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Evaluating CodeQL for Automated Runtime Complexity Approxima-
tion

Abstract:
Runtime complexity describes the execution time of a program as a function of its input
size. Manual derivation of it is complex and time-consuming. As a result, automated tools
that are less complex and time-consuming to use have been developed. The objective is to
evaluate whether CodeQL, a tool primarily used for security analysis, could additionally
facilitate runtime complexity analysis. This is evaluated through the implementation of a
minimal proof-of-concept analysis which is able to provide correct estimations for some
Java programs. The implications of this tool, and the process of creating it, are discussed.
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CodeQL-i hindamine ajalise keerukuse automaatseks hindamiseks
Lühikokkuvõte:
Ajaline keerukus kirjeldab programmi käitusaega funktsioonina tema sisendi pikkuse
suhtes. Selle käsitsi hindamine on keerukas ning ajamahukas. Tulenevalt on loodud
mitmeid tööriistu, mille kasutamine on vähem keerukas ning ajamahukas. Eesmärk on
hinnata kas turvalisuse analüüsi tööriista CodeQL-i, saaks kasutada ajalise keerukuse
hindamiseks. See saab tuvastatud läbi minimaalse tööriista loomise, mis suudab korrekt-
selt hinnata lihtsamate Java programmide ajalist keerukust. Järgneb arutelu tööriista ning
loomisprotsessi ümber.

Võtmesõnad:
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1 Introduction
Runtime complexity is a desirable property to know. It can provide us with answers
to why a certain algorithm is faster than another, why some passwords are safer than
others, and why a government website might become unresponsive under heavy load. It
is one of the core concepts taught in algorithms courses, and for good reason. It assists
in understanding the need for writing performant software. However, it is also one of the
most demanding topics for students, as deriving runtime complexity quickly becomes a
rigorous exercise in mathematics. While it would be nice to know what the complexity of
a freshly minted program might be, it is simply not feasible to calculate for every change
to the source code.

To combat this infeasibility, automated tools have been developed. These tools of-
ten impose strict limitations regarding what subset of language features can be analyzed,
and expanding that subset is an active field of research. Several base methodologies exist,
of which the primary one of interest in this thesis is inferring runtime complexity with
static program analysis. Specifically, the possibility of inferring it by utilizing a relatively
new tool: CodeQL.

CodeQL is generally used for security analysis and is thus primarily tooled as such.
Most of all, it provides an interesting approach to static analysis by treating source code
as a queryable database, upon which complex relationships can be modeled. But can
it model the relationships required for the inference of time complexity? If so, to what
extent? If not, why?

That comprises the primary research objective in this thesis: to determine the feasi-
bility of implementing such analysis with the tools provided by CodeQL. To evaluate this
feasibility, a tool to estimate the time complexity of simple Java programs is implemented.
The implementation is detailed in section 3. Section 4 provides a discussion about the
implications of this implementation.
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2 Background
This section provides a definition for runtime complexity, the central topic of this thesis.
Additionally, it provides a brief overview of related work in the field and an introduction
to CodeQL, the semantic analysis tool being explored.

2.1 Runtime complexity
Runtime complexity provides a method for reasoning about the performance of software.
This is done by expressing the time an algorithm takes to complete, either in terms of
actual time or executed instructions, as a function of the size of its input.

The common representation of this is big-O notation, which describes the upper bound
of the growth of a function. A formal definition is provided by Michael Sipser [1] as
follows:

Definition. Let f and g be functions f, g : N → R+. Say that f(n) = O(g(n)) if
positive integers c and n0 exist such that for every integer n ≥ n0, f(n) ≤ c g(n).

Knowing these bounds can inform the choice of algorithm for a particular task, or about
bottlenecks in a system. These bounds become critical knowledge in real-time systems,
such as embedded software for engines or medical equipment. These systems often have
strict requirements for responsiveness.

2.2 Automated analysis
Given the desirability of known runtime bounds, automated inference of such bounds is
an active field of research. However, as computing runtime bounds for arbitrary programs
is proven to be undecidable [2], the difficulty becomes one of balancing soundness (only
proving properties that are true) and completeness (covering all possible cases). There
are approaches that provide provably accurate bounds on runtime yet only for a restricted
set of program instructions. At the other extreme of this spectrum, there are also tools
that can provide approximate bounds on most programs yet do not deliver any guarantees
regarding the correctness of these bounds.

2.2.1 Methods based on dynamic analysis

A common approach is based on the directly perceivable property of time complexity, that
as the input size increases, the execution takes longer. Several tools have been developed
that measure the execution time either by direct invocations [3] or by instrumenting the
methods with timers [4]. After accumulating sufficient measurements, the complexity
class can be approximated by curve fitting the measurements. While these methods can
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generally cover a broad range of language features, they can not infer precise bounds and
do not generally model scenarios with multiple input parameters. Additionally, soundness
cannot be guaranteed, as the fastest-growing term may reveal itself at unfeasible input
sizes. Although there is an argument to be made, that, for practical purposes, we might
only be interested in the complexity within feasible time ranges. Nevertheless, a more
invasive method is instrumenting the program with counters, upon which more precise
bounds can be inferred [5].

2.2.2 Methods based on static analysis

More precise bounds can be obtained with approaches based on static analysis. The gen-
eral approach using static analysis can be outlined as interpreting program instructions as
a system in a more logically restricted domain. Many such domains have been evaluated
for the automated inference of various properties, including time complexity. However,
these restrictions ultimately extend to the original set of instructions, and this generally
presents a trade-off between what can be inferred and what parts of the original program
the inference can cover. This, then, extends itself to the final implementation in the form
of what guarantees of soundness and completeness it can provide. A perhaps illustrative
example of this transfer of limitations is demonstrated with Alan [6], a general-purpose
programming language that claims predictable runtime for all computation by disallow-
ing unbounded recursion and iteration.

Early efforts with this approach primarily tackled functional programming languages, by
directly mapping expressions into symbolic cost expressions, with input sizes as variable
terms, from which difference equations can be derived and solved [7]. This foundational
approach has been extended to imperative languages with more involved control-flow
analysis [8], deriving cost relations with regard to potential execution paths. The domain
of what can be analyzed by these methods continues to expand.

2.2.3 Methods Based on artificial intelligence

With the popularity of language models, it is anticipatable that they would be utilized
for time complexity estimation [9]. Understandably, any approach based on language
models is unlikely to make any claims of soundness. However, if the requirement for
precision is sufficiently loose, there is an argument to be made in favor of having an
approach that is not restricted in its input.
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2.3 CodeQL
The CodeQL website1 describes CodeQL as a tool for the semantic analysis of code-
bases. It is designed to facilitate querying source code in a similar manner to how one
would query common relational databases - as if source code was data. It was originally
developed by the company Semmle [10], which has since, along with the software, been
acquired by GitHub [11]. GitHub has subsequently integrated CodeQL scanning on
the platform as a feature available to all public repositories and private ones with the
appropriate license. It is additionally made publicly available, as stand-alone software,
with a license that authorizes use for, among other things, academic research2.

The analysis itself is expressed as queries. Queries are constructed such that they
describe a notable property of the source code by modeling the property through rela-
tionships on an abstraction of said source code. These abstractions enable decoupling
the queries from individual codebases and enable their reuse. Thus, a query constructed
with the intent of detecting a noteworthy property in one codebase may be used to
detect the same property in another codebase. Collections of such universal queries are
published as packs, either as query packs to execute directly or library packs to build
upon. Published queries additionally contain metadata to inform their interpretation,
such as their estimated precision and assessed severity.

CodeQL is commonly used to automate the detection of security issues. The bundled
language-specific libraries contain numerous features which, along with the expressive
language itself, make it convenient to describe many common vulnerabilities. For ex-
ample, the default query pack provided for Java3 contains queries to detect potential
vulnerabilities to SQL injection, cross-site scripting, and session hijacking. An overview
of Mitre’s Common Weakness Enumeration (CWE) coverage by CodeQL is provided on
the website4. In addition to security issues, the aforementioned pack contains queries to
detect various other issues. Some examples of these, that demonstrate the range covered
by CodeQL, are queries to detect unreachable code, inefficient code, such as string
concatenation in a loop, and violations of best practices, such as commented-out code.
As such, its usefulness extends beyond security analysis. It is ultimately designed as a
tool to inform and streamline manual code review.

Another noteworthy advantage of using CodeQL for such analysis is its large com-

1CodeQL Website: https://codeql.github.com/
2CodeQL CLI license: https://github.com/github/codeql-cli-binaries/blob/main/

LICENSE.md
3Query pack available as source code on GitHub: https://github.com/github/codeql/tree/

main/java/ql/src
4CodeQL CWE coverage: https://codeql.github.com/codeql-query-help/full-cwe/

7

https://codeql.github.com/
https://github.com/github/codeql-cli-binaries/blob/main/LICENSE.md
https://github.com/github/codeql-cli-binaries/blob/main/LICENSE.md
https://github.com/github/codeql/tree/main/java/ql/src
https://github.com/github/codeql/tree/main/java/ql/src
https://codeql.github.com/codeql-query-help/full-cwe/


munity. With the integration by GitHub, CodeQL is made available to a large audience.
While some of the source code is unavailable, a large part of it is open source. This
enables collaborative development with potential contributors who are not directly as-
sociated with GitHub. As new vulnerabilities are discovered, the CodeQL community
can iterate upon previous work to cover these vulnerabilities. This is further promoted
by GitHub’s bounty programs5. Additionally, as these contributors often document and
publish their experiences, the barrier of entry is lowered.

2.4 QL
The query language for CodeQL is QL. It is a declarative, object-oriented logic pro-
gramming language. At first glance, it holds many notable similarities to SQL, which is
a design choice to lower the barrier of entry for potential developers. However, these
similarities do not extend beyond syntax, as the semantics are based on Datalog - a
declarative logic programming language. Furthermore, as QL programs, the queries, are
run in CodeQL, they are first compiled into a variant of Datalog. A thorough overview
of the language may be obtained from the language reference provided by GitHub6 and
the original introductory papers [10, 12, 13]. The following sections provide a brief
overview of language features relevant to the thesis.

2.4.1 Predicates

A program in QL can be viewed as the declaration of a set of relations. These relations
are described through the use of predicates. Explicit predicates in QL come in two forms:
without, and with a result. Predicates without a result are used to model the properties
of its terms. Predicates with a result, reminiscent of functions in other programming
languages, define a result variable that is returned upon their evaluation. Further relations
may then be expressed regarding the result. An example of a predicate in QL is provided
in listing 1.

b i n d i n g s e t [ n ]
p r e d i c a t e i s P r i m e ( i n t n ) {

n > 1 and
n o t e x i s t s ( i n t d i v i s o r

| d i v i s o r i n [2 . . n − 1]
| n % d i v i s o r = 0

)
}

Listing 1. Predicate to determine primality.

5CodeQL Bug Bounty program: https://securitylab.github.com/bounties/
6QL language reference: https://codeql.github.com/docs/ql-language-reference/
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The result set of a query is required to be finite, and this consequently applies to the
predicates. This requirement can be satisfied by binding its variables to finite ranges.
Alternatively, it may be delegated to the usage of the predicate by annotating it with
bindingset. The annotation is needed for isPrime as the set of inputs that it holds for is
infinite. The predicates themselves may be recursive, or they may be applied recursively.

2.4.2 Object-orientation

Classes in QL represent a logical property. The common approach in object-oriented
languages is that objects are instantiated by allocating physical memory to maintain
object state. This is not the case for QL, however, as classes are representations of a
logical property. Thus, instead of providing a template for new instances, classes describe
subsets of existing values. Instead of constructors, classes in QL define characteristic
predicates. These are syntactically similar to constructors, yet define members of the
class by declaring logical restrictions on the this variable. For example, the predicate
isPrime from earlier may be adapted into the characteristic predicate for a class, as
shown in listing 2.

c l a s s Prime e x t e n d s i n t {
b i n d i n g s e t [ t h i s ]
Pr ime ( ) {

t h i s > 1 and
n o t e x i s t s ( i n t d i v i s o r

| d i v i s o r i n [2 . . t h i s − 1 ]
| t h i s % d i v i s o r = 0

)
}

}

Listing 2. Class to represent prime numbers.

Classes must always extend a supertype. If the supertype defines a characteristic predicate,
it must also hold. Inheritance is thus modeled as a logical implication. In the case of
multiple inheritance, the set of values which may belong to a class is the intersection
between the sets of values of its superclasses. Classes may define and override member
predicates and fields. These are resolved at run time by picking the most specific class
definition. If there are multiple such definitions, the predicate is evaluated for all of them
and a union of the result sets is returned. A class may additionally be declared as abstract.
Then, a member value must additionally satisfy the characteristic predicate of at least
one of its subclasses.
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2.4.3 Queries

Ultimately, collections of predicates describe an interesting logical property. To obtain
a set of actual values with this property, a query must be constructed. Queries come in
the form of query predicates, or more commonly select clauses. Select clauses declare
variables, establish restrictions on them as logical formulas which must be satisfied, and
evaluate them to concrete values. An example query is provided in listing 3.

from Prime n
where n i n [1 . . 100]
s e l e c t n

Listing 3. QL query that finds all primes in the range [1, 100.]

The example utilizes the Prime class from earlier and restricts the possible values to
the range [1, 100]. Any number of variables may be declared and the formulas may be
arbitrarily complex.

2.5 Static analysis with CodeQL
The declarative nature of its query language extends to the static analysis performed with
CodeQL. The program properties to be discovered are provided to the query execution
engine as instructions of what should be computed, rather than how. These instructions
are then evaluated against a database that contains a relational representation of the
source code. The process is evocative of querying common relational databases and
pattern matching on graph databases. A simple example for Java source code, using the
Prime class from earlier, is provided in listing 4.

i m p o r t j a v a
i m p o r t semmle . code . j a v a . d a t a f l o w . R a n g e U t i l s

from DivExpr expr , I n t e g r a l T y p e t
where

exp r . g e t L e f t O p e r a n d ( ) . ( C o n s t a n t I n t e g e r E x p r )
. g e t I n t V a l u e ( ) i n s t a n c e o f Prime and

exp r . ge tType ( ) = t
s e l e c t exp r

Listing 4. Query that selects all expressions where an integer, which can be evaluated
statically to be both constant and a prime, is divided, and the result is interpreted as an
integer.

Concrete elements of the source code are represented by abstractions provided by the
language-specific CodeQL library. Libraries are provided for many popular languages,
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and in some cases even for specific frameworks for these languages. The abstractions in
these libraries are generally similar, yet ultimately incompatible, due to the differences
between the source languages. This extends to the analysis itself, meaning that different
source languages may require different approaches to express the same property. A
methodology has been proposed to derive unified cross-language abstractions [14].

The queryable representation of a codebase is produced by an extractor. For com-
piled languages, extractors are attached to the compiler and obtain relevant information
by monitoring the build process. Source code is parsed directly for interpreted languages.
The extractor additionally resolves dependencies and stores the obtained relations in a
database. The database is referred to as a snapshot database since it contains information
about a program at a single point in time. Databases are created by GitHub for many
popular open-source projects and may be downloaded. Alternatively, they may be created
by running the extractor locally.

The specific schema for these databases largely depends on the source language. Doc-
umentation provided by GitHub states that a public-facing specification is unavailable.
However, they are stated to contain:

• a complete representation of the source code,

• the abstract syntax tree,

• the data flow graph,

• the control flow graph,

• query results,

• log files.

Most of this content is encoded in a binary format and is intended to be observed through
the execution of queries. The exception to this is the abstract syntax tree, which may be
explored in Visual Studio Code7 with the CodeQL extension8.

The CodeQL standard library provides many common analyses out-of-the-box. The
following sections provide an overview of the ones relevant to the thesis. The overview
is based on the documentation and source code for the library provided for Java. Thus,
the discussed specifics may not hold for the libraries for other languages.

7Visual Studio Code: https://code.visualstudio.com/
8CodeQL extension: https://marketplace.visualstudio.com/items?itemName=GitHub.

vscode-codeql
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2.5.1 Control-flow analysis

Control flow analysis is the process of determining possible paths through program
instructions. Possible in the sense, that certain constructs may split subsequent flow
based on a condition. For an accurate representation, these conditions are evaluated
within the context of previously satisfied conditions. It is often useful to interpret this as
a graph, where nodes represent program statements and edges represent possible flow.

CodeQL provides this analysis primarily through the use of the class ControlFlowNode.
Possible flow is modeled through the member predicate getASuccessor. This predi-
cate may be applied recursively to determine whether there is a path from one node to
another. A subclass of this is ConditionNode, which denotes the expression at which
the subsequent flow splits. It provides predicates to obtain the successor in a specific
branch, as well as the condition expression itself. It is worthy of note, that the analysis
is path-sensitive. When the predicates are used to model a path, CodeQL can infer
constraints that must hold for the path to exist. However, the documentation does not
provide information regarding what kinds of constraints may be evaluated, and the classes
themselves do not provide access to these constraints either.

It is additionally of note, that the predicate only returns successors that reside within the
same method invocation; or that the analysis provided is intraprocedural.

2.5.2 Static single-assignment form

Static single-assignment (SSA) form is the representation of a program such that variables
are assigned only once. Converting a program to such a representation is accomplished
by replacing all variable updates with declarations and reads of these variables with reads
of their most recent declaration. If there are multiple most recent declarations to choose
from, the appropriate choice is informed by prior control flow.

CodeQL makes extensive use of SSA internally and also exports various classes for it
in the SSA module. The implementation discussed in section does not make significant
direct use of the logic provided, yet it does use some of the declared classes. These are
then described within the context of their usage.

2.5.3 Value range analysis

Value range analysis is the process of determining the range of values which a numeric
variable may hold at certain points of program execution. The bounds of this interval are
generally symbolic expressions in terms of other variables.
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CodeQL provides bound inference with the RangeAnalysis module. The module con-
tains the predicate bounded(Expr e, Bound b, int delta, boolean upper, Reason
reason). This predicate can be expressed as:

bounded(e, b, δ, upper) ⇐⇒

{
e ≤ b+ δ if upper

e ≥ b+ δ if¬upper

The documentation states that the inferred bound may be a specific integer, the abstract
value of an SSA variable, or the abstract value of an interesting expression. The last of
these requires further explanation. The Bound class has three direct subtypes, respec-
tively: ZeroBound, used to represent the specific integers, SsaBound, and ExprBound.
The documentation for ExprBound states that it "corresponds to the value of a specific
expression that might be interesting, but isn’t otherwise represented by the value of an
SSA variable". Inspection of the source code reveals that this may be the length of an
array.

The source code additionally reveals that these bounds can be inferred across steps
of additions, subtractions, strict comparisons, and loop iterations. These steps, if possible,
are then summed as the integer delta. A non-constant literal bound itself represents a
single SSA variable.

The implementation discussed in section 3 makes significant use of this module to
infer loop iterations.
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3 Design and implementation
CodeQL provides an extensive library of static analysis tools. The development of
this library has primarily been influenced by requirements for security analysis. The
primary question, then, is whether it is feasible to utilize this library to analyze runtime
complexity. This feasibility shall be evaluated through the implementation of a tool that
serves as a proof of concept. The broad requirement for such a proof-of-concept tool
is that there must exist a program, consisting of a non-empty subset of Java language
features, for which it can provide the correct runtime complexity. With consideration of
the features available, the proof-of-concept must:

1. detect loops;

2. determine an upper bound on loop iterations, or report that it is unable to do so;

3. provide a meaningful summary of these bounds in terms of an input parameter.

The feasibility is then considered as the difficulty of satisfying these requirements without
significant extension to the standard library. This is based on the notion that more complex
analysis has been implemented in more appropriately specialized tools.

3.1 Implementation
This section describes how the relevant features of CodeQL are utilized and provides
details of the implemented tool. Broadly, the tool attempts to infer bounds for loop
control variables and the nesting relationship of these loops. If it can do so, it provides a
representation of these bounds and the nesting. If it is unable to do so, it reports as such.
It is comprised of four classes, for which a class diagram is provided in figure ??, and a
non-member predicate.

The specifics of the predicate and classes are described in the following subsections.
The capabilities of the implemented tool are discussed, along with examples, in section
3.2. The QL source code for the implemented tool is provided in the accompanying files.

3.1.1 Loops

CodeQL provides a class for explicit loop statements as LoopStmt. In order to encap-
sulate the logic for their analysis and to facilitate interpretation later, a class Loop is
created which extends LoopStmt. This inherits two predicates from LoopStmt that are
immediately relevant: getBody, which returns the statement for the loop body, and
getCondition, which returns the expression that serves as the condition for this loop.
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Loop

boundedBy( b1 : Bound, b2 : Bound )
approximateComplexity() : string
loopExecutions() : string
getANestedLoop() : Loop

<<abstract>>
KnownApproximateComplexityLoop

approximateComplexity() : string

LinearComplexityLoop
bindingParameter : Parameter

approximateComplexity() : string
getBindingParameter() : Parameter

ConstantComplexityLoop

loopExecutions() : string

Figure 1. Class diagram of the implementation.

In order to determine the bounds of the iteration, the member predicate boundedBy
is defined as:

boundedBy(b1, b2) ⇐⇒ ∃c, r, x, i, u, s : r = getAFirstUse(c) ∧
x = getCondition() ∧
r = getAChildExpr(x) ∧
u = getDefiningExpr(i) ∧

backEdge(c, i) ∧
bounded(u, b1, s) ∧
bounded(u, b2, ¬s)

where b1, b2 ∈ Bound, c ∈ SsaV ariable, r ∈ RV alue, x ∈ Expr,

i ∈ SsaExplicitUpdate, u ∈ V ariableUpdate, s ∈ {true, false}.

getAFirstUse is a member predicate of the class SsaVariable that returns an access
of the same SSA source variable. getAChildExpr is a member predicate of Expr and
returns a child of the expression. SsaExplicitUpdate is defined as an SSA variable
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that is created by a variable update. Its member predicate getDefiningExpr returns the
corresponding expression as a VariableUpdate. The predicate backEdge holds for c
and i if i is an input to c along a back edge. This is used here to detect the point at which
a control variable, the variable that determines loop iterations, is updated. The bounded
predicate is then used to determine whether the variable update expression is bounded,
such that b1 ≤ u ≤ b2. The usage of the boundedBy predicate will be clarified in more
detail in the following sections.

The class additionally declares the member predicates approximateComplexity and
loopExecutions, which are used for summarizing the iterations. They are intended to
be overridden when such a summary is available, and for Loop simply return the string
"?". The member predicate getANestedLoop returns for a Loop l1 another Loop l2, such
that l2 is declared within the body of l1.

The subclass KnownApproximateComplexityLoop is created to represent loops for
which iteration bounds can be determined. The class is declared as abstract. It exists to
be further extended by more concrete subclasses. The characteristic predicate holds if all
of the loops nested within are subclasses of KnownApproximateComplexityLoop. The
member predicate approximateComplexity overrides the one from Loop and returns a
string summary of the approximate complexity. It is defined such that if there are no
nested loops, it returns the bounds for itself by calling the loopExecutions member
predicate of its superclass. If there are nested loops, it returns the concatenation of its
own summary with the summary of nested loops.

3.1.2 Linear loops

The class LinearComplexityLoop represents loops that are estimated to have a linear
bound on their iterations regarding a Parameter. This Parameter is stored in the class
field bindingParameter. The overriding member predicate loopExecutions returns
the variable name of this Parameter, as it is in the source code.

The binding parameter is determined within the characteristic predicate of the class.
The predicate holds if there exists an SsaBound b and a ZeroBound z, such that b is a pa-
rameter and boundedBy(b, z) holds. The ZeroBound z represents a constant value. The
interpretation is that if the RangeAnalysis module determines that the control variable
is bounded at one end by z and at the other end by b, as they are both integers, there are
at most |b− z| values it may hold. Since z is a constant, the only variable term is b. Thus,
b is interpreted as being the binding, and thus summarizing bound of the given loop.
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3.1.3 Constant loops

The class ConstantComplexityLoop represents loops that are estimated to have constant
bounds. It overrides the member predicate loopExecutions to report as such. The
characteristic predicate of the class holds if there exists a bound b, such that b is either a
ZeroBound or an SsaBound representing a parameter, for which boundedBy(b, b) holds.
If b is a constant, the range of values is constant. When b represents a parameter, the
count of possible values may be expressed as |(b+ δ1)− (b+ δ2)|, where δ1 and δ2 are
integer deltas determined by the library. As the deltas must be constant, the count of
iterations is constant.

3.1.4 Interpretation

As we now have bounds for loops, it follows to provide a meaningful representation
of them. A representation for a particular loop, including the ones it nests, is obtained
through the approximateComplexity member predicate. A similar representation may
be expressed for methods by considering the loops they contain. This is implemented as
the non-member predicate getApproximateComplexity(Method m). If the provided
method does not contain any loops, then its runtime complexity is interpreted to be
constant. If it contains a loop for which an estimation is unavailable, it reports the com-
plexity as unknown. If all of the loops it contains have estimated bounds, it concatenates
the representations for all top-level loops. An example of the results obtained from this
predicate is provided in figure 2. The methods which it can not provide an estimation for
are discussed in the next section.

Figure 2. A result obtained while testing getApproximateComplexity.
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It is additionally noticeable from the example that these approximations are not reported
as big-O, but instead, as big-Ö, as they do not directly conform to the common notation.
This representation was chosen in order to show the loops and their nesting relationships
explicitly. The symbol was chosen as Öin reference to both big-Õ and the vocalization
for a common hesitation marker.

3.2 Evaluation
Throughout the development of the proof-of-concept tool, 63 simple Java functions were
written. These served as the basis for the iteration toward a working implementation.
The final implementation can provide a meaningful representation for 34 of them, which
if interpreted as runtime complexity, is correct. This includes implementations of simple
sorting algorithms. It reports a strictly wrong summary for 7. For the rest it reports that
it is unable to provide an estimation. This section provides examples and a discussion of
the more notable cases among these.

The function for which it reports the wrong bound is shown in listing 5. This is due to
the O(n) method call within the loop. The tool decidedly does not consider method calls,
as the standard library does not provide sufficient features for this. A refinement to cover
these cases was made at a point in development in the form of a check, that all method
calls within a loop must have compile-time constant arguments. This refinement was
ultimately commented out, however, as the implementation is not meant to cover method
calls. A similar case with a different implication is shown in listing 6. The function does
not contain a loop statement and is thus falsely reported as having constant complexity.

p u b l i c s t a t i c i n t p17 ( i n t x ) {
f o r ( i n t i = 0 ; i < x ; i ++) {

on loop ( x ) ;
}
r e t u r n 0 ;

}

Listing 5. A function falsely reported as
having linear complexity.

p u b l i c s t a t i c i n t Onrec1 ( i n t x ) {
i f ( x < 5)

r e t u r n x + 3 ;
r e t u r n Onrec1 ( x −1) ;

}

Listing 6. A function falsely reported as
having constant complexity.

The cases where it reports as unable to provide an estimation are primarily ones where
the bound is a value that the RangeAnalysis module is unable to represent, such as the
result of a multiplication. Listing 7 provides an example of such a function. Another
issue presents itself when the control value is updated by an expression containing a
function call. An example of this is provided in listing 8. The module does not determine
bounds for the control variable as it does not support interprocedural analysis.
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p u b l i c s t a t i c i n t On_2 ( i n t x ) {
i n t y = 2 * x ;
f o r ( i n t i = 0 ; i < y ; i ++) {

System . o u t . p r i n t l n ( " ok " ) ;
}
r e t u r n 0 ;

}

Listing 7. A function reported as having
unknown complexity.

p u b l i c s t a t i c i n t add1 ( i n t z ) {
r e t u r n z +1;

}
p u b l i c s t a t i c i n t p15 ( i n t x ) {

f o r ( i n t i = 0 ; i < x ; ) {
i = add1 ( i ) ;

}
r e t u r n 0 ;

}

Listing 8. A function (p15) reported as
having unknown complexity.

A notable example of where it is correct is a version of bubble sort, shown in listing
9. It is reported as being Ö(a(a)). This shows that it can interpret a bound even if the
parameter is not an integer, but has a field that is. Another example is shown in listing 10,
where the parameter x is used to specify the length of an array. This function is reported
as being Ö(x(x)). However, this does not extend to multidimensional arrays.

p u b l i c s t a t i c vo id b u b b l e S o r t ( i n t [ ] a ) {
f o r ( i n t i = 0 ; i < a . l e n g t h ; i ++) {

f o r ( i n t j = 1 ; j < a . l e n g t h ; j ++) {
i f ( a [ j −1] > a [ j ] ) {

i n t temp = a [ j − 1 ] ;
a [ j − 1 ] = a [ j ] ;
a [ j ] = temp ;

}
}

}
}

Listing 9. A version of bubble sort.

p u b l i c s t a t i c i n t On2_arr_2 ( i n t x ) {
i n t [ ] a = new i n t [ x ] ;
f o r ( i n t i = 0 ; i < a . l e n g t h ; i ++) {

f o r ( i n t j = 0 ; j < a . l e n g t h ; j ++) {
System . o u t . p r i n t l n ( i == j ) ;

}
}
r e t u r n 0 ;

}

Listing 10. A function where the parameter is used to specify the length of an array.

In some cases, it can establish a bound for the control variable if the loop has multiple
exit conditions. An example of this is a version of insertion sort, shown in listing 11.
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p u b l i c s t a t i c vo id i n s e r t i o n S o r t ( i n t [ ] a ) {
f o r ( i n t i = 1 ; i < a . l e n g t h ; i ++) {

f o r ( i n t j = i ; j > 0 ; j − −) {
i f ( a [ j −1] > a [ j ] ) {

i n t temp = a [ j − 1 ] ;
a [ j − 1 ] = a [ j ] ;
a [ j ] = temp ;

} e l s e b r e a k ;
}

}
}

Listing 11. A version of insertion sort.

Multiple parameters are also supported, provided that they do not interact directly. List-
ing 12 depicts a function for which Ö(x(y)) is reported.

p u b l i c s t a t i c i n t p r o b l e m a t i c 2 4 ( i n t x , i n t y ) {
f o r ( i n t i = 0 ; i < x ; i ++) {

f o r ( i n t j = 0 ; j < y ; j ++) {
System . o u t . p r i n t l n ( " ok " ) ;

}
}
r e t u r n 0 ;

}

Listing 12. A function with multiple parameters.

The code depicted in these examples is exactly as it was written during development,
with the only changes being removal of some whitespace, and shortening the name of
one. The source code for all of the functions used for testing the implementation, whether
depicted in the examples or not, is provided in the accompanying files.

These examples serve to illustrate that the implemented tool satisfies the requirements
set for a proof of concept; that it can correctly determine the runtime complexity for a
program composed of a subset of language features. As it makes a decision to overlook
several features which may affect runtime complexity, it is not intended to be used in
any real-world scenarios. However, it is likely to provide the correct estimation for many
functions in a Java codebase. The implication of this is discussed in section 4.
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4 Discussion
The final implementation described in section 3 is the result of significant trial and error.
It serves as a proof of concept, and the process provides some indication of whether
runtime complexity analysis with CodeQL is feasible. To the author’s knowledge, this
was the first attempt to perform such an analysis with CodeQL. This extends to say that
the relevance of available features was not initially known.

The design of the QL language has reportedly been influenced by the desire to lower
the barrier of entry for new developers. While it is reminiscent of many common query
languages, it is fundamentally different. It presents a steep learning curve for anyone not
formerly acquainted with logic languages. Expressing an interesting property in QL is
often a non-trivial endeavor.

The difficulty is substantially supplemented by the standard library of CodeQL. It
provides very little in the way of documentation for most of its features. Many features
are accompanied by a single line of documentation, and some are deprived of even that.
It is often necessary to inspect the source code to obtain an overview of a feature. For
a comprehensive understanding, this becomes critical. However, the functionality of a
feature is often divided up as a deep class hierarchy, which must then be navigated.

The design of the implementation was thus iterated upon through exploration of what
was possible with the library. Knowing that CodeQL provides path-sensitive control
flow analysis, the first idea was to observe the constraints on these paths and determine
whether they contain enough information to make assumptions about runtime complexity.
Through experimentation, it became apparent that these constraints are not exposed di-
rectly. Further, if these constraints could be exposed, there is no built-in way to represent
or evaluate systems of symbolic expressions. It became apparent that any approach
within scope would have to rely on the RangeAnalysis module.

The control flow analysis provided is not interprocedural. However, the data flow
analysis is. Thus, an attempt was made to use it to track interprocedural flow. This
proved troublesome as it is less precise, and in most cases of interest, the value is not
preserved and thus no longer tracked. The attempt was ultimately abandoned, as the
range analysis is not interprocedural either.

With that said, however, there is a case to be made for the advantages of CodeQL.
The language itself is very expressive and complex properties can be described in a
concise manner. While the standard library is difficult to navigate, the source code itself
is rather legible. Furthermore, as CodeQL analysis itself is integrated into the GitHub
platform, any analysis implemented could benefit a large audience. Executing analysis
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with the click of a button on GitHub is decidedly simpler and more convenient than
setting up a dedicated tool.

CodeQL has a very active community that contributes to its development. Issues on its
GitHub repository are opened and resolved daily, and a search for the term "CodeQL" on
Google Scholar9 yields 99 results since 2023. It is constantly evolving, and it is likely
that features necessary for more complex runtime complexity inference will eventually be
implemented. It is not unreasonable to predict that the standard library could eventually
even include a form of such analysis. Then, as open source, it could be iterated upon
by the community. The analysis could additionally be completely automated by the
platform to run on every commit. Perhaps it would even provide a badge to display in
the README.md file of a repository.

9Google scholar: https://scholar.google.com/
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5 Conclusion
CodeQL is a static analysis tool primarily used for the detection of security issues. It
comes equipped with an extensive standard library for that purpose. It was postulated,
that perhaps this standard library could be used for runtime complexity analysis. This
formed the primary research objective; to ascertain whether such analysis could be done,
and to what extent. This would be evaluated through a proof of concept implementation.

To inform the design of such an implementation, prior work in the field was reviewed
alongside the documentation and source code of CodeQL itself. An approach was es-
tablished and iterated upon. Throughout experimentation, it became apparent that the
library does not provide adequate tooling out-of-the-box, and that analysis on par with
specialized tools would not be feasible to implement. Despite this, a tool that could
provide meaningful approximations for some functions could be devised.

Such a tool was implemented and its capabilities and limitations were discussed. The
implications of the tool and its limitations, as well as the process of creating it, serve to
form an answer to the research question. Ultimately, the standard library would require
extension to constitute the basis of a more accurate tool.
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Appendix

I. Accompanying files
1. The QL source code is "BigÖ.ql", found in the archive "BigÖ.zip" .

2. The java functions used to test the implementation are in "Tests.java", found in
the archive "BigÖ.zip" .
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