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Application and Evaluation of LSTM Architectures for Energy Time-Series Fore-
casting

Abstract: Accurate energy forecasting is a very active research field as reliable informa-
tion about future electricity generation allows for the safe operation of the power grid and
helps to minimize excessive electricity production. As Recurrent Neural Networks outper-
form most machine learning approaches in time series forecasting, they became widely
used models for energy forecasting problems. In this work, the Persistence forecast and
ARIMA model as baseline methods and the long short-term memory (LSTM)-based
neural networks with various configurations are constructed to implement multi-step
energy forecasting. The presented work investigates three LSTM based architectures:
i) Standard LSTM, ii) Stack LSTM and iii) Sequence to Sequence LSTM architecture.
Univariate and multivariate learning problems are investigated with each of these LSTM
architectures. The LSTM models are implemented on six different time series which are
taken from publicly available data. Overall, six LSTM models are trained for each time
series. The performance of the LSTM models is measured by five different evaluation
metrics. Considering the results of all the evaluation metrics, the robustness of the LSTM
models is estimated over six time series.

Keywords:
Neural Networks, ARIMA, Persistence forecast, long short-term memory, Standard
LSTM, Stack LSTM, Sequence to Sequence LSTM, univariate time series forecasting,
multivariate time series forecasting, energy forecasting.

CERCS: P170 Computer science, numerical analysis, systems, control

LSTM-arhitektuuride rakendamine ja hindamine energia aegridade prognoosi-
miseks

Lühikokkuvõte: Täpsete prognooside koostamine on energiavaldkonnas väga aktiivne
uurimisvaldkond, kuna usaldusväärne teave tulevase elektritootmise kohta on oluline
elektrivõrgu ohutuse tagamisel ning aitab minimeerida liigset elektrienergia tootmist. Ku-
na rekurrentsed tehisnärvivõrgud ületavad aegridade prognoosimise täpsuses enamikke
muid masinõppe meetodeid, siis on need võetud ka energia prognoosimisel laialdaselt
kasutusele. Käesolevas töös on energiaprognooside tegemiseks rakendatud algoritme
Persistence ja ARIMA baasmeetoditena ning pika lühiajalise mäluga (LSTM) tehis-
närvivõrke erinevates konfiguratsioonides. Töö uurib kolme LSTM-põhist arhitektuuri:
i) standardne LSTM, ii) kahekihiline (stacked) LSTM ja iii) jadast-jadasse (sequence
to sequence) LSTM. Kõigi nende LSTM-arhitektuuridega uuritakse nii ühemõõtmelisi
kui ka mitmemõõtmelisi õpiülesandeid. LSTM-mudeleid treenitakse kuue erineva ava-
likult kättesaadava aegrea ennustamiseks, kusjuures iga aegrea jaoks treenitakse kuus
erinevat LSTM mudelit. LSTM-mudelite poolt tehtud ennustusi mõõdetakse viie erineva
hindamismõõdikuga. Lähtuvalt hindamise tulemustest neil kuuel aegreal hinnatakse

2



LSTM-mudelite arhitektuuride robustsust.

Võtmesõnad:
Tehisnärvivõrgud, ARIMA, Persistence, pika lühiajalise mäluga võrgud (LSTM), stan-
dardne LSTM, kihiline LSTM, jadast-jadasse LSTM, ühemõõtmeline aegrea prognoosi-
mine, mitmemõõtmeline aegrea prognoosimine, energia prognoosimine.

CERCS:P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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List of Abbreviation

RES Renewable Energy Sources
ARIMA Auto-Regressive Integrated Moving Average
RNN Recurrent Neural Network
LSTM Long Short Term Memory
RMSE Root mean squared error
MAE Mean absolute error
SMAPE Symmetric mean absolute percentage error
S2S Sequence to Sequence
GA Genetic Algorithm
BPTT Back Propagation Through Time
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1 Introduction

Over the last decade, different projects have been undertaken in the �eld of energy
forecasting. The European Union Horizon 2020 EU-SysFlex project is one such effort to
identify issues and solutions associated with integrating large-scale renewable energy and
create a plan to provide practical assistance to power system operators across Europe [1].
To provide an accurate plan for power system operators, an important aspect to consider
is accurate energy forecasting. Accurate energy forecasting enables ef�cient operation of
power systems, preservation of the balance between supply and demand, reduction of
production cost, and management of future capacity planning [2]. Forecasting of load
and price of electricity, fossil fuels (natural gas, oil, coal) and renewable energy sources
(RES; hydro, wind, solar) are included in the energy forecasting [3]. Energy forecasting
is grouped into three categories depending on the forecast duration [4]: short-term,
medium term and long-term. Typical de�nitions are as follows: the short-term forecast
ranges between one hour and one week, medium-term forecast ranges between one
week and one year, and long-term forecasts span a time of more than a year. Short-term
forecasts serve for deciding on the use of power plants, optimization of the scheduling of
power systems, economic dispatch and electricity market [3]. Medium and long-term
forecasting is important for planning of building future sites or determining fuel sources
of power plants [3].

Forecasting problems are divided into a single-step and multi-step forecasting depending
on the future forecast steps [2]. In single-step and multi-step forecasting problems,
one step and multi-step ahead predictions are solved, respectively. The current work
is focused on multi-step short-term energy forecasting. Two learning problems are
investigated to implement multi-step forecasting: univariate and multivariate. Univariate
time-series forecasting is a problem comprised of one single series where the model
learns from the past values to predict the next values of the sequence. The difference
between univariate and multivariate forecasting problem is that multivariate models use
multiple input series for prediction.

Various machine learning methods have been considered for forecasting; these are divided
into traditional statistical techniques and deep learning based approaches. In this work,
the statistical model Auto-Regressive Integrated Moving Average (ARIMA), Persistence
forecast and deep learning methods with different con�gurations are implemented for
time-series forecasting. The ARIMA model and the Persistence forecast results are
considered as a baseline.

ARIMA is a statistical model used for analyzing and forecasting time series data. An
ARIMA model considers the dependent relationship between an observation and past
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values along with the error in the forecasting. In previous work, it was found that the
ARIMA model works better for linear and stationary time series data [5]. For short-term
forecasting, the ARIMA model has been applied by several researchers [6, 7].

The Persistence forecast is used to generate baseline results for time series forecasting
problems [8]. In the multi-step time series forecasting problem, the Persistence forecast
uses the previous time steps to predict an expected outcome for the next time steps.

Recently, considering complex non-linear patterns and large amounts of data, different
deep learning techniques have been applied to time series forecasting problems due to
their ability to capture data behavior. [9, 10]. Recurrent Neural Network is one type
of deep learning allows the use of multiple layers and helps to learn different feature
representations in data. Recurrent Neural Networks (RNN) allow learning patterns in
sequential data such as video, speech and time series. In this work, long short-term mem-
ory (LSTM)-based neural network is used, which is a variation of RNN and performs
considerable results for time series forecasting problems. Different LSTM architectures
are implemented and evaluated on publicly available data.

1.1 Problem Statement

The aim of this study is to explore different LSTM architectures over six different
time series and determine robust LSTM architectures for energy time series forecasting
problem. The LSTM architecture is called robust when the model does not necessarily
always have the best results for each time series, but it should not be much worse than
the best. The results of robust LSTM architectures should perform always better than
baseline results. The presented work investigates three variations of LSTM: i) Standard
LSTM, ii) Stacked LSTM and iii) LSTM based Sequence to Sequence (S2S) architecture.
Both univariate and multivariate forecasting problems are explored for each time series
and LSTM architecture. For baseline methods, only the univariate forecasting problem
has been learned.

The performances of baseline methods and LSTM models are measured by using �ve
evaluation metrics: root mean squared error (RMSE), mean absolute error (MAE),
symmetric mean absolute percentage error (SMAPE), bias, and correlation function.
These metrics help to explore the errors from different aspects. While deciding robust
LSTM architectures, all these evaluation metrics should be considered over all time
series.
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1.2 Study Outline

This thesis consists of �ve chapters in total. The structure of this thesis is given below:

– Section 2 highlights related work in the area of energy forecasting.
– Section 3 describes the forecasting methods, baseline approaches and LSTM
architectures, and the chosen evaluation metrics.
– Section 4 introduces the datasets, explains dataset preprocessing steps and dis-
cusses the results from the experiments.
– Section 5 summarizes the key �ndings of this work.
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2 Related Work

The availability of a relatively large amount of energy data allows using different Arti�cial
Intelligence (AI) methods. A lot of work has been done in the area of short-term energy
forecasting [2]-[4]. Noticeably, Recurrent Neural Network (RNN) was widely used in this
research �eld as it is able to capture model nonlinearity. As RNN models outperformed
statistical machine learning models, autoregressive and moving-average models have
remained the baseline methods [12].

Daniel et al. [4] presented two univariate models namely, ARIMA and a Standard LSTM
for energy load forecasting. The results showed that LSTM model outperformed ARIMA
model in multi-step short-term load forecasting.

Various LSTM approaches have been implemented for univariate one-step ahead PV
forecasting [11]. Four different Standard LSTM and Stack LSTM models were applied
for PV forecasting using two various datasets. Standard LSTM models differ in using
various lags of previous time steps (one time step, three time steps, time steps as features)
and memory between batches. Stack LSTM model was built using two LSTM hidden
layer. The comparative analysis revealed that the Standard LSTM model with used the
lag three time steps had the best results for both datasets.

Shamsul et al. [2] presented the work for multivariate energy load forecasting. In this
work, Standard LSTM and Sequence to Sequence LSTM models results were investigated
for one-minute and one-hour time step resolution data. The results showed that the
standard LSTM architecture failed on load forecasting using one-minute resolution, the
S2S LSTM architecture performed well in both datasets.

Different machine learning approaches covering linear regression, k-nearest neighbors,
random forest, gradient boosting, ANN and extra tree regressor were also applied for
short-term electric load forecasting [12]. Salah et al. [12] presented a load forecasting
methodology using classical machine learning methods and LSTM network. The classical
machine learning models were trained for multivariate load forecasting, in turn, LSTM
network was trained for univariate load forecasting. Genetic algorithm (GA) was used
to �nd out optimal hyper-parameters such as the length of window size, the number of
hidden units and the number of hidden layers. The results showed that LSTM network
with optimal hyper-parameters performed better than classical machine learning models
and it had stable results for both short and medium-term load forecasting.
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3 Methodology

In the �rst section, we describe the general forecasting approach for multi-step univari-
ate and multivariate forecasting models. In Subsection 3.2, we introduce the baseline
methods and explain why we selected them. Subsection 3.3.1 explains the LSTM archi-
tectures which were chosen for this study. Lastly, the evaluation metrics are presented
and explained how they evaluated the predictions differently.

3.1 Forecasting Models

In this study, we consider both multi-step univariate and multi-step multivariate forecast-
ing techniques for energy forecasting. In this section, we discuss what is the multi-step
forecasting model, and how to implement multi-step forecasting for univariate and mul-
tivariate forecasting problems. We also give a general understanding of univariate and
multivariate forecasting models, explain the difference between them.

3.1.1 Multi-step Forecasting Model

For real forecasting problems, the main objective is not only to predict a value ahead
in time but also a certain time forecast horizonk. The forecast horizon is the span of
time into the future for which forecasts should be prepared. If the forecast horizonk
is bigger than one, this kind of forecasting is called multi-step forecasting and can be
implemented using two strategies [14]: i) the direct strategy - by explicitly training a
model to predict several steps ahead, or ii) the iterative method - by doing repeated
one-step ahead predictions up to the desired horizon. In this study, the forecast horizon is
de�ned as future 36 hours time steps and the direct strategy is applied for this multi-step
ahead prediction.

3.1.2 Multi-step Univariate Forecasting Model

In "classical time series", it is assumed that the following series members depend only
on a certain amount of its direct predecessors [14]. In this case, the forecasting problem
is comprised of one single series and called univariate forecasting problem. Suppose we
have historical data for some time series given likex1, ... ,xn � 1, xn . As there exist some
functional dependency between historical and future time series data points, the forecast
valuesx0

n +1 , x0
n +1 , ... ,x0

n + k for the k forecast horizon are a function of the preceding n
data points. This dependency is described in Eq. 1.

x0
n+1 ; x0

n+2 ; :::; x0
n+ k� 1; x0

n+ k ; = f (x1; :::; xn� 1; xn ) (1)

Heref might be any machine learning method. As a machine learning tool, the baseline
approaches and LSTM models are applied for the current forecasting problem.
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3.1.3 Multi-step Multivariate Forecasting Model

The multivariate forecasting model is an extended version of the univariate forecasting
model where the only difference is that future time series values not only depend on the
preceding values of the same series, but also the values of another time series. Suppose
we have the historical data for the time series asx1, ... , xn � 1, xn and another time
series asy1, ... , yn � 1, yn and there is a functional dependency among their members.
The task is to predict the future k values of the time series, which isx0

n +1 , x0
n +1 , ... ,

x0
n + k . According to the multi-step multivariate forecast model, these future values are

predicted using the Eq. 2. Similar to the univariate model,f could be any machine
learning method.

x0
n+1 ; x0

n+2 ; :::; x0
n+ k� 1; x0

n+ k ; = f (x1; y1; :::; xn� 1; yn� 1; xn ; yn ) (2)

3.2 Baseline methods

In this study, due to their simplicity, the Persistence forecast and the ARIMA statistical
model are used as baseline approaches which provide a point of comparison with LSTM
architectures. The only univariate forecasting problem is explored with baseline methods.

3.2.1 Modelling Forecast Using Persistence

The Persistence forecast is a common reference model for the time series forecasting as it
provides a computationally inexpensive forecast [8]. Persistence introduces the concept
of "memory". The algorithm uses the value at the previous time stept to predict the
expected outcome at the next time stept + 1. That is why this model gives better results
for the stationary time series. The performance of the persistence model depends on the
forecast horizon. The uncertainty for the future time steps is getting bigger when the
large forecast horizon is used.
The forecast technique of the Persistence forecast is described in Figure 1. To forecast
the next 36 hours, the last 24 hours of the historical data are used. Firstly, the next
24 hours are forecasted using the last 24 hours of the available data. Second, the data
between 12h and 24h are used to ful�ll the next 12 hours forecast points. The forecasting
strategy is interpreted in Eq. 3. In the equation,x0

n+1 ; x0
n+2 ; :::; x0

n+36 are the forecast and
xn� 24; xn� 23; :::; xn� 1 are input data points.

x0
n+1 ; x0

n+2 ; :::; x0
n+36 = ( xn� 24; xn� 23; :::; xn� 1; xn� 24; xn� 23; :::; xn� 13) (3)

3.2.2 ARIMA Based Time Series Forecasting

ARIMA is the acronym for Auto Regressive Integrated Moving Average where each
component has a key characteristic [2]: AR (Autoregression), relying on a dependent
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Figure 1. The forecast strategy of the Persistence forecast for the next 36 hours.

relationship between an observation and some number of lagged observations; I (Inte-
grated), the number of differences of actual observations, needed to make the time series
stationarity; and MA (Moving Average), the number of lagged forecast errors in the
prediction equation.
These components are introduced in an ARIMA model as a set of parameters given as
ARIMA (p,d,q): p is the number of lag observations, d is the number of times that the
actual observations are differenced and q is the size of the moving average window.
The Auto Regressive model is shown in Eq. 4 whereyt depends only on its own lags [2].

yt = � + � 1yt � 1 + � 2yt � 2 + ::: + � pyt � p (4)

yt is the current measured values at time t;� and � i are coef�cients; and p is the
autoregressive component .
In the Moving Average (Eq. 5),yt depends only on its lagged forecast errors [2].

yt = � t + � 1� t � 1 + � 2� t � 2 + ::: + � p� t � p (5)

yt is the current measured values at time t;� t is the forecast error at timet, � i are
coef�cients; and q is the moving average component.
As the ARMA model is the combination of the AR and MA terms, it is represented as a
formula in Eq. 6.

yt = � + � 1t � 1 + � 2yt � 2 + ::: + � pyt � p + � t + � 1� t � 1 + � 2� t � 2 + ::: + � p� t � p (6)

In the case of non-stationary time series, a transformation of the series is presented
by Box and Jenkins to make it stationary and it results the ARIMA model [13]. The
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measured valuesyt are replaced with the results of a recursive differencing process. The
�rst order differencing can be described as Eq. 7 [13].

yt = yt � yt � 1 (7)

3.3 Time series forecasting using LSTM architectures

In this work, three different LSTM architectures are studied for the multi-step univariate
and multivariate time series forecasting. In the subsections below, we brie�y describe
the simple Recurrent Neural Network (RNN) architecture, the LSTM unit as a variation
of RNN and the proposed LSTM architectures.

3.3.1 Recurrent Neural Network

In a traditional neural network, inputs and outputs are considered as independent of each
other. As the sequential pattern exists in time series data, such a neural network does not
give ef�cient results for the time series forecasting. As an alternative network, RNN is
more effective to learn the dependency between observations. It has been proved that
RNN shows considerable results for time series forecasting [19]. The simple architecture
and the unrolled version of RNN is shown in Figure 2 [18].

Figure 2. An unrolled recurrent neural network [18].

The simple RNN is a network with loops which allows persisting information to be
passed from one step of the network to the next. This looping process can be unrolled
as described in Figure 2. The process is illustrated for the time steps from0; 1; 2 up to
time t: x0; x1; x2; :::; xt are the inputs,A is the hidden state, andh0; h1; h2; :::; ht are the
outputs.A t hidden state is an activation function (normally tanh) which takes its input
from the hidden state of the previous stepA t � 1 and the output of the current stepx t .
This process is described in Eq. 8.

A t = f (A t � 1; xt ) (8)

RNNs use backpropagation through time (BPTT) to optimize weights during training.
BPTT uses the chain rule to go back from the latest time step to the previous steps and
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the gradients tend to get smaller and smaller while moving backward in the network.
That is why RNN has a vanishing gradient issue and it leads to the problem of learning
the long-term dependencies. To solve this issue, as a variation of RNN, LSTM network
was introduced by Hochreiter & Schmidhuber [15].

3.3.2 General overview of LSTM unit

LSTM networks are specially designed to learn long term dependency problems. The
traditional neural networks have neurons, in turn, LSTMs have memory cells that are
connected through layers. Each memory cell contains gates which handle information
�ow into and out of the cell. There are three types of gates in the LSTM unit [2]: forget,
input and output. The task of each gate is listed as follows:

� Forget gate forgets the irrelevant parts from the previous state.

� Input gate selectively updates the cell state values.

� Output gate outputs the certain part of cell state.

The structure of the LSTM unit is shown in Figure 3.

Figure 3. LSTM unit [17].

As seen from Figure 3 and Eq. 9 - 12, the LSTM unit gets the information from the
previous stateht � 1 and inputx t , and uses the activation functions to decide which part
of the information to pass to the output and next LSTM unit.

i t = � (Wi � [ht � 1; xt ] + bi ) (9)

f t = � (Wf � [ht � 1; xt ] + bf ) (10)
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ot = � (Wo � [ht � 1; xt ] + b0) (11)

~Ct = tanh(WC � [ht � 1; xt ] + bC ) (12)

Ct = f t 
 Ct � 1 + i t 
 ~Ct (13)

ht = ot 
 tanh(Ct ) (14)

Eq. 9 - 11 describes three sigmoid functions (� (x) =
1

1 + e� x
) whereW 0s andb0s are

the parameters (weights and biases) for input, forget and output gates.f t , i t andot are
input, forget and output gates respectively. In Eq. 13, the tanh layer creates the vector of
new candidate value~Ct which is added to the cell state.
LSTM unit has two kinds of hidden states: "slow" stateCt and a "fast" stateht . The slow
stateCt is updated by summing the multiplication the forget gatef t by the previous cell
stateCt � 1 and the multiplication the input gatei t by the new candidate value~Ct . Theht

state is updated using the hyperbolic tangent function (tanh) ofCt state andot output
gate.
The main preference of LSTM unit is that its cell state accumulates activities over time.
As derivatives of the error are summed over time, they do not vanish quickly [18]. In this
way, LSTMs can implement tasks over long sequences.

3.3.3 LSTM Model Architectures

In this work, we investigates three kinds of LSTM architectures: i) Standard LSTM,
ii) Stack LSTM and iii) Sequence to Sequence (S2S) LSTM. Both Univariate and
Multivariate forecasting problems are explored for each architecture. Each LSTM
architecture is explained as follows:

Standard LSTM Architecture The network has one input layer, one hidden LSTM
layer and an output layer. The architecture of the LSTM model is shown in Figure 4.
x t+1 ; xt+2 ; :::; xt+ n are the inputs.n de�nes the window size which determines how
many previous values of the time series will be used during the training. Depending
on the forecasting problem (univariate or multivariate), there might be one or multiple
inputs for each LSTM cell. LSTM cells share the same amount of LSTM units. In this
architecture, many to one LSTM model [16] is applied where the output is generated
from the last LSTM cell. The output of the hidden LSTM layer is fully connected to the
last layer which generates the next 36 hours forecast measures.

Stacked LSTM architecture This LSTM architecture makes a difference from the
previous model using one more LSTM hidden layer (Figure 5). The con�gurations for the
input and �rst hidden layer are the same as in the Standard LSTM architecture. However,
in this architecture, each LSTM cell in the �rst hidden layer has its own output to pass
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Figure 4. Standard LSTM architecture.

the information to the second hidden layer. The output of the second hidden LSTM layer
is fully connected to the last layer which generates the next 36 hours forecast measures.

Figure 5. Stack LSTM architecture.

Sequence to Sequence LSTM architecture This architecture consists of two LSTM
networks: encoder and decoder. The encoder holds the input series and encodes them
in a �xed length vector, which is used as the hidden input state for the decoder (Figure
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6). The decoder LSTM cell inputs are set to zero. The output is generated from decoder
LSTM cell for each future time step.

Figure 6. Sequence to Sequence LSTM architecture.

3.4 Evaluation metrics

Five evaluation metrics are used to measure the performance of the models (Eq. 15 - 19):
the root-mean-square error (RMSE), the mean absolute error (MAE), the symmetric mean
absolute percentage error (SMAPE), the BIAS, and the correlation function between the
forecast and measured time series. The equations usex as a value of the measured and
x0as a value of the forecast time series. Both time series have N samples.

RMSE (x0; x) =

vu
u
t 1

N

NX

n=1

(x0
n � xn )2 (15)

MAE (x0; x) =
1
N

NX

n=1

jx0
n � xn j (16)

SMAPE (x0; x) =
100
N

NX

n=1

jx0
n � xn j

jx0
n j + jxn j

(17)

BIAS (x0; x) =
1
N

NX

n=1

(x0
n � xn ) (18)
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Correlation (x0; x) =
P N

n=1 (x0
n � x0

n ) �
P N

n=1 (xn � xn )
q P N

n=1 (x0
n � x0

n )2 �
P N

n=1 (xn � xn )2
(19)

RMSE and MAE are one of the common metrics to measure the average error between
forecast and actual values. The RMSE is more sensitive to the outliers in the data as it
calculates the average of the squared errors. SMAPE interprets an average percentage er-
ror between 0% and 100%. The BIAS allows assessing whether the forecast is predicting
higher or lower values than the actual value on average. Lastly, the Correlation measures
the similarity of the behavior of the forecast and actual values.
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4 Experiments and Results

In this section, we present the datasets and discuss the results of the experiments for the
multi-step short-term energy forecasting. The planned path for this study is described
in Figure 7. The proposed process can be seen as a framework of four processing
components, namely, data preparation and pre-processing, the baseline models training,
the LSTM models training and analyzing results. All these processing components are
explained in the their own sections.

Figure 7. The planned path for the multi-step short-term energy forecasting.

4.1 Datasets

The datasets for this study were chosen from three different data sources: UCI Machine
Learning Repository [20], Driven Data [21], and Open Power System Data [22]. We
selected those datasets because they cover electricity and weather data, they had appro-
priate time resolution and multiple time series to consider for multivariate forecasting
problem. In total, we worked with four different datasets. These datasets have different
sampling rates (ex: one-minute, ten-minute, one-hour). For simplicity, we downsampled
the time series with small frequency to �fteen-minute. As a result, we worked with
�fteen minute and hourly sampled datasets.
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The datasets from UCI Machine Learning Repository The two datasets were cho-
sen from UCI Machine Learning Repository: i) Beijing PM2.5 dataset [23], ii) Appliances
Energy Prediction dataset [24].

Beijing PM2.5 dataset This hourly dataset contains the PM2.5 (particle that affects
air pollution) data of the US Embassy in Beijing and weather data from Beijing Capital
International Airport. The dataset does not cover the electricity measurements, however
is worked to investigate the performances of the models. In this study, PM2.5 data
is used as a time series to forecast future values. The weather measurements (dew
point, temperature, pressure, wind speed, cumulated hours of snow and rain) are used in
multivariate forecasting. The dataset contains 2067 missing values for PM2.5. As PM2.5
starts with the missing value, these values are imputed using the next valid observation.
The dataset ranges from 2010-01-01 to 2014-12-31. The �rst six months of PM2.5 as
shown in Figure 8.

Figure 8.PM2.5for the �rst six months.

In Figure 9, the monthly, weekly and hourly behavior of the time series is described. Box
plots of PM2.5 reveal that the average PM2.5 is almost constant across months (Figure
9a), weeks (Figure 9b) and quarters of days (Figure 9c). The quarters of days observe
PM2.5 for the 04.00-10:00, 10:00-16:00, 16:00-22:00 and 22.00-04.00 time ranges.

Appliances Energy Prediction dataset This data set is at 10 min resolution for about
4.5 months from 2016-01-11 to 2016-05-27. The dataset includes the Energy Consump-
tion of Appliances and Light �xtures in a house and weather information (humidity and
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Figure 9. Monthly (a), Weekly (b), Quarterly (c) behavior ofPM2.5.

temperature inside a house and temperature, pressure, humidity, wind speed, dew point
outside). The frequency of the dataset is downsampled from 10 min to 15 minute. The
forecast measurements are the Energy Consumption of Appliances and Light �xtures and
the weather information is considered in the multivariate forecasting. The �rst thousand
instances of Energy Consumption of Appliances and Light are shown in Figure 10 and
Figure 11 respectively. As seen from the �gures, both time series have drastic changing
characteristics.

Figure 10. The �rst thousand instances ofEnergy Consumption of Appliances.
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