
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Software Engineering Curriculum

Iryna Halenok

Business Process Simulation with
Differentiated Resources

Master’s Thesis (30 ECTS)

Supervisors: Orlenys López-Pintado, PhD

Marlon Dumas, Professor

Tartu 2023

Business Process Simulation with Differentiated Resources

Abstract:
Business process simulation is an approach that allows us to perform the "what-if"

analysis. With its help, we can analyse the current business process, manually find possi-
ble improvements, introduce them, and predict the impact of those changes by running
a simulation. Simulation tools take business process models as input, accompanied by
the additional details required for simulation, such as resource availability. Yet existing
simulation tools support only basic process elements, among which are activities and
decision points (gateways). In real life, however, a resource can perform activities not
straight after enabling time but instead waiting for a group of activities to gather and then
execute them in one go (batch processing), or a resource can prioritise one task over an-
other when both of them are waiting for the execution (task prioritisation). Additionally,
process simulation might benefit from introducing events to model various behaviour, for
example, setting up a timer for 2 hours or interacting with external entities like calling a
client or receiving a message from a client. We call these types of events intermediate
events as they happen during a process. This thesis contributes to implementing those
concepts above (batch processing, task prioritisation, intermediate events) based on the
already implemented simulation engine with differentiated resources. Furthermore, the
simulation engine we use as a basis, named Prosimos, does not have a web interface
and can only be executed through the command line interface. This, in turn, has limited
the adoption of Prosimos in practice. With this thesis, we also aim to diminish the
knowledge requirement and allow people with no technical background, like business
analysts, to utilise the tool. To achieve this, we implement a brand-new web application
from ground up. During the development process, we write unit and integration tests,
following the decision table testing approach, to verify the implementation continuously.
For evaluation, we analyse the scalability of the newly introduced concepts. The results
of this master’s thesis were already partially published as a demo paper.

Keywords: Business Process Simulation, Batch Processing, Task Prioritisation, Interme-
diate Events, Web Application

CERCS: P170 - Computer science, numerical analysis, systems, control

2

Äriprotsesside simulatsioon diferentseeritud ressurssidega
Lühikokkuvõte: Äriprotsesside simulatsioon on lähenemine, mis võimaldab meil te-
ha "mis-oleks-kui“ analüüsi. Selle abil saame analüüsida praegust äriprotsessi, käsitsi
leida parendusvõimalusi, neid modelleerida ja seejärel ennustada nende mõju simulat-
siooni abil. Simulatsioonitööriista sisendiks on äriprotsessi mudel, millele on lisatud
simulatsiooniks vajalikud lisaandmed, nagu näiteks ressursside kättesaadavus. Samas
toetavad olemasolevad simulatsioonitööriistad vaid protsessi põhielemente, nagu näiteks
tegevused ja otsustuspunktid (lüüsid). Reaalses elus ei pruugi ressurss aga tegevusi teha
mitte kohe pärast seda kui tegevused muutuvad lubatuks, vaid selle asemel oodata, kuni
koguneb suurem grupp ootel tegevusi, mille saab seejärel ühe korraga teha (partii töötle-
mine). Või kui mitu tegevust on samaaegselt ootel, siis võib ressurss seada ühe tegevuse
teise ees esikohale (ülesannete prioritiseerimine). Lisaks võib äriprotsesside simulatsioon
kasu saada täiendavate käitumisete modelleerimiseks vajalike sündmuste toetamisest.
Näiteks taimeri seadistamine 2 tunniks või väliste osapooltega suhtluse modelleerimine
(kliendile helistamine, kliendilt sõnumi vastuvõtmine jms). Me nimetame seda tüüpi
sündmusi vahepealseteks sündmusteks, kuna need toimuvad protsessi täitmise käigus.
Käesolev töö panustab eespool nimetatud kontseptsioone (partii töötlemine, ülesannete
prioritiseerimine, vahesündmused) implementeerimisse kasutades juba olemasolevat
simulatsioonimootorit, mis toetab diferentseeritud ressursside seadistamist. Samas ei
ole aluseks võetud simulatsioonimootoril, nimega Prosimos, veebiliidest ja seda saab
kasutada ainult käsurealiidese kaudu. See on aga omakorda vähendanud Prosimose
kasutuselevõttu praktikas. Käesoleva lõputöö eesmärk on lisaks vähendada käsurealii-
dese kasutusest tulenevat tehniliste teadmiste eeldust, et seeläbi võimaldada tehnilise
taustata inimestel, näiteks ärianalüütikutel, antud tööriista kasutada. Antud eesmärgi
saavutamiseks arendame nullist täiesti uue veebirakenduse. Veebirakenduse järjepide-
vaks arenduse käigus kontrollimiseks kirjutame üksuse- ja integratsiooniteste, lähtudes
otsustustabeli testimise lähenemist. Loodud tarkvara hindamiseks analüüsime kasutusele
võetud kontseptsioonide implementatsiooni skaleeruvust. Käesoleva magistritöö tulemu-
sed on osaliselt juba demo artiklina avaldatud.

Võtmesõnad: Äriprotsessi Simulatsioon, Partii Töötlemine, Ülesannete Prioritiseerimine,
Vahepealsed Sündmused, Veebirakendus

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

3

Contents
1 Introduction 5

2 Background and Related Work 9
2.1 Business Process Management . 9
2.2 Business Process Management and Notation 9
2.3 Business Process Simulation . 11
2.4 Batch Processing . 12
2.5 Prioritisation . 14
2.6 Existing Simulation Solutions . 14

3 Software System Description 16
3.1 Web Application Architecture . 16
3.2 System Architecture . 19
3.3 CI & CD pipelines . 23

4 Simulation Enhancements 26
4.1 Intermediate Events . 26
4.2 Batch Processing . 29
4.3 Case-based Prioritisation . 42

5 Testing 53
5.1 Case-based Prioritisation . 53
5.2 Batch Processing . 55
5.3 Code Coverage . 57

6 Evaluation 59
6.1 Datasets . 60
6.2 Experimental Setup . 60
6.3 Results . 62

7 Conclusion and Future Work 66

References 68

Appendix 69
I. Licence . 69

4

1 Introduction
Business process simulation (BPS) is a technique for performing a "what-if" analysis.
This type of analysis helps with knowing what will happen in a real-life under changing
some parameters so that one prepares to face similar situations in the future. The
formation of the question is the first step needed, for example, "What will be the impact
on the process cycle time if one additional working hour for the resource X on day Y is
introduced?".

The simulation requires a BPS model as an input. Accordingly, it contains a business
process model and a description of the simulation scenario. There are different perspec-
tives we can use while modelling a business process. One of them is the control-flow
perspective, which specifies the order and execution condition of activities and events
[DRMR18]. In Business Process Model and Notation (BPMN), an activity is an item
of work performed by a resource. An event depicts an instant occasion which does not
encompass any duration. Examples of events are receiving a loan application from a
client, sending a booking confirmation to a client or waiting till the fifth of every month.
We connect events and activities with the help of sequence flows to show the execution
order. Additionally, we use gateways, representing decisions and alternative business
process paths. They help illustrate situations when we need to perform two tasks in
parallel (AND gateway) or one of two possible tasks based on some condition (XOR
gateway).

The second component of a BPS model is a simulation scenario description. Its
details depend on each separate implementation. In general, it includes the following
sections: 1) scenario specification (how many process instances to generate and start
date and time of a process), 2) arrival calendar (time intervals during which cases arrive),
3) arrival rate (distribution describing how often new process cases arrive), 4) resource
calendars (time intervals during which a given resource is available to perform tasks),
5) resource profiles (description of number, cost and working schedule of resources),
6) resource allocation (distribution describing how a given resource perform assigned
tasks), 7) branching probabilities (probability of every possible path taken in case of a
gateway).

The simulation results can be presented differently: either the simulated event log file,
the list of multiple key performance indicators (KPIs) and their values for the business
process, or some different output. In the current work, we will be mainly concerned
with the results containing both the simulated log file and multiple key performance
indicators (KPIs). The performance metrics represent the whole process in general and
individual activities and include waiting time – the duration from the moment activity is
enabled until it is started; processing time – the duration between the beginning and end
of an activity instance; cycle time – the difference between the end time and start time
of a process case; and resource utilization – the ratio of the available time of a resource
spent executing process activities [LPHD23]. As a rule, the list of metrics varies from

5

simulator to simulator; we present here the common metrics all simulators try to support.
The description of the simulation scenario impacts to what extent the simulation

results are realistic. The better the scenario is described at this point, the better simulation
results we will receive. For example, the simulation scenario contains four main sections
specified earlier and does not include a section for describing intermediate events. This
results in the tool’s inability to simulate intermediate events when the real business
process contains it, or analysts want to introduce it to a business process. As analysts
make decisions based on the received output from simulation, we aim to ensure that the
simulation engine reflects real-world scenarios to the best of its ability.

Mainstream simulation tools support basic BPMN elements, among which are activi-
ties, events and gateways. One of the open-source simulation engines, namely Prosimos,
working with BPMN, presented in [LPD22], provides support for resources who perform
every task at their own speed (differentiated performance) and have their own working
schedule (differentiated availability). This concept is introduced under the name of
differentiated resources. On the contrary, undifferentiated resources are those who share
the same performance and availability inside resource pools. In [LPD22], the novel
approach is evaluated and recognised as the one that outperforms the undifferentiated
resources. Due to this advantage, we use Prosimos as a baseline for the thesis work.

However, previously mentioned solutions still lack the support of some real-world
use cases. Assume that 1) the resource is not going to execute the task when it became
enabled, but one waits and performs the work after some time (e.g., the clerk waits
till 5 pm in order to document all invoices performed during the day) or 2) one task is
being prioritised over another one under a condition/rule (e.g., the client inquiries with
status "Critical" has the highest priority and starts to be processed as fast as possible).
Neither batch processing (first assumption) nor task prioritisation (second assumption)
has support in those simulation engines. Yet both of those concepts happen in real life.
Hence, this defines one of the limitations of the simulation engines mentioned above.

Moreover, Prosimos does not support intermediate events yet. We use events to
describe situations when something happens instantly, or, for example, we communicate
with entities from inside or outside of an organisation. End-users may find it inconvenient
since events are commonly used during the modelling of a business process. For example,
[zMR08] discovered that one of the subsets of intermediate events, namely intermediate
messages, are used in 41% of analysed models, used for education purposes, and in
12% of consulting models. Adding support for intermediate events allows us also to
introduce support for event-based gateways. Those gateways are used when we need
to react based on which event happened faster. By enabling the usage of intermediate
events and event-based gateways, we allow users to simulate and analyse more use cases.
Due to those reasons, we aim to address the absence of intermediate events’ support as a
part of this thesis.

Besides impediments in a control flow (no support for intermediate events) and a

6

BPS model (no support for batch processing and task prioritisation), [LPD22] also lacks
the user interface (UI) for a better user experience. The existing solution is presented as a
command line interface (CLI) tool. This introduces several obstacles for an end-user: 1)
not being able to use the tool in case of no technical knowledge regarding running Python
scripts; 2) introducing changes requires one to modify a raw JSON file; 3) complexity of
some sections of a simulation scenario, which requires one to specify a unique identifier
of BPMN elements.

In this thesis, we fill the mentioned gaps and focus on the following research goals:

RG1: Extend the simulation tool by introducing intermediate events, batch
processing and case-based prioritisation

RG2: Develop and deploy a web application for simulation, allowing users
to specify a BPS model and view simulation results

In order to accomplish these goals, we utilise a design science research methodology.
[HMPR04] states that using this methodology allows building an artifact and performing
its evaluation. As our goal is to solve a problem by presenting a new iteration of Prosimos
tool, we find this methodology a great fit for our purpose.

Within the design science methodology, we adopt phases of the systems development
life cycle (SDLC). In general, SDLC was introduced to provide a structured view of
system development in order to meet clients’ requirements. The list of phases includes
the following ones: requirements gathering and analysis, designing, developing, testing,
deploying and maintaining software. ISO/IEC/IEEE 12207 standard1 refers to SDLC
as a framework. This implies that SDLC does not force a development team to perform
any specific activities. The main goal of SDLC is to document a possible and nice-to-
have list of activities which makes the development efficient. A development team is
responsible for selecting which of those activities suit the team and incorporating them
into the development process (with changes if needed). In this thesis, we follow the same
approach and choose all phases because they match our goals. Additionally, SDLC does
not require those stages to be executed in a particular order.

During our work, the development is conducted following Agile practices. We plan
to adopt one of the most popular Agile frameworks - Scrum [SS20], which is an iterative
and incremental approach. First, we define initial requirements before starting the coding
itself. Afterwards, we proceed with the implementation based on the requirements, and
then we re-iterate the requirement specification and implementation. This approach
allows us to develop the features iteratively and change the specifications if needed.

The version control system used during the development is Git with GitHub2 as a
hosting service since Prosimos [LPD22] uses it. We also leverage GitHub functionalities

1https://www.iso.org/standard/63712.html
2https://github.com/

7

https://www.iso.org/standard/63712.html
https://github.com/

and use GitHub for requirements documentation and task planning. Additionally, we
configure pipelines (GitHub Actions3) for continuous integration (CI) and continuous
delivery (CD). CI executes the build and performs testing, whereas CD releases the code,
allowing us to deploy a new version at any moment we want.

Furthermore, we use Grammarly4, an AI writing assistant, during the writing process
in order to verify the grammar and punctuation and increase the understandability of the
written work.

The rest of the thesis is structured the following way. Section 2 gives an overview of
this work’s fundamental terms and concepts. Additionally, in this section, we describe
what has been done in the field so far. Section 3 introduces an overall architecture from
two points of view: as a web application and a functional system. Furthermore, we
explain the CI/CD pipeline, which contributes to the maintenance easiness later. Section
4 describes requirements, design and implementation of newly introduced concepts to
Prosimos, namely intermediate events, batch processing and case-based prioritisation.
Section 5 provides details on how we test the developed artifact. In section 6, we examine
how the new iteration of the software scales up. Section 7 summarises what has been
done in the thesis’s scope and discusses possible improvement areas.

3https://github.com/features/actions
4https://www.grammarly.com/

8

https://github.com/features/actions
https://www.grammarly.com/

2 Background and Related Work
This section provides an overview of concepts that are relevant to the area of research in
the scope of this thesis.

2.1 Business Process Management
According to [DRMR18], Business Process Management (BPM) encompasses principles,
methods, techniques, and tools in order to maintain the business process life cycle.
The life cycle includes different stages of a business process: identifying, discovering,
analysing, redesigning, implementing, executing, monitoring, and adapting. BPS is a
technique which belongs to the analysing stage. Simulation allows us to run a business
process and acquire numerical data, particularly performance metrics (for example, cycle
or processing time). Consequently, simulation represents a quantitative process analysis.

Additionally, we use the discovery of input parameters in the simulation engine.
However, this work does not implement this part; we use an already existing solution for
this described in [LMCCD22]. The discovery tool uses a business process model and an
event log file as input. Event log file describes the executed cases where case refers to
one execution of the business process. As the name suggests, this log file lists events that
happened during the whole process execution. Each event is described with the help of
attributes. The list of attributes is not fixed and depends on an automation system which
is used by the business. In this thesis, we focus on the following attributes: case identifier
(unique identifier of the case), event name (refers to the name of executed task or event),
resource (name of the resource who executed the task), enabled time (timestamp when
the task was ready to be executed), start time (timestamp when the task was started being
executed by the resource), end time (timestamp when the task was finished).

2.2 Business Process Management and Notation
One of the essential parts of BPM is depicting a business process so that all stakeholders
(people involved) understand it. For this, we use process models. There are various
modelling languages used for presenting a business process. In this work, we stick to the
de-facto standard of business model diagrams - BPMN [Gro13], which is widely used
and supported.

BPMN is a graphical notation used to visualise a business process. This notation
contains various elements to denote a business process. Key elements of this notation
include the following items:

• activity is a work item executed by a resource. A resource is anything, be it a
human or a machine, which can execute the task [DRMR18]. In this work, we use
task and activity words interchangeably.

9

• event is something that happens instantaneously. For example, a bank receives a
loan application form, or a client receives a loan rejection letter. In BPMN, there
are three types of events: start, end and intermediate events. Start and end events
happen at the beginning or end of a business process accordingly. A start event
signals the creation of the process instance, while an end event indicates the finish.
Concerning our examples, receiving a form might be a start event, and receiving
a rejection letter might be one of many possible variations of a process end. At
the same time, both of those examples might represent an intermediate event. An
intermediate event happens during a business process. Additionally, all events
are organised into two types: catching, being able to catch a trigger and throwing,
being able to throw a trigger. Here, trigger specifies a nature (origin) of an event,
for example, message, error, escalation and others.

• gateway is a decision point that chooses which path to follow. Those decisions are
either data- or event-driven. For example, we might follow a different path in case
a loan application amount is higher than 10 000 euros (data-driven), or we need to
send a payment reminder to an end-user if payment is overdue (event-driven).

• arc, or sequence flow, allows us to specify the order of those items we mentioned
above. Usually, an activity or event, or gateway usually has an incoming and
outgoing sequence flow. An element might have one or multiple incoming or
outgoing flows depending on the element type.

In order to have a better overview of process instance execution, we introduce the
term of token. Tokens are used to control the current state of each process instance
running [DRMR18]. As a result, tokens move during execution. When a start event is
triggered, we instantiate a process case and place a token on the event outgoing arc. This
token enables the next element located down the sequence flow. Let us suppose that
the next element is an activity. We call activity enabled when one or many token(s) are
placed on its incoming flow(s) [LPD22]. An activity is not started till the moment there
is an available resource to execute it. Once we have a resource, we start processing an
activity and a token is placed inside an activity. After a resource finishes executing this
activity, the token is placed on the activity’s outgoing sequence flow(s). Once there are
no tokens in any arcs, the process instance is finished. In regard to this so-called token
game, events could not contain tokens inside themselves during execution, compared to
activities. This happens due to the fact that events, basically, do not have any duration;
they are executed instantly.

Apart from having a gateway as a key element, BPMN also defines multiple types of
gateways, including the following:

• exclusive (XOR) gateway represents alternative paths of a process. During the
execution, only one outgoing sequence flow must be chosen and followed.

10

• parallel (AND) gateway allows describing situations when a process executes some
tasks in parallel (concurrently) to each other. In this case, all gateway’s outgoing
sequence flows are being followed. Decision of both AND gateway and XOR
gateway depends on the process data. Commonly, gateways are named with a
question, and each of the outgoing arcs is an answer to a posed question. So, the
path is selected based on the answer to a question.

• event-based gateway depicts cases when we choose which path to follow based
on the earliest event that happens. For example, we use this gateway when our
response differs based on a type of intermediate event. There are some limitations
on which elements you can use after an event-based gateway. Allowed elements
include intermediate catching events or receiving activities. We also might refer
to those following events as external catch events due to the fact that they usually
happen outside of a business process.

In this work, we focus on types of intermediate events depicted in Figure 1a. Message
intermediate catch event has a message as a trigger, for example, an invoice from a bank.
Timer represents a case when we need to wait based on an absolute or relative time; for
example, every Monday (absolute) or 24 hours (relative). Signal event is used together
with a publish-subscribe service [DRMR18]. This element waits to be triggered by some
other process or service. Additionally, we implement an event-based gateway, depicted
in 1b. We provided its definition earlier in this section.

Figure 1. Supported a) intermediate catch events and b) event-based gateway in Prosimos
2.0

2.3 Business Process Simulation
Improving a business process running in the real world might be a challenging, costly,
and time-consuming task. The simulation is a technique that allows finding the best setup
of the improvements instead of hand-picking and implementing them in real life. This
approach allows us to instantiate the desired number of cases with the specified simulation

11

scenario, execute those process cases, receive quantitative results of a simulation, analyse
them and then change the simulation scenario, run the simulation again and compare
whether the results improved.

The simulation receives a business process model and a simulation scenario as input.
Since our baseline is Prosimos [LPD22], the process model is specified by the usage
of the BPMN modelling language. Another parameter is the simulation scenario which
includes the next main sections:

1. Scenario Specification includes 1) the number of process cases to be simulated and
2) the start date and time of the simulation.

2. Arrival Calendar lists time intervals during which process cases are allowed to
arrive. An individual time interval contains four attributes: start weekday and time
and end weekday and time. For example, from Monday, 9 am to Monday, 9 pm is
a time interval.

3. Arrival Rate describes how often process cases arrive. We describe this with the
usage of distribution functions. For example, cases arrive following a normal
distribution with a mean of one hour and a standard deviation of 10 minutes.

4. Resource Calendars defines a list of time intervals during which a given resource
is allowed to perform process tasks. The definition for a time interval is the same
as used for Arrival Time section.

5. Resource Profiles represents all available resources grouped into pools. Each
resource has the following attributes: identifier, resource name, cost per hour, and
resource amount.

6. Resource Allocation maps available tasks to resources that are able to execute
this task. One task may be assigned to one or multiple resource profiles. In the
case of several allocations for the same task, each resource has its own individual
performance. We describe resource performance with the help of distribution
functions.

7. Gateway Branching Probabilities defines probabilities for all outgoing flows of a
gateway. Every gateway has one or multiple outgoing flows. The allowed range
of probability is from 0 to 1. The sum of all probabilities of a gateway should be
equal to 1.

2.4 Batch Processing
A resource might behave differently when selecting which task to execute next. Some-
times, a resource does not execute an enabled task straight away. Instead, a user or

12

software waits for a group of items to be collected and only after that runs them together.
We call this batch processing. [RATE05] defines multiple resource patterns of the work-
flow systems in general. One of them is Piled Execution which directly refers to batch
processing. The pattern describes allocating and queuing multiple instances of the same
task from different process cases to the same resource. Consequently, we introduce an
additional condition, besides resource availability, for an activity to be assigned to a
resource and executed. In this paper, we call those additional conditions - firing rule
or batch activation rule. In case an activity is batched, we collect those activities in
the queue during the execution of the business process till the moment the firing rule
is true. Afterwards, if 1) the firing rule is true and 2) the resource to execute a batch
is available, we assign a resource to the task and start execution. The introduction of
this concept helps to optimise task execution by impacting processing time [RM05]
and/or cost [RM05, PW13]. For example, if the individual task requires a long time of
preparation (e.g., heating up the machine) before the actual execution, piling up multiple
tasks saves us some time during the process execution.

In our case, we use the description of the already identified batches from the real-life
logs as a part of the simulation scenario. The batch processing description is structured
in the following way:

1. Task Identification specifies a unique identifier of an activity. This identifier should
match the one specified in a BPMN file of a model.

2. Batch Type describes how activities are executed in regard to each other inside
a batch. [LMCCD22] described five batch processing types: parallel, sequential
(task-based and case-based) and concurrent (task-based and case-based). Similarly,
[MS06] identified parallel and sequential types of batching. In this paper, we
work only with task-based batching and choose parallel and sequential types as an
overlap of those two referenced works. [MS06] describes those types as follows:

• sequential batching requires the initial set-up before the task execution, e.g.
warming up a machine. After this, all tasks are executed one after another
and the next task could not be started before the previous one ends.

• parallel batching happens when we can execute our tasks simultaneously and
we have no detailed information on how the resource/system split the efforts
between all of them. For example, this might mean that our machine handles
processes in a multi-threaded way and executes a batch of activities at the
same time.

3. Duration Distribution specifies the activity duration in the batch processing.

4. Firing Rule describes the conditions when batch processing is enabled for the
execution. There exist a lot of types of batch activation rules. [HB94] defines

13

time, quantity and time-quantity rules. In other words, [LMCCD22] specifies
them as volume-based (batching is based on a number of accumulated tasks) and
time-based (batching is based on an absolute time or a waiting time limit). One
of our intention during this work is to allow users to incorporate the automated
BPS discovery tool [LMCCD22] together with Prosimos. Due to this, we support
those rules which can be discovered using [LMCCD22]. So the proposed solution
supports volume-based (size) and time-based (waiting time since the first activity,
waiting time since the last activity, day of the week, hour of the day) rules.

2.5 Prioritisation
In order to perform a task, we need, first, to have a resource that can perform this task.
Resources, in turn, may apply some logic when deciding which items to start working on.
While explanations of resource behaviour concerning task selection are not covered much
in the literature, resource decisions impact the overall performance of a business process
[HLD12]. Prioritisation describes resource behaviour when one assigns a higher priority
to an activity or case based on rules or logic presented in any other form. [SWX+17]
approached this topic from a more descriptive perspective by analysing how the resources
prioritise their work.

As a rule, queues are being used in simulators to maintain the task selection process.
However, there are different types of queues which can be incorporated. One of the
possible queues is a priority queue, deciding the next item to execute based on a priority
key. In simulators, enabled time is a priority key. Changing the resource selection
behaviour implies introducing another variation of a queue in a simulator.

2.6 Existing Simulation Solutions
While many concepts we mentioned before are still under research, some simulation
tools already work with either batching or prioritisation. Alongside, intermediate events
are supported by all simulators we mention in this section, namely iGrafx, BPSim, BIMP,
Bizagi, BonitaSoft, Visual Paradigm, ARIS Business Simulator.

Based on [DBBMB16] analysis, only eight out of 33 evaluated simulation tools
permits batches. The low support number highlights that batch processing needs more
coverage in the simulation tools. Furthermore, all eight tools are proprietary; conse-
quently, code sources are not shared with the public. We pick one of the tools, namely
iGrafx, and analyse how batching is supported there. iGrafx is selected as it is the only
tool that both enables batching and is highly evaluated in all segments based on ranking
features presented in [DBBMB16]. The list of options by which a batch can be formed
is extensive and includes size (number of items in a batch), expression, time, message,

14

signal, and case attribute value5. iGrafx supports maximum waiting time for collecting
items, which we call waiting time since the first item in our work. However, the concept
we introduce, calling waiting time since the last item, is not possible to design in iGrafx.
We describe definitions of waiting time since the first/last item later on.

[FP15] singles out BPSim simulation tool as the only one which can handle priorities
in comparison to the inability of BIMP, Bizagi, BonitaSoft, Visual Paradigm. BPSim
allows adding priorities per task only; a user assigns a priority number to a task with
respect to other tasks. Since the publication of [FP15], Bizagi and BonitaSoft introduced
priority, following the same approach as in BPSim. Those tools are oriented on prioritising
specific tasks, while we want to prioritise all tasks of a specific case instance. ARIS
Business Simulator allows users to prioritise cases by assigning a priority to the start
event. The priority of the start event will be propagated to all activities of this process
instance6. Similarly, iGrafx enables users to prioritise cases (which they call transactions).
However, we want to support prioritising cases based on the case attributes which are
being generated during the simulation. Thereby, end-users do not provide any priority
numbers; software calculates this priority based on rules from the users.

5The list was taken from the iGrafx documentation
6https://documentation.softwareag.com/aris/Designer/10-0sr6/yad10-0sr6e/10-0sr6_

Method_Manual.pdf

15

https://client.igrafx.com/17/en/Content/igrafx/process_helpids/Properties_dialog_box_-_Inputs_page.htm#XREF_29426_Properties_dialog
https://documentation.softwareag.com/aris/Designer/10-0sr6/yad10-0sr6e/10-0sr6_Method_Manual.pdf
https://documentation.softwareag.com/aris/Designer/10-0sr6/yad10-0sr6e/10-0sr6_Method_Manual.pdf

3 Software System Description
This section describes one of the two main contributions delivered in the scope of this
thesis: the creation of the web application (RG2). First, section 3.1 explains the overall
architecture of the web-based simulation tool Prosimos. The next section presents the
system architecture in regard to the implemented functionality. We compare functional
components before and after implemented changes in this thesis. Section 3.3 describes
the process of verifying and releasing a new version of the web application. We perform
these actions as part of the tool maintenance.

3.1 Web Application Architecture
Prosimos 2.0 is a web-based tool developed as a part of this thesis. In this paper, we
refer to a version of the tool available before the start of this thesis as Prosimos 1.0
and a version implemented as a part of this thesis - Prosimos 2.0. Besides developing
the tool itself, we also deploy it. The deployed version of the tool is available at
https://prosimos.cloud.ut.ee/. Consequently, we design the architecture of the
web application, taking into account the deployment need. Due to the popularity of the
approach and its scalability, we dockerize the web application to ease its deployment.
Figure 2 depicts the architecture design of the application, which implicitly includes
three levels: front-end (client side), back-end (server side) and data layer (data storage).
However, explicitly, we have five Docker7 instances. In our case, Web API, Broker and
Task Management containers represent the server side.

Front End

Data Storage

Redis

Broker

RabbitMQ

Web API

Task Management

add task to the queue

check task's status

return task's result

Client

pull a task
from the queueget

task's result

Figure 2. Web application architecture of Prosimos 2.0

7https://www.docker.com/

16

https://prosimos.cloud.ut.ee/
https://www.docker.com/

Apart from depicting the containers, Figure 2 also illustrates the technology stack
we use. The CLI tool Prosimos 1.0, the basis for this work, is implemented in Python.
Therefore, we continue building the tool for our back-end using Python. One of the
thesis tasks is exposing our CLI tool to the public as a web server. For this, we select
Flask framework, which, according to [Sem23], has the following advantages: easiness
of learning, fitting small projects and high scalability. Prosimos client is developed with
the help of React library. We choose it based on the advantages presented in [Mur23]:
components’ reusability, ease of learning compared to Angular, an active community,
and fast performance.

The requests flow is happening the following way. First, a client sends a request. It is
being received by nginx8, which performs the role of a reverse proxy. The proxy resolves
the request by sending it either to the React application, serving static files, or to the
back-end (Flask application), serving REST API. Additionally, reverse proxy secures
our REST API endpoint from being exposed to the public. Once we serve the page to an
end user, they can interact with the page and its functionality. Some of the functionality
(for example, simulation run) requires calling Web API to process a request. This time,
nginx redirects the request to the server side. On the server side, the first access point
is gunicorn9, it transforms the request received from a web application and sends it to
the web server, Flask application. After request processing, Flask returns the answer
the same way as the request sent to the server: first, to gunicorn, followed by nginx and
finally to the client.

Since we are building a web-based tool, one of our goals is to allow multiple users
to use the tool simultaneously. As a result, our Web API component should work
asynchronously, meaning not blocking access for the next user while processing the
request for the previous one. Celery10 task queue manager is being introduced in order to
fulfil this requirement. Figure 2 presents a detailed view of how tasks are being handled
in the system. Once the task reaches the Flask web application, it is sent to the message
broker (queue). A message broker is responsible for collecting all incoming requests,
placing them in the queue and saving the status of the request (e.g., whether the task
waits for the execution, is being executed now or (un)successfully finished). We use
Rabbit MQ11 as a message broker due to its ability to guarantee delivery of the message
and deliver larger files, compared to alternatives, such as Redis. Task Management
instance runs a set of celery workers. Those celery workers are a set of processes
which are responsible for executing tasks independently. Once there is a task in the
queue, a worker will pull it out from the queue and start the execution separately from the
main application process. This results in a non-blocking execution of long-running tasks.
When the task finishes, the results are sent to the Results Backend in case it is set up.

8https://www.nginx.com/
9https://gunicorn.org/

10https://docs.celeryq.dev/en/stable/
11https://www.rabbitmq.com/

17

https://www.nginx.com/
https://gunicorn.org/
https://docs.celeryq.dev/en/stable/
https://www.rabbitmq.com/

There might be situations when one does not need to save the results of the execution
and this step will be omitted. Our use case implies the saving of the results because
process simulation results in files with simulation statistics and simulation logs. We use
Redis12 for saving the results of the task execution. Redis is an in-memory key-value
data storage which provides an efficient way to save messages of small sizes. In our case,
task results contain, at maximum, two fields specifying a file path to the resulting files:
either a log file or a file with statistics. Since we save only the paths, Redis data storage
is sufficient for our needs. When Flask application wants to get an update regarding the
task status, the server sends requests both to the broker and data storage to receive an
updated status.

Additionally, we decompose the web application between multiple GitHub reposito-
ries. This separation allows us to ease maintenance and development by splitting different
concepts (like back-end and front-end). We organised the structure of repositories in the
following way:

• Prosimos13 encapsulates business logic of the simulation engine Prosimos. In
addition, this repository allows us to use this simulation engine as a CLI tool and
run it locally.

• Prosimos Web Api14 wraps the Prosimos CLI tool and exposes Prosimos function-
alities as REST API endpoints. As a result, we are able to call simulation from the
client (React application). Additionally, this repository includes setup for Celery
task management service together with broker and data storage.

• Prosimos Front End15 contains React application, which concludes the front end
part of the web application.

• Prosimos Docker16 summarises all previously noticed repositories in one Docker
configuration file (docker-compose.yml). Later, we use this file to start all service
instances as docker containers. So, we use this repository mainly for deployment
versioning.

All of the repositories, except Prosimos, contain Dockerfile. Those files are nec-
essary to create a Docker image. Once we have a Docker image, we create a Docker
container, a running instance of an image.

12https://redis.io/
13https://github.com/AutomatedProcessImprovement/Prosimos
14https://github.com/AutomatedProcessImprovement/prosimos-microservice
15https://github.com/AutomatedProcessImprovement/prosimos-frontend
16https://github.com/AutomatedProcessImprovement/prosimos-docker

18

https://redis.io/
https://github.com/AutomatedProcessImprovement/Prosimos
https://github.com/AutomatedProcessImprovement/prosimos-microservice
https://github.com/AutomatedProcessImprovement/prosimos-frontend
https://github.com/AutomatedProcessImprovement/prosimos-docker

3.2 System Architecture
Prosimos 2.0 version of the tool is the logical continuation of the already existing
solution Prosimos 1.0. While Prosimos 1.0 supports the limited number of elements
in the standard BPMN 2.0 and can be run only via a console, Prosimos 2.0 introduces
advanced BPMN elements and can be accessed via a browser and a console. In order to
observe the tool’s growth and changes, it is important to understand which part of the tool
refers to which version. For this, we present the overall architecture of Prosimos 2.0
in Figure 3. We adopt this architectural view from our previously published paper
[LPHD23] by highlighting the version in which each component is introduced.

Prosimos Engine

Simulation Core

Inter-arrival
Manager

Resource
Profiles

Control-Flow
Handler

Simulation
Queues

Simulation
Stats

SIMOD-DiFF

G-Branching
Discovery

R-Performance
Discovery

R-Availability
Discovery

Simulation Model Discovery

Inter-arrival
Discovery

Timetables
Manager

Simulation Model
Parser

Support Modules

Stochastic
Estimator

BPMN
Replayer

Rule Evaluator

Prosimos Web Portal

Simulation PanelModeling Panel

Prosimos API

Busines Process Simulator
Endpoint

Simulation Model Discovery
Endpoint

Extended (in scope of Prosimos 2.0)

Prosimos 1.0

Added (in scope of Prosimos 2.0)

Figure 3. System architecture of Prosimos 2.0

Prosimos is logically structured into three layers, as shown in Figure 3. As legend
states, components marked with orange colour on the figure are added (from scratch) in
the scope of this thesis and those marked with blue - are extended based on the existing
implementation from Prosimos 1.0. Both types of components were introduced as
part of Prosimos 2.0. All other components, with a grey colour marking, belong to
Prosimos 1.0.

The layer at the bottom, henceforth referred to as Prosimos back-end, consists of
three groups of components labelled as SIMOD-DiFF, Prosimos Engine and Support

19

Modules. The Support Modules consists of a set of components containing supple-
mentary functionalities shared by both the SIMOD-DiFF and Prosimos Engine. On the
top-left of the back-end, the SIMOD-DiFF components discover the simulation parameters
given a BPMN model and the corresponding event log written in XES or CSV, respec-
tively. The Prosimos Engine components handle the business process simulation from
a given model [LPHD23].

The middle layer of the architecture diagram, the Flask web application, exposes
Prosimos REST API. Three endpoints are provided to the end user, grouped into
the Simulation Model Discovery Endpoint and Business Process Simulator
Endpoint. Table 1 describes the verbs, URIs, and actions of those endpoints. Although
the REST API can span more specific endpoints, e.g., for interacting with the back-end
to trigger the BPMN replayer or discover calendars for a given resource, for simplicity,
we kept the API with the minimum operations required to discover simulation models
and run simulations [LPHD23].

Verb URI Description

POST /api/discover Discovers the simulation parameters given a BPMN model and an event log

POST /api/simulate Performs the simulation from a given simulation model

GET /api/results Retrieves the event logs and metrics produced as result the simulation

Table 1. Prosimos REST API

On top of the architecture, the Modeling Panel describes a web interface for end-
users to create, modify or discover (interacting with the Prosimos API) simulation models
from event logs. On the right, the Simulation Panel allows users to run simulations
and retrieve the resulting event logs and performance metrics. For further details about
Prosimos back-end, we refer readers to our previous paper [LPHD23].

The web interface of the tool is divided into three main pages:

1. Upload Page, depicted in Figure 4, enables a user to provide two required inputs
for the process simulation: business process model (.BPMN file) and simulation
scenario (.json file).

There are three options for a starting point for setting up the simulation scenario:

(a) Create a simulation scenario manually allows a user to start creating the
scenario from scratch using the UI components instead of creating the file in
a text editor. By using this option, a user benefits from an already prefilled
list of activities or events or mapped options for a gateway.

(b) Upload a simulation scenario. A user needs to provide a .json file in case
of selecting this option. In order to be correctly parsed, this file should be

20

Figure 4. Prosimos upload page

previously exported from Prosimos itself. We do not support any other con-
figurations inside this file except the one created for Prosimos. Additionally,
a user is responsible for this file being matched with the business process file
uploaded previously. The tool does not perform any cross-checks between
the provided business process file and the simulation scenario file.

(c) Discover a simulation scenario from the log. This option is used in case a
user has a simulation log file of the process and wants the simulation scenario
to be discovered from that file. There are some requirements for the column
configuration in the file. The minimum essential columns should include
case (unique identifier of the process case), activity (name of the executed
activity), start (start date and time of the activity), end (end date and time
of the activity), resource (name of the resource who executed the activity).
The columns in the file should be equal to that list of keywords or contain
them. The order of the columns does not matter.

2. Scenario Overview Page, shown in Figure 5, represents the content of the simu-
lation scenario file and allows a user to modify it before running the simulation
or exporting the scenario to be used later. We mentioned previously that .json
contains seven sections. We combined the three first sections under Scenario Speci-
fication title on the UI. The rest four sections remain the same. Apart from sections
from Prosimos 1.0, we have four additional tabs introduced as a part of Prosimos
2.0, namely Intermediate Events, Batching, Case Attributes and Prioritisation.
So, the .json file is represented by nine sections on the UI. Some sections are

21

required to be filled in, among them are Case Creation, Resource Calendars,
Resources, Resource Allocation. At the same time, other sections could be
left empty. E.g., Branching Probabilities or Intermediate Events sections
stay empty if there are no gateways or intermediate events in the BPMN model. If
a user does not want to specify batch processing or case-based prioritisation, those
sections also remain empty. The last tab, Simulation Results, is empty initially and
populated once a user runs a simulation. There are a couple of buttons on the page
with the following meaning:

(a) Start simulation, first, validates a simulation scenario, e.g. whether all
required sections were filled in or are in the valid, allowed range. Once the
validation does not find any violations, a simulation starts executing. The
time required for a simulation depends on several criteria, among which are
model complexity and the number of instances to run. When a simulation
finishes, a user is redirected to the Simulation Results view. This view is
described in detail in a separate bullet point below.

(b) View model visualises a BPMN model uploaded on the previous page in a
separate browser window.

(c) Download as a .json downloads the complete simulation scenario at the
current stage of editing. This implies all changes introduced by a user are
saved to the file. This option is useful if one wants to continue editing a
simulation scenario or re-use a scenario later.

Figure 5. Prosimos scenario specification page

22

3. Simulation Results tab. When a simulation finishes, a user is redirected to the last,
Simulation Results, tab. On this page, three tables with various key performance
indicators (KPIs) are displayed: scenario statistics per metric, individual statistics
per task and resource. Furthermore, there are two buttons:

(a) Download stats saves a file with data from those three aforementioned tables.

(b) Download logs button downloads a file with simulation logs of this current
run.

Due to the fact that simulation is a stochastic process, each simulation run provides
a unique set of results. Running the simulation for the second time results in
overriding the data that was previously available to the user. There is no way of
getting historical information about the specific simulation run. Additionally, we
do not keep historical data on the server where the web application is deployed.
We implemented the scheduled Celery task, which checks the server’s file system
and cleans files older than half an hour.

3.3 CI & CD pipelines
Maintaining the software refers to actions that we perform once we publish our software
to end clients and they start using it. This might include fixing the bugs, improving the
performance or introducing new features per user request. All of those activities might
require a lot of costs unless a development team incrementally prepare the software to be
maintained. Continuous integration (CI) & continuous delivery (CD) pipelines allow us
to run build and test actions in one click. Additionally, it introduces software versioning
which eases the process of deploying a new version of a software or moving to a previous
one. Due to those advantages, CI & CD pipelines are one of those steps which simplify
the maintenance of the app in the future.

With the usage of GitHub actions, we design our pipelines for Prosimos. GitHub
actions are set up per repository. As Prosimos is distributed across multiple repositories,
we set up each repository separately. However, there are some similarities between the
setup. For example, publishing a docker image requires the same set of steps for both a
Flask application and a React one.

The first pipeline is a CI one. The main goal of this step is to build and test a pushed
version of the code. Figure 6 depicts how the continuous integration process looks like
for the Prosimos back-end part. All GitHub actions require triggers, which start the
execution of the action itself. For the CI pipeline, we specify three triggers: 1) creating
a pull request, targeting the main branch; 2) pushing a commit to the main branch; 3)
manually kicking off the CI process via GitHub UI. When one of the triggers is fired, the
GitHub action is pushed to the queue for processing. The steps involved in the processing
are defined by the user in .yml file. This file is stored in the repository under the following

23

path: .github/workflows/17. The action is being executed on the server, which is called
runner, provided by GitHub. Since the server does not include any configurations, the
first step is to install Python together with a package manager pip. After that, we install
packages, which are defined in a package.json file in the root folder. Once we have all
dependencies installed, we run tests saved under the testing_scripts folder. CI pipeline
for the React application includes the same steps with the difference that we install
Node.js dependencies instead of Python. The .yml file is accessible under the same path
but in a different repository18.

enables an action

Triggers

Setup required
version of

Python

Install
packages Run tests

Action Steps

Push to the
main branch

Pull request to the
main branch

Manually

Figure 6. GitHub Actions responsible for CI

Another pipeline we introduce is the CD one. Its goal is to be able to release a new
version at any moment. This results in releasing a new code version from time to time.
Additionally, this allows us to move back to any version released in the past because we
keep track of all releases. For this pipeline, there is the only allowed trigger is a new
tag19 pushed to the GitHub. A tag is a pointer to any commit in the repository history.
We use semantic versioning20 to name tags and monitor all versions. The first step of
the pipeline is extracting metadata, which contains a tag specifically. We use this tag
for versioning Docker images. In order to be able to access Docker Hub21, where we
store built images, we then log in to Docker Hub with personal credentials. After that,
we build a Docker image and push the built image to the Docker hub. For Prosimos
back-end, we have two applications: Flask and Celery. Once we are done with these
steps, we have up-to-date docker images ready to be deployed on the server.

17https://github.com/AutomatedProcessImprovement/Prosimos/tree/main/.github/
workflows

18https://github.com/AutomatedProcessImprovement/prosimos-frontend/blob/main/
.github/workflows/build.yml

19https://git-scm.com/book/en/v2/Git-Basics-Tagging
20https://semver.org/
21https://hub.docker.com/

24

https://github.com/AutomatedProcessImprovement/Prosimos/tree/main/.github/workflows
https://github.com/AutomatedProcessImprovement/Prosimos/tree/main/.github/workflows
https://github.com/AutomatedProcessImprovement/prosimos-frontend/blob/main/.github/workflows/build.yml
https://github.com/AutomatedProcessImprovement/prosimos-frontend/blob/main/.github/workflows/build.yml
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://semver.org/
https://hub.docker.com/

enables an action
User pushes

a new tag

Triggers

Extract
metadata

Build and push
Docker image

for
Flask application

Build and push
Docker image

for
Celery application

Action Steps

Log in to
Docker Hub

Figure 7. GitHub Actions responsible for CD

25

4 Simulation Enhancements
In this section, we focus on RG1 and dive deep into newly introduced concepts of
intermediate events, batch processing and case-based prioritisation in sections 4.1, 4.2,
4.3 accordingly. We describe those concepts individually in the following three subsec-
tions. The structure of each section remains the same. We start by eliciting high-level
requirements. Then, we move into designing and implementing parts of the feature. After
this, we present the implemented UI and describe its functionalities and user interactions
with the tool. Finally, we delve into more technical details and describe the key changes
introduced to the Prosimos back-end. Additionally, we provide pseudocodes for some of
the algorithms for better visibility of the newly introduced concepts.

4.1 Intermediate Events
Requirements

• A user should be able to provide a model with an event-based gateway.

• System should be able to accept BPMN models with intermediate catch events,
specifically message intermediate catch event, timer intermediate catch event, link
intermediate catch event, and signal intermediate catch event.

• A user should be able to provide a distribution function per each event in a model.

• A user should receive a warning in case there are some validation errors in the
provided data, e.g. one of the events does not have a specified distribution function.

• Prosimos back-end should allow providing a parameter of whether events should
be included in the resulted log file or not. This parameter is a boolean value (two
possible values: true or false) and, by default, set to False, meaning events are not
added to the simulation log file.

Domain Design Introducing intermediate events and a gateway also requires being
able to model them in regard to the simulation parameters. Our simulator needs to know
when events are being executed cause we do not have any external interaction. Timer
type, by default, specifies how much time we need to wait before the continuation of a
process continuation. We use a duration distribution to be able to model this behaviour.
However, message and signal are more complicated, and they do not have any duration
component. Despite this, in this work, we allow to model them with the help of duration
distribution, as well. This allows the simulator to know exactly when an event is executed.
We name this time, allocated for the event execution, as event duration or running time.

26

As a result, our tool requires information about a distribution function for each event
present in a BPMN model. Listing 1 presents how events should be described in the
simulation scenario configuration file.

{
...

"event_distribution": [
{

"event_id": "Event_18vjmnc",
"distribution_name": "fix",
"distribution_params": [

{ "value": 900.0 },
{ "value": 0.0 },
{ "value": 1000.0 }

]
}

]
...

}

Listing 1. Representation of event distribution in a simulation scenario file

We introduce a new section event_distribution, which contains an array of cus-
tom objects. This custom object consists of event_id, which should match a unique
event id specified in a BPMN model, distribution_name and distribution_params.
The last two properties specify the distribution function. With the help of this function,
we specify the duration of the event (timer event) or when the event will be fired. When
we have a distribution function defined, we can generate a value from this distribution,
and this value is the one we use for a simulation. There are different libraries that
help to receive this random number from the distribution function. In our case, we use
Scipy22 library. There are several reasons for this decision. First of all, this library
was already introduced in Prosimos 1.0 so we can leverage it. Furthermore, this library
contains a comprehensive number of supported functions compared to NumPy or Pandas.
Additionally, Scipy library is well-supported and -documented.

The number of parameters the user is required to provide differs from the distribution
function one uses. For example, if an event runs for a fixed period of time, e.g. 15
min, we use a fix function and specify 15 min in seconds (= 900 seconds) as a first
parameter. The next two parameters of distribution_params defines the limit range,
minimum (min) and maximum (max) boundaries, of generated values. If the generated
value is outside of the provided range, it is discarded, and another one is generated.
This happens until the moment the generated value lies within the specified range. The
concept of maintaining generated values in a range was introduced for the distribution of
activities’ duration in Prosimos 1.0, and we use the same concept for events. In case the

22https://scipy.org/

27

events’ duration follows the normal distribution, we use norm distribution23. We extract
information about how many parameters we need to provide from the documentation,
specifically from rvs method. For norm distribution, we need loc and scale parameters.
Based on Scipy documentation23, the location (loc) keyword specifies the mean and
the scale (scale) keyword — the standard deviation. Additionally, our implementation
requires two additional parameters: (min) and (max) values. As a result, norm requires
four values provided as a distribution_params property.

UI Design Now, previously described concepts are implemented as UI components for
an end-user. As we introduce a totally new section in a simulation scenario file, likewise,
we add a new tab to the UI called Intermediate Events. Figure 8 illustrates the visual
representation of the page. The tab lists existing events in a BPMN model. Consequently,
an end-user accesses the page with already pre-filled data with identifiers of events. This
is done in order to simplify the interactions with the tool. Once a user reaches this point,
they should provide function distributions per every event in order to be able to run a
simulation. If the data was not provided or was provided incorrectly, validation errors
appear once a user clicks Start simulation. Validations that exist for this tab include
1) the presence of the data; 2) the data is in valid ranges: minimum value of 0 and no
maximum value. Regarding the latter limitation, technically, there is a limitation of what
memory allows us to save, e.g. value of 9007199254740991 is the highest and safest
integer value that can be used in TypeScript. However, we assume that end-users do not
utilise values that exceed the upper bound of the memory limitation.

Execution Semantics Regarding the introduction of the intermediate catch events to the
Prosimos back-end, the following implementations take place. First of all, intermediate
catch events describe processes or decisions which took place externally, meaning outside
of the entities that execute a process. In this regard, intermediate events do not require
an assigned resource in order to be executed. So when there is an event arriving at the
control flow, we calculate when this event will be fired following the duration distribution.
Once we know the date and time of an event firing, we put it in the priority queue, passing
through this timestamp. Due to the simplicity of these changes, we do not provide its
pseudocode.

In relation to event-based gateways, the implementation logic is described below.
The function which decides which path the simulation executions takes is the main one
responsible for the correct behaviour of this type of gateway. Algorithm 1 represents
the logic implemented behind this. As input, we receive an array of outgoing flows
from the event-based gateway. Elements of the array are represented by a data structure
containing details about the intermediate event, among which are flow name and duration

23https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#
scipy.stats.norm

28

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

Figure 8. UI section, describing intermediate catch events

distribution function. Lines 3-5 compute the duration of each event that is outgoing
from the gateway. After, we find the index of the lowest duration by executing function
GetIndexOfMinValue. As an execution result, we return the information about the
selected intermediate event (line 7).

Algorithm 1: Event-based Gateway Decision Algorithm

1 function GetEventGatewayChoice (outgoing_flows: []):
2 all_outgoing_flows_dur ← [];
3 for flow_index = 0 to length(outgoing_flows) do
4 all_outgoing_flows_dur[flow_index]←

GetCurrentFlowDuration(outgoing_flows[flow_index]);
5 end
6 min_dur_flow_index = GetIndexOfMinValue(all_outgoing_flows_dur);
7 return outgoing_flows[min_dur_flow_index];
8 end

4.2 Batch Processing
Requirements Batching is the next feature we introduce as a part of this work. We want
to allow the simulation of activities executed not individually but in a group, meaning a

29

batch, with others. In order to design and implement batching, we form a list of initial
requirements:

• A user should be able to define batching per individual task.

• System should support batching for multiple tasks.

• A user should describe batching, providing batching type, batching probability,
duration scaling and firing rules.

• System should support two batching types: parallel and sequential.

• Allowed range of batching probability is from 0 to 1.

• Task should be batched only when the firing rule assigned to the task is true.

• System should support five types of rules: by the size of a batch, the hour of the
day or day of the week, and waiting times. Additionally, waiting times contain two
separate types: waiting time since the enablement of the first activity in a batch
and since the enablement of the last activity in a batch.

• In regard to simulation, a formed batch is executed by one and only one resource.

Domain Design Having high-level requirements defined, we create a domain diagram
to visualise relationships between existing and newly introduced concepts. Figure 9
depicts those relationships. BPMN Activity represents activity from a BPMN model. This
is an existing entity from Prosimos 1.0, and it contains numerous attributes. However,
the only attribute which interests us is taskId, a unique identifier of a task. An activity
can or can not have an assigned batch setup. The cardinality of the relationship attached
to shows that an activity can be attached to 0 or 1 batch setup. This comes from the
requirements as this relationship is not mandatory, and an end-user is not required to
set up batching for all existing tasks. We describe batching for the specific activity by
BatchSetup entity. It includes batching type, how much (in percentage) instances of
tasks are batched, and how task duration changes in accordance with the number of tasks
in a batch. We also need to know when a batch is enabled in order to start processing
it. For this, we define OrBatchingRule, which contains a list of logical OR rules. OR
rule, in turn, contains a list of logical AND rules. Each item inside the AND rules list
represents the smallest atomic entity, BatchingRule. We use the same approach of a
chain of rules for designing another feature, case-based prioritisation. Consequently, a
deeper description of this OR rule → AND rule → atomic rule chain is described
later when we delve into a domain design of a case-based prioritisation.

Moving ahead, the next concept we describe is the BatchingRule entity. By using the
word atomic previously, we emphasise that this is the smallest possible in this domain

30

BpmnActivity

+ taskId: string

BatchSetup

+ batchingType: string

+ sizeDistribution

+ durationDistribution

OrBatchingRule

AndBatchingRule

BatchingRule

+ field: string

+ comparison: string

+ value: string | number

DayWeekRule DailyHourRule BatchSizeRule WaitingTimeRule

WaitingTime
SinceFirstRule

WaitingTime
SinceLastRule

1 0..1

Extends

Extends

1*

consists of

1

*

consists of

1 *

is enabled by

Figure 9. Domain model of batching

entity that can not be divided into smaller pieces. Also, this entity is the one around
which we build firing rules which enable batch execution. BatchingRule contains three
attributes: field, comparison, value. We provide details on what values are allowed per
each of these attributes later in this section. Since we have a limited number of allowed
values for field, we depict that by introducing the generalization relationship between
BatchingRule and derived entities from that, namely DayWeekRule, DailyHourRule,
BatchSizeRule, WaitingTimeRule. Additionally, we split WaitingTimeRule entity based
on a starting point for the counter of waiting time. As a result, we form two new child
entities WaitingTimeSinceFirstRule and WaitingTimeSinceLastRule.

Based on the description of the domain, we derive a JSON schema. Listing 2 provides
JSON data which complies with the designed schema. As multiple tasks can be batched,
root element batch_processing contains an array of items. Each item represents an
object and consists of the following fields:

• task_id represents the task to which we apply the batching. Here, we reference the
task identifier saved in the BPMN model.

• type specifies how tasks are executed inside the batch. There are two possible
options: "Parallel" or "Sequential". Parallel describes a situation when
a resource executes all tasks together and there is no specified logic on how a
resource switches between them. Consequently, all tasks present in a batch have the

31

same start and end time in a resulting log file in our implementation. Sequential
type refers to a case when a resource executes tasks in a batch one after another. In
this case, a resource devotes his time to one task at a time and does not shift focus
to other tasks from the batch. This implies that a resource starts executing the next
task only after finishing executing the previous one.

• size_distrib defines the percentage of tasks being executed individually or batched.
The provided example in Listing 2 states that all tasks (where id = task_id_1)
are batched. In case one wants to define that, for example, 20% of tasks are
executed individually and the rest, 80%, - in batches, we need to have two items
in the list. The resulting setup should look like this: [{”key” : ”1”, ”value” :
0.2}, {”key” : ”2”, ”value” : 0.8}]. The field’s structure is designed in a complex
way intentionally. The second usage of this field is configuring a batching rule
based on the probability of the number of tasks. So we can represent the following
scenario: In 30% of cases, the batch happens when there are four tasks in a
batch. All other batches (70%) happens when there were only two tasks in a batch.
In this case, the fields’ value is structured as follows: [{”key” : ”2”, ”value” :
0.7}, {”key” : ”4”, ”value” : 0.3}]. We treat this field as a batching rule only in
case firing_rules is empty.

• duration_distrib describes how the duration of tasks inside a batch is impacted by
the number of tasks in a batch. One of the examples we provided before refers to
improved performance after batch introduction. Therefore, this section enables
users to adjust the duration of the tasks by a scale factor. The example from Listing
2 states that the duration of individual tasks inside a batch will be reduced by 0.2
for batches with a size of 3 or more items. The structure of this field also allows
more sophisticated scenarios, combining different batch sizes. For example, we
can define that we reduce the performance by 0.2 for batches of sizes 3, 4, 5 and
by 0.25 for batches with 5 or more tasks inside.

• firing_rules specifies a condition under which a batch is enabled. The structure
follows the same idea of combining OR and AND conditions under one rule as
we describe later for prioritisation rules. Accordingly, the rule from Listing 2 is
read like (daily_hour < ”12” AND week_day = ”Friday”) OR (size >= 4).
Compared to prioritisation rules, batching rules introduce a different approach
to atomic rules. We can define five types of rules for batching: daily_hour,
week_day, size, ready_wt, large_wt. All those names are reserved for attribute
field. We describe those types separately by providing information on what they
mean and allowed values.

– daily_hour specifies hour of the day. The allowed range of this value
is from 0 to 23. We do not provide any opportunity to specify the time

32

{
...
"batch_processing": [{

"task_id": "task_id_1",
"type": "Parallel",
"size_distrib": [{ "key": "2", "value": 1 }],
"duration_distrib": [{ "key": "3", "value": 0.8 }],
"firing_rules": [

[
{

"attribute": "daily_hour",
"comparison": "<",
"value": "12"

},
{

"attribute": "week_day",
"comparison": "=",
"value": "Friday"

}
],
[

{
"attribute": "size",
"comparison": ">=",
"value": 4

}
]

]
}]
...

}

Listing 2. Representation of task batching in a simulation scenario file

33

with exact minutes or seconds. An end-user is required to specify the time
only by specifying a clock hour. The allowed list of operators for this type
is < ≤ = > ≥. We name this list relational operators and use it
throughout the paper. If a user wants to define a range during the day, a
solution is to use multiple statements under the same AND rule. For example,
daily_hour ≥ 13 and daily_hour ≤ 18 describes a range from 1 pm to 6
pm, including.

– week_day represents the day of the week when the rule is enabled. The
number of allowed values for this type is limited by the number of days in the
week. This means we can select a value from a list of seven weekdays. The
format of a weekday is a capitalised day of the week, for example, "Friday".
The only allowed comparison operator is =. We encourage the usage of
OR and AND combinations to design more complex enabling rules, such as
batches being enabled on Mondays and Fridays.

– size is used to limit the number of items per batch. As a value, we provide
any integer number (following the programming language limits). The list of
allowed operators contains items from Boolean algebra and is the same as
used for daily_hour type.

– large_wt stands for a waiting time (in seconds) since the first enabled time
of activity in a batch. Figure 10 depicts the logic behind the term. We use
[LMCCD22] as a starting point for this figure and extend it by adding an
explanation about large_wt (same as WTlarge) and ready_wt (same as
WTready). In general, the figure visualises a scenario of how a batch is
formed in regard to the time perspective. We split the process into two parts
batch accumulation when we wait for activities to satisfy the enabled rule,
and batch processing when we already have activities selected for a batch, a
rule enabled the batch and resource executes activities. For large_wt, we
start our time counter when the first activity is enabled in the batch, meaning
at tenabledC1 point of time, and the counter lasts till the moment the batch is
enabled. This type describes an upper boundary on how long a user is willing
to wait for a batch to be formed. Relational operators defines the range
of allowed comparison operators for this type.

– ready_wt defines a waiting time (in seconds) since the last enabled time
of activity in a batch. Compared to large_wt, we update the value of this
metric every time new activity gets added to a batch. With large_wt, the
value is set up only once when the first task in a batch is enabled. Figure 10
illustrates the difference of the starting point for large_wt and ready_wt. It
also demonstrates that the finishing point for both of them is the same, and it
is a point in time when a batch is enabled. The list of an allowed operators in
comparison field is the same as used for large_wt.

34

Batch accumulation Batch processing

Activity AWTaccumC1

WTaccumC2

t

WTaccumC3

Activity A

Activity A

tenabledC1 tenabledC3 tstartC1 tstartC2 tstartC3

Case 1

Case 2

Case 3

Batch is enabled

WTready

WTlarge

tenabledC2

Figure 10. WTready and WTlarge in regard to the time axis, including other waiting
times

UI Design Next step of the feature introduction is designing and implementing the
user interface for a new section in a simulation scenario. Figure 11 illustrates the user
interface created for task batching. We present results as two screenshots combined
together due to the dimensions of the UI components. Figure 11b presents a batch rules’
visualisation, and Figure 11a - the rest of the required attributes, which we explain later
on.

When a user initially opens the Batching section, there is a list of all batched tasks
with collapsed details (if a previous setup for batching exists). This starting view provides
an overview of how many tasks are batched in the current simulation scenario. Once an
end-user expands the details of one of the tasks, we see various sections from a .json file
with a simulation scenario. We describe those components one by one:

• Batching Type shows a type of batching: either sequential or parallel. Those
options are presented in the form of a dropdown for a better user experience
allowing a user to choose an option instead of typing the whole word.

• Batching Probability describes the probability of whether the task is batched or not
and maps to size_distrib field in a .json file. This component somehow differs from
the JSON schema. The user does not have an opportunity to specify the probability
of each batch size. This is done to simplify the UI. Therefore, an end-user provides
a probability for ”key” : ”2”. In case we want all tasks with this id to be executed
alone, we provide 0 as a value for this field.

35

(a)

(b)

Figure 11. UI sections, defining batching in regard to (a) general set of attributes, (b)
firing batching rules

36

• Duration Scaling presents duration_distrib field from a .json file. This component
shows a list of items with an opportunity to add a row (by clicking + button on
the top right) or delete a row (by clicking a bin button near a specific row). We
have also added validation, and an end-user is not allowed to provide rows with
duplicated keys. The value of a scale factor should be in the range from 0 to infinity,
where infinity here refers to the highest possible number allowed in Typescript.

• Firing Rules describe when the batching is enabled. The designed UI component
has OR and AND keywords encoded and visualised so that it helps an end-user to
design a needed rule. The outer array of items, OR condition, always stays as a
root of the configuration. Following this, an end-user is able to add one or multiple
AND conditions with atomic rules inside. Each atomic rule is represented by three
inputs: Field, Operator and Value. Field is represented by a drop-down menu
with five predefined options based on the types we described earlier. Based on a
selected field, the other two inputs change their initial state and behaviour. So we
describe each option of a menu separately, and we follow the same order used for
the explanation of JSON schema of types of rules:

– Hour of the day contains two possible operators: Equals and Between. Value
changes its appearance based on a selected operator. When Equals is selected,
an end-user is required to provide only one integer value from the allowed
range from 0 to 23. With Between operator selected, a user needs to provide
two values, lower and higher boundary of the range, in the mentioned order.
On user input, the UI components validate whether a first value, lower
boundary, is lower than a second one, higher boundary. After a user specifies
a range of values, we transform the provided rule to the structure supported
by our back-end. We describe the transformation rules later on.

– Day of the week has only one allowed operator Equals as per requirements.
Value input is depicted by a drop-down menu, as well, containing seven
options, one per each day of the week.

– Batch size has all five operators to which we refer as relational operators.
As there might be situations when we do not want to have an upper limit for
a batch size type, we have not introduced Between operator instead of raw
operators. So a user is free to choose whether one wants to have a rule with
one value or a range of them. For the latter one, a user needs to add two rules
with a batch size type.

– Time since first and Time since last differ only by a starting point of a time
counter. The other logic for those two types is similar, so we describe them to-
gether. For these types, the allowed list of operators includes: Equals and Be-
tween. Both of those operators follow the same strategy as described for Hour

37

of the day type. The only difference is the units of measurement since time is
measured in seconds in our case. As we want to limit users from providing an
infinite range for a waiting time, we introduced Between operator instead of
allowing users to select an operator from a list of relational operators.

It can be seen that three types out of five introduce Between operator. This
new option is designed to simplify the interaction with a tool and make rules
more readable for an end-user. However, this design also requires the introduc-
tion of the functional logic, which transforms a Between operator to the list of
relational operators supported by the back-end. The following examples
capture the main idea behind the logic:

1. ready_wt between 10 and 100 ⇒ ready_wt ≥ 10 and ready_wt ≤ 100
when a lower boundary is not equal to 0 and an upper one is not equal to
the reserved word inf, we have both boundaries present. As a result, a new
transformed rule contains two parts combined with an and condition.

2. ready_wt between 0 and 100 ⇒ ready_wt ≤ 100 when a lower
boundary is equal to 0, we can disregard it, as 0 is the lowest possible number
when we talk about real-time duration. Consequently, a new rule contains
only an upper edge in the rule and a lower boundary is enforced by default.

3. ready_wt between 100 and inf ⇒ ready_wt ≥ 100 when an upper
boundary is equal to the reserved word inf, we treat this like an absence of a
lower boundary. Therefore, we omit it and a resulting rule contains only a
lower boundary. This type of setup is not allowed for batching and is used
only with prioritisation rules which we discuss later.

Execution Semantics In regard to Prosimos back-end, development of this feature is
split into multiple stages: 1) parsing a batching section from a simulation scenario, 2)
evaluating whether a firing rule is true and hence whether a batch is ready to be executed,
3) calculating a size of an enabled batch and enabled time of a batch, 4) tracking batch
enablement during the whole process of a simulation process.

Transforming a JSON section into classes and validating them is a trivial task, so we
do not provide any details on this part. One can check the source codes of the project;
specifically the part implemented for batch processing 24, and derive the parsing logic
from there.

We formulate rules for both batch processing and case-based prioritisation using the
same approach. As a result, their parsing and evaluation have some common logic behind
them. Specifically, the OR and AND rules evaluation follows a similar pseudocode

24https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/bpdfr_
simulation_engine/batch_processing.py

38

https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/bpdfr_simulation_engine/batch_processing.py
https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/bpdfr_simulation_engine/batch_processing.py

described in Algorithm 4. We provide a line-by-line explanation of the algorithm later in
the next section. At a high-level overview, the pseudocode evaluates whether an OR rule,
supplied as an input, is true or false. We achieve this by looping over all subrules and
applying boolean algebra of OR and AND boolean expressions. One of the distinguishing
features is what we return as a result of function execution. In the case of batching, we
return just a truth value of an OR rule, while we return the priority level of a truthful rule
in case of prioritisation.

After evaluating whether a firing rule is True and enables batching, we need to
calculate the number of activities in a batch and an enablement time of a batch. Both of
these values depend on the setup of firing rules provided by an end-user. Algorithm 2
depicts the main logic behind the calculation. This function is a part of AndFiringRule
class, representing AndBatchingRule entity from the domain model depicted in Figure 9.
AndFiringRule class consists of a list of atomic rules, referred to as and_rules_list,
which is the first input parameter in Algorithm 2. Two other input parameters we receive
are current_batch_size, the number of activities currently waiting for batch execution,
and batch_info, an object containing information about a batch setup, among which are
waiting time and enabled time of each activity waiting for batching. First, in line 2, we
assign the initial value of batch_size to the maximum possible integer number, and later
we reduce this number during our iterations. Lines 2 and 3 temporarily save the current
point of time of simulation execution. We use this time to calculate the waiting times of
activities. Then, we calculate the size and enabled time of a batch per each atomic rule
in an AND rule. As batch_size type of rule limits the size of a batch, we put this rule
as the last one in a list during parsing. By this, we guarantee that the resulting number
follows the size rule. In line 5, we start by calculating those two values taking into
account the waiting times. is_time_forced, in line 6, is a boolean value which tracks
whether daily_hour rule enforces the enabled time of a batch. After that assignment, we
loop over all present rules to see whether we need to adjust the resulting values, namely
batch_size and enabled_time. subrule represents an atomic rule and contains three
properties: field, comparison_operator and value. Those properties match with the
list of entity fields. We create a separate function per each type of rule to calculate
new values and after that, we compare them with the ones we had from the previous
iteration. The first if-statement in line 9 checks whether a rule from the current iteration
is of type batch_size. If it is, we call a function GetFiringBatchInfoByBatchSize
and pass all currently calculated information. The function calculates new values based
just only on a batch_size rule. Afterwards, we calculate whether this value satisfies
the previous value, meaning current_batch_size. Satisfying means lying inside the
range: if current_batch_size ≥ batch_size, we split and execute multiple batches
taking into consideration the upper boundary of batch_size. Otherwise, we return 0
as we do not have enough items to proceed with a batch execution. Returning back
to the algorithm, we continue with another type of rule in line 13, which is week_day.

39

The same happens here: if the rule is of type week_day, we call the function of this
type, GetFiringBatchInfoByWeekday, and calculate new returning values. We also
introduce here a short circuit. This is done in order not to consume resources when
we already know that this function does not return a satisfying result. A batch is an
execution of two or more activities together. Consequently, if one of the rules returns a
batch size of 1, we do not qualify this as a batch and skip execution till the next point in
time. Lines 15-17 and 27-29 represent this short circuit. Line 18 changes the value of
is_time_forced to True. This is used in case we additionally have daily_hour rule.
Value of is_time_forced helps us know whether we are limited in days of the week
when calculating the enabled time or not. The next type of rule we check is daily_hour.
In line 21, only_one_date is a copy of is_time_forced. In case is_time_forced is
True, we update the curr_enabled_at, the current point of time, to the enabled time
calculated based on a week_day rule. We do this in order not to lose this date enforced
by another part of an AND rule. The statement in line 30 is equal to True only in case we
have both week_day and daily_hour together. In this case, the result of daily_hour
overwrites the previous result from week_day in line 31. There might also be situations
when the daily_hour rule exists without a week_day. In this case, the final result still
needs to enforce the hour range, so we change the value of is_time_forced for this.
At the end of each iteration, we check whether the batch_size enforced by this rule is
lower than the previous one. If yes, we take the lower one as a result of this iteration and
continue with the next rule from a list. Lines 35-37 skip calculations for ready_wt and
large_wt since we do this in line 5. Lines 42-44 handle situations when the received
result does not satisfy one of the requirements, and no batch should be executed. We do
not proceed with batch execution when 1) no iterations are made or 0 as a resulted size
of the batch, 2) None as an enabled_time, 3) enabled_time is in the future (they are
executed later).

40

Algorithm 2: Calculate the batch size and enabled time of the batch

1 function GetBatchSizeAndEnabledTime (and_rules_list, current_batch_size, batch_info):
2 batch_size← sys.maxsize;
3 initial_curr_enabled_at← batch_info[”curr_enabled_at”];
4 enabled_time← initial_curr_enabled_at;
5 batch_size, enabled_time←

GetFiringBatchInfoBySinceFirstAndLastWtRule(batch_info, batch_size, enabled_time);
6 is_time_forced← false;
7 for subrule in self.rules do
8 curr_size← 0;
9 if subrule.IsBatchSizeRule () then

10 return GetFiringBatchInfoByBatchSize(subrule, batch_info, current_batch_size, batch_size,
11 enabled_time, initial_curr_enabled_at, is_time_forced);
12 end
13 else if subrule.IsWeekdayRule () then
14 curr_size, enabled_time← subrule.GetFiringBatchInfoByWeekday(batch_info);
15 if curr_size < 2 then
16 batch_size← 0; break;
17 end
18 is_time_forced← true;
19 end
20 else if subrule.IsDailyHourRule () then
21 only_one_date← false;
22 if is_time_forced then
23 batch_info[”curr_enabled_at”] = enabled_time;
24 only_one_date = true
25 end
26 curr_size, enabled_time←

subrule.GetFiringBatchInfoByDailyHour(batch_info, only_one_date) ;
27 if curr_size < 2 then
28 batch_size← 0; break;
29 end
30 if is_time_forced then
31 batch_size← curr_size
32 end
33 is_time_forced← true if (enabled_time! = None and enabled_time.time() ==

subrule.value) else false;
34 end
35 else if subrule.IsSinceLastWtRule () or subrule.IsSinceFirstWtRule () then
36 continue;
37 end
38 if curr_size < batch_size then
39 batch_size = curr_size;
40 end
41 end
42 if batch_size in [sys.maxsize, 0] or enabled_time == None or

enabled_time > initial_curr_enabled_at then
43 return 0, None
44 end
45 return batch_size, enabled_time

46 end

The complexity of the fourth part arises from two types of rules associated with
waiting times: large_wt and ready_wt. Their presence requires us to track at which
point of time we are currently during the execution so that we do not miss the point
when we need to enable a batch. For this, we created a number of functions which
continuously verify the time and the rule enablement. Additionally, there is another
edge case, meaning a rare situation that could or could not happen to an end-user.
What happens if the provided rule is not satisfied during a process simulation due to
the conflict in those rules? For example, a user defines the rule with batch_size ≥
7 and large_wt > 7200 and large_wt < 9000. We call this rule a complex one
because it contains more than one atomic rule. The rule "says" that we need to collect
at least seven items per batch and wait from two to two and a half hours. It might be
possible that we received only five activities waiting for a batch execution during the
period of two and a half hours. And once we surpass a limit of two and a half hours,
there is no possible way that this rule will be fulfilled later on. In light of this situation,
we added additional logic to handle it. In case a complex rule containing waiting time
atomic rules (either large_wt or ready_wt) surpasses the duration boundaries, we evaluate
this rule as a true one. This means that we enable a firing rule immediately after waiting
for two and a half hours in the case of our previous example. It also might happen that
we still have open batches waiting to be enabled by a rule at the end of a simulation. An
open batch means one which already has some items inside it but is not enabled yet by
a firing rule. For example, if the rule requires us to have three activities in a batch and
right now we only have two activities, a batch with those two items is called an "open"
batch. We handle those types of scenarios by enabling all "open" batches at the end of
the simulation. In this case, the end of a simulation is marked by the last case started.
By tackling open batches, we guarantee that there are no unfinished case instances as a
result of a process simulation.

4.3 Case-based Prioritisation
Requirements In Prosimos 1.0, activities are being executed based on their enabled
time (taking that the resource that executes the activity is available). However, this
behaviour might be different in real life. For example, the activity can be prioritised by
the resource executing the activity, or some specific attributes of the process instance can
define the priority of the activity execution. In line with the latter example, we want to
allow users to introduce prioritisation by case_attributes.

Additionally, if we add support for case-based prioritisation, we first need to support
case attribute generation. This feature implies that a user is able to provide a list of
attributes which will be calculated per every case instance during a process simulation.
Examples of those case attributes could include: client_type or loan_amount in some
load application process. Prosimos 1.0 do not support that functionality, so we introduce
those changes in Prosimos 2.0.

42

The following list of items describes requirements that should be satisfied after the
implementation of case attribute generation and case-based prioritisation:

• A user should be able to add a case attribute to a simulation scenario by specifying
a name for a case attribute and how the value should be generated for this attribute.

• All case attributes should have a unique name.

• There should be two allowed types of case attributes: discrete and continuous.

• For discrete case attributes, a user should be able to provide an array of possible
values together with the probability of each of those values.

• For continuous case attributes, a user should be able to specify a function distribu-
tion for the attribute’s value.

• A user should be able to specify the rules and their appropriate priority level.

• The lowest priority level that can be used is one, and there is no upper limit. The
upper limit here is restricted by programming languages limitation - Typescript
and Python.

• The lower the number of a priority is - the higher this priority is treated, e.g. 1 - is
the highest possible priority.

• The priority levels should be unique; no duplication is allowed.

• UI components should have hints for the discrete case attributes since possible
values are limited in this case.

Domain Design Since this feature is split into two parts, case attributes generation and
case-based prioritisation, we split this section into two paragraphs, as well.

Case Attributes Figure 12 presents domain model of case attributes. It consists
of two main entities AllCaseAttributes and generalised CaseAttribute. AllCase
Attributes describes a list of all case attributes, while CaseAttribute - individual case
attribute. Those individual case attributes are described by two fields: name, name of the
case attribute, and valueConfig, description of how values should be generated for this
case attribute. Entity CaseAttribute also generalises DiscreteCaseAttribute and
ContinuousCaseAttribute. Discrete and continuous types of case attributes are the
only allowed type and we use CaseAttribute as a superclass which shares the common
logic of both case attributes. Child entities, DiscreteCaseAttribute and Continuous
CaseAttribute, contain information specific to only those types.

43

AllCaseAttributes
CaseAttribute

+ name: string

+ valueConfig

DiscreteCaseAttribute ContinuousCaseAttribute

Extends Extends

1 *

Figure 12. Domain model of case attributes

After the design of the domain, we continue with designing how the case attributes
described in a simulation scenario file. Listing 3 presents two examples of different types
of case attributes, where client_type is of type discrete and loan_amount represents
continuous case attribute.

Both types of case attributes have a fixed number of fields: name, type and values.
name describes the name of the specific case attribute, and type - type with only available
options of continuous and discrete. While the first two fields are pretty straightfor-
ward, the structure of the latter one differs based on the case attribute’s type.

Continuous case attributes are described with the help of function distribution. Here,
we use the same approach as for designing the function distribution of the intermediate
events. As a result, we provide distribution_name, a name of the function, e.g. fix,
and distribution_params, a number of numerical parameters which varies based on
the used distribution function.

As for discrete type, the name is already suggesting that this case attribute can only
take as input discrete values. Consequently, it is required to provide a list of possible
options for this case attribute. In order to be able to match a value to a specific case
instance, we also need to define the probability of each option being selected. Internally,
we use normal distribution for selecting the next case attribute value. Listing 3 describes
an example of client_type. In this specific case, the case attribute value can be equal
to one of the available values: either REGULAR with a probability of selection of 80% or
BUSINESS with a probability of selection of 20%. This results in a situation when 20%
of simulated case instances have BUSINESS assigned as a client_type, while other
80% - REGULAR.

Case-Based Prioritisation Figure 13 depicts the domain diagram designed for case-
based prioritisation. It consists of five main entities, namely AllPrioritisationItems,
Prioritisation Rule, OrRule, AndRule, Rule. We use a composition link for all
relationships in the diagram. This is followed by a use case that it does not make sense
to have any of the domain elements individually. For example, having AndRule without

44

{
...
"case_attributes": [

{
"name": "client_type",
"type": "discrete",
"values": [

{ "key": "REGULAR", "value": 0.8 },
{ "key": "BUSINESS", "value": 0.2 }

]
},
{

"name": "loan_amount",
"type": "continuous",
"values": {

"distribution_name": "fix",
"distribution_params": [

{ "value": 240 },
{ "value": 0 },
{ "value": 1000 }

]
}

}
],
...

}

Listing 3. Representation of case attributes in a simulation scenario file

a parent of OrRule element is not contributing to any of the specified requirements. This
means AndRule should exist only together in composition with OrRule. As a result,
deleting OrRule results in deleting the underlying AndRule, as well (we should not be
left with an orphaned AndRule).

AllPrioritisationItems entity holds information about multiple priority levels,
which are defined by a user in a simulation scenario. An individual priority level is
described as a PrioritisationRule entity. Throughout the paper, we use the terms
prioritisation rule and priority rule interchangeably. Each PrioritisationRule has
priority property which defines the level of priority of this rule. PrioritisationRule
is enabled by OrRule, meaning a current priority rule is applied to the process case only
if OrRule is true. In general, OrRule represents a logical rule with a set of conditions.
This rule is true if one of the conditions inside this rule is true. Each of the conditions is
represented as AndRule. This entity, AndRule, also denotes a logical rule with a list of
conditions inside. However, this time the rule of type AND is equal to true only in case
all of the conditions are equal to true.

As a final point, the smallest atom of the presented diagram is Rule. This entity,

45

Rule

+ attribute: string
+ comparison: string
+ value: string | number

AndRule OrRule

PrioritisationRule

+ priority: number

AllPrioritisationRules

* 1

consists of

* 1

consists of

1 *

*

1

is enabled
by

contains list of

Figure 13. Domain model of case-based prioritisation

Rule, outlines the atomic condition statement, which in the end, is being evaluated.
Evaluating a condition statement means checking whether it is truthy or false. Figure 14
presents examples of rules that could be defined by a user. The first one says that case
attribute client_type should be equal to BUSINESS. When this statement holds true, the
condition statement is true. If client_type is equal to a value different from BUSINESS,
the evaluation of this condition is false. The second statement is an example of the
continuous rule. This specific condition is true only when case attribute loan_amount
is less than or equal to 1000.0.

client_type = BUSINESS (I)

loan_amount <= 1000.0 (II)

Figure 14. Examples of: I) discrete rule, II) continuous rule

Based on the allowed types of case attributes, discrete and continuous, there are also
two same allowed types of rules. In terms of case-based prioritisation, the difference be-
tween those two rules lies in the allowed comparison operators and values. For discrete
rules, the only allowed operator is =. If an end-user wants to define more complex
combinations with discrete rules, one needs to utilise OR and AND combinations of
the rule. The value of discrete rules can be of any string value, including a number
saved as a string. The requirements for continuous rules differ from the ones defined for
discrete rules. The allowed set of comparison operators for continuous rules includes
the following ones: = > >= < <= in. Additionally, the only valid values for this type of
rule are numbers.

Based on the described requirements and domain knowledge, we designed a .json
format for a simulation scenario file, presented as Listing 4.

46

{
...
"prioritisation_rules": [

{
"priority_level": 1,
"rules": [[{

"attribute": "client_type",
"comparison": "=",
"value": "BUSINESS"

}]]
},
{

"priority_level": 2,
"rules": [[{

"attribute": "loan_amount",
"comparison": "in",
"value": [1500, 2000]

}]]
}

]
...

}

Listing 4. Representation of prioritisation rules in a simulation scenario file

We introduce prioritisation rules under prioritisatio_rules section as an array
of items. Each item consists of two fields: priority_level and rules. The former
field describes a priority level assigned to the process instance when a specified rules
is true. This priority level is of number type, and duplicates are not allowed. The later
field, rules, represents a rule itself. We follow the same structure of OR and AND
combinations inside the rule. The outer array represents OrRule entity, while the inner
one - AndRule entity. The object contained within the inner AND array describes the
smallest entity - Rule. It contains three fields: attribute, comparison, value. The first
field, attribute, specifies a case attribute, one from a list defined by a user in the earlier
section. The second field is a comparison operator. The only allowed operators are = for
discrete case attributes and in for continuous case attributes. The last field involved
in the rule formation is value, and its value depends on the type of a case attribute. For
discrete case attributes, it should contain string, while for continuous ones - array
with two numbers where the first value is a lower boundary of a range and the second
one is a higher boundary. Consequently, we sum up that the only allowed comparison for
continuous case attributes is a range comparison. When evaluating a rule, we evaluate
whether a value of a case attribute is between a specified range, including boundaries. In
addition, this format allows us to specify a comparison of equality by putting the same
value as a lower and upper boundary.

47

UI Design In the scope of this feature, we introduce two new tabs to the web application.
Figure 15 depicts both of them: subfigure (a) represents defining a new case attribute,
while subfigure (b) - a new case-based priority level.

The section for defining case attributes, depicted in Figure 15a, contains two main
buttons New discrete case attribute and New continuous case attribute. Both of them
have a built-in template which simplifies the user experience. Once a user clicks on one
of them, a new case attribute section is added on the UI with prefilled data for name
and valueConfig based on the attribute’s type. For discrete attributes, valueConfig
includes one option option name with a probability of 1, meaning that this case attribute
has option name as a value in all simulated case instances. For continuous values, the
default distribution function norm is provided. Having those default values makes it
easier for an end-user to interact with components to specify the desired setup. This
section also includes validations: for providing the unique case attribute name and having
a sum of probabilities equals 1 for continuous attributes.

The next section, illustrated in Figure 15b, is used to configure the priority levels
based on the case attributes. New prioritisation rule button adds a new item to the
list with prefilled data: priority level of 1 and enabled rule with the default template
containing one AND rule. Every atomic rule contains three inputs: field, operator, value.
field input contains options for an end-user: all case attributes that were defined in the
previous tab Case Attributes. While selecting a discrete case attribute as a field, value
input is transformed into a dropdown menu with a list of all possible values for the
selected case attribute. In case of a continuous case attribute selected as a field in a rule,
a user is eligible to put any number as a value.

Execution Semantics In order to perform the case-based prioritisation, we need to
support a generation of case attributes.

So, first, we add this support to the console application. Generation of case attributes
implies that every process case instance has an assigned case attribute value based on the
user’s setup. The assigned value does not change during the simulation process, so we
calculate all case attributes’ values at the beginning of the business process simulation.
Algorithm 3 describes the logic behind this generation wrapped as GenerateCaseAttr
function. As input, we receive two parameters: 1) a number of case instances generated
in result of a process simulation, and 2) a list of setups per each case attribute. The former
parameter dictates how many case instances we need to generate values, and the latter
one describes how to generate those values. In line 5, all_case_attr_dict variable
is assigned with an empty dictionary, which is a key-value storage. We store our final
results in this variable. Then, we perform a loop the same number of times as we have
process instances. Inside a loop, in line 7, we add a new item where key is an identifier
of a process case at the current iteration and value is a list of case attributes for the case
instance. This list is calculated by GetValuesCalculated function, presented in lines

48

(a)

(b)

Figure 15. UI sections, defining (a) case attributes, (b) multiple levels of case-based
prioritisation

49

1-3. Here, we utilise an idea of list comprehension: creating a list based on another
one. As each case attribute setup should result in a case attribute value, length of both
those lists is equal. The function GetNextValue in line 2 generates the case attribute
value based on the case attribute’s setup. Setup includes such fields as a type of a case
attribute and function distribution or list of possible values. Once we calculate values
per each case attribute setup, we return this as a result. In case we have case attribute
setup as provided in Listing 3, one of the possible results of GetValuesCalculated
function is: [”REGULAR”, ”240”]. After we calculate case attribute values per all
process instances, we return the formed dictionary as a function result in line 9.

Algorithm 3: Generation of case attributes’ values

1 function GetValuesCalculated (case_attributes: []):
2 return [GetNextValue(attr) for attr in case_attributes];
3 end

4 function GenerateCaseAttr (total_num_cases: number, case_attributes: []):
5 all_case_attr_dict← dict();
6 for case_id← 0 to total_num_cases do
7 all_case_attr_dict[case_id]← GetValuesCalculated (case_attributes);
8 end
9 return all_case_attr_dict

10 end

Once we have those values calculated, we are able to 1) use them for a case-based
prioritisation; 2) output them as a part of a simulation log file as new columns. Each case
attribute has its own column in a resulting file. The column’s name corresponds to the
name field provided by a user.

The next set of changes is made to support a case-based prioritisation. We already
have case attributes and their values in place, so now can construct prioritisation rules
based on case attributes following the .json structure.

The order of the rules specified in a simulation scenario is not playing any role. The
system orders them based on the priority level (from the lowest priority to the highest,
e.g., from 1 - to infinity). When calculating the priority level of an individual case, the
check for the truthy rule is stopped once the first true one is found. This means that even
when we have case attributes that satisfy two separate rules in the configuration, the one
higher in the priority is taken as a final priority level.

Once a user defines priority rules and we parse them, we need to assign a priority
level for each case instance. Algorithm 4 presents the calculation of the priority level
of a case. The first input parameter is all_case_values, which lists all case attributes’
names and their calculated values for a specific case instance. Another input parameter is
all_priority_rules, containing information about all priority rules defined by a user
in a simulation scenario. Line 2 states that, by default, a priority level is the maximum

50

possible integer number. This priority level means that a case is executed the last. If case
attributes’ values do not satisfy any of the rules, we return this maximum level of priority
as a function result. We start with iterating over all defined rules in line 3. The next line
defines the initial value of a rule outcome which is False. Since the outer array is an
OR rule, we need at least one rule to be True to turn the rule outcome into True. Then,
we start looping over OR rules in line 5. The initial value of AND rule outcome in line
6 is True. In order to conclude that this rule is True, we need to have all conditions to
be equal to True. That is why the starting point should also be True. The next for-loop
(line 7) is across an AND rule. At this stage, we already have the smallest possible atom
which can be evaluated. For evaluation, we use is_true function, which compares an
attributes’ values of a specific case instance against a condition, atomic_rule. This
function includes coverage of two cases inside: for both discrete and continuous
case attributes. After we evaluate an atomic rule, we compare it with our previously
received outcomes by using AND boolean operator in line 8. Once we finish evaluating
all conditions inside AND rule, we return to evaluating an OR rule in line 10. Here, we
compare the previous outcome with a new one with the help of OR boolean operator.
Due to the fact that we need at least one True value in OR rule in order to evaluate a
whole rule as True, line 12-15 describes a short circuit. As soon as we reach the first
truthy value of one condition inside an OR rule, we conclude that this OR rule is True
and return the priority assigned to this OR rule as a function result.

Algorithm 4: Get priority of a case instance

1 def GetPriority (self, all_case_values, all_priority_rules):
2 init_priority = sys.maxsize // by default, the lowest priority
3 for rule in all_priority_rules do

// evaluate a rule
4 or_res = False;
5 for or_rule in rule.or_rules do
6 and_res = True;
7 for atomic_rule in or_rule.and_rules do
8 and_res = and_res AND atomic_rule.IsTrue(all_case_values);
9 end

10 or_res = or_res OR and_res;
11 end

12 if or_res == True then
13 init_priority = rule.priority;
14 break;
15 end
16 end

17 return init_priority;
18 end

51

With priorities now assigned to each case instance, we introduce changes to the order
of task execution. In Prosimos 1.0, we use a priority queue to decide which task is
executed next and enabled datetime is a priority value for the queue. When introducing
prioritisation, the priority queue remains to be used. However, the queue is extended
and an updated version of the priority value contains a tuple of a case priority level and
enabled time. When adding a task to or removing an item from the queue, we first take
into account the priority level. In case an activity has the same priority level, we check
the enabled time next and select the item (for execution or deleting) based on that. As a
result, we take two parameters into consideration while prioritising the next activity for
execution: 1) a priority level of a case under which an activity is being executed, 2) the
enabled time of activity.

Additionally, when examining task execution, we must keep in mind the implications
of both task prioritisation and batching. Previously, before introducing a prioritisation,
we add a batch to a priority queue with an enabled time of a whole batch. However, now
we also need a priority level of a batch. Consider the case when we have four activities
in an enabled batch with the following calculated priority levels: 6, 2, 5, 4. We split this
scenario into two parts, and the logic behind looks the following way:

• Task execution outside a batch describes how a batch is treated compared to other
tasks in a queue. Both single tasks and batches co-exist in the same priority queue.
This means that both of them require an enabled time and a priority level. An
explanation of the priority levels for individual tasks is described in previous
paragraphs. For batches, we establish a different approach: the highest priority of
all tasks inside a batch is considered as a priority of the batch. Returning to our
example, we calculate max(6, 2, 5, 4) and receive 2 as a final priority of the batch.
Consequently, we add this batch to a priority queue with the priority level of 2.

• Task execution inside a batch specifies the order of task execution inside a batch
itself. In this case, we adhere to the strategy used for a priority queue. This implies
that tasks are executed in the order of a priority level assigned to a task’s case. In
our discussed example, the order is order_ascendingly(6, 2, 5, 4) = 2, 4, 5, 6.

52

5 Testing
Following the methodology of this thesis, we continue testing the developed artifact after
its design and implementation. Testing is one of the core elements of the whole software
development process, and, in some cases, 50% of project costs are spent for the testing
part only [Ber07].

Our developed web application consists of multiple components, as presented in
Figure 3. Since we want to allow users to either use a command line or web interface, we
focus on the Prosimos back-end component as it is shared between those two interfaces.
Hence, this section and the next one describe testing and evaluation of Prosimos back-end
accordingly.

There are different approaches how to test the application during its development, in-
cluding, but not limited to, unit testing, integration testing, system testing and end-to-end
testing. In most cases, development teams use a combination of those. Our work concen-
trates on decision table testing. This technique is designed to test complex business rules.
It belongs to a black-box testing method, meaning we do not test the statements (each
line) inside functions but rather look at the software as a complete system. Consequently,
we provide input to the system and expected output after performing one or many actions.
We call the combination of individual input and its expected output a test case. We form
those decision tables by combining different test cases together.

As intermediate events are a simple implementation, we cover this functionality with
unit tests. On the contrary, prioritisation and batching introduce complex logic, so we
designed tests with the help of decision tables. The following paragraphs present the
design of those tables for each concept separately.

5.1 Case-based Prioritisation
One of the main parts of prioritisation is being able to calculate whether a priority rule is
true. So we first design tables for those rules and start with atomic rules. Table 2 describes
test cases for rules defined with a continuous case attribute. Rule evaluation requires the
rule itself and the value of a case attribute. We split rule ranges into equivalence classes,
meaning we observe the same behaviour of values inside those classes. We define three
classes: 1) [0,X] - a lower boundary is 0, represents < or ≤ operator, 2) [X,Y] - both
boundaries are natural numbers, except 0, 3) [Y,inf] - an upper boundary is an infinity
(e.g., not defined in a rule), represents > or ≥ operator. Based on those rules, we define
equivalence classes for the value of a case attribute, which can be inside or outside the
range. As a result, the second condition takes only one of two values: either true or
false. Additionally, if the range contains natural numbers as upper and lower boundaries,
the value could be lower or greater than the range boundaries. Once we define possible
options for all conditions of the rule, we write down the expected result in the table’s last
line, which is Rule Evaluation in our case.

53

Rule

Condition 1 2 3 4 5 6 7

Rule Range [0, X] [0, X] [X, Y] [X, Y] [X,Y] [X, inf] [X, inf]
Is Value in a Range? True False (greater) True False (lower) False (greater) True False (lower)

Action 1 2 3 4 5 6 7

Rule Evaluation True False True False False True False

Table 2. Decision table for evaluating a continuous atomic rule

Compared to continuous values, discrete values support only equals operations. Due
to this, decision tables are overcomplicated solutions as there are few input values.

Having verified the logic of atomic rules, we move one level up and verify AND rules,
which consist of atomic rules. For the decision table, we select AND rule containing two
atomic rules. The structure of this rule looks as follows:

Simple Rule 1 AND Simple Rule 2

Table 3 depicts possible inputs and expected outcomes of the rule’s evaluation. We
have two conditions (inputs) for this AND rule, described by the atomic rule’s outcomes.
As a boolean expression represents all atomic rules, evaluation of the rules results in
either a truthy or falsy value. Having two conditions and two possible outcomes for
each condition, we end up with four rules in total. The last row in the table, AND Rule
Evaluation, describes our expected result after a rule evaluation. Per the definition of
AND rule, its evaluation outcome equals to true only in case all, in our case only two,
atomic rules are true.

Rule
Condition 1 2 3 4
Simple Rule 1 Outcome True False True False
Simple Rule 2 Outcome True True False False
Action 1 2 3 4
AND Rule Evaluation True False False False

Table 3. Decision table for evaluating AND priority rule

Based on the four rules mentioned above, we create test cases and verify an expected
result. For example, for Rule 1, we specify two true atomic priority rules with the
currently specified case attributes. Once we design them, we combine two rules to AND
rule and run the rule evaluation. After that, we compare the evaluation outcome against
the expected result. Test implementation can be reviewed via GitHub25.

By combining AND rules, we form a new type of rule - OR rules. We design the
decision table for this type of rule following the boolean algebra in the same way we do

25https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_
scripts/test_case_priority_is_true.py#L74

54

https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_case_priority_is_true.py#L74
https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_case_priority_is_true.py#L74

for AND rules. For this testing approach, we structure the OR rule in the following way
by combining two complex (AND) rules:

Complex Rule 1 OR Simple Rule 2

As a result, the evaluation of the OR rule depends on the evaluation outcomes of
those two parts: Complex Rule 1 and Complex Rule 2. Both of those rules are boolean
with only two possible values: true or false. By making all possible combinations, we
construct four rules, depicted in Table 4. Following the boolean algebra, we fill in
expected values where evaluation outcomes are equal to true if at least one of the rules is
true. Based on the decision table, we implemented a parameterised test which can be
viewed in GitHub 26.

Rule
Condition 1 2 3 4
Complex Rule 1 Outcome True False True False
Complex Rule 2 Outcome True True False False
Action 1 2 3 4
OR Rule Evaluation True True True False

Table 4. Decision table for evaluating OR priority rule

5.2 Batch Processing
Compared to prioritisation, batch activation rules are of a higher complexity due to the
increased number of available types of attributes used for atomic rules. While we specify
only two types of priority rules (discrete and continuous), batch activation rules include
five type variations. Verifying all combinations of those is not a trivial task. So we also
use decision table testing, which helps us to formulate all possible inputs and their results.
We present a subset of decision tables to be able to explain the main approach.

Due to the relative simplicity of atomic batch firing rules, we omit designing decision
tables for them. We covered those rules with unit tests instead. Consequently, we start
with decision tables for the already complex rule. For batching, we design decision tables
for a complete simulation run. This impacts our expected results not tied to a specific
value or number but to behaviour in the resulting log file.

The first OR rule we test takes the following form:

(Daily Hour 1 AND Batch Size 1 AND Weekday 1)
OR

(Daily Hour 2 AND Batch Size 2 AND Weekday 2)

26https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_
scripts/test_case_priority_is_true.py#L102

55

https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_case_priority_is_true.py#L102
https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_case_priority_is_true.py#L102

The specified rule has six individual atomic rules, which values we can change. In
order to reduce the complexity, we make weekdays for both parts of OR rule constant
and equal to Tuesday and Friday. Table 5 presents values for the rest of the atomic rules
present in the rule. Due to the time intensity of the simulation run, we aim to reduce
the number of test cases to speed up the whole testing process. For this, we take the
approach of combining changes to different conditions in one rule. For example, we
change both Daily Hour 1 & 2 and Batch Size 1 & 2 in Rule 2, compared to Rule 1. This
way, we reduce the number of rules but keep covering all equivalence classes. Regarding
the action results, we check whether the resulting batches in the log file follow the size
requirement (Size of Batch Follows the Rule) and follow the daily hour and weekday
requirement (Batch Timestamp Follows the Rule). However, the assertion in our tests
looks different and more complex than the one in the table. As we know the number of
instances, starting timestamp and other details, we are able to predict the time and size of
the batch execution. As a result, we leverage the knowledge passed as parameters to the
simulation and assert against real timestamps and the number of items inside individual
batches. The test implementation is available in the GitHub repository27.

Rule
Condition 1 2 3
Daily Hour 1 & 2 [0, 12) (12, 23] (13,21)
Batch Size 1 & 2 [4, inf] [0, 6] [0, 6]
Weekday 1 Tuesday Tuesday Tuesday
Weekday 2 Friday Friday Friday
Action 1 2 3
Size of Batch Follows the Rule True True True
Batch Timestamp Follows the Rule True True True

Table 5. Decision table for simulation run with OR rule containing three attributes

Another example of a complex batching OR rule we discuss looks as follows:

(Time Since First AND Time Since Last)

Both atomic rules in that example belong to waiting time type of batch activation
rule. Compared to other types of firing rules, waiting times have their distinction: it
is impossible to define infinity as an upper boundary. This is done in order not to wait
forever for the rule to turn true. So our equivalence classes might take either [0, X] or
[X, Y], where X and Y are natural numbers, except 0. The former format represents
< or ≤ situation, and the latter describes a value range.

Table 6 represents designed test cases for the rule. We follow the same strategy of
mixing different combinations of equivalence classes. Additionally, this test does not run
the whole simulation; we target a specific moment of time in a simulation. Due to this,

27https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_
scripts/test_batching_daily_hour.py#L233

56

https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_batching_daily_hour.py#L233
https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_batching_daily_hour.py#L233

we introduce Is Batch Enabled by Rule?. This value changes depending on the items
waiting in the queue. In the test itself, we hardcode items in the queue, and by this, we
set up this condition to a specific value required for a test case. Since we do not run the
whole simulation, the expected values are changed. In this scenario, the action verifies
whether there is a batch enabled for the execution, and if yes, a batch size and its start
time are also calculated. Based on the action, we assert two values: batch enablement
and whether the returned batch size and timestamp follow the waiting time from the rule.
Test implementation is accessible through the GitHub repository28.

Rule
Condition 1 2 3 4
Time Since First [0, 1h] [0, 1h] (30min, 2h) (30min, 2h)
Time Since Last (30min, 2h) (30min, 2h) [0, 1h] [0, 1h]
Is Batch Enabled by Rule? False True True False
Action 1 2 3 4
Is Batch Enabled? False True True False
Does Batch Follow the Rule Requirement? N/A True True N/A

Table 6. Decision table for simulation run with OR rule containing two waiting time
attributes

The rest of the tests follow the same approach of splitting input parameters into equiv-
alence classes, combining them and then evaluating the action. All tests implemented
as a part of this work are placed under testing_scripts folder29, and their filenames start
with test_ prefix.

5.3 Code Coverage
After writing tests, it is essential to measure how much of the code base is covered
by tests. This helps identify parts of the code that was never executed during a test
run. A code coverage is a common metric used to achieve this goal. In our work, we
also calculate this metric to report on the code percentage covered by tests. There exist
different types of code coverage metrics, such as statement coverage, branch coverage
or path coverage. While statement coverage computes the percentage of lines (same
as statements) executed during test running, branch coverage measures whether each
branch’s paths are executed at least once during a test run. In programming, a branch
is a part of the code where a system takes a decision and, as a result, might follow an
alternative path of the code.

We use branch coverage metric to analyse our code coverage of Prosimos back-end.
We choose this metric over a statement one because a branch coverage metric implies

28https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_
scripts/test_batching_large_wt.py#L347

29https://github.com/AutomatedProcessImprovement/Prosimos/tree/main/testing_
scripts

57

https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_batching_large_wt.py#L347
https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/testing_scripts/test_batching_large_wt.py#L347
https://github.com/AutomatedProcessImprovement/Prosimos/tree/main/testing_scripts
https://github.com/AutomatedProcessImprovement/Prosimos/tree/main/testing_scripts

statement coverage. In other words, if branch coverage is 100%, this also means that
statement coverage is 100%.

In regard to the testing framework, we use pytest30. In addition to testing, this frame-
work allows us to run a coverage report supporting different formats, including HTML,
XML, terminal output and others. We use HTML format due to its comprehensiveness
(colour highlighting of covered and not covered parts of the codes) and easiness of
understanding (simple web page). Figure 16 depicts the branch coverage report over all
functionalities implemented in Prosimos back-end. The total number of coverage is 76%.
So we treat this number as follows: 76% of all branches are executed at least once during
a test run. However, this number does not tell us anything about the correctness of the
implemented functionalities concerning the user requirements. Decision tables are the
solution which helps us with verifying the satisfaction of the requirements as they are a
"bridge" between requirements and an expected result.

Figure 16. Branch coverage report of Prosimos back-end

Coverage report for the Prosimos back-end can be found under a htmlcov.zip archive
in the repository31.

30https://docs.pytest.org/en/7.3.x/
31https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/htmlcov.zip

58

https://docs.pytest.org/en/7.3.x/
https://github.com/AutomatedProcessImprovement/Prosimos/blob/main/htmlcov.zip

6 Evaluation
This section describes the empirical evaluation that was conducted after the completion
of the tool development. We perform an experimental evaluation aiming to discover how
our newly introduced concepts impact software performance.

As discussed earlier, we strive to evaluate Prosimos back-end component because it
is shared between CLI and a web interface. Additionally, the execution of the simulation
(Prosimos back-end) takes up most of the tool’s performance if compared with the
rendering part of the software (front-end). Consequently, these experiments are run using
the console application only (Prosimos back-end).

We form three research questions in order to assess the tool’s performance and
scalability. In this evaluation, scalability determines how the software responds to an
increasing number of input parameters, for example, a number of priority levels.

Three research questions are split accordingly to the introduced concepts. Since all
types of intermediate events are treated similarly in the code base, there is no need to
measure the performance of each type of intermediate event. So we pose a question
generally without specifying the specific type. RQ1: What effect does a number of
intermediate events have on the simulation time? While running experiments, we use
message type of intermediate events. The next question will be split into two parts
due to the complexity of the batch processing. We define two independent variables:
number of batched tasks and batching rule’s complexity. The first subquestion measures
how the number of batched tasks impacts performance and is structured the following
way: RQ2-1: What effect does a number of batched tasks have on the simulation time?
Additionally, performance might be impacted by a number of levels of a firing rule.
Hence, we formulate another question to assess the impact. RQ2-2: What effect does
the complexity of batching firing rules have on the simulation time? The concluding
concept we introduced is case-based prioritisation. Case-based prioritisation requires
us to calculate the priority of each case only once, and this calculation happens at the
beginning of the simulation. Hence, we avoid considering the independent variable
prioritisation rule’s complexity and form one research question. RQ3: What effect does
a number of priority levels have on the simulation time?

Simulation time is a dependent variable in all presented research questions. This
variable describes a simulation execution, starting from the parsing of BPS input (BPMN
model and simulation scenario) and ending with a process execution and results saving
to the files.

59

6.1 Datasets
We select one of the real-life logs used to assess Prosimos 1.0 [LPHD23], namely log
from the Business Process Intelligence Challenges (BPIC) of 201232. The log describes
a loan application process performed in one of the Dutch financial institutions. When
selecting a dataset for evaluation, we focus on 1) model complexity regarding a number
of activities; 2) presence of gateways and their types. We aim to choose a relatively
complex model. BPIC-2012 model contains six activities, one inclusive (OR) gateway, a
few exclusive (XOR) gateways, and 36 sequence flows. Based on this model description,
the BPIC-2012 model appears to be a suitable match for evaluation runs. Additionally,
the number of traces in the original log is 8 616, which results in an average process
simulation time of 30 seconds. This time allows us to gauge the simulation time difference
once we change the input parameters. A simulation time of one second makes it more
challenging to assess the impact of input parameters due to insignificant duration change.

6.2 Experimental Setup
Experiments were run using the personal computer with 3.1 GHz Dual-Core Intel Core
i5 processor, 16 GB of memory, and Intel Iris Plus Graphics 650 1536 MB graphics card.

In general, every simulation run returns different results. This happens because
simulation is a stochastic process. As we strive to receive as accurate numbers as
possible, we want to reduce the impact of randomness on our results. For this, we run
five simulation iterations and then calculate a central tendency of simulation time over
those iterations. As for the measure of central tendency, we select the median. We choose
this metric over the mean to reduce the impact of outliers on the resulting number.

RQ1 In order to assess the impact of adding events to the process model, we need
to have a mechanism on how to add them programmatically instead of doing it manually
every time. For this, we implement a function which takes as input a BPMN model file
and a number of events and returns a new BPMN model file with added intermediate
message events per input specification. We insert events on every sequence flows between
two elements. For example, if there are two consecutive activities in the model, we
transform this part into a sequence of the following items: Activity⇒ Intermediate event
⇒ Activity. The order of events insertion follows the order of sequence flow in a BPMN
model file.

When running experiments, we start from no events in the process model till the
maximum number of sequence flows, 36 in our case. Regarding specifying an event
duration, this value remains constant throughout the whole experiment run and equals 15
min.

32https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

60

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

RQ2 Calculations required for the batch processing happen throughout the whole
simulation run due to the nature of some types of firing rules. For example, waiting time
rules are checked before and after the execution of the activity during the simula-
tion run. These additional checks require more time and thus impact simulation time.
Also, different types of firing rules have different logic on whether the rule is true and
whether the batch is enabled. Consequently, we define here two independent variables:
number of batched activities and complexity of the batching rule. The
first independent variable defines how many activities are batched. We set up a range
of values from 0 to the maximum number of activities in the model, 6 in our case. The
complexity of the batching rule specifies how many levels a firing rule has. We define
four levels of complexity:

1. R1

2. R3 AND R4

3. R1 OR (R3 AND R4)

4. (R1 AND R2) OR (R3 AND R4)

All types of batching rules have their own implementation and, as a result, different
performance times when calculating whether the rule is true or batch is enabled. For
experiments, we use all types of batching rules except the ready_wt due to its partial
similarity with the large_wt. The rules appear as follows:

R1 size >= 4

R2 large_wt < 3600

R3 daily_hour < 12

R4 week_day = Friday

The other fields required for the batch definition, such as type or batch_frequency,
stay constant throughout the whole experiment.

We run a simulation for each level of complexity, changing the number of batched ac-
tivities incrementally by one. As a result, we see how both variables, number of batched
activities and level of complexity, impact the simulation time.

RQ3 In this part of the experiments, the only independent variable we have is
number of priority levels. Per implementation, a user can specify any number
higher than 0 as a priority level. We have a range of values from 0 to 4, where 0 refers
to no priorities (meaning an empty array provided as a definition of prioritisation) and

61

4 - four priority levels. This range allows us to see the trend of the impact and derive
conclusions. As we do not take into account complexity of prioritisation rules,
all priority levels have only one simple rule over a continuous case attribute. A simple rule
is one which contains neither AND nor OR part, e.g. loan_amount in [1500, 2000].

6.3 Results
The explanation of the results is split into three parts based on the research question.

RQ1 Figure 17 depicts the correlation between the number of added events to
the model and simulation time. The observed correlation is linear. We use Pearson’s
Correlation Coefficient (r)33 to assess the strength of the correlation. After calculations,
we received r(34)=0.97. The value in brackets (34) defines degrees of freedom and
is calculated as n − 2, where n is a number of independent values. In our case, we
have 36 independent values as we insert events for all 36 sequence flows. As a result
n = 36− 2 = 34.

Based on the coefficient value of 0.97, we conclude that the linear correlation is
strongly positive: the more events we have in the model, the higher the simulation time
is. An explanation for this lies in the implementation. Events use the same priority queue
as all activities in the simulation engine. The time complexity of inserts to and removals
from a queue is O(log n). As a result, the more elements we have in a queue, the longer
it takes to add or remove an element from a queue.

Figure 17. Correlation between the number of added events and simulation time (sec)

33https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

62

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Figure 18. Relationship between the number of batched tasks and simulation time across
four rule complexity levels

Furthermore, it is noticeable from Figure 17 that simulation time increases steeply in
ranges of [0-10] and [10-20] events compared to the range of [20-30] added events.
It may be inferred that the simulation time of BPMN models with more than 20 events
increases gradually. As we move from zero to 35 events in the BPMN model, we
experience an approximately double increase in simulation time with a moderate rise
after 20 events. We conclude that this trend is acceptable, and the feature scales well.

RQ2 Impact of a changing number of batched tasks and complexity level of batch-
ing rules on the simulation time is presented in Figure 18. The plots show that the trend
is the same for all levels of complexity.

Regarding the number of batched tasks (RQ2-1), the more batched tasks we have in
the process model, the higher the simulation time is. Increasing number of batched tasks
results in more computations of whether the task should be batched or whether the firing
rule enables the batch to be executed. So received results behave the way we expect.

Regarding RQ2-2, Figure 18 does not expose any visible relationships between the
complexity level and simulation time. For example, one can see that the simulation time
differences between complexity levels three and four are almost invisible. Based on this,
we conclude that the complexity level does not impact the simulation time. Accordingly,
the software has good scalability when the rules contain four atomic rules combined as
two pairs of OR rules. Yet users might define more sophisticated rules for batching, for
example, containing ten pairs of OR rules or even more. In those types of cases, it is

63

possible that the system will scale differently. This assumption comes from the increased
number of OR rules requiring additional evaluation of boolean expressions.

RQ3 Figure 19 shows how a number of prioritisation levels impacts the simula-
tion time. It is hard to extract some dependency between those two variables as we
can describe the relationship as neither linear nor exponential nor any other type of
relationship.

Figure 19. Relationship between a number of priority levels and simulation time (sec)

To better present the results, we create an additional plot where the y-axis shows the
execution time of an individual activity. The dependent variable, execution time of an
individual activity, is calculated by dividing the total simulation time by the number of
executed activities. Figure 20 presents the received results. We observe a steep increase
of 0.005 ms at the beginning when we move from no priority levels to one. After
that, however, the simulation time of the individual activity starts to level off and is not
drastically impacted by the number of priority levels.

Furthermore, we analyse the nature of the relationship in Figure 20 with more than
one priority level. Table 7 presents execution times per activity per every priority level.
We also calculate mean (M) and standard deviation (SD) values to gain data insights.
Since our data do not contain outliers, we calculate an SD value instead of a mean
deviation value. SD value of 8.54e-4 shows that the execution times are dispersed quite
closely to the mean, as a lower SD value implies that data points are closer to the mean.

Consequently, we infer that execution times per activity stay almost constant with a
changing number of priority levels. We use the word almost because we identified the
deviation in the execution times earlier. However, the obtained deviation is so small that

64

Figure 20. Relationship between a number of priority levels and executing time per
activity (ms)

we can neglect it. This deviation happens due to some external events, such as other
computer processes happening at the same time.

Number of
priority levels 1 2 3 4 5 6 Mean

(M)

Standard
Deviation

(SD)

Execution time
per activity, ms 0.40925197 0.41182503 0.409513 0.41012231 0.40959003 0.40973995 0.41000705 8.54e-4

Table 7. All execution times per activity, their mean and standard deviation values

65

7 Conclusion and Future Work
This master’s thesis was aimed at extending a business process simulation tool by
1) supporting additional elements at the control-flow level (intermediate events) and
simulation scenario level (batch processing and task prioritisation) and 2) implementing
a brand-new web application, including its deployment.

The first research goal was achieved by developing a new artifact of Prosimos. During
the development process, unit and integration tests were written as a verification of the
newly introduced concepts. Additionally, testing allows us to reduce maintenance costs
in the future and have partial confidence that features introduced after do not impact the
logic covered with tests. We achieved a branch coverage percentage of 76%.

Concerning the second goal, we performed an evaluation of the scalability possibil-
ities per each concept. We run experiments measuring the simulation time. With the
intermediate events, we experience a linear positive correlation between the number of
added events and simulation time. While running experiments for batch processing, we
considered two independent variables: the number of batched tasks and rule complexity.
The simulation time linearly increases together with the increasing number of batched
tasks. Regarding the rule complexity, it does not impact the simulation time. The last
experiments investigated the impact of the number of priority levels. The received result
was that simulation times stayed almost constant when changing the number of priority
levels.

While we achieved our thesis goals, we might still enhance the simulation tool.
Regarding the control-flow viewpoint, simulation lacks the support of subprocesses used
to depict a complex business process. Another potential area of improvement might be
to support other types of batching. Thus far, we implemented only two (parallel and
sequential), but [LMCCD22] also defines other types. In this work, we extended the way
tasks are executed by adding case-based prioritisation. However, there might be other
behaviours which describe how prioritisation happens.

Furthermore, the implemented user interface has opportunities for improvement.
Users might benefit from being able to save the simulation results and compare them
with the following simulation run. Currently, comparing results from multiple runs can
be done only manually after downloading the results of each run. In addition, visualising
simulation results might benefit from making them more graphical instead of showing
just tables. A combination of those two improvements (allowing users to compare
multiple runs graphically) potentially improves the user experience.

Acknowledgments
This work is supported by the Estonian Ministry of Foreign Affairs – Development
Cooperation and Humanitarian Aid funds.

66

References
[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges,

dreams. In 2007 Future of Software Engineering, FOSE ’07, page 85–103,
USA, 2007. IEEE Computer Society.

[DBBMB16] Nadja Damij, Pavle Boškoski, Marko Bohanec, and Biljana Mileva-
Boshkoska. Ranking of business process simulation software tools with
dex/qq hierarchical decision model. PloS one, 11:e0148391, 02 2016.

[DRMR18] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management. Springer Publishing
Company, Incorporated, 2nd edition, 2018.

[FP15] António Paulo Freitas and José Luís Pereira. Process simulation support
in BPM tools: The case of BPMN. 2015.

[Gro13] Object Management Group. Business Process Model and Notation
(BPMN), Version 2.0.2. http://www.omg.org/spec/BPMN/2.0.2/, 2013.

[HB94] James Higginson and James H. Bookbinder. Policy recommendations for
a shipment-consolidation program. Journal of Business Logistics, 15(1),
1994.

[HLD12] Zhengxing Huang, Xudong Lu, and Huilong Duan. Resource behavior
measure and application in business process management. Expert Systems
with Applications, 39(7):6458–6468, 2012.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28(1):75–105,
2004.

[LMCCD22] Katsiaryna Lashkevich, Fredrik Milani, David Chapela-Campa, and Mar-
lon Dumas. Data-driven analysis of batch processing inefficiencies in
business processes. In Renata Guizzardi, Jolita Ralyté, and Xavier Franch,
editors, Research Challenges in Information Science, pages 231–247,
Cham, 2022. Springer International Publishing.

[LPD22] Orlenys López-Pintado and Marlon Dumas. Business process simulation
with differentiated resources: Does it make a difference? In Business
Process Management, pages 361–378, Cham, 2022. Springer International
Publishing.

67

[LPHD23] Orlenys López-Pintado, Iryna Halenok, and Marlon Dumas. Prosimos:
Discovering and simulating business processes with differentiated re-
sources. In Enterprise Design, Operations, and Computing. EDOC 2022
Workshops: IDAMS, SoEA4EE, TEAR, EDOC Forum, Demonstrations
Track and Doctoral Consortium, Bozen-Bolzano, Italy, October 4–7, 2022,
Revised Selected Papers, pages 346–352. Springer, 2023.

[MS06] Mathirajan M and Appa Iyer Sivakumar. A literature review, classification
and simple meta-analysis on scheduling of batch processors in semicon-
ductor. the international journal of advanced manufacturing technology, 29,
990-1001. International Journal of Advanced Manufacturing Technology,
29:990–1001, 07 2006.

[Mur23] Alexandra Murtaza. 8 Top Advantages of Using React for Devel-
opment. https://www.creative-tim.com/blog/educational-tech/
top-advantages-of-using-react/, 3 2023.

[PW13] Luise Pufahl and Mathias Weske. Batch Activities in Process Modeling
and Execution. pages 283–297, 12 2013.

[RATE05] Nick Russell, Wil Aalst, Arthur Ter, and David Edmond. Workflow
resource patterns: Identification, representation and tool support. volume
3520, pages 216–232, 06 2005.

[RM05] H. Reijers and Selma Mansar. Best practices in business process redesign:
An overview and qualitative evaluation of successful redesign heuristics.
Omega, 33:283–306, 08 2005.

[Sem23] Wojciech Semik. Flask vs. Django: Which Python Framework Is Better for
Your Web Development? https://www.stxnext.com/blog/flask-vs-django-
comparison/, 1 2023.

[SS20] K. Schwaber and J. Sutherland. The Definitive Guide to Scrum: The Rules
of the Game. Scrum.org, 2020.

[SWX+17] Suriadi Suriadi, Moe T. Wynn, Jingxin Xu, Wil M.P. van der Aalst, and
Arthur H.M. ter Hofstede. Discovering work prioritisation patterns from
event logs. Decision Support Systems, 100:77–92, 2017. Smart Business
Process Management.

[zMR08] Michael zur Muehlen and Jan Recker. How Much Language Is Enough?
Theoretical and Practical Use of the Business Process Modeling Notation.
03 2008.

68

https://www.creative-tim.com/blog/educational-tech/top-advantages-of-using-react/
https://www.creative-tim.com/blog/educational-tech/top-advantages-of-using-react/

Appendix

I. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Iryna Halenok,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Business Process Simulation with Differentiated Resources,
(title of thesis)

supervised by Orlenys López-Pintado and Marlon Dumas.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Iryna Halenok
07/05/2023

69

	Introduction
	Background and Related Work
	Business Process Management
	Business Process Management and Notation
	Business Process Simulation
	Batch Processing
	Prioritisation
	Existing Simulation Solutions

	Software System Description
	Web Application Architecture
	System Architecture
	CI & CD pipelines

	Simulation Enhancements
	Intermediate Events
	Batch Processing
	Case-based Prioritisation

	Testing
	Case-based Prioritisation
	Batch Processing
	Code Coverage

	Evaluation
	Datasets
	Experimental Setup
	Results

	Conclusion and Future Work
	References
	Appendix
	I. Licence

