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Zero-shot Machine Unlearning using GANs

Abstract:
This thesis addresses the crucial task of machine unlearning, which involves the removal
of specific data from trained machine-learning models to comply with privacy regulations
and enhance data quality. With the rapid advancements in AI and the extensive use
of machine learning models in various applications, efficient unlearning methods are
increasingly urgent. Traditional approaches, such as retraining models from scratch, are
impractical due to high resource consumption and time constraints.

The thesis proposes two innovative techniques: MuGAN and zMuGAN. MuGAN,
short for Machine unlearning using GANs, is designed for scenarios with limited access
to the original training dataset. It uses Generative Adversarial Networks (GANs) to cap-
ture the data distribution during the model’s initial training and generate synthetic data
for unlearning upon receiving such a request. Similarly, zMuGAN, short for zero-shot
Machine unlearning using GANs, addresses situations where no access to the training
data is available at all. It utilizes a GAN-based model inversion technique to approximate
the original dataset and facilitate unlearning through an impair-repair unlearning process.
Both techniques are evaluated on image classification tasks, particularly class forgetting,
highlighting the sensitive nature of image data. The proposed methods effectively pre-
serve model utility while ensuring effective unlearning.

The primary contribution of this thesis is proposing robust and efficient solutions for
machine unlearning for scenarios with restricted data access. By leveraging GANs and
innovative unlearning processes, MuGAN and zMuGAN offer significant advancements
in the field, addressing the urgent need for practical and scalable unlearning techniques.
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CERCS: P176
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Zero-shot masinõppe unustamine kasutades GAN-e
Lühikokkuvõte:

See lõputöö käsitleb masinõppe üliolulist ülesannet, mis hõlmab spetsiifiliste andmete
eemaldamist koolitatud masinõppemudelitest, et järgida privaatsusnorme ja parandada
andmete kvaliteeti. Tänu tehisintellekti kiirele arengule ja masinõppemudelite laialdasele
kasutamisele erinevates rakendustes on tõhusad õppimise eemaldamise meetodid üha
pakilisemad. Traditsioonilised lähenemisviisid, nagu mudelite nullist ümberõpe, on suure
ressursikulu ja ajapiirangute tõttu ebapraktilised.

Lõputöö pakub välja kaks uuenduslikku tehnikat: MuGAN ja zMuGAN. MuGAN on
mõeldud stsenaariumide jaoks, millel on piiratud juurdepääs algsele treeningandmete
kogumile. See kasutab generatiivseid võistlevaid võrke (GAN), et püüda andmete jaotust
mudeli esmase koolituse ajal ja genereerida sünteetilisi andmeid, et sellise päringu saa-
misel välja õppida. Samamoodi käsitleb zMuGAN olukordi, kus koolitusandmetele pole
üldse juurdepääsu. See kasutab GAN-põhist mudeli inversioonitehnikat, et lähendada
algset andmekogumit ja hõlbustada õppimist kahjustuste parandamise protsessi kaudu.
Mõlemat tehnikat hinnatakse piltide klassifitseerimise ülesannete puhul, eriti klassi unus-
tamisel, rõhutades pildiandmete tundlikku olemust. Pakutud meetodid säilitavad tõhusalt
mudeli kasulikkust, tagades samal ajal tõhusa õppimise.

Selle lõputöö peamine panus on tugevate ja tõhusate lahenduste pakkumine masi-
nõppeks, mida saab kasutada mudeli arendamise ja juurutamise erinevates etappides.
Kasutades GAN-e ja uuenduslikke õppest vabastamise protsesse, pakuvad MuGAN ja
zMuGAN selles valdkonnas olulisi edusamme, lahendades pakilise vajaduse praktiliste
ja skaleeritavate õppimise eemaldamise tehnikate järele. 1

Võtmesõnad: Tehisintellekt (AI), Privaatsus,

CERCS: 176

1Translation generated using Google Translate
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1 Introduction

1.1 Problem Overview
With the overwhelming advances in AI, machine learning models with their variations
have become an indispensable part of modern life. They are an essential part of health-
care services, autonomous machines, and security applications. Most companies and
products started using AI to streamline processes and give users smoother, refined
experiences. With such rapid development, there is an insistent need to develop meth-
ods for unlearning – or “forgetting” – irrelevant, privacy-violating, or inaccurate data
[CY15, BCCC+21, NHN+22].

As commonly known, ML models’ quality depends heavily on the data used for
training. With the emergence of big data and the wide deployment of ML pipelines,
ensuring the quality of those data points is becoming increasingly difficult. Having
corrupted or biased data would reflect on the models’ prediction. Depending on the
application, many machine-learning models undergo data drifts where the original data
used for training becomes irrelevant. Moreover, due to emerging privacy regulations such
as GDPR [Ros11, HVDSB19] and California Consumer Privacy Act (CCPA) [Gol20],
users now have “the right to be forgotten.” Although still vague, many understand this to
include the removal of private data that was used everywhere, including the weights of
the machine learning models used in this service. Thus, developing machine unlearning
techniques is imperative to securely and effectively deploy machine learning models.

The term machine unlearning was first coined by [CY15] in 2015, and it gained
popularity as Google published a technical challenge under the same name [neu23].
Practically speaking, machine unlearning could be defined as the process of removing
data from a trained model so that it would behave in a similar fashion to a model that
has never seen the data before [BCCC+21]. The naive solution for unlearning a subset
of data would be retraining a model from scratch. However, this is very ineffective and
impractical for a number of considerations. First, it unnecessarily consumes a lot of
resources. For example, it was reported that training ChatGPT-3 cost OpenAI around 20
million dollars [ZZL+23]. Thus, it would be unthinkable for most companies to re-train
their models after each privacy complaint or whenever a biased document is detected.
Second, it takes a lot of time. Thus, assuming companies would comply and retrain the
model from scratch, removing the data would be delayed at best.

Thus, the research community developed various techniques for different machine-
learning tasks and models’ architectures. Yet, the field is still considered to be in its
infancy. Many challenges still hinder the wide deployment of such techniques. First,
most of the techniques suggested are not universally applicable to all ML architectures.
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Second, most unlearning techniques require access to the training dataset, the forget
dataset, or both. This is often impossible because those datasets could be proprietary,
deleted, or decentralized. Third, unlearning techniques vary in their efficiency. Some
consume more resources and time compared to the cost of retraining.

1.2 Scope and Goal
This thesis aims to address the problem of not having access to any observable data.
We are addressing two variants of this problem. The first variant is having time-limited
access to a dataset. In the second variant, we do not have any access to the training data
at all. In literature, those techniques are called one-glance and zero-shot, respectively.

We are proposing two innovative techniques that would enable unlearning without
access to the retain dataset or the forget dataset. For the first technique, zMuGAN, GAN
are used to perform model inversion to recover data points that would be used to perform
unlearning [YCKK19]. For the second technique, MuGAN, assuming having limited
access to the training dataset, we train GANs to capture the main distribution of the
data. Later, upon receiving a deletion request, we generate samples from the trained
GANs and use them for unlearning. Those two unlearning setups are selected for several
reasons. First, to the best of our knowledge, the zero-shot and the one-glance unlearning
setups are not addressed enough in the literature, and the few existing solutions heavily
compromise the model’s utility, rendering them unattractive. Second, by addressing those
two setups, we are empowering ML researchers and engineers throughout the different
stages of model design and deployment. That is, if a model is in the early development
stages, MuGAN could be used to enable unlearning requirements; further, if a model is
already in production, z-MuGAN could be used to perform unlearning without requiring
any additional storage or modification of the training process.

This thesis focuses mainly on the task of removing – unlearning – information used
by deep learning models. The selected use case is image classification. The rationale
behind the selection was twofold. First, images represent one of the most sensitive data
types; thus, this task has been widely studied in literature [GAS20a, GAS20b, GAR+21].
Second, due to the non-convex nature of computer vision models, there is a big gap in the
literature addressing the particular setup we are working with – namely, data-restricted
setups. The scope of this thesis mainly addresses the task of class forgetting, in contrast
to data points forgetting or dataset forgetting. This setup was selected because it is used
widely in common AI applications. For example, in face recognition models, FaceID is
usually modeled as a discrete class. Thus, the task of forgetting a person would translate
to the task of forgetting their associated class. Throughout our work, we will demonstrate
the effectiveness of our proposed techniques in navigating those challenges.
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1.3 Structure
This thesis has the following structure: in Chapter 2, we provide a literature review of
the field to equip the reader with the necessary background information. In Chapter 3,
we discuss our proposed technique. In Chapter 4– The Experiment Setup, we detail the
experimental setup, the selected models, and the datasets used to evaluate our technique.
In Chapter 5, we list the collected results and provide a comprehensive comparison
between the performance of our technique and baseline techniques. In Chapter 6, we
provide commentary on the obtained results and future work. Lastly, in Chapter 7, we
summarize the work.
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2 Background

2.1 Machine Learning
Machine learning (ML) is a subset of artificial intelligence that involves creating al-
gorithms capable of performing specific tasks without explicit instructions. Instead,
these models rely on patterns and inference to make predictions or decisions. Typically,
ML models are trained using vast amounts of data, and algorithms learn from this data.
Consequently, models can make informed judgments based on learned patterns without
requiring explicit programming to execute their tasks. Generally, most machine learning
problems fall under two categories: regression and classification tasks. In regression
tasks, the ML model tries to produce a continuous value output, such as daily temperature
or property price. In contrast, classification tasks involve selecting a label or a class that
best describes the input, such as plant species detection or face recognition.

Various machine learning algorithm families exist, including supervised learning,
unsupervised learning, self-supervised models, and reinforcement learning [KJ18]. In
supervised learning, the algorithm is trained using a labeled dataset, where each instance
in the training dataset is associated with an output label. The primary goal of supervised
learning is to find a mapping between the inputs and outputs, enabling the prediction of
output values for new data. Some widely used supervised learning algorithms are linear
regression, logistic regression, support vector machines, and neural networks.

Unlike supervised learning, unsupervised learning algorithms are used when the
information used to train is neither classified nor labeled. This type of learning studies
how systems can infer a function to describe a hidden structure from unlabeled data.
Some of the widely used unsupervised learning algorithms include (e.g., k-means [AV07]
and hierarchical clustering [CAKMTM17])

2.1.1 Deep Learning

Deep learning, a subset of machine learning, has proven highly effective across various
fields, such as computer vision, natural language processing, and time-series analysis. Its
success is attributed to its deep architecture, consisting of multiple neural network layers.
These architectures enable the models to learn complex data representations, particularly
excelling with unstructured data like images, audio, and text. By autonomously extracting
features and identifying hidden patterns, deep learning achieves superior inferential
performance [GBC16].

Convolutional Neural Networks (CNNs) are a category of deep neural networks that
are particularly powerful for tasks related to recognizing and classifying images. They
are also used effectively in other areas, such as video recognition, recommender systems,
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and natural language processing. CNNs are distinguished from other neural networks by
their architecture, specifically designed to process pixel data [LKF10].

CNNs consist of an input layer, an output layer, and multiple hidden layers. The
hidden layers of a CNN typically include a series of convolutional layers, pooling layers,
fully connected layers, and normalization layers. Here’s a brief description of these main
layers:

Convolutional Layer: The primary building block of a CNN. This layer applies a
convolution operation to the input, passing the result to the next layer. It helps
CNNs learn features from the input images which are essential for recognizing
objects.

Pooling Layer: Also known as a downsampling layer, this layer reduces the input
volume’s spatial dimensions (width, height) for the next convolutional layer. It
is used to decrease the computational power required to process the data through
dimensionality reduction. Furthermore, it helps extract dominant features, which
are rotational and positional invariants, thus maintaining the process of effectively
training the model.

Normalization Layer: This layer normalizes the previous layers’ output to improve
the model’s convergence rate and reduce the sensitivity to network initialization
[IS15].

Fully Connected Layer: Neurons in a fully connected layer have full connections to
all activations in the previous layer, as seen in regular neural networks. Their
activation can hence be computed with a matrix multiplication followed by a bias
offset.

By utilizing these layers effectively, CNNs can successfully capture the spatial and
temporal dependencies in an image by applying relevant filters, allowing them to learn
features at various levels of abstraction.
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Generative Adversarial Networks (GANs) are a class of artificial intelligence algo-
rithms used in unsupervised machine learning, implemented by a system of two neural
networks contesting with each other in a zero-sum game framework. This technique was
introduced in [GPAM+14] in 2014. A GAN consists of two parts:

Generator: The generator’s role is to produce data that is indistinguishable from
genuine data. It learns to create plausible data. The generated instances become
positive training examples for the discriminator.

Discriminator: The discriminator’s role is to identify whether a given data instance
is real (coming from the training set) or fake (created by the generator). It is a
classifier.

The generator and the discriminator are usually trained simultaneously: the generator
aims to increase the error rate of the discriminator by producing novel synthesized
instances, while the discriminator tries to decrease the error rate by learning to distinguish
real from fake.

There are different GAN architectures depending on the target use case and the loss
function used. In this thesis, we utilized conditional GANs, Deep convolutional GANs,
and WGANs.

Deep Convolutional GANs (DCGANs): These use convolutional and convolutional-
transpose layers in the discriminator and generator, respectively. They are widely
used for image-generation tasks.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

Equation 1 describes the min-max optimization objective of training a GAN. In
the first term, the discriminator aims to maximize its output probability on real
data. In the second term, the generator is trying to produce a realistic output that
would fool the discriminator into predicting that the fake output is realistic.

Conditional GANs (cGANs): These are an extension of the basic GAN architecture
which includes additional conditional variables that influence the generation pro-
cess, allowing the generation of images of specific classes.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z),y∼pdata(y)[log(1−D(G(z|y), y))]
(2)

The equation in 2 is the same as 1. The only difference is conditioning on the label
y.
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2.2 Machine unlearning
After the massive popularity and wide deployment of machine learning models, the need
for techniques to remove data from trained models has become increasingly important.
Such need stems from privacy, usability, and regulatory requirements. As mentioned
in section 1, removing – unlearning – corrupted data points leads to better-performing
models. Further, after receiving a data removal request, it is not enough for the concerned
parties to remove data only from their databases. That is, attacks such as Model Inver-
sion Attacks and Membership Inference Attacks could reveal unintended information
about the samples used during training. This motivated the advancements in the field of
machine unlearning. That is, the field aims to study the efficient removal of data points
along with their influence on trained machine-learning models. It should be clear that
the purpose of machine unlearning intersects with other domains, such as differential
privacy, data anonymity, lifelong learning, catastrophic forgetting, and fairness. Here are
the differences between machine unlearning and those other domains.

Differential privacy aims to minimize the contribution of each data point to the final
trained model. This would lead to a situation where, by only analyzing the output
of the model, it couldn’t be inferred whether a data point was used for training
[DR+14]. Such a field intersects with the privacy requirement posed by machine
unlearning. However, machine unlearning aims at the removal of samples from the
model without imposing any privacy requirements on the initial model.

Data anonymization aims to conceal sensitive data in the training dataset [WWJ+21].
In contrast, machine unlearning aims to remove data points regardless of their
content and the initial condition of the training dataset.

Lifelong Learning aims to continually update machine learning models to adapt to the
changes happening to the data while at the same time retaining the information
that was previously learned. Machine unlearning intersects with Lifelong Learning
in its application to make machine learning models more adaptive [Sch20]. How-
ever, machine unlearning could be understood as an inverse process that is mainly
concerned with the removal of data. On the other hand, unintended forgetting, also
named catastrophic forgetting, describes the phenomenon when models’ perfor-
mance degrades over time as they fail to retain previously learned information.
Indeed, the same principle could be used to induce forgetting. However, where
catastrophic forgetting is concerned with an unintentional phenomenon, unlearning
is an intentional phenomenon that could be triggered by service providers.

Fairness , as related to trustworthy AI systems, aims to ensure the fair representation
of classes in machine learning models. Indeed, advances in machine unlearning
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could heavily contribute to ensuring the fairness of models where corrupted, over-
represented, or biased data points could be removed [CH20]. However, fairness
has different objectives compared to machine unlearning. The exact objectives of
machine unlearning will be introduced in next section.

2.2.1 Preliminary

Now, before providing a definition of the task machine unlearning, a few related concepts
and notations should be defined first.

Based on the supervised learning context, training samples could be defined as a
collection of points (X, y) where X ∈ Rd and y ∈ R. The general purpose of machine
learning is to “train” a model M with parameters θ using some learning Algorithm A.
Let’s denote the original dataset used during the initial training process as D. For the
context of unlearning, let’s define Df to be the subset of D that we are interested in
forgetting – i.e. unlearning. On the other hand, let’s define Dr to be the remaining subset
of D that we are interested in retaining.

Dr = D \Df

Definition 2.1 (Machine Unlearning). given a training dataset D, a trained model M =
A(D), a retain dataset Dr, and a forget dataset Df , an Unlearning algorithm U aims to
produce Mf = U(M) and ensures that Mf performs as if it has never seen Df before.

The outcome of any unlearning algorithm would roughly fall into one of two cate-
gories: exact unlearning or approximate unlearning. Given a model Mr trained from
scratch without Df , exact unlearning aims for the unlearned model Mf to have the same
output distribution as Mr. Although very difficult to implement, it ensures that no data
at all could be recovered from the model. Approximate unlearning is more suitable for
more complex models and has more relaxed requirements [NHN+22]. Although easier
to implement, it doesn’t provide any guarantees that the influence of those data points is
fully removed from the model’s internals. Strong approximate unlearning aims to have
the distribution of the unlearned and retrained models’ parameters within an acceptable
threshold. On the other hand, weak approximate unlearning enforces the constraints only
on the final activation layers of both models.

The objectives of Machine Unlearning could be summarized in the following points:

The first objective is to address privacy concerns in ML models. That is, machine
unlearning algorithms should ensure the removal of data points and their influence
from trained models. Thus, it reduces the risks of inversion and membership
inference attacks.
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The second objective is to improving the utility and fairness of ML models [KTHT23].
By having an efficient, effective unlearning technique, service providers would be
able to easily remove corrupted or biased data points, resulting in a safer and fairer
service.

2.2.2 Unlearning Techniques

Over the years, many unlearning algorithms have been proposed. Unlearning techniques,
based on their mood of operation, could be divided into two categories: model manipula-
tion and data manipulation. Model manipulation is the process of modifying the internal
weights of the model that are associated with the data selected for forgetting. On the
other hand, data manipulation is the process of curating a new dataset that would be used
later to train the model. Such a training process with those data points will cause the
deletion of the influence of the designated forget dataset.

Data Manipulation Multiple techniques fall under the data manipulation category. In
this section, we will provide an overview of how data manipulation techniques generally
work, and we will provide an in-depth description of the methods that provided state-
of-the-art performance in the setups related to the one addressed in this thesis. Namely,
we will discuss UNSIR [TCMK24], Just-in-Time Unlearning (JiT) [FFS+24], Zero-shot
unlearning using Gated knowledge Transfer (GTK), Error Minimization-Maximation
Noise (EMMN) [CTMK23b], and lastly, Amnesiac Unlearning [GNG20].

UNSIR In this work, the concept of zero-glance unlearning was introduced. It was
concerned with scenarios where the forget dataset is not available, yet the retain dataset
is. This is a practical use case since, maybe, due to regulations, data deletion requests
could result in the timely deletion of data points from the database. Thus, at the time of
performing unlearning, we only have access to the remaining dataset and the class we
are concerned with forgetting. Similar to other works presented in this thesis, UNSIR,
short for UNlearning by Selective Imair and Repair, mainly targets deep learning models.
Additionally, the analysis provided in their research proves its effectiveness for computer
vision tasks, namely face recognition. To the best of our knowledge, UNSIR is one of
the earliest works to address the task of multi-class unlearning, making it an influential
work in the field.

UNSIR, by design, requires only access to the retain dataset. The forgetting process
consists mainly of two steps: Impairing and repairing. During the impair phase, the
model’s weights are initially frozen, and it would be used to generate noise samples that
would maximize the classification loss corresponding to the unlearning class [TCMK24].
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Figure 1. A conceptual diagram of UNSIR from [TCMK24]. UNSIR accepts as an input
the trained model, the retain dataset. In the first step, UNSIR generates noise that aims
to maximize the loss function evaluated on the target forget class. In the second and third
steps, the model would be first trained with a dataset containing the noise input. Then, it
would be trained with samples from the retain dataset.

The utilized loss function is listed in equation 3. In cases where multiple classes are
targeted for deletion, the noise would be maximized according to the loss of the classes
intended for deletion without needing to execute the algorithm more than once. Those
data points would then be used along with a few samples from the retain dataset to train
the mode. Next, in the repair phase, the model would be fine-tuned with a subset of the
retain dataset. Through experimentation, the authors of the work suggest that only one
step of impair-repair steps is enough to have the desired forgetting effect.

argmin
θ

1

N
Eθ [−L(f, y) + λ∥wnoise∥] (3)

Error Minimization-Maximation Noise (EMMN) The authors in [CTMK23b]
were the first to propose methods that target the zero-shot unlearning setup– i.e., situations
where we don’t have access to the retain data Dr or the data requested for forgetting
Df . In their work, two methods were proposed. The technique at hand, EMMN, is an
extension of UNSIR [TCMK24]. In UNSIR, error-maximization was used in the impair
step to generate noisy samples that would later be used to induce forgetting for the target
class. EMMN used the same concept. In contrast to UNSIR, EMMN does not have
access to any data points. EMMN could not perform a repair class with data from the
original dataset based on the assumptions of the problem setup. Thus, the method at hand
uses an error-minimization step to generate sample points that could represent the data
from the retaining class. Later, the same impair-repair steps could be repeated until the
desired performance is achieved. In practice, this technique performed very poorly, and
that’s why the authors of the same work introduced Gated Knowledge Transfer, GTK for
short.
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Figure 2. A conceptual diagram of EMMN from [CTMK23b]. This figure describes the
three main steps of EMMN. First, it generates noise to minimize the loss function on the
retain classes. Next, it generates noise that would increase the loss on the forget class.
Then, both datasets would be combined and used to train the model.

Zero-shot unlearning using Gated Knowledge Transfer (GKT) The Gated
Knowledge Transfer (GKT) method was proposed as an enhancement to the Error
Minimizing-Maximizing Noise (EMMN) approach in the cited work. This method
utilizes a knowledge distillation strategy where a generator is employed to produce data
points that intentionally increase the Kullback-Leibler (KL) divergence between the
outputs of the student and teacher models. An essential addition is a gating mechanism,
which selectively permits the flow of data points that do not pertain to the class designated
to be forgotten [CTMK23b]..

The loss function in GKT combines the KL divergence and an attention loss, described
by the following equations:

Ls = DKL(T (xp)∥S(xp)) + βLat (4)

Lat =
∑
l∈NL

f(A
(t)
l )− f(A

(s)
l )

∥f(A(t)
l )∥2∥f(A(s)

l )∥2
(5)
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Here, Ls represents the total loss, with DKL measuring the divergence between the
teacher’s and the student’s predictions on the processed data point xp, and Lat quantifying
the differences in attention mechanisms across layers, weighted by β.

The gating mechanism serves as a critical filter, utilizing the probability outputs
from the teacher model to assess the relevance of each synthetic data point. Data points
exhibiting a probability of association with the target forget class above a predetermined
threshold are blocked, where this threshold is a hyperparameter.

Despite the theoretical promise, practical applications of the GKT approach have
revealed significant shortcomings. Experiments have shown that the results initially
reported were difficult to replicate using the provided source code. Additionally, the
method required an impractically long execution time coupled with severely impairing
the model’s utility, raising concerns about its viability in real-world scenarios. This
underscores the necessity for further optimization and validation to ensure the method’s
practicality and reliability.

Zero-shot unlearning using Lipschitz Regularization (JiT) Just-in-time For-
getting was introduced as an unlearning technique for the zero-shot setup proposed by
[FFS+24]. Previously, in [CTMK23b], zero-shot setup was characterized by not having
access to either the forget or the retaining subset. In this work, an altered definition of the
setup was assumed. Just-in-time Forgetting assumed having access to the forget dataset
while not having to the retain dataset. This setup is relevant where models would receive
the deletion requests along with the data that needs to be forgotten. Yet, it must be
pointed out that it differs from the situation addressed in this thesis since we assume the
inaccessibility of the entire training data at the moment of receiving a deletion request.

JiT is based on the concept of Lipschitz Continuity, a technique that was promoted
by [YM17] to neural networks to reduce their sensitivity to input changes and to enhance
their generalizing abilities. A model is said to Lipschitz continuous if there exists a
constant k such that:

∥fθ(x)− fθ(y)∥p ≤ k∥x− y∥p (6)

JiT applies the same concept to “smooth” the model response to input perturbations.
That is, it minimizes the difference between perturbed input samples and the original
input. In other words, it updates the weights of the model to respond to samples from the
forget dataset as if they were random samples. The steps of JiT are detailed in Algorithm
1. So, for a given sample from the forget dataset, JiT aims to optimize equation 7:

ℓ = E
(
∥fθ(x)− fθ(x+ ξ)∥2
∥x− (x+ ξ)∥2

)
≈ 1

N

N∑
j=1

∥fθ(x)− fθ(x+ ξj)∥2
∥ξj∥2

(7)
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Algorithm 1 JIT Unlearning (based on [FFS+24])

Require: Model: fθ(·), Forget set: S, Optimizer: optim, η, σ,N
1: Initialise optim(θ, lr = η)
2: for x ∈ S do
3: ℓ = 0
4: for i ∈ range(N) do
5: x′ = x+ ξ for ξ ∼ N (0, σ2)

6: k = ∥fθ(x)−fθ(x
′)∥2

∥ℓ∥2
7: ℓ = ℓ+ k
8: end for
9: end for

10: ℓ = ℓ/N
11: θ ← optim∇θℓ
12: return f ′

θ(·)

This technique operates with varying effectiveness in handling different unlearning
cases, such as class forgetting, sub-class forgetting, and data point forgetting. One
notable advantage is that it does not require access to the retraining dataset. However, it
has several drawbacks, some of which stem from the inherent nature of the problem. Like
other unlearning algorithms, JiT is sensitive to hyperparameter selection. Additionally,
JiT faces a specific limitation in its reduced unlearning performance for models with
batch normalization. This limitation arises because the optimized loss is calculated for
each individual sample rather than for entire batches.

Randomized Label Unlearning: This method was introduced in [GNG20] under
the name Unlearning. The forget subset would be assigned a randomized label upon
receiving a deletion request. Then, the model would be fine-tuned with this subset for a
number of epochs until the desired forgetting effect takes place.

Amnesiac Unlearning: The following technique was suggested to address a privacy
concern linked to the randomization method mentioned earlier. Specifically, sharing the
forget dataset with service providers was considered not privacy-preserving since they
could potentially store data versions. [GNG20] proposed an unlearning technique based
on modifying the training process. This involved using a separate database to track the
epoch, batch, and parameter update of each data point. Upon receiving a deletion request
for a data point, the parameter update for that point would be subtracted from the model.
However, this technique has two main drawbacks: first, it imposes a significant storage
cost on the service providers, and second, the model’s performance would be severely
compromised after receiving multiple deletion requests.
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Model Manipulation: The model manipulation category encompasses techniques such
as SCRUB and Bad Teacher. Both SCRUM and Bad teacher Algorithms are based on
the teacher-student training paradigm.

SCRUM: In [KTHT23], the authors contributed an unlearning technique based
on the teacher-student paradigm. Their technique requires access to the entirety of the
remain and the forget dataset. Assuming accessibility of the training dataset, SCRUB,
short for SCalable Remembering and Unlearning unBounded, is effective for multiple
unlearning scenarios, including reducing classification confusion, removing biases, and,
most importantly, promoting users’ privacy. SCRUB starts by instantiating two replicas
of the original model; one would be designated as a student and the other as a teacher.
Then, the student would be trained to obey the teacher with regard to the retain dataset
and to disobey it with regard to the forget dataset. This could be naturally modeled as
minimizing the KL-divergence between the teacher and the model with regard to Dr and
maximizing it with regard to Df . Further, the authors added an additional term to the
optimization function; namely, they minimized the loss of the unlearned model on the
retaining data.

min
wu

 α

Nr

∑
xr∈Dr

d(xr;w
u) +

γ

Nr

∑
(xr,yr)∈Dr

l(f(xr;w
u), yr)−

1

Nf

∑
xf∈Df

d(xf ;w
u)


(8)

Algorithm 2 SCRUB from [KTHT23]

Require: Teacher weights w0

Require: Total max steps MAX-STEPS
Require: Total steps STEPS
Require: Learning rate ϵ

1: w ← w0

2: i← 0
3: repeat
4: if i < MAX-STEPS then
5: w ← DO-MAX-EPOCH(w)
6: end if
7: w ← DO-MIN-EPOCH(w)
8: i← i+ 1
9: until i ≥ STEPS

Acknowledging the trade-offs between different unlearning objectives and the differ-
ent unlearning scenarios, the authors in [KTHT23] introduced a variant named SCRUB
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Algorithm 3 DO-MAX-EPOCH
Require: Student weights w
Require: Learning rate ϵ
Require: Batch size B
Require: Forget set Df

Require: Procedure NEXT-BATCH
b← NEXT-BATCH(Df , B)
repeat

w ← w + ϵ∇w

|b|
∑

x∈b d(x;w)

b← NEXT-BATCH(Df , B)
until b

Algorithm 4 DO-MIN-EPOCH
Require: Student weights w
Require: Learning rate ϵ
Require: Batch size B
Require: Retain set Dr

Require: Procedure NEXT-BATCH
b← NEXT-BATCH(Dr, B)
repeat

w ← w− ϵ∇w

|b|
∑

(xr,yr)∈b αd(xr;w)+

γl(f(xr;w), yr)
b← NEXT-BATCH(Dr, B)

until b

+ R, where R stands for Rewind. Mainly, the only difference is in selecting which
intermediate checkpoint demonstrates the intended unlearning characteristics. That is,
SCRUB could result in an aggressive forgetting of samples, which could make them
identifiable by an adversary performing a membership inference attack. Thus, the authors
recommended evaluating the model at the end of the SCRUB algorithm to benchmark
the model’s performance on Df and Dr. Then, the intermediate checkpoint displaying
the required performance and privacy characteristics will be selected.

Bad Teacher: Similar to SCRUB, the Bad Teacher technique, introduced in
[CTMK23a], follows the student-teacher paradigm. It starts by instantiating two teachers:
the first is a competent teacher model, which has the same weights as the original model,
and the second is an incompetent teacher model, which is randomly initialized. Initially,
the student has the same weights as the original model. Then, during training, the student
model is optimized to reduce the KL-divergence between its output and the incompetent
teacher model with regard to samples from the forget dataset. In contrast, the model is
optimized to reduce the KL divergence between its output and the competent teacher
model with regard to samples from the retain dataset.

L(x, lu) = (1− lu)×KL(Ts(x)∥S(x)) + lu × (KL(Td(x)∥S(x))) (9)

2.2.3 Evaluation

Evaluating the performance of unlearning proved to be an elusive task. Multiple tech-
niques with varying requirements have been proposed to measure different quantities
based on the supported use case. As detailed in [KTHT23], most of those metrics are
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Table 1. Unlearning Methods Data Requirments

Method Df Access. Dr Access. Meta-data Access
UNISR - ✓ -
EMMN - - -
GTK - - -
JIT ✓ -
SCRUB ✓ ✓ -
Bad Teacher ✓ ✓ -
Amn (rnd) Unlearning ✓ - -
Amn Unlearning ✓ ✓ ✓
MuGAN - - ✓
zMuGAN - - -

conflicting. For example, strong forgetting performance results in compromising the
privacy of those samples. [CZW+21] experimentally proved that most SOTA unlearning
techniques reveal traces that samples were unlearned; consequently, this reveals that they
once were members of the training datasets. In this section, we will introduce the most
common metrics utilized to evaluate the performance of unlearning algorithms.

Model Weights distance from Retrained Model: Inspired by the early definition of
unlearning, this metric aimed to measure how close the newly unlearned model
is to the model retrained from scratch. Multiple distance measures, such as JS-
divergence [Lin91].

Output Distribution: Similar to models’ weights distance from retrained models, this
metric aims to measure the similarity between the output distribution of the un-
learned model and the retrained one. KL-divergence is dominantly utilized in
multiple papers for both assessing the distribution distance and optimizing differ-
ent unlearning algorithms.

Output Entropy: Similarly, the assumption behind this metric is that for the forget
dataset, the entropy of the output distribution should be high, and it should be very
close to the entropy of the retrained model [FFS+24].

Forget and retain Accuracy: This is one of the most commonly used metrics. Mainly,
it required the existence of a test dataset in cases of class-forgetting or the existence
of forget dataset in cases of sample-forgetting. A good unlearning algorithm would
result in a low forget accuracy and a high retain accuracy.

Retraining Time: This metric measures the time it would take the model to re-learn the
forget dataset to reach a similar performance – i.e., accuracy – to the original model
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before applying the unlearning algorithm. Mainly, a higher retraining time would
mean that most of the information about the forget dataset is forgotten. However,
one drawback is that there is no clear upper bound. Such a metric could reward
corrupted models because they take longer to train.

Anamnesis Index (AIN): this metric is basically the same as the retraining time but
normalized over the time it would take the model re-trained from scratch to re-
learn the forget dataset [CTMK23b]. This fixes the lack of an upper bound for
the retraining time. A good-performing unlearning algorithm would achieve an
Anamnesis index of 1. That is, it would take the same time as a model trained from
scratch to relearn the forget dataset.

AIN =
rt(Mu,Morig, α)

rt(Ms,Morig, α)
(10)

Execution time: This is a simple metric that aims to measure how long it takes for
the algorithm to unlearn the forget dataset effectively. This aims to address the
efficiency objective of unlearning algorithms. As a benchmark, any unlearning
algorithm should consume less resources and time compared to a model retrained
from scratch.

Membership inference attack: This is one of the most common attacks applied to
machine learning models. In plain English, the purpose of this attack is to infer
whether a sample belonged to a training dataset or not. To understand the risk
imposed by this attack, assume a scenario where an adversary would like to know
if a medical diagnostic model is trained on a particular sample. If this is the case,
this would leak confidential information about patients’ health. Many variants of
this attack exist. The main operating principle is classifying the behavior of the
model on member and non-member data points. Attacks usually involve training
an ensemble of classifiers on a direct output or the model or on layers’ activation
scores [YZ22]. In [CCN+22], they proposed using the loss. In [SZH+18], they
demonstrated the possibility of multi-dataset/multi-modal training of attack models
using an embedding of the logit output of the models.
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3 Zero-shot Machine Unlearning using GANs
MuGAN and zMuGAN are proposed to address the problem of having limited access to
training data upon receiving an unlearning request. zMuGAN assumes having no access
to any data at all. On the other hand, MuGAN assumes having access to GANs trained
to produce data points representing the distribution of the data used during training.
Thus, the two proposed techniques provide an effective solution for the zero-shot and the
zero-glance unlearning setup.

3.1 zMuGAN
3.1.1 Preliminary: Model Inversion

Model inversion refers to the techniques used to reverse-engineer the input data on which
the model was trained, mainly based on the output of the model. This process raised
numerous privacy concerns, particularly to models deployed on sensitive data. Formally
defined, let f denote a machine learning model trained to map pair (x, y) where x ∈ X
and y ∈ Y . The function f could be expressed as y = f(x, θ), where θ represents the
parameters of the model. The goal of model inversion is finding a x̂ such that

x̂ = argmax
x‘
L(f(x‘, θ), y)

where L is the loss between the model on input x‘ and the output y.

Multiple model inversion attacks have been proposed over the years. They could
roughly be classified in black-box and white-box attacks [WFJN16]. In black-box attacks,
the adversary has access to only the model’s inputs and outputs. Attacks in this category
repeatedly query the model to gather enough information to understand the behavior of
the models on different samples. On the other hand, white-box inversion attacks describe
the scenario where the adversary has access to the model’s internal parameters, layers’
activation, and the model output.

3.1.2 Model Architecture

In scenarios where access to the original training data is restricted, the challenge of
removing specific data points or classes from a trained machine-learning model becomes
significant. Conventional approaches to machine unlearning generally necessitate direct
access to the original dataset, which is often impractical due to privacy constraints,
data unavailability, or proprietary limitations. To address this challenge, we introduce
zMuGAN, a novel method that enables machine unlearning without requiring access to
the original data.
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Figure 3. The output of model inversion technique utilized in zMuGAN applied on a
VGG16 trained on SVHN.

The zMuGAN method facilitates machine unlearning through a structured sequence
of operations. Figure 4 describes the steps of the technique. The algorithm of zMuGAN
is listed in Alg. 5. The method starts by accepting as input the pre-trained model to be
modified and the label of the target class to be forgotten. The process comprises four key
steps:

1. GAN-Based Model Inversion Initially, a GAN-based model inversion technique is
employed to approximate the dataset used for training the original model. Mainly,
we utilized the architecture proposed by [YCKK19]. This step utilizes a generator
and a decoder, along with the pre-trained classifier. Specifically, the generator
processes a concatenated vector of a noise vector z and a label y, producing an
output x. This output x is then input to the classifier to retrieve the label y and to
the decoder to reconstruct the low-dimensional representation z. The generator
network is trained using three losses: classification loss (from the classifier),
reconstruction loss (from the decoder), and diversity loss (to enhance pixel-wise
diversity in the generated outputs). The objective optimization function is listed in
Eq. 11. This algorithm utilized in this step is listed in Alg. 6. A sample of this
inversion technique is visualized in Fig. 3.

l(B) =
∑

(f(x),ẑ)∈B

(lcls(y, ẑ) + αldec(y, ẑ)) + βldiv(B), (11)

2. Synthetic Dataset Generation
The trained GAN is utilized to generate a synthetic dataset that closely resem-
bles the original training data. Based on the recommendations in [WZvdW16]
[YCKK19], an ensemble of GANs was used to increase the diversity of the output.

3. Data Splitting
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The synthetic data points are fed into the pre-trained model. Based on the model’s
predictions, these data points are divided into two subsets: the retain dataset,
consisting of data points predicted as not belonging to the target forget class, and
the forget dataset, consisting of data points predicted as belonging to the target
forget class.

4. Impair-Repair Unlearning Technique
Both zMuGAN and MuGAN utilize the same unlearning steps listed in Alg. 8. It
consists of two steps:

(a) Impair Step
A reference model is initialized, and the Kullback-Leibler Divergence KLD
between the outputs of the pre-trained model (when evaluated on the forget
dataset) and the reference model (when evaluated on random inputs) is
minimized. This step aims to effectively disrupt the model’s retention of the
forget dataset.

(b) Repair Step
The pre-trained model is fine-tuned using the data points from the retain
dataset. This step is intended to restore the model’s performance on the
retained data while ensuring that the influence of the forgotten class is effec-
tively eliminated.

The final objective of executing those two steps could be expressed using equation
12.

L = KL(M(xf )∥M(ẑ)) + L(M(xr), y) (12)

By employing these steps, zMuGAN offers a robust framework for machine unlearn-
ing that obviates the need for access to the original training data. The combination of
GAN-based model inversion and the impair-repair technique ensures that the model can
forget specific classes while preserving its overall functionality.

3.2 MuGAN
The previous technique, zMuGAN, was proposed to address scenarios where access to
the training data is totally restricted. However, there are cases where the original dataset
was available during the initial training phase. Leveraging this access can significantly
enhance the efficiency and effectiveness of the unlearning process. To address these
scenarios, we propose MuGAN, a machine unlearning technique designed to utilize
the original training dataset to train GANs, which would facilitate precise and effective
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Figure 4. A conceptual diagram of zMUGAN. This figure demonstrates the main steps in
zMuGAN. First, GAN-based model inversion from [YCKK19] is applied. The produced
GANs would be utilized to generate the Df and the Dr datasets. The predicted label
from the model would be the main filtration criteria. Then, those two datasets would be
utilized to induce forgetting and retaining.

unlearning.

MuGAN employs a structured approach for machine unlearning, assuming access
to the original training dataset during the model’s initial training. The method involves
utilizing one Generative Adversarial Network (GAN) per split (e.g., user-specific content,
class, or sub-class). The architecture of the utilized GAN is domain-dependant – in this
work, we mainly utilized DCGANs. Upon receiving a deletion request, the GANs, along
with the classifier model—the target of the unlearning algorithm—are used to identify
the data points to be used for unlearning. Figure 5 describes the steps of the technique.
The process involves generating two primary datasets:

Remain Dataset Dr This dataset includes samples from each class except the target
class.

Forget Dataset Df This dataset includes samples from the target class to be forgotten.

These two datasets are then utilized in the same two-step unlearning process de-
scribed in zMuGAN.

The primary advantages of zMuGAN and MuGAN stem from their ability to facilitate
machine unlearning under varying conditions of data accessibility effectively. zMuGAN
is particularly adept in scenarios where access to the original training data is restricted.
By utilizing GAN-based model inversion and the proposed impair-repair unlearning
process, zMuGAN can approximate and execute unlearning tasks without direct access
to the original dataset. This capability ensures compliance with privacy regulations and

26



Algorithm 5 zMuGAN Algorithm
Require: Model model
Require: Target Forget Class target_forget_class
Require: Learning Rate learning_rate
Require: Dataset Size dataset_size

1: GAN ← ApplyModelInversion(model)
2: GAN_output_list← GenerateGanOutput(GAN, dataset_size)
3: Df ← initEmptyList()
4: Dr ← initEmptyList()
5: for sample in GAN_output_list do
6: predicted_class_id← model.predict(sample)
7: if predicted_class_id == target_forget_class then
8: Df .append((sample, predicted_class_id))
9: else

10: Dr.append((sample, predicted_class_id))
11: end if
12: end for
13: shuffle(Dr)
14: shuffle(Df )
15: model_f ← unlearn(model,Df , Dr, learning_rate)
16: return model_f
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Algorithm 6 Model Inversion Algorithm Based on [YCKK19]
Require: Model model,
Require: Parameter β
Require: Parameter α

1: ClassifierNetwork ← InitClassifier(model)
2: GeneratorNetwork ← InitGenerator()
3: DecoderNetwork ← InitDecoder()
4:
5: classification_loss← InitLoss(method=’KLD’)
6: decoder_loss← InitLoss(method=’L2’)
7: diversity_loss← InitLoss(metric=’L2’)
8: for batch in num_batches do
9: noises← GenerateNoise()

10: labels← GenerateLabels()
11:
12: images← GeneratorNetwork(labels, noises)
13: outputs← ClassifierNetwork(images)
14:
15: loss1← classification_loss(outputs, labels)
16: loss2← decoder_loss(DecoderNetwork(images), noises)× α
17: loss3← diversity_loss(noises, images)× β
18: total_loss← loss1 + loss2 + loss3
19:
20: minimize(total_loss)
21: end for
22: return GeneratorNetwork
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Algorithm 7 MuGAN Algorithm
Require: Model model
Require: Pretrained GANs pretrained_GANs
Require: Target Forget Class target_forget_class
Require: Learning Rate learning_rate
Require: Dataset Size dataset_size

1: Df ← GenerateDataset(pretrained_GANs.of(target_forget_class), dataset_size)
2: Dr ← initEmptyList()
3: for class_id in list_all_classIds do
4: if class_id ̸= target_forget_class then
5: Dr.append(GenerateDataset(pretrained_GANs.of(class_id)))
6: end if
7: end for
8: shuffle(Dr)
9: model_f ← unlearn(model,Df , Dr, learning_rate)

10: return model_f

Algorithm 8 Unlearn Algorithm
Require: Model model
Require: Forgetting Dataset Df

Require: Retaining Dataset Dr

Require: Learning Rate learning_rate
1: criterion← KlDivergence()
2: ref_model← Copy(model)
3: ref_model.freeze()
4: optimizer ← AdamOptimizer(model.parameters(), lr = learning_rate)
5: for batch in Df do
6: images, _← batch
7: random_input← RandGenerator(images.shape)
8: out_r ← ref_model(random_input)
9: out← model(images)

10: loss← criterion(out, out_r)
11: minimize(loss)
12: end for
13: for retain_batch in Dr do
14: loss← model.fit(retain_batch) ▷ returns cross-entropy loss
15: minimize(loss)
16: end for
17: return model
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addresses issues related to data unavailability. MuGAN capitalizes on the availability of
the original dataset during the initial training phase. It uses GANs to capture the original
data distribution to conduct targeted unlearning. This approach guarantees high accuracy
and efficiency in removing specific data points or classes while preserving the model’s
overall integrity and performance.

Figure 5. A conceptual diagram of MUGAN. This technique consists mainly of 4 steps.
The first step takes place during the initial training of the model. One GAN would be
trained per data split ( For example, one GAN per class). Next, upon receiving a deletion
request, those GANs would be used to generate the data points later used for unlearning.
Then, the impair-repair steps described in Alg. 8 are applied.

30



4 Experiment Setup

4.1 Datasets
The CIFAR Suite and SVHN datasets were selected to evaluate the proposed unlearning
algorithm. Those two datasets are heavily used in image classification research and are
the main datasets utilized in the field of machine unlearning as well.

CIFAR10 consists of 60,000 of 32x32 RGB images representing 10 classes. There
is no overlapping between classes, which makes this dataset a perfect candidate for
evaluating class unlearning [Kri09].

Figure 6. Samples from cifar 10 from [Kri09].

SVHN is a dataset commonly utilized for object recognition originally published in
[NWC+11]. The dataset contains 600,000 colored digit images and is extracted from the
house numbers in Google Street View images. It contains ten classes representing the
digits from 0 to 9. This dataset comes in two formats: Full Numbers and Cropped Digits.
For our experiments, we utilized the Cropped Digits version.

For both datasets, we utilized the built-in versions that come with torchvision.datasets.
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Figure 7. Samples from svhn from [NWC+11].

4.2 Environment
All experiments were conducted on an HP Z2 Tower G9 Workstation with an Intel Core
i5-12600K, a DDR5 RAM of 32GB, and a NVIDIA RTX A2000 12 GB GDDR6.

4.3 Models
We mainly utilized two models of varying sizes during our experimentation. Namely,
We used AllCNN and VGG16. Those models were selected because they are the most
commonly used ones for the unlearning task. Further, with their varying sizes, they
could represent how the model’s architecture could influence the unlearning algorithm’s
performance, along with the selection of the unlearning hyperparameter.

AllCNN , short for All Convolutional Network, is introduced in [SDBR15] with
the aim to simplify the common Convolutional neural networks architecture through
utilizing Convolutional layers to replace fully connected and using striding to replace
pooling. Such changes are believed to preserve spatial hierarchical features. Further,
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Model # Trainable params.
AllCNN 1,620,010
VGG16 14,728,266

Table 2. Number of paramters per model.

utilizing global average pooling at the end of the network, instead of the typically used
fully connected layers, significantly reduces the number of learnable parameters, thus
increasing the model efficiency. At the time of its introduction, AllCNN demonstrated
very competitive performance on benchmark datasets such as CIFAR-10 and CIFAR-100.

VGG: The VGG architecture is highly influential, as it demonstrated that the depth
of the network significantly contributes to its performance [SZ15]. It comes in several
variations, with VGG16 and VGG19 being the most notable, denoting the number of
layers used. This architecture is characterized by its simplicity, mainly utilizing 3x3
convolutional filters, max-pooling layers with a stride of 2, and three fully connected
layers at the end.

4.3.1 Models Training

Those models were trained on the CIFAR10 and the SHVN dataset for 30 epochs with
a learning rate of 0.001 and an Adam optimizer. The accuracies and the losses of the
models are shown in the figures [ 11a, 11b, 12a, 12b, 13a, 13b, 14a, 14b, ] in the
Appendix.

4.4 Baseline Methods
A number of unlearning algorithms were implemented for a comparative analysis. Al-
though only EMMN and GKT address the same problem constraint as our proposed
method, other methods were implemented as well to give a clear overview of the trade-
offs between different unlearning algorithms. We utilized the original model and the
retrained model as the baseline models. We also evaluate the performance of SCRUB,
Bad Teacher, Amnesiac Unlearning, UNSIR, Catastrophic forgetting (finetuning), and
Lipschitz (JiT) Unlearning. The implementation of our method and the other baseline
methods can be found in our repo at
https://github.com/DataSystemsGroupUT/zero-shot-machine-unlearning

The tables included in the evaluation section list the results after executing each experi-
ment for five trials. The hyper-parameters for most of the methods were selected after
conducting a hyper-parameter search using Optuna [ASY+19] for 100 trials. However,
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GKT, based on the implementation of the authors, takes very long to execute, so we used
the same parameters that were mentioned in the paper [CTMK23b]. For MuGAN, we
used a learning rate of 1e-4 and a dataset side of 2500 samples per class. For zMuGAN,
we used trained five generators through the model inversion process. Each one of them
produced 1000 samples, totaling 5000 samples that were later divided into the forget and
the retain datasets. For JiT, we utilized a learning rate of 1e-6, a noise standard deviation
of 0.3, and a 100 perpetuated variant per each sample in the forget dataset. For SCRUB,
UNSIR, and EMMN, we utilized a learning rate of 5e-5.

4.5 Evaluation Metrics
We utilized the forget-retain Accuracy to evaluate the effectiveness of the forgetting
algorithm. Further, we also calculated the Anamnesis index to evaluate how long it would
take for the model to relearn the forget dataset. Also, we implemented the membership
inference attack based on utilizing an ensemble of logistic regressions trained on the
entropy of the output. Indeed, there are more sophisticated membership inference attack
methods; however, this variant is heavily utilized in the unlearning literature. Lastly, the
execution time for each method was recorded to compare those methods’ efficiency.
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5 Evaluation

5.1 Comparative analysis
In tables [6 5, 3, 4], the performance of our proposed techniques is reported in comparison
to other state-of-the-art-techniques. Mainly, we selected one class for full-class forgetting.
For cifar10, we selected the cat class, and for SVHN, we selected the digit-3 class. Such
classes were selected in compliance with other work in the field. Further, Both classes
proved challenging for most unlearning algorithms because some features of their content
intersect with other classes. For example, cats and dogs are very similar in the CIFAR10
dataset. Further, digits 3,8,0 are very close in the SVHN dataset. Unlearning scores
over all classes are also listed in the subsequent subsections. zMuGAN had the best
performance in all experiments compared to all other zero-shot algorithms. Further,
MuGAN had a very competitive performance compared to SCRUB which requires
access to the entire retrain and forget datasets. In our experiments, most techniques
resulted in a comparable AIN score, mainly because most of those techniques are under
the approximate unlearning category. Our techniques have a number of hyperparameters,
such as the number of generated data points used for forgetting, the number of generators
used, and the learning rate. In the following section, we will discuss the impact of the size
of the generated dataset and the learning rate. However, most notably, using only 2500
data points per class, MuGAN had the shortest execution time of all algorithms. On the
other hand, zMuGAN took around 20 minutes to apply model inversion. Subsequently,
unlearning using those points took less than 5 seconds. GKT, the direct competing system
in the same setup, took more than one hour to run, and it produced sub-optimal results
across all datasets and all models.

Table 3. VGG16 Full-class unlearning performance for the cat-class in CIFAR-10:

Method DfACC. DrACC. MIA Time AIN
BSLN 70.7 87.3 45.15 0.068 0.018
RTRN 0 88.3 54 864.6 -
FNTN 23.2 90.4 41.3 80.2 0.054
SCRUB 8.6 85.5 40.5 21.6 0.017
UNSIR 0 24.6 94.5 45.6 0.133
JiT 35.1 ±0.0 67.4 ±0.0 45.6 55.62 0.017
EMMN 33.8 ±2.4 19.4 ±0.03 35.4 45.8 0.0175
GKT 0.0 ±0.0 8.4 ±0.0 46.58 5000+ 0.0175
MUGAN 0 ±0.0 82.8 ±1.6 35.4 10.458 0.085
Z-MUGAN 0.64 ±.02 53.55 ±1.59 44.1 1260 0.066
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Table 4. VGG16 Full-class unlearning performance for digit-3 across SVHN:

Method DfACC. DrACC. MIA Time AIN
BSLN 89.7 95 27.9 0.082 0.012
RTRN 0 95.3 54.5 1184 -
FNTN 0.5 95.3 32 117.3 0.047
SCRUB 6.6 ±0.1 93.8 ±0.0 21.7 31.784 0.011
UNSIR 3.1 ±0.6 57.8 ±0.5 10.2 72.79 0.073
JiT 37.6 ±0.0 93.8 ±0.0 28 94.25 0.012
GKT 0.0 ±0.0 22.3 ±0.00 32.26 5000+ 0.0311
EMMN 58.3 ±1.39 74.2 ±0.30 28.26 41.6 0.0121
MUGAN 00.0 ±0.0 94.8 ±0.17 20.1 10.03 0.081
Z-MUGAN 00.0 ±1.2 83.8 ±2.24 37.1 1171 0.087

Table 5. ALLCNN Full-class unlearning unlearning performance for the cat-class CIFAR-
10

Method DfACC. DrACC. MIA Time AIN
BSLN 83.6 82.3 12.5 0.012 0.795
RTRN 0 87.4 32.07 730.2 -
FNTN 41.3 90.7 7.6 71.75 0.341
SCRUB 3.4 ±0.04 85.1 ±2.801 12.6 20.91 0.340
UNSIR 0.1 ±0.02 37.7 ±0.03 32.8 42.79 0.067
JiT 36 ±0.0 80.4 ±0.0 12.3 52.28 0.09
GKT 0.00 ±0.0 12.11 ±0.0 30.2 5000+ 0.2681
EMMN 0.61 ±0.2 11.9±0.6 12.1 5.88 0.1881
MUGAN 5.2 ±0.2 81.8 ±1.7 13.9 11.582 0.523
Z-MUGAN 3.0 ±1.34 55.3 ±3.2 33.1 1319 0.093
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Table 6. ALLCNN Full-class unlearning performance for digit-3 for SVHN

Method DfACC. DrACC. MIA Time AIN
BSLN 93.2 94.4 15.5 0.012 0.0076
RTRN 0 95.3 22.2 496.2 -
FNTN 45.7 95.3 15.56 103.9 0.085
SCRUB 5.9 ±0.2 93.1 ±0.07 9.4 30.97 0.023
UNSIR 42.3 ±0.5 77.3 ±.8 17.6 69.34 0.043
JiT 48.8 ±0.0 93.5 ±0.0 15.6 88.92 0.007
GKT 89.1±0.0 88.2 ±0.0 14.2 5000+ 0.003
EMMN 47.2 ±0.33 69 ±1.23 15.09 5.99 0.00746
MUGAN 0 ±0.0 93.6 ±0.6 15.6 10.56 0.142
Z-MUGAN 14 ±2.35 84.6 ±3.20 18.19 1244 0.0174

5.2 MuGAN: Effect of dataset size
IN MuGAN, GANs are mainly utilized to generate the retain and the forget datasets
used during the unlearning algorithm. In tables [ 7 ,8 ], we compare the performance
of MuGAN using a different number of data points per class. Notably, the proposed
technique is effective with as few as 300 points. In most experiments, the forgetting
effectiveness increases as we increase the data points. However, after a certain threshold,
depending on the model and the dataset, the model experiences over-forgetting, which is
reflected in the decreasing Dr accuracy and the increasing MIA score. In tables [ 9, 10
], we showed the impact of the generated dataset size on the performance of zMuGAN.
Here, zMuGAN doesn’t offer the same level of control over the number of samples
generated per class. This is mainly due to the stochastic nature of model inversion. In our
work, an ensemble of generators was utilized to increase the diversity of the generated
output. Following the default recommendations in [YCKK19], our experiments utilized
five generators. The hyper-parameter listed here is the number of points generated by
each GAN.
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# of ins. DfACC. DrACC MIA
100 20.2 93.1 9.9
300 00.00 95.2 0.79
500 00.00 95.2 4.57
1000 00.00 95.4 9.5
2500 00.00 94.8 14.1
5000 00.00 94.2 23.1
10000 00.00 93.5 35.5

Table 7. Effect of dataset size: MuGAN
VGG16 SVHN

# of ins. DfACC. DrACC MIA
100 01.8 87.7 10.53
300 11.1 92.6 03.61
500 20.2 93.2 02.59
1000 00.00 93.4 02.70
2500 00.00 92.7 07.79
5000 00.10 89.1 13.30
10000 00.00 87.9 16.59

Table 8. Effect of dataset size: MuGAN
ALLCNN SVHN

# of ins. DfACC. DrACC MIA
100 95.41 90.84 96.50
200 95.24 86.60 94.56
300 92.88 81.115 84.11
500 13.41 84.941 0.3
1000 00.00 89.67 1.03
2000 52.30 91.23 19.44

Table 9. Effect of dataset size: zMu-
GAN VGG16 SVHN

# of ins. DfACC. DrACC MIA
100 83.38 88.81 78.94
200 73.27 81.7 71.60
300 56.82 75.19 57.57
500 20.43 61.55 39.34
1000 07.97 49.20 28.92
2000 2.23 48.62 25.28

Table 10. Effect of dataset size: zMu-
GAN ALLCNN SVHN
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5.3 Effect of Learning Rate
Most machine unlearning algorithms are highly sensitive to the value of the learning rate.
Having a higher learning rate would result in over-forgetting and possibly compromise
the model’s utility. One the other hand, having a lower learning rate would render
the unlearning algorithm ineffective. In tables [ 11, 12], We list the performance of
MuGAN depending on the learning rate. It should be noted that the selection of the
appropriate learning rate (LR) depends on the selected model and the original training
dataset. Further, the trade-off between privacy, as demonstrated in the MIA score, and
utility, as demonstrated in the Df and Dr accuracy, is evident. A higher learning rate
results in over-forgetting and, consequently, a high MIA score. That is, the model is
susceptible to membership inference attacks. In tables [ 13 , 14 ], we listed the impact of
LR on the performance of zMuGAN. The results show a similar pattern. Having a lower
learning rate would reduce the effect of the unlearning algorithm; on the other hand, hav-
ing a learning rate higher than needed would have either a diminishing or negative impact.

5.4 Unlearning Performance for different classes
In tables [6 5, 3, 4], adhering to the common practice in most machine unlearning
literature, we listed the performance of all selected methods on forgetting on selected
class — for CIFAR-10, it was the Cat class, and for SVHN, it was the digit 3. However,
during our experiments, we realized that unlearning algorithms don’t perform with
the same effectiveness across all classes. This is mainly due to the models’ inherent
confusion. In figures [ 8, 10, 9], the performance of SCRUB, Z-MuGAN, and MuGAN
across different classes was reported. On the y-axis, we have the target forget label, and
on the x-axis, the per-class accuracy is plotted. In the case of retraining, we will have
completely dark cells across the left diagonal. Compared to SCRUB, MuGAN has the
best average performance across all classes. This stems from its design philosophy. Two
filtration techniques are applied to make sure that only the information related to the
target class is forgotten: first, GANs are trained per class split. Second, the output of the
GANs is further filtered using the model to make sure that the output is highly associated
with the target forget class. In the case of zMuGAN, only the second filtration step is
applied. Although not as surgical as MuGAN, zMuGAN demonstrates high effectiveness
in forgetting 6 out of 10 classes. The limitations of the technique will be further analyzed
in the discussion section.
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LR DfAcc. DrAcc. MIA
1.00E-08 95.60 93.30 15.32
1.00E-07 95.40 93.20 15.33
1.00E-06 95.50 93.10 15.16
1.00E-05 95.50 93.20 13.83
1.00E-04 93.00 93.70 7.39
1.00E-03 76.10 95.10 1.32
1.00E-02 0.00 85.10 14.10
1.00E-01 0.00 11.10 0.00

Table 11. Effect of Learning Rate: Mu-
GAN ALLCNN SVHN

LR DfAcc. DrAcc. MIA
1.00E-08 94.00 94.50 28.07
1.00E-07 93.70 94.50 28.03
1.00E-06 93.90 94.40 27.47
1.00E-05 93.40 94.70 21.39
1.00E-04 85.30 95.50 3.64
1.00E-03 0.00 94.40 15.03
1.00E-02 0.00 72.70 52.74
1.00E-01 0.00 11.10 0.00

Table 12. Effect of Learning Rate: Mu-
GAN VGG16 SVHN

LR DfAcc. DrAcc. MIA
1.00E-08 73.45 80.48 71.38
1.00E-07 72.87 80.4 70.97
1.00E-06 65.08 77.78 65.66
1.00E-05 00.76 48.92 29.09
1.00E-04 49.71 50.23 36.98
1.00E-03 00.00 12.09 11.62
1.00E-02 00.00 15.20 33.48
1.00E-01 00.00 10.91 77.28

Table 13. Effect of Learning Rate: zMu-
GAN ALLCNN SVHN

LR DfAcc. DrAcc. MIA
1.00E-08 92.60 89.80 93.23
1.00E-07 92.00 89.20 93.41
1.00E-06 92.08 89.20 92.66
1.00E-05 86.29 86.94 80.07
1.00E-04 00.00 89.80 15.56

1.00E-03 32.97 62.81 46.72
1.00E-02 00.00 12.06 36.54
1.00E-01 00.00 11.11 45.54

Table 14. Effect of Learning Rate: zMu-
GAN VGG16 SVHN
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Figure 8. Performance of MuGAN for different forget targets

41



Figure 9. Performance of zMuGAN for different forget targets
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Figure 10. Performance of SCRUB for different forget targets
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6 Discussion and Limitation
In this work, we address the challenge of machine unlearning under limited access
to training data through the introduction of two techniques: zMuGAN and MuGAN.
zMuGAN employs GAN-based model inversion to extract data points for unlearning
from the trained model, enabling it to operate out-of-the-box and be readily applied to
already deployed models. Conversely, MuGAN leverages access to the training dataset
during initial model training to enhance unlearning performance, integrating unlearning
capabilities into the early stages of model development.

The design of machine unlearning algorithms necessitates careful consideration of
the trade-offs between utility, effectiveness, and efficiency. Our proposed techniques
offer varying balances between these objectives, providing versatility and adaptability to
different scenarios. zMuGAN excels in effectiveness and utility but is less time-efficient.
Compared to other zero-shot learning algorithms, such as GTK or EMMN, which often
significantly compromise model utility, zMuGAN maintains high performance across
diverse models and datasets. However, the model inversion process is a potential bottle-
neck due to the extreme condition of having no access to observable training data.

MuGAN, on the other hand, demonstrates high effectiveness across utility, effec-
tiveness, and efficiency. Nevertheless, modifications to the model development process
necessitate additional storage costs for the weights of the utilized GANs. These character-
istics highlight the strengths and limitations of each technique, making them suitable for
different unlearning scenarios based on the specific requirements of utility, effectiveness,
and efficiency.

6.1 Future Work
The field of machine unlearning remains in its infancy. While the techniques proposed in
this work demonstrate efficacy in zero-shot and one-glance scenarios, there is consid-
erable scope for improvement. This research has shown the feasibility of performing
effective unlearning without access to data at the time of the deletion request. However,
the following points could be addressed to improve the performance of the proposed
methods further.

Firstly, during experimentation, we employed DCGAN with the vanilla GAN loss
function, which presented several drawbacks. Notably, this approach required multiple
training iterations due to the propensity to collapse. Furthermore, the output of GANs
often lacked diversity, resulting in the model learning only a single representation of the
class. While zMuGAN addressed this issue by incorporating the diversity loss proposed
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by KegNet (as cited in [YCKK19]), there remains room for performance enhancement.

Additionally, the output quality of the model inversion process could be improved
by utilizing a few samples from the same distribution and domain. As demonstrated in
[YNY+23], incorporating such samples allows for augmenting the loss calculation to
include the distance between the GAN output and samples from the original distribution,
thereby enhancing the model’s output.

Lastly, the zero-shot setup assumes no access to training data. However, most eval-
uation metrics currently rely on training data to assess the quality of forgetting and to
select the optimal checkpoint demonstrating the desired performance. To address this
challenge, we propose generating a synthetic dataset using GANs trained initially in
MuGAN or derived from the model inversion technique. These synthetic data points
could be evaluated on the original model, providing a benchmark to assess the output of
the unlearning algorithm based on selected hyperparameters.

Future research should focus on these areas to enhance the robustness and applicabil-
ity of machine unlearning techniques, ensuring they meet the evolving requirements of
data privacy and model performance.
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7 Conclusion
In conclusion, this thesis addresses the vital challenge of machine unlearning, an es-
sential process in the context of modern AI and machine learning applications. With
the rapid expansion of AI technologies and the increasing importance of data privacy
regulations, such as GDPR, the need for efficient and practical unlearning methods
has become paramount. Traditional methods, like retraining models from scratch, are
resource-intensive and often impractical, underscoring the necessity for innovative ap-
proaches.

This research introduces two novel techniques, MuGAN and zMuGAN, designed
to facilitate machine unlearning under different data access conditions. MuGAN is tai-
lored for scenarios where limited access to the training dataset is available. By utilizing
Generative Adversarial Networks (GANs), MuGAN effectively generates synthetic data
that mirrors the original data distribution, enabling precise unlearning while preserving
the model’s integrity. zMuGAN, on the other hand, is crafted for situations where no
access to the training data exists. It leverages a GAN-based model inversion technique to
reconstruct the training data and implements an impair-repair process to remove specific
data points or classes from the model. This method ensures compliance with privacy
mandates and addresses issues of data unavailability.

The efficacy of these techniques is demonstrated through their application to image
classification tasks, focusing on the critical task of class forgetting. By addressing both
class and sub-class forgetting, MuGAN and zMuGAN show their robustness and versa-
tility, making them suitable for a wide range of AI applications.

In summary, the contributions of this thesis provide significant advancements in
the field of machine unlearning. The proposed techniques offer scalable and efficient
solutions that adapt to various stages of model development and deployment. By enabling
effective unlearning, this research supports the responsible use of AI technologies, ensur-
ing that models can comply with evolving data privacy requirements while maintaining
high performance. This work sets the stage for further innovation in unlearning methods,
promoting the ethical and secure deployment of machine learning models.
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Appendix

7.1 Accuracy and Loss for Selected Models

(a) Training and Validation Acc. (b) Loss

Figure 11. Training Stats. AllCNN-CIFAR10

(a) Training and Validation Acc. (b) Loss

Figure 12. Training Stats. AllCNN-SVHN
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(a) Training and Validation Acc. (b) Loss

Figure 13. Training Stats. VGG16-CIFAR10

(a) Training and Validation Acc. (b) Loss

Figure 14. Training Stats. VGG16-SVHN
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