
UNIVERSITY OF TARTU
Institute of Computer Science

Software Engineering Curriculum

Soltan Garayev

SCHEME DESIGN IN NON-RELATIONAL MODEL

DATABASE TO MIGRATE DATA FROM RELATIONAL

MODEL DATABASE

Master Thesis (30 ECTS)

Supervisor(s): Pelle Jakovits, PhD

Tartu 2020

Scheme Design in Non-Relational Model Database to Migrate Data from Relational
Model Database

Abstract:
The usual preference of storing data is Relational Databases for enterprise applications.
It provides relational model, and helps to keep data in organized structure. For last few
decades relational database models have been the first choice of the companies. Things
started to change with the term of Big Data which is about storing all kind of data related
to end-user behaviour. User behaviour is random which can be understood non-structural
as well. In this scenario usual relational database model does not fulfill the requirements.
There was a need, and a new concept named NoSQL was the best option to fill this gap.
NoSQL means Not Only SQL, and it provides a suitable environemtn to companies to
store data in any form without having to define a structure. As time passes non-relational
databases became priority in other concepts such as storing not only randomly structured
data but structured data as well. If we think about big tech companies like Facebook or
Google usual relational database model is unsatisfactory for storing huge amount of data.
Companies started to move data from relational database to non-relational databases to
store their data. There are articles/papers on data migration from relational to non-relation
databases. The main issue here is designing the scheme in non-relational data model based
on existing complex relational data model. In this research we aim to suggest ways to
solve this issue.

Keywords:
Data Migration, RDBMS, Relational Database Management System, Relational Data
Model, Non-Relational Data Model, NoSQL, Postgres, PostgreSQL, Cassandra, Scheme
Design

CERCS: P170 Computer science, numerical analysis, systems, control

Skeemikujundus mitterelatsionaalses mudeliandmebaasis andmete migreerimiseks
relatsioonimudelite andmebaasist

Abstraktne:
Tavaline eelistus andmete salvestamiseks on ettevõtterakenduste relatsiooniandmebaasid.
See pakub relatsioonimudelit ja aitab hoida andmeid organiseeritud struktuuris. Vi-
imaste aastakümnete jooksul on ettevõtete esimene valik olnud relatsioonilised andme-
baasimudelid. Asjad hakkasid muutuma seoses suurandmete terminiga, mis seisneb
igasugu lõppkasutaja käitumisega seotud andmete talletamises. Kasutaja käitumine on

2

juhuslik, mida võib mõista ka mittestruktuursena. Selle stsenaariumi korral ei vasta
tavaline relatsioonilise andmebaasi mudel nõuetele. Vajadus oli ja uus kontseptsioon
nimega NoSQL oli parim võimalus selle lünga täitmiseks. NoSQL tähendab mitte ainult
SQL-i ja see pakub ettevõtetele sobivat keskkonda andmete salvestamiseks mis tahes
kujul, ilma et oleks vaja struktuuri määratleda. Aja möödudes muutusid mitteseotud and-
mebaasid prioriteetseks teistes mõistetes, näiteks mitte ainult juhuslikult struktureeritud
andmete, vaid ka struktureeritud andmete talletamine. Kui mõtleme sellistele suurtele
tehnoloogiaettevõtetele nagu Facebook või Google, on tavaline relatsioonilise andmebaasi
mudel ebarahuldav tohutu hulga andmete talletamiseks. Ettevõtted asusid andmete salves-
tamiseks teisaldama relatsiooniandmebaasidest mitterelatsioonandmebaasidesse. On artik-
leid / artikleid andmete migratsiooni kohta relatsioonandmebaasidest mitteseotud andme-
baasidesse. Põhiküsimus on skeemi konstrueerimine mitterelatsioonilises andmemudelis,
mis põhineb olemasoleval keerulisel relatsiooniandmemudelil. Selle uurimistöö eesmärk
on pakkuda välja viisid selle probleemi lahendamiseks.

Keywords:
Andmete migratsioon, RDBMS, relatsiooniandmebaasi haldussüsteem, relatsiooniline
andmemudel, mitterelatsiooniline andmemudel, NoSQL, Postgres, PostgreSQL, Cassandra,
skeemi kujundamine

CERCS: P170 Arvutiteadus, arvuline analüüs, süsteemid, juhtimine

3

List of abbreviations and terms

RDBMS Relational Database Management System
N-RDBMS Non-Relational Database Management System
SQL Structured Query Language
CQL Cassandra Query Language
DB Database
RF Replication Factor
MFS Mobile Finance System

4

Table of Contents

List of Figures 7

1 Introduction 8

1.1 Problem Statement . 9

1.2 Thesis Structure . 9

2 Data Model 10

2.1 Data Storing Models . 10

2.1.1 Relational Model . 10

2.1.2 Non-Relational Model . 13

2.2 Databases . 17

2.2.1 Why Oracle . 18

2.2.2 Why Cassandra . 20

3 Apache Cassandra 24

3.1 Cassandra in Details . 24

3.1.1 Architecture . 24

3.1.2 Data Versioning and Consistency 26

3.2 Data De�nition . 27

3.3 Data Modelling in Cassandra . 30

4 Data Migration 33

4.1 From RDBMS to NoSQL . 33

4.2 Our Proposal . 35

5 Scheme Structure Design 38

5.1 Mobile Payment System . 38

5.2 Database Structure . 38

5.3 Theories in Practice . 41

5.3.1 Analyze current structure . 41

5.3.2 Design scheme in target database 42

5.3.3 Design mapping entities in code 44

5.4 Performance Evaluation . 46

6 Conclusion 50

6.1 Future Work . 51

5

Bibliography 53

Licence 55

6

List of Figures

1 Basic USERS Table. 11

2 create table query[4] . 11

3 Populate table query[4] . 12

4 Key Value Storage Architecture[7] . 14

5 Column Oriented Storage Example[6] 15

6 Document Store Example[6] . 15

7 NoSQL Stores comparison[6] . 16

8 CAP Theorem Parts [9]. 17

9 CAP Theorem [10] . 17

10 Oracle create database query.[14] . 19

11 create keyspace query.[18] . 22

12 create cassandra table query. [18] . 23

13 create, insert and select query in cassandra[18] 23

14 Cassandra Ring[19] . 25

15 Cassandra Virtual Nodes[19] . 26

16 Cassandra Keyspace and Table[18] . 28

17 Cassandra Keyspace and Table[20] . 30

18 Cassandra Table Column Types[20] . 31

19 Performance comparison of MySQL, Cassandra and HBase[21] 33

20 MySQL and MongoDB Structure[22] 34

21 Current relations between MFS tables in Oracle. 39

22 Current MFS tables in Oracle. 40

23 MFS Query Diagram in Cassandra. 44

24 MFS Tables in Cassandra. 45

25 MFS Query Performance in Oracle. 48

26 MFS Query Performance in Cassandra. 48

7

1. Introduction

More than a few decades ago we started to hear a term ofdatabase. It entered our lives

with the computer technology. There were different concepts on how to store data and use

it effectively, but at the end relational model was winner. There were some other models

such asnetwork model, hierarchical model, object databases, XML databasesbut none of

them could compete with relational model.

Relational model started to be accepted by people in mid-80s. Name of the systems

used relational model is Relational Database Management Systems (RDBMS), and the

communication tool is Structured Query Language (SQL). The main reason of RDBMS

being chosen by companies is its structure and the availability it provides. The best part of

relational model is not making developer to think about data processing implementation.

All process related to store/update/fetch data is the responsibility of the database. The other

thing is the way of keeping data. As the name says the structure based on the relations

between entities - tables in SQL. In relational model, there are databases, each database

has schemes, each scheme has tables, and all tables have columns and rows.

Today almost all businesses use relational model to store their data as it is very use-

ful and perfect �t to the need, as it provides relational model which requires to design

structure to keep the data. Unfortunately, relational model does not let us to store this

randomly generated data. Therefore we started to hear new term - NoSQL. NoSQL hashtag

was misunderstood. It does not mean "No SQL", but "Not Only SQL". This non-relational

model was proposing to store randomly generated data without being have to have a

prede�ned structure. That was not the only advantage of NoSQL over RDBMS. The others

are:

� better scalability on huge datasets

� to have a more quali�ed query operations

� to be open source (most of them) [1]

8

1.1 Problem Statement

With these advantages companies started to store their log/report data in NoSQL databases,

then they decided not to limit themselves and to store the business data in NoSQL databases

(DBs). That is easy for new companies/startups, not for the ones which have been in the

market for many years. They already have their data in relational model, and their database

schemas can be very complex with ten, hundreds of relational tables, and it is not an

option to re-start everything with NoSQL DB. So, the best choice here is data migration

from relational model to non-relational one. There are some tools out there which can

be used and perform well. But the question is how to design ef�cient non-relational

scheme based on the data from relational one. That's the question and in this research the

possible answers to this question will be discussed. Researcher tries to �nd an answer to

this question, by analyzing the existing practices. Firstly, it is necessary to understand

non-relational model and databases that developed on non-relational concept. Then, we

will check existing solutions for migration issues. As all companies have different kind of

systems, they all follow different steps for migration. We will try to �nd, and analyze them.

Based on these data researcher aims to have his own theory. Researcher will discuss his

theory and he will put his theory in practice. Then the result of the process will be shared

and discussed in thesis paper. At the end based on all these, researcher will discuss what

can/should be done in future.

1.2 Thesis Structure

In the following sections we will analyze our choice of database structure which uses

relational model and the other choice of ours which uses non-relational model, respec-

tively. The following section will discuss existing migration tools, performance evaluation,

advantages and disadvantages of these tools. Based on the data we collect by analyzing

these tools we will be able to come up with a solution to the issue which this research is

about. Then, solution of researcher will be applied to a real world case, and performance

values will be discussed. The last section will be about the future work and summary.

9

2. Data Model

In this section data migration methodology will be discusses. Researcher will explain the

concepts of RDBMS and NoSQL, then reasons of chosen databases is discussed.

2.1 Data Storing Models

As we said earlier one of the most important and tricky part of building either small or

enterprise applications is to decide how to store data. Today the majority prefer relational

model, while others use non-relational one. Both have some advantages and disadvantages.

In this section the models and the systems which use these models are discussed.

2.1.1 Relational Model

In 1970, E. F. Codd introduced a new model named relational model. [2] The systems

that use relational model are called Relational Database Management Systems (RDBMS).

In relational model, systems aim to structure the data, therefore these systems provide

structured environment. This environment has schemes, tables, columns and rows. Based

on these properties we are able to say that relational model aims to create a relation among

data. Having structured data helps us to understand business model more clear, and adapt

the data to any unexpected scenario. [3]

Suppose we build a delivery system application, and we need to store user data. Basically,

we need user's �rst name and last name, contact information such as phone number and

email address and delivery address. For now, we will skip the scheme part, and will focus

on table part. In order to store these user data we need to create table namedUSERS. This

name is up to us, and we are able to name it as we want. As it has been told earlier, in

relational models tables have columns which created during table creation with speci�c

name and characteristics. In our case, we create columns named�rstname , lastname,

email, phone, street, city, country. Now, we have a table with seven columns but zero

row - data.

Fig 1 illustrates simple users table which has 2 rows. There two users with contact and

delivery information. This table has been created in Oracle. In order to come this step

10

Figure 1.Basic USERS Table

researcher followed some steps. Researcher uses a graphical interface to communicate

with database. Here is the steps:

1. Create database

2. Create table

3. Populate table

Figure 2.create table query[4]

Fig 2 illustrates query to create table in Oracle. As it is seen it is mandatory to follow some

syntax rules, and use some keywords such ascreate, table, varcharand to give name to

columns. As �gure shows all columns are supposed to have text values and character limit

is 255.

In order to populate tables we need to follow some insertion rules. There is query to insert

data into a table. We need to use some keywords such asinsert, into, valuesand to specify

table name which isEMPLOYEES in our case. Once we speci�ed these values the last

step is inserting values which are data - rows of our table. It is illustrated inFig 3.

11

Figure 3.Populate table query[4]

Advantages

Data is structured. If a developer needs to store users data, he/she has to create users table

with some properties. The structure have to be speci�ed. So, it is easy to understand what

data is stored in which data without being have to check all rows. The other advantage is

developer does not have to be ready to handle unexpected scenarios. He/she know what

data will be stored in table, and what data is supposed to fetched from table. It also make

to create relations between multiple tables which is called data normalization.

Disadvantages

Data is structured. It means, developer risks to lose some data. Let's assume we need to

store user behaviour in our database, and in structured data model - relational model it is

not possible to store all kind of data as the model is not available for it.

12

2.1.2 Non-Relational Model

Non-relational model is mostly used NoSQL databases. NoSQL databases concept is trend

topic of last decade because of its advantages on use over RDBMS. There are three types

of non-relational database models.

� Key-Value Stores

� Column Oriented Stores

� Document Based Stores

SimpleDB of Amazon is very good example forKey-Value Storesystems. In these sys-

tems in order to store data key-value concept is used. To fetch data from db developers need

to use key. In this kind of systems it is possible to store both structured and unstructured

data. [5]

This type of stores are the most known non-relational stores. The data are stored as pair,

and simplicity of the structure helps to manage the data in an ef�cient way. The key can

be anything: it can be a simple text, (ie. �le name, url or hash) or structured. Oracle

NoSQL composite key concept is a great example to structured key. And the other part of

the pair, value, is used to represent the data we aim to store, which can be with arbitrary

structure, size and type. This data can be a string or a document, or storing an image is

also possible. [6]

The issue here is that, as these type databases work on key-value principle, the best use

case for them is performing search operations with key. Therefore, fetching data with an

identi�cation (key) parameter is highly suggested. For example, fetch an order by its id,

or get user information by its username etc. Not all applications works only in this way.

So, it may require to search for a data based on any parameter. Let's assume we need to

get users who are younger than 30 years of age. This kind of queries are not supported by

the system (in simpler versions). Therefore it is needed to perform this kind of operations

in client side. On the other hands, advanced systems such as Redis provide this kind of

functionalities. [6]

We can group key-value database in three types:

1. In memory: Stores data in memory, in order to provide fast access to data. This type

of stores are used to store transient data.

2. Persistent: Stores data in disks: HDD/SSD. This type of stores are suggested to be

used when non-transient data should be stored.

13

3. Hybrid: Best example is Redis. It is combination of both in memory and persistent

methodology. Firstly, data is stored in memory, and it is written into disk. [6]

Figure 4.Key Value Storage Architecture[7]

4 illustrates the architecture of a simple key value database. In the �gure, we can see that

key part consists of two keys: partition key and sort key, while the value part is used to

store products data.

We said earlier that NoSQL database is good to store unstructured data, but structured

data can be stored in NoSQL databases, too. Still, NoSQL databases have advantages over

RDBMS. To store structured data we can useColumn Oriented Stores. These systems

are not shcemeless, and we do not have to read other columns data but only the ones we

want to. HBase and Cassandra DBs are example of this kind of stores. [5]

Bigtable of Google is the inspiration for this type of stores. In this type of databases, a

table is called a column family, and a column family consists of a number of columns.

At the same time, a column family is part of the schema. The schema is �exible and lets

columns to be removed and added during runtime. [5]

A column has two parameters: name and value. These values can be anything, a string or a

(un)structured data. Values in databases are represented as rows. This type of structure

is familiar to us from key-value stores. So, we are allowed to say that column oriented

databases are extended version of key-value stores. [5]

14

	List of Figures
	Introduction
	Problem Statement
	Thesis Structure

	Data Model
	Data Storing Models
	Relational Model
	Non-Relational Model

	Databases
	Why Oracle
	Why Cassandra

	Apache Cassandra
	Cassandra in Details
	Architecture
	Data Versioning and Consistency

	Data Definition
	Data Modelling in Cassandra

	Data Migration
	From RDBMS to NoSQL
	Our Proposal

	Scheme Structure Design
	Mobile Payment System
	Database Structure
	Theories in Practice
	Analyze current structure
	Design scheme in target database
	Design mapping entities in code

	Performance Evaluation

	Conclusion
	Future Work

	Bibliography
	Licence

