylene), PS (Polystyrene), and PVC

(Polyvinyl chloride). The tested plastic samples are produced using the same mold

cavity and identical manufacturing process1. Thus, samples' di�erences are directly

proportional to their inherent material properties, e.g., material shrinkage and sti�ness.

In the experiments, we allocate the plastic sample inside a fridge with a constant tem-

perature of 5‰, in order to achieve baseline temperature for comparison. Furthermore,

we allocate a constant heat source (lamp bulb of 60 Watt) over the plastic sample - from

a �xed distance of 10 cm to avoid burning the sample while exposing to enough thermal

radiation. We heat the samples during di�erent periods. Once a period is completed, we

remove the heat source and measure the plastic sample's thermal footprint dissipation.

Ambient temperature during experiments oscillated around22-24‰.

Results: Figure 3.2 shows the results. From the �gure, we can observe that a thermal

footprint dissipates di�erently in di�erent plastic materials. As periods to transfer

thermal radiation from the lamp to the plastic sample, we selected1, 2, 3, and 4

minutes. We did not consider further periods as4 minutes was enough to show an

association between dissipation time and the emissivity coe�cient. Non-parametric

Spearman correlation (81) indicates a signi�cant positive relation between dissipation

time and emissivity coe�cient ( � = 0 :66, p< : 05)

3.2.2 Thermal characterization with common household objects

Testbed: We measure the dissipation time of a thermal footprint from various house-

hold objects. We consider common household objects in our experiments that account

for a large amount of solid municipal waste (68). The objects are shown in Figure 3.1

and cover a wide variety of highly discarded pollutants, including, rubber, plastics,

glass, ceramic and metal. The considered objects include: a beer can (A), ceramic cup

(B), takeaway box (C), plastic bottle (D), glass bottle (E), co�ee cup (F), plastic cup

1https://www.materialsampleshop.com/products/plastics-sample-set
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Figure 3.1: Selected waste materials for preliminary experiments. A (Beer can), B (Ce-
ramic cup), C (Takeaway box), D (Plastic bottle), E (Glass bottle), F (Co�ee cup), G
(Plastic cup), H(Cigarette butt), I (Glass jar), J (Milk pack), K (Aerosol can), L (Rubber
glove), M (Metal spoon), N (Face mask).

(G), cigarette butt (H), glass jar (I), milk pack (J), aluminum aerosol can (K), rubber

glove (L), steel spoon (M) and a face mask (N). We analyze the thermal dissipation

time after the objects held for 1; 2; 3, and 4 min. The average body temperature of the

human subject holding the object was around35� 36‰. The ambient temperature was

around 22� 24‰. We measure the dissipation of the thermal footprint using a thermal

phone CATS60, and a certi�ed thermometer CAT TG267. A detailed description of the

apparatus is provided in Chapter 5.

Results: Figure 3.3 and 3.4 shows the results. Friedman test using dissipation times

and object materials as experimental conditions showed signi�cant di�erences for ther-

mometer scanner (� 2(2) = 48 :54, p < : 05, W = 0 :93) and CAT s60 (� 2(2) = 48 :83, p

< : 05, W = 0 :93). This suggests that thermal footprint's dissipation time is di�erent

for di�erent materials.

3.3 Summary

This chapter presented a preliminary analysis of the thermal dissipation of materials.

We measured the dissipation time of a thermal footprint in various plastic materials

when placed in the fridge for a period. The plastic is placed 10cm away from a 60watts

lamp to expose it to thermal radiation. The plastics examined were everyday plastics

products for daily use, with a high level of emissivity coe�cients. We considered LDPE
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Figure 3.2: Dissipation time of thermal footprints in di�erent plastic materials and used
two di�erent devices

Figure 3.3: Dissipation time of thermal footprints in thermometer scanner TG267 (base-
line)
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Figure 3.4: Dissipation time of thermal footprints in Smartphone CAT s60

(Low-Density Polyethylene), HDPE (High-Density Polyethylene), PP (Polypropylene),

PS (Polystyrene), and PVC (Polyvinyl chloride). The result of the experiment shows

that a thermal footprint dissipates di�erently in di�erent plastic materials.

We also conducted a feasibility analysis using common household objects used in

everyday life and account for large amounts of solid municipal waste. To determine the

material thermal footprints' dissipation time, a controlled experiment was conducted.

We analyzed the thermal dissipation time after the objects are held for 1, 2, 3, and 4

minutes. We measure thermal footprint dissipation via a thermal phone CAT S60 and

a certi�ed thermometer CAT TG267. Our �ndings show that various object materials

may be distinguished by human-emitted thermal radiation. We also show that the

dissipation time of a thermal footprint coincides with the coe�cient of emissivity � of

di�erent materials and can be used to identify a wide variety of other objects.

With this information, in the next Chapter, we then proceed to model the dissipation

time of thermal footprint that are acquired from residuals of thermal radiation emitted

by humans.
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4

Modelling Thermal Footprint

Dissipation

This chapter introduces the thermal image processing pipeline used to develop a model

that classi�es object materials based on thermal footprints' dissipation time.

4.1 Pre-processing of thermal video footage

Besides the lack of accuracy to measure temperature (82), thermal cameras in smart-

phones also su�er from several other issues. In particular, misalignment between ther-

mal and RGB pictures and periodic re-calibration of thermal radiation introduce noise

in continuous monitoring activities, e.g., black and white frames. To reduce the impact

of noise in our thermal video footage, we transform videos into a sequence of thermal

images. We then examine consecutive images based on background information to spot

dissimilarities between images. Note that we remove the images with noise.

4.2 Normalization

Once the measurements were noise-free, the thermal pictures are normalized to a con-

sistent scale, such that a sequence of thermal footprints can be easily analyzed. We

normalize thermal pictures to values between0 and 255, such that thermal images can

be manipulated at gray scale. Figure 4.1 illustrates the result of the normalization pro-

cess. In the �gure, we observe the sequence of thermal pictures and the equivalence in

normalized scale for two cases, a) a cardboard cup and b) a cigarette butt. By doing
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