

UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Karl Jääts

How well could have existing static vulnera-
bility detection tools prevented publicly re-
ported vulnerabilities in iOS open source

packages?
Master’s Thesis (30 ECTS)

Supervisor: Kristiina Rahkema, MSc

Tartu 15-Aug-2023

2

How well could have existing static vulnerability detection tools pre-

vented publicly reported vulnerabilities in iOS open source packages?

Abstract:

Preventing vulnerabilities is an ever present and high risk issue in software development

that can cause a lot of problems if vulnerabilities are not detected. To prevent vulnerabilities

as much as possible many different techniques and approaches have been developed and

one of those is vulnerability detection tools. Many such tools have been created but it is

unclear how effective the approach is at preventing real world vulnerabilities. In this thesis

testing was carried out on publicly reported vulnerabilities in iOS open source packages

with the aim of finding out how many of these vulnerabilities could have been prevented by

using these tools. Multiple types of security testing tools exist, such as static application

security testing (SAST), dynamic security testing (DAST), manual testing and other hybrid

approaches. In this thesis SAST tools are used due to their relative ease of use. 5 SAST tools

were tested on 81 publicly reported vulnerabilities in 23 packages with 14 out of the 81

vulnerable code segments being flagged by at least one tool. However due to the way these

vulnerabilities were reported and the prevalence of false positives it seems that these SAST

tools are not good at pinpointing existing vulnerabilities. Instead they help prevent vulner-

abilities by directing the developers to write better quality code and notifying them of func-

tions and approaches that are difficult to implement safely so that they know to take extra

care or find safer alternatives.

Keywords:

Open-source, vulnerability, CVE, Static Application Security Testing, SAST, vulnerability

detection tools

CERCS: P170, Computer science, numerical analysis, systems, control

Kui hästi oleksid olemasolevad staatilised turvavigade tuvastus tööriistad

suutnud ennetada avalikult raporteeritud turvavigu iOS avatud lähte-

koodiga teekides?

Lühikokkuvõte:

Turvavigade ennetamine on pidev ja väga oluline osa tarkvara arendusest, sest turvavigade

olemasolu võib tekitada mitmeid suuri probleeme. Turvavigade ennetamiseks on loodud

mitmeid eri meetodeid ja lähenemisi ja üheks neist on turvavigade tuvastus tööriistad. Sel-

liseid tööriistu eksisteerib üsna palju aga pole selge kui efektiivsed nad on päris maailmas

eksisteerivate turvavigade ennetamises. Selle väljaselgitamiseks testiti selles lõputöös tur-

vavigade tuvastus tööriistatu iOS avatud lähtekoodiga teekides olevate avalikult raporteeri-

tud turvavigade peal. Selliseid tööriistu on mitut tüüpi, nagu staatiline turvatestimine

(SAST), dünaamiline turvatestimine (DAST), manuaalne testimine ja muud hübriid lähene-

mised. Selles töös kasutatakse SAST tööriistu, eelkõige nende kasutus lihtsuse tõttu. Testiti

5 SAST tööriista 81 avalikult raporteeritud turvaveal, mis esinesid 23-s teegis. Testitud tur-

vavigadest 14 esinesid vähemalt ühe tööriista tulemuste seas, aga nende tööriistade rapor-

teerimisviisi ja valepositiivsete tulemuste rohkuse tõttu paistab, et SAST tööriistad ei ole

tugevad olemasolevate turvavigade leidmises. SAST tööriistade kasu turvavigade enneta-

misel seisneb pigem arendajate parema kvaliteediga koodi kirjutamisele suunamisel ja aren-

dajate informeerimisel kohtadest ja lähenemistest, mida on keeruline turvaliselt teostada, nii

et nad teaksid nendes kohtades olla tähelepanelikud või alternatiivseid lähenemisi otsida.

3

Võtmesõnad:

Lähtekoodtarkvara, turvanõrkus, CVE, Staatiline rakenduse turvatestimine, SAST, turva-

nõrkuste tuvastus tööriistad

CERCS: P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

4

Table of Contents

Introduction ...6

1. Problem statement ..6

2. Structure of the thesis ...6

2. Background ...8

2.1. Security vulnerabilities in code ..8

2.2. OWASP ..8

2.3. Vulnerability detection tools ..9

SAST ...10

DAST ..10

IAST ..10

2.4. Initial dataset ..11

3. Related work ...12

4. Methodology ...14

4.1. Narrowing the dataset ...14

4.2. Tool selection ...14

4.3. Testing process ...15

5. Results ...17

5.1. Dataset ..17

5.2. Tool selection ...18

6.3. Testing results ...20

Flawfinder ...22

VisualCodeGrepper ...24

CodeQL ...25

Clang-tidy ..27

SonarLint ...28

7. Discussion ...30

7.1. Could these SAST tools have prevented the reported vulnerabilities30

7.2. Issues with NVD ...31

7.3. Other approaches ..32

DAST testing ...32

AI ...32

7.4. Threats to validity ...33

7.5. Future work ..33

Conclusion ...35

5

References ..36

Appendix ...38

I. Testing results for FlawFinder ...38

II. Testing results for VisualCodeGrepper ..40

III. Testing results for CodeQL ..42

IV. Testing results for Clang-tidy ...44

V. Testing results for SonarLint ..47

VI. License ...50

6

Introduction

Security vulnerabilities are an important issue in software development as they can be ex-

ploited by attackers to take down the system that they appear in or in worse cases to execute

attackers code or expose sensitive information. So great care needs to be taken to reduce the

amount of vulnerabilities as much as possible but they are often very difficult to spot even

when specifically looking for them. To help with that several different methods have been

developed to try to detect these vulnerabilities early so they are found and fixed well before

anyone can exploit them. These methods range from manual testing techniques to automatic

testing tools. The testing tools, which this thesis will focus on, can roughly be divided into

three groups: Dynamic Application Security Testing (DAST), which test a running program

through its frontend or API, Static Application Security Testing (SAST), which scan the

code itself and Interactive Application Security Testing (IAST), which observes the system

while its running and being interacted with and also references the code if something is

found.

1. Problem statement

Despite the many techniques developed for finding and preventing vulnerabilities there are

still many of them in modern programs, so the aim of this thesis is to learn a bit more about

the causes for this by looking at one method of vulnerability detection, SAST tools, and

testing it on some iOS open-source packages that have publicly reported vulnerabilities in

noted by Common Vulnerabilities and Exposures (CVE) in them to see if the vulnerabilities

can be found using that method. That would show what the current state of SAST tools is,

how easy they are to use and what type of vulnerabilities it is good at detecting and which

vulnerabilities remain undetected. It would also show if the problem is in the testing meth-

ods themselves and they need to be developed further or if the problem is that the existing

tools are simply not being used widely enough. For that the following research questions

were formulated:

• RQ1: Could these SAST tools have prevented the reported vulnerabilities?

• RQ2: What type of vulnerabilities could have been prevented?

With RQ1 focusing more on how these tools could have prevented any of these vulnerabil-

ities in general and how effective they are at it and RQ2 looking at the distribution of what

was detected to discern what type of vulnerabilities SAST tools are good at detecting and

what they miss to either highlight the directions these tools should be improved on or make

it easier to match SAST tools with other tools that complement them by being good at de-

tecting the types of vulnerabilities SAST tools struggle with.

2. Structure of the thesis

The thesis has been divided into eight sections: Introduction, Background, Related work,

Methodology, Results, Discussion and Conclusion.

The Background chapter describes how security vulnerabilities are being documented, what

some of the common types of vulnerability detection tools are and how they work. Some

7

related work is discussed and then the initial dataset of vulnerabilities used for testing in this

thesis is introduced and described.

The Methodology section describes how the initial dataset was reduced to better fit the aims

of this thesis and make the testing process easier. Then the process of finding the tools that

were tested is described and finally testing process itself is covered.

In the Results chapter the results of the testing are described. Every tested tool has its own

section where it is described how they work, what the specific process was for testing them,

what problems occurred during testing and finally what vulnerabilities were found. In addi-

tion the research questions introduced in the Introduction are answered.

The Discussion section focuses on more subjective conclusions based on the results, threats

to the validity of this thesis and the testing process and future work that could be done and

some lessons and thoughts from testing and looking back at the results.

Finally in the Conclusion section the thesis is summarized and the results concluded.

8

2. Background

In this section some background information in given on security vulnerabilities. Then the

different types of vulnerability detection tools are introduced as well as Open Web Appli-

cation Security Project. Finally the dataset used in this thesis to test the vulnerability detec-

tion tools is introduced.

2.1. Security vulnerabilities in code

A security vulnerability represents an attack vector that a potential attacker could exploit

for attacks ranging from Denial-of-service to reading sensitive data or even executing cus-

tom code. There are many different types of vulnerabilities that can occur in all layers of

the application, from authentication bypasses to memory mismanagement. Vulnerabilities

are a constant and unavoidable part of software development and often occur when a devel-

oper misses or does not know about some edge case in whatever they are implementing

which could be exploited. Due to them being edge cases they are often very difficult for

human eyes to spot in the code and thus often come out after the program has already been

in use for some time which means they can be exploited and if the project is used as a

dependency by other applications then they might also be vulnerable.

Once a vulnerability is publicly disclosed it gets reported to the Common Vulnerabilities

and Exposures (CVE) Program which is a project administered by The MITRE Corporation

that aims to identify, define, and catalog publicly disclosed vulnerabilities. [1] The CVE

Program then assigns the vulnerability a CVE Record with an id and description of the vul-

nerability. The primary purpose of the CVE Program is to keep track of the vulnerabilities

and make sure each has only one CVE assigned to them so people can use it to refer to the

vulnerability. It is also useful for notifying developers of a vulnerability in some version of

a dependency they are using so they can either update the dependency or otherwise make

sure they are not affected by the vulnerability. The CVE system is also used by various

cybersecurity products and services to build upon and provide useful features. One example

of that is NVD or U.S. National Vulnerability Database which is a vulnerability database

expanding on the CVE List database by also including fix information, severity scores and

impact ratings [2]. NVD also has more advanced search features compared to CVE List so

it is easier to find relevant CVEs and also has extra information on each vulnerability like

fix information, severity scores, and impact ratings [2]. In conjunction with the CVE Pro-

gram a Common Weakness Enumeration (CWE) List has also been developed consisting of

common software and hardware weakness types [3]. Each CVE gets assigned one or more

CWEs to categorize it and make searching and analyzing them easier.

2.2. OWASP

The Open Web Application Security Project or OWASP is a well-known nonprofit foun-

dation with the goal to improve the security of software that organizes different commu-

nity-led open-source projects and compiles information about many different aspects of

the software security world [7]. To succeed in that goal one of the many things they do is

compiling lists of different tools meant to be used to improve the security of applications

9

including a list of SAST tools [8] which was used in this thesis to select the tools to test.

Probably one of the their best known projects is the Top 10 Web Application Security

Risks document that they compile every few years about the most critical security risks in

web applications [9]. The different OWASP lists were also used to learn about the other

types of tools and read about different prevalent vulnerabilities so the OWASP project has

been useful as a source of information about the software security world.

2.3. Vulnerability detection tools

Vulnerabilities are a constant problem in software development to the point of seeming un-

avoidable. There are however ways to minimize the amount of vulnerabilities that get

through besides developers paying more attention to security when coding. For one the abil-

ity of developers to pay attention and notice problems helped a good deal by focusing on

good code style and readability so it would be easier to keep track of and understand what

is happening in the code. One way of finding the vulnerabilities that still happen before they

reach production is to use vulnerability detection tools.

There are a few different categories of vulnerability detection tools each with many different

tools with different levels of efficacy. According to OWASP [3] there are three main types

of tools dealing with the application itself: Static application security testing (SAST), Dy-

namic Application Security Testing (DAST) and Interactive application security testing

(IAST). The primary purpose of these tools is finding security vulnerabilities but they can

sometimes also find other bugs and SAST tools can often also include various code style

recommendations and other notes to improve code quality. The broad differences between

the different types of tools are shown in Table 1. Some tools do have the capability to per-

form more than one of these types of testing but in those cases the different approaches

usually operate completely separately from each other. Next each tool category will be de-

scribed in more detail.

Table 1. Different types of vulnerability detection tools

 SAST DAST IAST

Testing technique White-box testing Black-box testing Dynamic testing

Requires source

code access

Yes No Yes

Requires running

app

No Yes Yes

Usable from the

very start of de-

velopment

Yes No No

Nr of tools listed

by OWASP

107 98 4

10

SAST

SAST or Static application security testing is a white-box testing technique which involves

analyzing the source code for issues. [4] As seen in this thesis different SAST tools have

different approaches for accomplishing this from using regular expressions to find some

patterns in the code to creating a database based on observing the build process to under-

stand how the code fits together in execution and then querying the database. SAST tools

are capable of finding simpler issues and flagging specific functions and approaches that

might be dangerous and the access to the source code also allows some of the tools to include

more broad code analysis to also provide code style recommendations in addition to search-

ing for the security vulnerabilities. However SAST tools struggle with finding more com-

plex issues due to the complexity of understanding the code and finding the various potential

edge cases that might have been missed. [4] That means that SAST tools are unable to find

some types of vulnerabilities at least using current approaches. It is still important to use

SAST tools however as they can be used during development to give nearly instant feedback

and can be used straight from the start of development as opposed to the other tools that

require the program to be running to work. Additionally some SAST tools have the code

quality features that the other types of tools cannot provide.

DAST

DAST or Dynamic Application Security Testing is a black-box testing technique that in-

volves sending various possible inputs to the program while its running and observing the

output. [5] These inputs can include various malformed data and formats the program might

not expect with the objective being to find cases where the program somehow does not

behave as expected or crashes outright which could be exploited by an attacker. [5] The

benefit of DAST testing and why it is relatively effective is that it approaches the program

from the user or attackers perspective and automatically attempts to try all cases that the

attacker might try. Due to it being able to use only the inputs of the program the range of

possibilities is not too large and it does not need to deal with the complexities of trying to

understand source code. This makes it much easier to make effective tools but the drawback

is that DAST tools can only be used once the program is running which means that it cannot

be used at the very start of development. It also means that during development the devel-

oper needs to complete what they are doing and run the code before getting the feedback

from the tool. This also means that DAST testing cannot be used to test something that is

not meant to be run on its own like some code libraries.

IAST

IAST or Interactive application security testing is an approach that uses runtime testing

techniques which deploying sensors into the application that continually monitor and gather

information about the application while it runs and is being interacted with by other tests

and users. [6] IAST tools also have access to the source code and so can point to some piece

of code when a vulnerability is discovered. [6] Compared to SAST it has similar drawbacks

as DAST in that it requires the application to be running but the main difference and benefit

11

of IAST compared to DAST is that it has access to the source code and so can provide more

information about issues which helps with fixing the issue faster.

2.4. Initial dataset

To be able to test the SAST tools a dataset of CVEs about vulnerabilities in open-source

packages was required as it was important to test the tools on real world issues to deter-

mine their practical efficacy. CVEs were needed to source the vulnerabilities to test and

they often include information in their NVD entry that is helpful for testing SAST tools

like where in the code the vulnerability exists and how the vulnerability was fixed. The af-

fected packages needed to be open-source to have access to the code to be able to use the

SAST tools.

The initial dataset was taken from “Dataset: Dependency Networks of Open Source Li-

braries Available Through CocoaPods, Carthage and Swift PM” [10].This dataset was

originally produced by collecting all open-source packages present in the three package

managers used for Swift development and then matching the packages with the vulnerabil-

ity data from NVD to find the CVEs affecting these packages [10]. The dataset consists of

149 vulnerabilities affecting 41 packages over 1339 package versions. This dataset was

chosen due to the wish to consider all available open-source packages from a single eco-

system, in this case iOS development. The dataset was also familiar and easily available

and fulfilled all the needs of this thesis.

12

3. Related work

In this section some similar and related papers are discussed.

Rahkema et al. in “Vulnerability Propagation in Package Managers Used in iOS Develop-

ment” [11] used the same dataset of CVEs used in this thesis to analyze how vulnerabilities

propagate in the package dependency network. They found that most publicly reported vul-

nerabilities are in packages written in C but vulnerabilities in Objective-C and Swift pack-

ages had the highest impact.

Another project that is somewhat related is the CVEfixes project which is a dataset of vul-

nerabilities in open-source software focused on how the vulnerability was fixed. It is auto-

matically collected from the CVEs present in the NVD with the goal of aiding data-driven

security research. The process of vulnerability collection used is described in the paper

“CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source

Software” by Guru Bhandari et al. [12] The process broadly consists of automatically col-

lecting the CVE records via JSON vulnerability feeds, collecting the details of the CVEs

and cloning the project repositories to extract information about the vulnerable code and the

corresponding fixes. The CVEfixes dataset could have been used in this thesis as well as an

alternative to the dataset that ended up being used.

There has been some studies done before that are similar to this thesis. One such is Lenar-

duzzi et al. in “A critical comparison on six static analysis tools: Detection, agreement,

and precision” [13] where they analyzed 47 Java projects using 6 static analysis tools in-

cluding SonarQube. They mostly focused on code quality issues and finding out how

much these tools agree with each other and how precise they are primarily through manu-

ally assessing the issues to determine if they are false positives or not. They concluded that

there is little agreement between the tools and the precision of them is quite low. This the-

sis focuses more on security related problems and finding vulnerabilities as well as testing

C and C++ projects.

Another broader study was done by Elder et al. in “Do I really need all this work to find

vulnerabilities?” [14] where they applied four different vulnerability detection techniques

including SAST and DAST to an open-source medical records system written in Java and

compared the results of these different techniques. For their SAST testing they used three

tools two of which are unnamed and the last one being SonarQube. They found most vul-

nerabilities with the SAST approach though with exploratory manual penetration testing

(EMPT) they found more severe vulnerabilities. They also found that the speed of finding

vulnerabilities was similar or better on manual techniques compared to automated ones

which is contrary to what one might intuitively think. Contrary to most other studies they

also found that SAST tools gave very few false positives. The cause of such a significant

difference compared to other studies remains a little unclear but might be due to a combi-

nation of the tools used and the researchers being very conservative in declaring false pos-

itives.

 Aloraini et al. in “An empirical study of security warnings from static application security

testing tools” [15] also tested SAST tools on active C++ projects. They used six SAST

13

tools: Parasoft C/C++ test, PVS-Studio Analyzer, Clang Static Analyzer, Cppcheck, Flaw-

finder and RATS. Their primary goal was to find out if specific types of warnings given

by the tools have a higher chance of being false positives. To determine which of the

warnings were false positives they used the tools on two versions of each C++ project with

one version being from 2012 and the other from 2017. That allowed them to compare the

results of both versions and conclude that the warnings found in both must be false posi-

tives as if they were true problems they would have been fixed over 5 years of develop-

ment. They found among other things that PVS-Studio and Parasoft C/C++ test produced

the least proportion of false positives. They also found that the distribution of warnings

over warning types stayed the same over the 5 years that they think might indicate that the

code quality of the projects stayed the same. While the testing work done by Aloraini et al.

is very similar to the testing done for this thesis the aim of testing is different. They fo-

cused on determining how many false positives occur and in what warning types while

this thesis focuses on finding out if the true positive results would have been enough to

prevent publicly reported vulnerabilities.

14

4. Methodology

This section describes the complete methodology used for testing the vulnerability detection

tools and the steps taken to refine the dataset as well as how the tools were chosen.

4.1. Narrowing the dataset

The initial dataset, as described in the corresponding background section, is composed of

open-source libraries used in iOS development that have vulnerabilities listed in the NVD

database. The dataset includes 149 vulnerabilities from 41 packages over 1339 package

versions.

As the libraries in the dataset are made for a wide variety of purposes and many of them

are also widely used outside of the iOS ecosystem then the languages they are written in

also vary. That poses a problem as most vulnerability detection tools support only a small

selection of languages and ideally all the tools would be tested on the same dataset. Thus

the most common language in the dataset will be selected and only the packages written in

that language will be considered. The language the package is written in will be deter-

mined by looking at the language subsection on their GitHub repository. Many libraries in

the dataset use multiple languages and those will be counted for each language with more

than 10% coverage according to GitHub. This might lead to an issue in the libraries con-

taining multiple languages that the vulnerability is not in the language that was selected

for testing and thus not in a place the tools would look. In those cases the package will be

removed from testing when it is discovered.

When the dataset has been narrowed to a single language, then the NVD entries for the

CVEs about the remaining packages will be gone through to determine which of them

contain a reference to where in the packages code the vulnerability is, either by naming the

function or file in the NVD entry or linking to a commit or issue that specifies it. The pur-

pose of this is to make it easier to determine if the tools found the vulnerability or not as

without any reference to where it might be in the code it would be very time consuming to

locate.

4.2. Tool selection

In this thesis the Static application security testing (SAST) approach was chosen, mainly

due to it not requiring running the packages for testing as opposed to DAST or IAST testing.

As the dataset consists of open-source packages used in iOS development then many of

them are code libraries that are not meant to be run on their own but used in other applica-

tions. That means that some of them cannot be tested with DAST or IAST tools. In addition

getting each of the 27 packages to run would be a considerable bit of extra work that is not

necessary using SAST tools. IAST testing in particular would have been overly complicated

as it involves integrating the sensors into the application and so does not lend itself well to

testing many different packages in a row. Therefore the goal is to find SAST tools that could

be used on the dataset to potentially find the reported security vulnerabilities in the source

code.

15

To find the SAST vulnerability detection tools the OWASP SAST tools list [8] will be

used which as of 30.July.2023 lists 107 SAST tools. The Open Web Application Security

Project (OWASP) is a well-known nonprofit project with the goal to improve the security

of the web. To succeed in that goal one of the many things they do is compiling lists of

tools meant to be used to improve the security of applications with SAST tools being one

such category of tools.

Tools that are not freely available will not considered as it would be difficult to gain ac-

cess to them and the dataset consists of open-source libraries thus using only free tools

makes some sense. The tools each support different sets of programming languages so to

be able to test all selected tools on the same dataset all tools that do not support the se-

lected language will also discarded.

4.3. Testing process

First all the CVEs about the same package will be gone through in the NVD database to

determine if several of them are present in the same version of the package and thus could

be tested simultaneously. As the versions listed under the NVD database entry of the CVE

are a little unreliable and often include versions well before the point the vulnerability was

introduced and sometimes including versions after it was fixed, then the search for the op-

timal versions to test will be conducted based on the fixing commits. The fixing commits

are mostly linked to in the NVD entry or NVD links to an issue report from which the fixing

commit can be found. The fixing commit lists in which versions it is included in on GitHub

and shows where in the code the vulnerability was. The code just prior to the fix can then

be compared to the state of the code in other versions to determine if the vulnerability was

already present, erring on the side of caution if some changes have occurred. That way if

two or more CVEs target different but close versions of the same package it can be deter-

mined if they can be tested on the same run thus reducing the workload.

Then the publicly available source code for the package version will be downloaded. The

tool being tested will be run on the package code and the results marked down. Flawfinder,

VisualCodeGrepper and Clang-tidy can be run on the source code as is though Clang-tidy

might need some extra configuration if errors occur. SonarLint however first requires gen-

erating a compile_commands.json file for which the Makefile Tools plugin for Visual Stu-

dio Code will be used or if that has problems then the Linux command line tool bear will be

used instead. As both basically build the project then all the required dependencies for each

package will need to be downloaded first and the configuration scripts like autogen.sh and

configure.sh need to be run if present. For that the GitHub readme for each package will be

consulted. CodeQL will be run as a GitHub Action so the code will need to be uploaded to

GitHub first. The GitHub Action has an autobuild feature which will be tried first but if that

fails then a build script will need to be written for each failing package according to the

instructions in the package readme file.

After the tool has finished its analyzes the resulting report will be looked through and it

shall be determined if the vulnerability in question is among those found by the tool. To

speed up looking through the reports the search feature will be used where possible to find

16

mentions of the file or function that the vulnerability is supposed to be in according to the

CVE entry. Some effort will also be put into understanding the vulnerability and the code,

including the code immediately preceding and following the target function in code execu-

tion. For that the “Find all references”, project search and “Jump to definition” features of

Visual Studio Code will be used. The purpose of looking at the project code a little more

broadly is that the vulnerability might be detected by the tool a little outside of the function

pointed to by the CVE entry, either by the tool detecting some other aspect of the vulnera-

bility compared to the CVE or the CVE itself being mistaken in the location.

The research questions will be answered based on these results. If a vulnerability is deter-

mined to be found by a tool then it will be counted as preventable for RQ1 and for RQ2 the

types of the found vulnerabilities will be considered.

17

5. Results

In this section first the outcomes of the dataset narrowing and tool selection are described

and then the results of testing the selected tools are given with some description of how each

of the tested tools was to use.

5.1. Dataset

First, the language in which a package was written is was determined. The frequency of

languages found in the 41 libraries is shown in Table 2.

Table 2. Programming languages by frequency in the dataset

Language Frequency

C 22

C++ 11

Objective-C 8

Swift 6

JavaScript 6

Java 5

Python 4

M4 2

Go 1

C# 1

Assembly 1

CMake 1

TypeScript 1

The most common languages were C and C++ and as most tools that support one of the

languages also support the other then it was decided to test packages written in these lan-

guages. That left 27 packages as some of them contained both languages.

18

The dataset contained 112 CVEs about these 27 packages. Next it was determined which

CVE entries in the NVD had information about where in program the vulnerability was. A

total of 31 CVEs did not have that information and were discarded for the speed and ease

of testing. That left 81 CVEs in 23 packages to be tested. The breakdown of these CVEs

based on CWE is shown in Table 3 which is based on the CWEs specified in the NVD en-

try of the CVE with the vulnerability counted for each CWE if several were defined in the

NVD. CWEs that appeared less than 3 times are not shown.

Table 3. Vulnerabilities in the dataset by CWE

CWE Number of vulnerabilities

CWE-125: Out-of-bounds Read 25

CWE-476: NULL pointer dereference 7

CWE-119: Improper Restriction of Opera-

tions within the Bounds of a Memory

Buffer

7

CWE-787: Out-of-bounds Write 6

CWE-190: Integer Overflow or Wrapa-

round

6

CWE-20: Improper Input Validation 4

5.2. Tool selection

The search started with the 113 SAST tools listed in the OWASP SAST tools list. The

tools listed as being under a commercial license were removed leaving 61 tools described

as open source or free. Of those 61, only tools that support C and C++ were selected

which left 10 tools. While going through the tools however one additional tool(clang-tidy)

was found by happenstance and was included despite it not appearing int the OWASP list

as it was a tool searching for vulnerabilities in C and C++ code. That left 11 tools:

• SonarQube

• HCL AppScan CodeSweep

• Flawfinder

• CodeQL (GitHub Advanced Security)

• Google CodeSearchDiggity

• LGTM

• Microsoft PREFast

• ParaSoft

• PVS-Studio

19

• Veracode

• VisualCodeGrepper

• Clang-tidy

However while trying to download, set up and start using these tools it turned out that

many of these could not actually be used for various reasons and needed to be discarded as

well:

SonarQube does have a free version called the “Community Edition” but that edition does

not support C/C++ [16], so SonarQube was replaced with SonarLint which is made by the

same company and uses mostly the same backend tools so should find mostly the same

things. The main drawback of SonarLint is that the Visual Code plugin, through which it

was used, only scans a single file at a time and has no option for scanning the whole pro-

ject at once.

Two versions of HCL AppScan CodeSweep were considered for testing: the GitHub Ac-

tion and the Visual Studio Code plugin. The GitHub Action, while free itself, requires an

API key for AppScan on Cloud which in turn requires a paid license. The Visual Studio

Code plugin was technically usable but it was finding very few issues in anything and in-

cluding most of the issues it itself claimed to be able to find which indicated that some-

thing was perhaps not working properly but there was no indication of what might be go-

ing wrong and no information about it online and so it was decided that it would be

dropped from testing.

Google CodeSearchDiggity manual that comes with the tool says that the Google API the

SAST proportion of the tool was using was discontinued in 2012 and that they are search-

ing for a solution. No solution seems to have been found as it currently is still based on the

same Google API and does not work.

Microsoft PREFast also has two versions: a GitHub Action and Visual Studio “analyze”

feature. The GitHub Action only supports CMake projects built with the Microsoft Visual

C++ Compiler and as some packages in the dataset do not have that option then this can-

not be used. The Visual Studio “analyze” feature does work but after quite a bit of trying

and even getting a couple of the packages tested it was decided that getting the packages

properly set up in Visual Studio was too much work per package due to various compila-

tion problems, various build path problems and Visual Studio being a generally quite unin-

tuitive and cumbersome system. Due to that the testing on Microsoft PREFast was

stopped.

ParaSoft has a news post from 2018 that claims to offer licenses to developers who are “an

active contributor to an active and vital Open Source project that is recognized within the

global Open Source community” judged on a case-by-case basis via email. [17] This thesis

falls outside of that definition but an email was sent to ParaSoft anyway enquiring about it

to which they responded that ParaSoft is a commercial tool and not free.

PVS-Studio offers two free ways to use their tools. The one for open source projects is the

most relevant one for this thesis which has the conditions that the project needs to be

20

posted on publicly on GitHub or BitBucket [18] and have a link to PVS-Studio in its re-

adme [19]. However that license does not apply to mirrors of projects [18] which is how it

would be used in this project. The second option requires writing specific comments at the

beginning of every file [20] which considering the number of packages and files is too

much work.

Veracode does not appear to have any free version. No reference to one has been found in

either their website [21] or documentation [22]. It is also listed under “Commercial” in a

different OWASP list [23].

LGTM was discontinued in December 2022 and as it was a web based tool that means that

it can no longer be used. Additionally LGTM also used CodeQL and its team moved to

GitHub to work on GitHub Advanced Security so the underlying tool will be tested here

anyway. [24]

That left 5 tools to be tested on our C/C++ packages:

• SonarLint

• Flawfinder

• CodeQL (GitHub Advanced Security)

• VisualCodeGrepper

• Clang-tidy

6.3. Testing results

Of the 81 CVEs tested 14 were found by at least one tool. However with most of the 14

vulnerabilities found it is debatable if “found” is the right word for them as the same spots

are also flagged in versions after being fixed. Also in many cases the intended purpose of

these warnings is not necessarily to say that a vulnerability exists in that spot but rather to

notify the developers of a potentially dangerous function call or behavior that they should

either reconsider or at least be careful with as they are difficult to implement correctly. In

all of these packages there are many of these potentially dangerous spots flagged but most

of them do not have an actual vulnerability associated with them. Of the 14 found vulnera-

bilities only CVE-2020-19498 can be definitively said to be a found vulnerability. It in-

volved a division by zero and was found only by Clang-tidy and as opposed to all the other

found CVEs did not continue to get flagged after being fixed. The found vulnerabilities and

what tools found them can be seen in Table 4.

Table 4. All found vulnerabilities

Package CVE CWE Notes Found by

libevent/libevent CVE-2016-

10195

CWE-125: Out-of-bounds

Read

Dangerous function call:

memcpy

Flawfinder, VisualCo-

deGrepper, Clang-tidy

libevent/libevent CVE-2016-

10196

CWE-787: Out-of-bounds

Write

Dangerous function call:

memcpy

Flawfinder, VisualCo-

deGrepper, Clang-tidy

21

libevent/libevent CVE-2014-

6272

CWE-189: Numeric Errors Dangerous function call:

memcpy, CVE contains sev-

eral spots but only one was

found

Flawfinder, VisualCo-

deGrepper, Clang-tidy

libevent/libevent CVE-2015-

6525

CWE-189: Numeric Errors Dangerous function call:

memcpy, CVE contains sev-

eral spots but only one was

found

Flawfinder, VisualCo-

deGrepper, Clang-tidy

flif-hub/flif CVE-2018-

12109

CWE-787: Out-of-bounds

Write

Dangerous function call:

fgetc

Flawfinder

leethomason/ti-

nyxml2

CVE-2018-

11210

CWE-125: Out-of-bounds

Read

Dangerous function call:

strlen

Flawfinder, VisualCo-

deGrepper

libgit2/libgit2 CVE-2018-

10887

CWE-190: Integer Over-

flow or Wraparound,

CWE-125: Out-of-bounds

Read, CWE-681: Incorrect

Conversion between Nu-

meric Types, CWE-194:

Unexpected Sign Exten-

sion

The real issue is integer

overflow but it leads to an

out of bounds read via

memcpy

Flawfinder, VisualCo-

deGrepper, Clang-tidy

libgit2/libgit2 CVE-2018-

10888

CWE-125: Out-of-bounds

Read, CWE-20: Improper

Input Validation

Dangerous function call:

memcpy

Flawfinder, VisualCo-

deGrepper, Clang-tidy

mongodb/mongo-

c-driver

CVE-2018-

16790

CWE-125: Out-of-bounds

Read

Dangerous function call:

memcpy

VisualCodeGrepper,

Clang-tidy

strukturag/libheif CVE-2020-

19498

- Division by zero, reported

with the path the program

would take to get there

Clang-tidy

libimobi-

ledevice/libplist

CVE-2017-

5836

CWE-415: Double Free Recommends that dynamic

heap memory allocation

should not be used

SonarLint

redis/hiredis CVE-2020-

7105

CWE-476: NULL pointer

dereference

Recommends that dynamic

heap memory allocation

should not be used

SonarLint

eclipse/mosquitto CVE-2021-

34431

CWE-401: Missing Re-

lease of Memory after Ef-

fective Lifetime

Recommends that dynamic

heap memory allocation

should not be used

SonarLint

webmproject/lib-

webp

CVE-2016-

9969

CWE-415: Double Free Recommends that dynamic

heap memory allocation

should not be used

SonarLint

Next the testing results for each tool will be given together with a small description of how

they work and how easy they were to set up and use during testing and what notable fea-

tures they have.

22

Flawfinder

Flawfinder is an open source command line tool written in Python. It examines the C/C++

source code in a project and detects possible vulnerabilities which it then writes into a

html report file. The detected issues are assigned a level between 0 and 5 according to

their risk level. Self-described as a simple tool it works by having an internal database of

functions that have known problems and doing some simple pattern matching on the

source code to find all instances of calls to those functions. [25]

Due to its simple nature it was mostly easy and fast to setup and run, by simply installing

it through pip and running it from the command line on the folder containing the project

being tested. It did have some problems with a few packages where the tool failed with

some errors which required deleting a file or two from the source code, the cause of these

errors is not quite clear.

Flawfinder is mostly intended for quick scans of the source code early in development, po-

tentially even before the code can be compiled. It can find and direct the developers atten-

tion to some common security issues that can arise with the functions used in the source

code. Having found a potentially dangerous function call it assigns it a risk level and adds

it to the report with a short description of what the potential issue is and a suggestion for

how to avoid it. That speeds up fixing or even preventing these vulnerabilities and in-

forms the developer of dangers they might not have been aware of.

However, as it is just looking for function calls without understanding what is going on

around them it simply flags every function in its database like memcpy weather or not a

vulnerability actually exists there so there are a lot of false positives. That makes it very

difficult to find actual problems and difficult to determine if the vulnerability has been

fixed or not especially once the codebase gets bigger. That in turn makes it very easy for

developers to start ignoring the reported problems to the point that it loses almost all of its

usefulness for actually detecting vulnerabilities. Especially as the functions included in

Flawfinder are mostly not inherently vulnerable but rather difficult to use correctly which

means that fixing the problem if it exists at all means adding checks before the function

call and not replacing the function with something else. For some of these functions there

are safer alternatives but in none of the CVE-s that were looked through was the actual

method changed, the developers always just added checks. Flawfinder does allow for spots

that have been verified to not be vulnerable to be ignored by the tool by adding comments

before them which makes it a little easier manage false positives but that of course relies

entirely on the developers ability to verify that no vulnerability remains.

Flawfinder found 6 vulnerabilities noted in the 81 CVEs tested and partially found 2 oth-

ers that had multiple locations. The found vulnerabilities are shown in Table 5 and the full

testing results are included in Appendix I.

Table 5. Vulnerabilities found by Flawfinder

Package CVE CWE Notes

libevent/libevent CVE-2016-10195 CWE-125: Out-of-bounds Read Dangerous function call: memcpy

23

libevent/libevent CVE-2016-10196 CWE-787: Out-of-bounds Write Dangerous function call: memcpy

libevent/libevent CVE-2014-6272 CWE-189: Numeric Errors Dangerous function call: memcpy, CVE

contains several spots but only one was

found

libevent/libevent CVE-2015-6525 CWE-189: Numeric Errors Dangerous function call: memcpy, CVE

contains several spots but only one was

found

flif-hub/flif CVE-2018-12109 CWE-787: Out-of-bounds Write Dangerous function call: fgetc

leethomason/ti-

nyxml2

CVE-2018-11210 CWE-125: Out-of-bounds Read Dangerous function call: strlen

libgit2/libgit2 CVE-2018-10887 CWE-190: Integer Overflow or

Wraparound, CWE-125: Out-

of-bounds Read, CWE-681: In-

correct Conversion between

Numeric Types, CWE-194: Un-

expected Sign Extension

The real issue is integer overflow but it

leads to an out of bounds read via memcpy

libgit2/libgit2 CVE-2018-10888 CWE-125: Out-of-bounds

Read, CWE-20: Improper Input

Validation

Dangerous function call: memcpy

However as Flawfinder simply flags all instances of the potentially dangerous function

calls then all of these found vulnerabilities were hidden among a large amount of false

positives, often about calls to the same function in other places where a vulnerability did

not exist. For example in the package libevent 475 issues were found by Flawfinder. The

issue the developers had missed in almost all of the found vulnerabilities was not neces-

sarily the function call itself but rather insufficient checks before it so it is debatable if

these vulnerabilities should in fact be called “found”. It might be more correct to say that

Flawfinder warns about using these functions as they are difficult to use safely and not

that Flawfinder really found these vulnerabilities.

The fact that only the function call itself is considered means that in all cases Flawfinder

still flagged the same spots in package versions where the vulnerabilities had been fixed.

That is partially due to that in all cases seen in the testing the fix to the vulnerabilities al-

ways consisted of adding more checks before the function call instead of replacing the

function with something safer. Perhaps if the developers of these packages had seen warn-

ings about these functions like Flawfinder gives then they might have actually replaced

them and then Flawfinder would not have continued to flag those spots.

Flawfinder attributes each found issue to a CWE, but out of the 8 found CVEs the CWE

named by Flawfinder and the one written in the NVD entry matched only once, in CVE-

2018-11210. Table 5 shows the CWEs according to the NVD entry.

24

VisualCodeGrepper

VisualCodeGrepper is a standalone tool that has its own GUI though it can be run through

the command line as well. As the name suggests it is a similar tool to Flawfinder in that it

is fairly simple and uses grep-like text pattern matching to find specific function calls and a

few other potentially vulnerable spots, and does not understand the code. Most of these

functions that both VisualCodeGrepper and Flawfinder look for by default are taken from

the Microsoft banned functions list. VisualCodeGrepper does look for a few more potential

issues than Flawfinder and also allows adding of extra user made search patterns through

its configuration file. After the scan the found issues are assigned a severity level and the

results are shown in the GUI which also allows them to be exported to a file.

As VisualCodeGrepper works mostly the same as Flawfinder then it has mostly the same

purpose and problems. It is primarily for quick scans probably early in development with

the main purpose being not really finding actual vulnerabilities but rather directing the de-

velopers attention towards functions that are potentially dangerous so they can be replaced

or at least handled with care. Because of that, from the point of view of actually finding

vulnerabilities, it has a lot of false positives and unlike Flawfinder VisualCodeGrepper does

not allow for marking these spots to be ignored once they are verified to be false positives.

The main advantages compared to Flawfinder are that VisualCodeGrepper attempts to also

find some places where there might be some memory mismanagement like not freeing the

allocated memory, it finds todo and fixme comments that might mark unfinished and thus

dangerous spots and allows the user to add additional functions and text fragments to the

list of patterns being searched for.

It was easy to set up and use, it came with an installer and using it consists of selecting the

target directory, clicking scan and then browsing the results. As it only does text pattern

matching there was no problems getting it to work with any of the tested packages. The only

issue with VisualCodeGrepper was that by default it does not recognize .cc files as C++

files even though they should be equivalent to .cpp files. So by default it leaves them out of

its scans but that can be fixed easily by changing the configuration either through the GUI

or editing the file.

In testing VisualCodeGrepper found 6 vulnerabilities and partially found another 2 just

like Flawfinder. The found vulnerabilities are shown in Table 6 and the full testing results

are included in Appendix II.

Table 6. Vulnerabilities found by VisualCodeGrepper

Package CVE CWE Notes

libevent/libevent CVE-2016-10195 CWE-125: Out-of-bounds Read Dangerous function call: memcpy

libevent/libevent CVE-2016-10196 CWE-787: Out-of-bounds Write Dangerous function call: memcpy

libevent/libevent CVE-2014-6272 CWE-189: Numeric Errors Dangerous function call: memcpy,

CVE contains several spots but only

one was found

25

libevent/libevent CVE-2015-6525 CWE-189: Numeric Errors Dangerous function call: memcpy,

CVE contains several spots but only

one was found

mon-

godb/mongo-c-

driver

CVE-2018-16790 CWE-125: Out-of-bounds Read Dangerous function call: memcpy

leethomason/ti-

nyxml2

CVE-2018-11210 CWE-125: Out-of-bounds Read Dangerous function call: strlen

libgit2/libgit2 CVE-2018-10887 CWE-190: Integer Overflow or

Wraparound, CWE-125: Out-of-

bounds Read, CWE-681: Incorrect

Conversion between Numeric Types,

CWE-194: Unexpected Sign Exten-

sion

The real issue is integer overflow but

it leads to an out of bounds read via

memcpy

libgit2/libgit2 CVE-2018-10888 CWE-125: Out-of-bounds Read,

CWE-20: Improper Input Validation

Dangerous function call: memcpy

Most of the found vulnerabilities were the same as in Flawfinder which is unsurprising as

they are very similar tools. The only differences between them was that VisualCodeGrep-

per did not find CVE-2018-12109 and instead found CVE-2018-16790. In CVE-2018-

12109 the potentially dangerous function is fgetc which the VisualCodeGrepper does not

seem to search for by default. CVE-2018-16790 is another Out-of-bounds Read vulnera-

bility involving the memcpy function which makes it curious that Flawfinder did not find

it as well as Flawfinder was flagging a lot of memcpy calls. It is unclear why Flawfinder

skipped this one, maybe in a failed attempt to avoid false positives or maybe a bug in the

pattern matching.

Like Flawfinder the same spots continued to be flagged even after the vulnerabilities asso-

ciated with them had been fixed. This is due to the same problems that VisualCodeGrep-

per searches only for the function call without understanding the code surrounding it and

the package developers not replacing the function but rather adding checks to patch up

vulnerabilities.

CodeQL

CodeQL is a semantic code analysis engine developed by GitHub that was used in this thesis

through GitHub Actions but it can be used locally though the command line as well. It works

by first building the code being tested and monitoring the build process which it then uses

to extract all the relevant information about the code into a database. Once that is done

queries can be made to the database to detect problems and do various analysis tasks on the

code. [26]

CodeQL seems to be focusing a lot on users making their own queries to do their own

analysis and problem detection but it does come with built-in query pack that can be im-

mediately used. As writing our own set of queries is outside of the scope of this thesis then

26

built-in queries were used, more precisely the security-and-quality query suite that should

include all of the built-in queries. The focus on user created queries might indicate an at-

tempt to facilitate a community through which some highly effective query suites could be

sourced but no repository for user created queries to use in this thesis was not found.

Building the code should give it a lot more information and understanding about how the

code works and at least in theory allow for much more effective search for vulnerabilities.

However at least the built-in queries gave very few results in testing. In fact none of the

vulnerabilities looked for in testing were found. Some of that might be from their claimed

focus on trying to minimize the amount of false positives detected but if that means that

very little of anything is detected then it makes the usefulness of the tool somewhat ques-

tionable. Besides many of the found issues are still potentially dangerous spots, not neces-

sarily vulnerabilities. Perhaps the usefulness and potential relies primarily in the framework

it gives the user to write their own queries but as that was not done in this thesis it remains

unclear how good or easy to write these queries are.

As already mentioned CodeQL did not find any of the vulnerabilities tested for but the test-

ing results for it can be seen in Appendix III. The vast majority of the found issues reported

in testing were in the quality portion of the security-and-quality query suite used for testing

and most of those simple notes for commented out code and similar. The reason for includ-

ing the quality queries in testing was that first of all some similar checks were done in Flaw-

finder and VisualCodeGrepper so for the number to be vaguely comparable it made sense

to include them here as well. In addition when first starting testing the default query suite

was used and that often did not give any results at all which made it difficult to determine

if the tool was working at all especially since getting the tool to work was quite difficult.

In an ideal scenario it is very easy to use, just create a GitHub repository, add the Action

through the GitHub menu, choose the appropriate query suite and the autobuild feature of

CodeQL should mean that it is able to build and then scan your code automatically. The

results will appear as code scanning alerts in the GitHub Security section from where you

can view them, jump to the relevant piece of code and mark them as false positives or as

“won’t fix”. However in testing the autobuild feature only worked about half the time with

the other half requiring writing a build script for the package. These build scripts caused a

lot of headaches during testing including giving up on 2 packages after spending a good

while trying to get them to compile. Problems with compilers, their versions, dependen-

cies being missing or under different names, some of the ways of building the packages

not working when others did (CMake vs Make) etc. OpenSSL versions especially gave

trouble in a few packages, in good part because the version being wrong caused an error

message that did not indicate in any way what the problem was and only a handful of ver-

sions are allowed in Ubuntu. A lot of this is of course due to the nature of testing a large

amount of different packages, some with some peculiarities in how they are compiled.

When using CodeQL in development one only needs to get it to compile with one project

and presumably the developers know well how their code needs to be compiled so it

should not really be much of an issue.

27

Clang-tidy

Clang-tidy is a standalone clang-based linter tool that is integrated into various IDEs and

was used in the testing for this thesis through its integration into Visual Code as part of the

C/C++ extension. For understanding the code better it needs a compile commands data-

base to be set up for the project which it uses to get build options and other build infor-

mation about the files. To an extent it does work without compile commands as well but

often throws errors and does not detect nearly as many problems.

Clang-tidy searches for some of the same function calls that Flawfinder and VisualCode-

Grepper do but analyzes program paths to determine places where a null pointer error or

division by zero might occur among other things. It also does some style checking for

things like unused variables and other such things. So it is more sophisticated that Flaw-

finder and VisualCodeGrepper and is able to actually find some concrete issues in the

code but most vulnerabilities tested for are still missed.

In testing Clang-tidy found 6 vulnerabilities and partially found another 2, most being the

same as the ones found by Flawfinder and VisualCodeGrepper. The found vulnerabilities

are shown in Table 7 and the full testing results are included in Appendix IV.

Table 7. Vulnerabilities found by Clang-tidy

Package CVE CWE Notes

libevent/libevent CVE-2016-10195 CWE-125: Out-of-bounds Read Dangerous function call: memcpy

libevent/libevent CVE-2016-10196 CWE-787: Out-of-bounds Write Dangerous function call: memcpy

libevent/libevent CVE-2014-6272 CWE-189: Numeric Errors Dangerous function call: memcpy,

CVE contains several spots but only

one was found

libevent/libevent CVE-2015-6525 CWE-189: Numeric Errors Dangerous function call: memcpy,

CVE contains several spots but only

one was found

mongodb/mongo-

c-driver

CVE-2018-16790 CWE-125: Out-of-bounds Read Dangerous function call: memcpy

strukturag/libheif CVE-2020-19498 - Division by zero, reported with the

path the program would take to get

there

libgit2/libgit2 CVE-2018-10887 CWE-190: Integer Overflow or

Wraparound, CWE-125: Out-of-

bounds Read, CWE-681: Incorrect

Conversion between Numeric Types,

CWE-194: Unexpected Sign Exten-

sion

Dangerous function call: memcpy

28

libgit2/libgit2 CVE-2018-10888 CWE-125: Out-of-bounds Read,

CWE-20: Improper Input Validation

Dangerous function call: memcpy

One of the found vulnerabilities, CVE-2020-19498, involving a division by zero, is of spe-

cial note as it is the only case in testing any of these tools where a tested vulnerability was

clearly and confidently found with none of the usual qualifiers of “potentially dangerous”

or similar and no threat of being a false positive. As usual the version of the package

where the vulnerability had been fixed was also tested and no false positive was given

here, which cannot be said for the other vulnerabilities. Of course the other issues involve

a potentially dangerous function call which was not replaced in the fix and so it makes

sense that these continue to be reported even though the actual vulnerability no longer ex-

ists.

The Visual Code extension for C/C++ was used for testing Clang-tidy as it is integrated

into the extension under the “Run code analysis” menu option. This was very easy to set

up in itself however to run properly Clang-tidy requires a compile commands database to

be set up for the project which it can also do itself from a compile_commands.json file. In

some packages some trouble was had to get the package to compile to be able to generate

the file. There are a few options for generating the compile_commands.json file, the two

used in testing for this thesis were the CMake compile option for it, used in testing mainly

through the CMake Tools extension for Visual Code, and the other was the command line

tool Bear, which is a tool specifically for generating the compilation database for clang

tooling. The need for using two different tools came from the fact that the CMake option

was slightly easier to use but not all of the packages were set up to support it. As a Win-

dows computer was used for testing then to make life easier an Ubuntu installation was set

up through WSL on which both the compilation and Visual Code were run.

It can be told to analyze all files at once. Once the compile commands database was set up

however it was very easy to use by simply telling Visual Code to run analyzes on the ac-

tive file with an option also provided to run the analyzes on all files. False positives can

also be marked as ignored by adding inline comments telling the tool to not check the rele-

vant lines.

SonarLint

SonarLint is a linter developed by SonarSource, the developers of SonarQube. SonarLint

checks all the same things as SonarQube and reportedly even uses the same engine for its

work, the main difference between them being that SonarLint is focused on instant feed-

back when writing code and SonarQube gives an overview of the state of the whole pro-

ject including some history of previous scans. SonarLint seems to mostly work on the

same way as Clang-tidy does as it also needs the compile commands file to be generated

before it can do its analyzes, but the two tools find quite a bit of different issues in the

same code though there is of course some overlap. SonarLint has a much more in depth

focus on code style and vulnerability prevention through that with recommendations for

not using some ways of doing things like dynamic heap memory allocation. It however

29

does not flag the potentially dangerous functions many of the other tools were focused on

nor does it check for division by zero and null pointer errors like Clang-tidy did.

SonarLint found 4 of the tested CVEs, all of them cases where dynamic heap memory al-

location was used and SonarLint recommended that it should not be used. The found vul-

nerabilities are shown in Table 8 and the full testing results are included in Appendix V.

Table 8. Vulnerabilities found by SonarLint

Package CVE CWE Notes

libimobi-

ledevice/libplist

CVE-2017-5836 CWE-415: Double Free Recommends that dynamic heap

memory allocation should not be used

redis/hiredis CVE-2020-7105 CWE-476: NULL pointer

dereference

Recommends that dynamic heap

memory allocation should not be used

eclipse/mosquitto CVE-2021-34431 CWE-401: Missing Release of

Memory after Effective Life-

time

Recommends that dynamic heap

memory allocation should not be used

webmproject/libwebp CVE-2016-9969 CWE-415: Double Free Recommends that dynamic heap

memory allocation should not be used

While the results of the testing of SonarLint are somewhat underwhelming in terms of the

vulnerabilities that it found, the issues that it did flag in the code were valid and made

sense and few false positives were detected. In general SonarLint seemed like the most

useful tool of the five tested though much of this was more focused on writing readable

and clean code and not specifically finding vulnerabilities. Readable and clean code

should however also lead to less vulnerabilities through the code being more understanda-

ble and thus less mistakes being made by the developers.

The four vulnerabilities found during testing continue to be flagged by SonarLint after the

actual vulnerability has been fixed as much like previously with other tools detecting the

dangerous function calls with the issue being that the developers of the packages are not

replacing the underlaying unsafe practice but adding checks to patch up the hole.

In setup SonarLint was much the same as Clang-tidy as SonarLint was also used in testing

through the Visual Code plugin and required the same compile_commands.json file to be

generated before it would work. The primary difference in the use of SonarLint and

Clang-tidy was that SonarLint triggers its analyzes of a file when the file is saved and not

through a menu option. The Visual Code plugin for SonarLint also does not allow running

SonarLint on the entire project at once though some plugins for other IDEs do. Issues can

be marked as ignored similarly to Clang-tidy by adding an inline comment to the relevant

places or if the SonarLint instance is connected to a SonarQube installation then it can be

marked as ignored through the SonarQube GUI.

30

7. Discussion

In this section the results are discussed and opinions given on what they might mean. Some

other options for finding vulnerabilities are then discussed together with what might be done

further to continue the research. Finally some potential issues with the research done are

discussed.

7.1. Could these SAST tools have prevented the reported vulnerabilities

The strict answer to RQ1 Could these SAST tools have prevented the reported vulnerabili-

ties? is according to our definition 14 out of the 81 vulnerabilities were found by at least

one tool and thus could have been prevented. However many of these found vulnerabilities

were low confidence and difficult to differentiate from the false positives so the primary

usefulness of SAST tools does not seem to be finding existing vulnerabilities.

The vast majority of the vulnerabilities in the dataset are cases where there is some check

missing for a little edge case. It seems likely that a good proportion of them can’t really be

found by a SAST approach due to the complexity that would need to be considered by the

tool just being too high. Certainly a pure regex approach like taken by Flawfinder and Vis-

ualCodeGrepper seems impossible. Maybe an approach that has compilation information

and could understand the code somewhat might be able to come closer or at least they seem

to have more potential. This is also exemplified by Clang-tidy being able to find things like

null pointer errors and divisions by zero by analyzing the different paths the program might

take. However as it currently stands with the tested tools even the tools that have compila-

tion information do not really find that many of the actual vulnerabilities and are best suited

for simple errors and code style recommendations.

That being said the tested tools are not useless for reducing the number of vulnerabilities in

code. The best of the tested tools found 8 out of 81 CVEs which is still a significant number.

Additionally tools like SonarLint improve code readability and quality by giving good rec-

ommendations for improving code style and note solutions and functions that are difficult

to use safely. Good readable code in turn makes it much easier to avoid making mistakes

when implementing places that could produce vulnerabilities. In this way even the simpler

tools like Flawfinder and VisualCodeGrepper can be quite useful to use early in develop-

ment to avoid accidentally using functions that are unsafe and have safer alternatives before

getting so far along in development that replacing them would be too much work. Making

the developers think more about what they are using from the start of development goes a

long way toward preventing these situations where vulnerabilities are easy to come. Fixme

and todo comments mark unfinished code which might be vulnerable and so flagging them

keeps developers from forgetting about them which can otherwise be easy to do. So these

SAST tools can be quite useful for preventing vulnerabilities appearing in the first place but

for detecting existing vulnerabilities in a preexisting projects some other approach might be

more successful. At least some other approached need to be also used.

It might also be the case that with some programming languages other than C or C++ the

SAST approach might work better. C and C++ are lower level languages than most other

widely used languages and at least some of the vulnerabilities involved are to do with

31

memory related problems that would not exist in higher level languages. That being said

many of the tested vulnerabilities can exist in any language and the core approach used by

the SAST tools will be the same regardless of language. For example SonarQube and by

extension SonarLint are some of the most widely used SAST tools for testing Java applica-

tions and while the rules it uses to scan code are somewhat different the underlying approach

remains the same. Based on the code of the tested packages it also appears that C/C++ have

a culture of relatively poor readability code with short non-descriptive variable names, ex-

tremely long files and so on, which might mean that it would benefit a good deal from the

improving code readability and style aspects of these tools.

As for RQ2 What type of vulnerabilities could have been prevented? as the number of found

vulnerabilities is low and they are of various types no clear answer was found. The most

common CWE among the found vulnerabilities was Out-of-bounds Read (CWE-125) which

counts for 5 of the 14 found vulnerabilities and additional 2 are Out-of-bound Write (CWE-

787). However 2 of the tested tools (CodeQL and SonarLint) did not find any of these and

CWE-125 is also the most common CWE in the dataset comprising 25 of the 81 tested

vulnerabilities so these results don’t necessarily indicate any specific types of vulnerabilities

that SAST tools are good at finding.

7.2. Issues with NVD

NVD seems to have some problems and especially the details added by NVD are not as

reliable as they could be. For example the affected versions list is often wrong, either not

including enough versions or including too many. Some examples of that are CVE-2017-

5835 which is fixed in version 2.0.0 but NVD includes versions up to 2.2.0 and CVE-2019-

6285 which only lists 0.6.2 as affected but the problem exists well before that. Of course

tracking down the exact range of versions is time consuming so the creators either only list

the version the issue was found in or all versions before it. Sometimes the specified function

is incorrect. There is also a lot of variation in what links are provided in the NVD. The CWE

for a vulnerability also often seems to be assigned based on what the problem seemed to be

when the vulnerability was detected and not what it actually turned out to be upon fixing.

These issues might be especially relevant for projects like CVEfixes and others that use

some automated approach to the CVEs as while the gist of them is usually correct, a lot of

the data included is not as reliable as one might hope. This is in large part due to the com-

munity driven nature of the project which inevitably causes some as nobody really feel that

it is their responsibility and thinks that someone else is going to have a look at it at some

point. Also made worse by it being a quite technical thing that requires some concentration

to do correctly. Obviously the CVE project does a lot of good and is a good resource for

various purposes but there is room for improvement.

CWEs being assigned based on the original error message by which it was found or other-

wise guessing might also partly explain why the CWEs from NVD did not match well with

the CWEs from Flawfinder. The first being the guessed cause of the vulnerability based on

the limited information available shortly after first being discovered and the other an issue

in the code that might lead to a vulnerability. The CWEs Flawfinder assigns are of course

also not directly applicable to a vulnerability, at least not always as firstly the issues it found

32

are often not real vulnerabilities and secondly it can be subjective what CWE is correct or

at least multiple CWEs can be at work simultaneously.

7.3. Other approaches

There are many other approaches to searching for vulnerabilities besides SAST that would

ideally be used in addition to it. The different approaches will find different sets of vulner-

abilities so using several will result in the most vulnerabilities being found and fixed.

DAST testing

DAST testing is black-box testing approach so as opposed to SAST testing no code is ana-

lyzed but rather the program is run and then various inputs and the outputs analyzed so that

potential flaws and vulnerabilities could be found. [27] The main benefit of DAST testing

is that as it is done from the point of view of the user it only has the possible inputs to the

program to consider. That is a more focused and much less complex issue compared to

analyzing and understanding code and thus should allow for more complete coverage and

fewer false positives compared to SAST. The main drawback compared to SAST tools is

that the program needs to be running for DAST testing which means that more time passes

after the code is written before the issues are found and it cannot be used straight from the

start of the project. Additionally not all projects are even runnable as for example some code

libraries might not function as standalone programs which means that testing them via

DAST would require writing some code specifically for it which in turn would mean that

the issues found might not be applicable to actual use cases.

Quite a few of the GitHub issues for the tested CVEs mentioned being originally found by

fuzz testing which is the part of DAST testing that generates and various random or semi-

random data to the program so any missed edge cases would be discovered. This includes

malformed data and trying various inputs the program might not be expecting. [28] In a few

cases with these tested CVEs however the developers of the package decided that the found

issue was an incorrect usage of their package rather than a flaw and refused to fix it in effect

calling it a false positive. So in some cases it can be debatable what sort of inputs are in

scope and what are not. Particularly packages meant to be used in other programs and not

directly accessible to the end user can get away with not being that safe and leaving the edge

case checking to the developers using their package. Though there is often little reason not

to consider and fix these issues besides time constraints. Part of the reason that fuzz testing

was quite prevalent in these open source projects might also be explained by it being a rel-

atively easy way to contribute for people not already involved and familiar with the code as

it does not require them to go through and understand the source code.

AI

One emerging way to do SAST testing not looked at in this thesis is also to use AI tools like

ChatGPT. ChatGPT itself can try to identify issues in code snippets and more focused AI

powered tools are being developed, some like BurpGPT [30] and ChatGPTScanner [31] use

ChatGPT but others like SmartScanner [32] or Hacker AI [33] do not. Currently these tools

are still very new and require some refinement, but they have potential to surpass the current

SAST tools after they have had some time to mature. The reason for not including something

33

like ChatGPT in this thesis was that firstly it came out after the testing was already underway

and as mentioned it is currently still very new and needs some time to really become good.

Also ChatGPT is a very general language model not a tool meant for testing code though it

can do it to some degree. However there is no doubt that new AI tools focused on testing

will be coming out soon if they haven’t started to already.

7.4. Threats to validity

It might be that these tested tools actually prevent more vulnerabilities than these testing

results suggest. One reason for that is that there is a selection bias in the tested vulnerabili-

ties. It seems reasonable to assume that most if not all of these packages do use some sort

of tools to detect problems during development. That means that most simpler and easier to

detect problems get detected and fixed well before they reach far enough to get a CVE as-

signed to them. Some of the packages might even be already using one of the tools used in

testing for this thesis so in those cases the testing for this thesis would have produced no

positive results despite the tool potentially having already having prevented a number of

vulnerabilities.

Another way that the results of the testing might not be completely accurate is that there is

a chance that in some cases the tool did find something relating to the vulnerability but it

was in some other file not mentioned in either the NVD entry, GitHub issue or fixing commit

and not obviously connected and thus was missed when looking through the results. As

there was quite a few of the packages to go through it was not possible to become familiar

enough with how each of them worked to fully understand where to look for the causes of

each vulnerability if it was not said in the available information about the CVE. However

that chance is relatively small, especially some effort was made to at least try to understand

the code flow and look a little more broadly than just the function specified, so the results

should still be fairly accurate in this respect.

7.5. Future work

As SAST tools are by necessity quite language specific then it would be good to do the same

sort of testing on a different dataset consisting of some other widely used programming

language like Java or JavaScript. Then the results could be compared for a better overview

of what SAST tools can do and what they work well with. That could also be a good oppor-

tunity to include some new AI powered tools as well to see what they can do and if their

findings differ from the existing SAST tools at all. As in this thesis only freely available

tools were used then it would be also good to include some commercial programs as they

might have more and better features due to having more resources and customers being

more vocal if they are unhappy with the tool.

It would also be interesting to try DAST testing tools on the same dataset and compare their

results. Due to DAST and SAST being very different approaches it seems likely that they

would also find different vulnerabilities. Due to DAST testing only being applicable to pro-

grams that can be run on their own and not really being usable for code libraries care would

have to be taken in the selection of the dataset to only include packages that are runnable.

34

Thus the same dataset as used in this thesis would not be usable, at least not fully, though a

subset could be selected that would be testable with a DAST approach.

35

Conclusion

The goal of this thesis was to find out how well could using existing SAST tools have pre-

vented reported vulnerabilities and by extension how effective they are. For that a dataset

of 149 CVEs from open-source packages used in iOS development was selected from which

81 CVEs from C and C++ language packages. The OWASP SAST tools list [5] was used

as a source of SAST tools from which tools that were free to use and supported C and C++

were selected. This resulted in 5 SAST tools: Flawfinder, VisualCodeGrepper, CodeQL,

Clang-tidy and SonarLint.

Each of the 81 CVEs was then tested with each of the 5 tools. This resulted in 14 of the 81

CVEs being found by at least one tool but most of these findings were low confidence and

hidden among large amounts of other very similar results without a vulnerability so it would

have been very difficult for a developer to actually find and fix these vulnerabilities based

on these results. However the tools did give some good recommendations on improving

code style and readability and directed attention to functions and techniques used in the code

that are difficult to implement safely.

Based on these testing results it seems that the primary value of these SAST tools is not so

much detecting existing vulnerabilities but rather notifying the developers of potentially

dangerous spots and recommending ways to improve the readability and style of the code.

Following these recommendations should lead to better quality code and the developers

being more attentive to security issues which in turn should lead to fewer mistakes being

made and it being easier to detect existing vulnerabilities.

For future work it would be good to test some tools on a different widely used programming

language perhaps including some paid tools and compare the results with the results from

this thesis. It would also be interesting to test DAST tools in a similar manner to see how

they compare to SAST tools in finding security vulnerabilities.

36

References

[1] "CVE Overview," The MITRE Corporation, [Online]. Available:

https://www.cve.org/About/Overview. [Accessed 24 July 2023].

[2] "FAQs - What is the relationship between CVE and the NVD (U.S. National

Vulnerability Database)?," The MITRE Corporation, [Online]. Available:

https://www.cve.org/ResourcesSupport/FAQs#pc_introcve_nvd_relationship.

[Accessed 24 July 2023].

[3] "About CWE," The MITRE Corporation, [Online]. Available:

https://cwe.mitre.org/about/index.html. [Accessed 5 August 2023].

[4] "About the OWASP Foundation," The OWASP Foundation, [Online]. Available:

https://owasp.org/about/. [Accessed 25 July 2023].

[5] "OWASP Source Code Analysis Tools," The OWASP Foundation, [Online].

Available: https://owasp.org/www-community/Source_Code_Analysis_Tools.

[Accessed 6 November 2022].

[6] "OWASP Top Ten," The OWASP Foundation, [Online]. Available:

https://owasp.org/www-project-top-ten/. [Accessed 25 July 2023].

[7] "OWASP DevSecOps Guideline - Vulnerability Scanning," The OWASP

Foundation, [Online]. Available: https://owasp.org/www-project-devsecops-

guideline/latest/02-Vulnerability-Scanning. [Accessed 30 July 2023].

[8] "Static Code Analysis," The OWASP Foundation, [Online]. Available:

https://owasp.org/www-community/controls/Static_Code_Analysis. [Accessed 30

July 2023].

[9] "Dynamic Application Security Testing," Synopsys, [Online]. Available:

https://www.synopsys.com/glossary/what-is-dast.html. [Accessed 30 July 2023].

[10] "Interactive Application Security Testing," Synopsys, [Online]. Available:

https://www.synopsys.com/glossary/what-is-iast.html. [Accessed 30 July 2023].

[11] K. Rahkema and D. Pfahl, "Dataset: Dependency Networks of Open Source

Libraries Available Through CocoaPods, Carthage and Swift PM," 2022.

[12] K. Rahkema and D. Pfahl, "Vulnerability Propagation in Package Managers Used in

iOS Development," 2023.

[13] G. Bhandari, A. Naseer and L. Moonen, "CVEfixes: Automated Collection of

Vulnerabilities and Their," 2021.

[14] V. Lenarduzzi, F. Pecorelli, N. Saarimaki, S. Lujan and F. Palomba, "A critical

comparison on six static analysis tools: Detection, agreement, and precision," 2023.

[15] S. Elder, N. Zahan, R. Shu, M. Metro and V. Kozarev, "Do I really need all this

work to find vulnerabilities?," 2022.

[16] B. Aloraini, M. Nagappan, D. M. German, S. Hayashi and Y. Higo, "An empirical

study of security warnings from static application security testing tools," 2019.

[17] "SonarQube products," SonarSource, [Online]. Available:

https://www.sonarsource.com/products/sonarqube/downloads/. [Accessed 9 April

2023].

37

[18] "Parasoft Supports Open Source Development Community with Free Access to

Parasoft’s Entire Suite of Enterprise-Class Test Automation Software," PARASOFT,

11 June 2018. [Online]. Available: https://www.parasoft.com/news/parasoft-

supports-open-source-development-community-free-access-parasofts-entire-suite/.

[Accessed 30 April 2023].

[19] "Free PVS-Studio for those who develops open source projects," PVS-Studio LLC,

22 December 2018. [Online]. Available: https://pvs-studio.com/en/blog/posts/0600/.

[20] "Free PVS-Studio license for Open Source," PVS-Studio LLC, [Online]. Available:

https://pvs-studio.com/en/order/open-source-license/. [Accessed 30 April 2023].

[21] "Ways to Get a Free PVS-Studio License," PVS-Studio LLC, 11 March 2019.

[Online]. Available: https://pvs-studio.com/en/blog/posts/0614/.

[22] "Veracode," Veracode, [Online]. Available: https://www.veracode.com/. [Accessed

30 April 2023].

[23] "Veracode Docs," Veracode, [Online]. Available: https://docs.veracode.com/.

[Accessed 30 April 2023].

[24] "Testing Tools Resource," The OWASP® Foundation, [Online]. Available:

https://owasp.org/www-project-web-security-testing-guide/stable/6-Appendix/A-

Testing_Tools_Resource. [Accessed 30 April 2023].

[25] B. v. Schaik, "The next step for LGTM.com: GitHub code scanning!," GitHub, 15

August 2022. [Online]. Available: https://github.blog/2022-08-15-the-next-step-for-

lgtm-com-github-code-scanning/.

[26] "FlawFinder Home Page," [Online]. Available: https://dwheeler.com/flawfinder/.

[Accessed 10 June 2023].

[27] "About CodeQL," GitHub, Inc., [Online]. Available:

https://codeql.github.com/docs/codeql-overview/about-codeql/. [Accessed 10 July

2023].

[28] "Dynamic Application Security Testing," OWASP® Foundation, [Online].

Available: https://owasp.org/www-project-devsecops-guideline/latest/02b-Dynamic-

Application-Security-Testing. [Accessed 21 07 2023].

[29] "Fuzzing," The OWASP® Foundation, [Online]. Available: https://owasp.org/www-

community/Fuzzing.

[30] "BurpGPT," Aegis Cyber Ltd., [Online]. Available: https://burpgpt.app/. [Accessed

8 August 2023].

[31] "ChatGPTScanner," [Online]. Available:

https://github.com/YulinSec/ChatGPTScanner. [Accessed 8 August 2023].

[32] "Smart Web Application Vulnerability Scanner," [Online]. Available:

https://www.thesmartscanner.com/. [Accessed 8 August 2023].

[33] "Hacker AI," [Online]. Available: https://hacker-ai.ai/. [Accessed 8 August 2023].

38

Appendix

I. Testing results for FlawFinder

Package CVE CWE Version

tested

Found vul-

nerability

Notes

k-takata/onigmo CVE-2019-16162 CWE-125 6.2.0 No Found issues: 915

k-takata/onigmo CVE-2019-16161 CWE-476 6.2.0 No

libevent/libevent CVE-2016-10195 CWE-125 2.1.4 Yes Found issues: 475, Dangerous func-

tion call: memcpy

libevent/libevent CVE-2016-10197 CWE-125 2.1.4 No

libevent/libevent CVE-2016-10196 CWE-787 2.1.4 Yes Dangerous function call: memcpy

libevent/libevent CVE-2014-6272 CWE-189 2.1.4 Partially Dangerous function call: memcpy

libevent/libevent CVE-2015-6525 CWE-189 2.1.4 Partially Dangerous function call: memcpy

libuv/libuv CVE-2015-0278 CWE-273 0.10.33 No Found issues: 311

mongodb/mongo-c-

driver

CVE-2018-16790 CWE-125 1.12.0 No Found issues: 1065

libimobi-

ledevice/libplist

CVE-2017-7982 CWE-190 bbd3379 No Found issues: 78

libimobi-

ledevice/libplist

CVE-2017-5545 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5209 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5835 CWE-770 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5836 CWE-415 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5834 CWE-125 bbd3379 No

nanopb/nanopb CVE-2021-21401 CWE-763 0.4.0 No Found issues: 135

nanopb/nanopb CVE-2020-26243 CWE-20,

CWE-119

0.4.0 No

nanopb/nanopb CVE-2020-5235 CWE-125 0.4.0 No

libssh2/libssh2 CVE-2019-17498 CWE-190 1.4.3 No Found issues: 362

libssh2/libssh2 CVE-2019-13115 CWE-190,

CWE-125

c07bc647f2 No Found issues: 579

libssh2/libssh2 CVE-2019-3859 CWE-125 1.4.3 No

libssh2/libssh2 CVE-2016-0787 CWE-200 d453f4ce3c No Found issues: 456

libssh2/libssh2 CVE-2015-1782 CWE-20 1.4.3 No

jbeder/yaml-cpp CVE-2019-6285 CWE-674 0.6.3 No Found issues: 93

jbeder/yaml-cpp CVE-2019-6292 CWE-674 0.6.3 No

jbeder/yaml-cpp CVE-2017-11692 CWE-617 0.6.3 No

jbeder/yaml-cpp CVE-2018-20573 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2018-20574 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2017-5950 CWE-119 0.6.3 No

libimobiledevice/li-

busbmuxd

CVE-2016-5104 CWE-284 1.0.10 No Found issues: 27

aomediacodec/li-

bavif

CVE-2020-36407 CWE-787 0.8.1 No Found issues: 135

flif-hub/flif CVE-2018-11507 CWE-834 0.3 No Found issues: 446

flif-hub/flif CVE-2018-12109 CWE-787 0.3 Yes Dangerous function call: fgetc

https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libssh2/libssh2/tree/c07bc647f2b181199561bbccc1a0695caba8822c
https://github.com/libssh2/libssh2/tree/d453f4ce3c87c4dbe1f86be4913d0018bb602b42

39

flif-hub/flif CVE-2018-14876 NVD-CWE-

noinfo

0.3 No

flif-hub/flif CVE-2017-14232 CWE-399 0.3 No

flif-hub/flif CVE-2018-10971 CWE-770 0.3 No

flif-hub/flif CVE-2019-14373 CWE-125 0.3 No

redis/hiredis CVE-2020-7105 CWE-476 0.14.0 No Found issues: 73

mailcore/mailcore2 CVE-2021-26911 CWE-295 0.6.4 No Found issues: 143

dinhviethoa/libetpan CVE-2020-15953 CWE-74 1.7.2 No Found issues: 965

dinhviethoa/libetpan CVE-2017-8825 CWE-476 1.7.2 No

leethomason/ti-

nyxml2

CVE-2018-11210 CWE-125 6.2.0 Yes Found issues: 61, Dangerous function

call: strlen

eclipse/mosquitto CVE-2017-7655 CWE-476 1.4.14 No Found issues: 409

eclipse/mosquitto CVE-2021-34431 CWE-401 2.0.10 No Found issues: 874

eclipse/mosquitto CVE-2018-20145 CWE-732 1.5.4 No Found issues: 487

eclipse/mosquitto CVE-2017-7654 CWE-401 1.4.14 No

strukturag/libheif CVE-2020-23109 CWE-120 1.6.2 No Found issues: 161

strukturag/libheif CVE-2020-19498 NVD-CWE-

noinfo

commit

fd0c01d

No Found issues: 158

strukturag/libheif CVE-2020-19499 CWE-125 1.4.0 No Found issues: 121

strukturag/libheif CVE-2019-11471 CWE-416 1.4.0 No

webmproject/lib-

webp

CVE-2018-25012 CWE-125 1.0.0 No Found issues: 243

webmproject/lib-

webp

CVE-2018-25013 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2020-36328 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2020-36329 CWE-416 1.0.0 No

webmproject/lib-

webp

CVE-2020-36331 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25010 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25011 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2018-25009 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25014 CWE-908 1.0.0 No

webmproject/lib-

webp

CVE-2020-36332 CWE-400,

CWE-20

1.0.0 No

webmproject/lib-

webp

CVE-2020-36330 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2016-9085 CWE-190 0.5.1 No Found issues: 182

webmproject/lib-

webp

CVE-2016-9969 CWE-415 0.5.1 No

google/protobuf CVE-2015-5237 CWE-787 3.1.0 No Found issues: 661

libgit2/libgit2 CVE-2020-12278 CWE-706 0.27.2 No Found issues: 1436

libgit2/libgit2 CVE-2020-12279 CWE-706 0.27.2 No

libgit2/libgit2 CVE-2018-10887 CWE-190,

CWE-125,

CWE-681,

CWE-194

0.27.2 Yes The real issue is integer overflow but

it leads to an out of bounds read via

memcpy

https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e
https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e

40

libgit2/libgit2 CVE-2018-10888 CWE-125,

CWE-20

0.27.2 Yes Dangerous function call: memcpy

libgit2/libgit2 CVE-2018-15501 CWE-125 0.27.2 No

akheron/jansson CVE-2020-36325 CWE-125 2.13.1 No Found issues: 111

akheron/jansson CVE-2016-4425 CWE-20 2.7 No Found issues: 84

aubio/aubio CVE-2018-14523 CWE-125 0.4.6 No Found issues: 223

aubio/aubio CVE-2018-19802 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19801 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19800 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14522 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14521 CWE-119 0.4.6 No

aubio/aubio CVE-2017-17554 CWE-476 0.4.6 No

aubio/aubio CVE-2017-17054 CWE-369 0.4.6 No

facebook/folly CVE-2021-24036 CWE-190,

CWE-122

2019.10.28.00 No Found issues: 1119

facebook/folly CVE-2019-11934 CWE-125 2019.10.28.00 No

II. Testing results for VisualCodeGrepper

Package CVE CWE Version

tested

Found vul-

nerability

Notes

k-takata/onigmo CVE-2019-16162 CWE-125 6.2.0 No Found issues: 501

k-takata/onigmo CVE-2019-16161 CWE-476 6.2.0 No

libevent/libevent CVE-2016-10195 CWE-125 2.1.4 Yes Found issues: 1063, Dangerous func-

tion call: memcpy

libevent/libevent CVE-2016-10197 CWE-125 2.1.4 No

libevent/libevent CVE-2016-10196 CWE-787 2.1.4 Yes Dangerous function call: memcpy

libevent/libevent CVE-2014-6272 CWE-189 2.1.4 Partially Dangerous function call: memcpy

libevent/libevent CVE-2015-6525 CWE-189 2.1.4 Partially Dangerous function call: memcpy

libuv/libuv CVE-2015-0278 CWE-273 0.10.33 No Found issues: 983

mongodb/mongo-c-

driver

CVE-2018-16790 CWE-125 1.12.0 Yes Found issues: 1883, Dangerous func-

tion call: memcpy

libimobi-

ledevice/libplist

CVE-2017-7982 CWE-190 bbd3379 No Found issues: 166

libimobi-

ledevice/libplist

CVE-2017-5545 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5209 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5835 CWE-770 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5836 CWE-415 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5834 CWE-125 bbd3379 No

nanopb/nanopb CVE-2021-21401 CWE-763 0.4.0 No Found issues: 179

nanopb/nanopb CVE-2020-26243 CWE-20,

CWE-119

0.4.0 No

nanopb/nanopb CVE-2020-5235 CWE-125 0.4.0 No

libssh2/libssh2 CVE-2019-17498 CWE-190 1.4.3 No Found issues: 603

libssh2/libssh2 CVE-2019-13115 CWE-190,

CWE-125

c07bc647f2 No Found issues: 1111

https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libssh2/libssh2/tree/c07bc647f2b181199561bbccc1a0695caba8822c

41

libssh2/libssh2 CVE-2019-3859 CWE-125 1.4.3 No

libssh2/libssh2 CVE-2016-0787 CWE-200 d453f4ce3c No Found issues: 776

libssh2/libssh2 CVE-2015-1782 CWE-20 1.4.3 No

jbeder/yaml-cpp CVE-2019-6285 CWE-674 0.6.3 No Found issues: 142

jbeder/yaml-cpp CVE-2019-6292 CWE-674 0.6.3 No

jbeder/yaml-cpp CVE-2017-11692 CWE-617 0.6.3 No

jbeder/yaml-cpp CVE-2018-20573 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2018-20574 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2017-5950 CWE-119 0.6.3 No

libimobiledevice/li-

busbmuxd

CVE-2016-5104 CWE-284 1.0.10 No Found issues: 52

aomediacodec/li-

bavif

CVE-2020-36407 CWE-787 0.8.1 No Found issues: 273

flif-hub/flif CVE-2018-11507 CWE-834 0.3 No Found issues: 577

flif-hub/flif CVE-2018-12109 CWE-787 0.3 No

flif-hub/flif CVE-2018-14876 NVD-CWE-

noinfo

0.3 No

flif-hub/flif CVE-2017-14232 CWE-399 0.3 No

flif-hub/flif CVE-2018-10971 CWE-770 0.3 No

flif-hub/flif CVE-2019-14373 CWE-125 0.3 No

redis/hiredis CVE-2020-7105 CWE-476 0.14.0 No Found issues: 187

mailcore/mailcore2 CVE-2021-26911 CWE-295 0.6.4 No Found issues: 547

dinhviethoa/libetpan CVE-2020-15953 CWE-74 1.7.2 No Found issues: 4752

dinhviethoa/libetpan CVE-2017-8825 CWE-476 1.7.2 No

leethomason/ti-

nyxml2

CVE-2018-11210 CWE-125 6.2.0 Yes Found issues: 48, Dangerous function

call: strlen

eclipse/mosquitto CVE-2017-7655 CWE-476 1.4.14 No Found issues: 749

eclipse/mosquitto CVE-2021-34431 CWE-401 2.0.10 No Found issues: 1304

eclipse/mosquitto CVE-2018-20145 CWE-732 1.5.4 No Found issues: 821

eclipse/mosquitto CVE-2017-7654 CWE-401 1.4.14 No

strukturag/libheif CVE-2020-23109 CWE-120 1.6.2 No Found issues: 100

strukturag/libheif CVE-2020-19498 NVD-CWE-

noinfo

commit

fd0c01d

No Found issues: 99

strukturag/libheif CVE-2020-19499 CWE-125 1.4.0 No Found issues: 27

strukturag/libheif CVE-2019-11471 CWE-416 1.4.0 No

webmproject/lib-

webp

CVE-2018-25012 CWE-125 1.0.0 No Found issues: 1550

webmproject/lib-

webp

CVE-2018-25013 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2020-36328 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2020-36329 CWE-416 1.0.0 No

webmproject/lib-

webp

CVE-2020-36331 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25010 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25011 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2018-25009 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25014 CWE-908 1.0.0 No

https://github.com/libssh2/libssh2/tree/d453f4ce3c87c4dbe1f86be4913d0018bb602b42
https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e
https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e

42

webmproject/lib-

webp

CVE-2020-36332 CWE-400,

CWE-20

1.0.0 No

webmproject/lib-

webp

CVE-2020-36330 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2016-9085 CWE-190 0.5.1 No Found issues: 1171

webmproject/lib-

webp

CVE-2016-9969 CWE-415 0.5.1 No

google/protobuf CVE-2015-5237 CWE-787 3.1.0 No Found issues: 1255

libgit2/libgit2 CVE-2020-12278 CWE-706 0.27.2 No Found issues: 5205

libgit2/libgit2 CVE-2020-12279 CWE-706 0.27.2 No

libgit2/libgit2 CVE-2018-10887 CWE-190,

CWE-125,

CWE-681,

CWE-194

0.27.2 Yes The real issue is integer overflow but

it leads to a out of bounds read via

memcpy

libgit2/libgit2 CVE-2018-10888 CWE-125,

CWE-20

0.27.2 Yes Dangerous function call: memcpy

libgit2/libgit2 CVE-2018-15501 CWE-125 0.27.2 No

akheron/jansson CVE-2020-36325 CWE-125 2.13.1 No Found issues: 168

akheron/jansson CVE-2016-4425 CWE-20 2.7 No Found issues: 173

aubio/aubio CVE-2018-14523 CWE-125 0.4.6 No Found issues: 293

aubio/aubio CVE-2018-19802 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19801 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19800 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14522 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14521 CWE-119 0.4.6 No

aubio/aubio CVE-2017-17554 CWE-476 0.4.6 No

aubio/aubio CVE-2017-17054 CWE-369 0.4.6 No

facebook/folly CVE-2021-24036 CWE-190,

CWE-122

2019.10.28.00 No Found issues: 1569

facebook/folly CVE-2019-11934 CWE-125 2019.10.28.00 No

III. Testing results for CodeQL

Package CVE CWE Version

tested

Found vulner-

ability

Notes

k-takata/onigmo CVE-2019-16162 CWE-125 6.2.0 No Found issues: 135

k-takata/onigmo CVE-2019-16161 CWE-476 6.2.0 No

libevent/libevent CVE-2016-10195 CWE-125 2.1.4 No Found issues: 4

libevent/libevent CVE-2016-10197 CWE-125 2.1.4 No

libevent/libevent CVE-2016-10196 CWE-787 2.1.4 No

libevent/libevent CVE-2014-6272 CWE-189 2.1.4 No

libevent/libevent CVE-2015-6525 CWE-189 2.1.4 No

libuv/libuv CVE-2015-0278 CWE-273 0.10.33 No Found issues: 12

mongodb/mongo-c-

driver

CVE-2018-16790 CWE-125 1.12.0 No Found issues: 306

libimobi-

ledevice/libplist

CVE-2017-7982 CWE-190 bbd3379 No Found issues: 17

libimobi-

ledevice/libplist

CVE-2017-5545 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5209 CWE-125 bbd3379 No

https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f

43

libimobi-

ledevice/libplist

CVE-2017-5835 CWE-770 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5836 CWE-415 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5834 CWE-125 bbd3379 No

nanopb/nanopb CVE-2021-21401 CWE-763 0.4.0 No Found issues: 14

nanopb/nanopb CVE-2020-26243 CWE-20,

CWE-119

0.4.0 No

nanopb/nanopb CVE-2020-5235 CWE-125 0.4.0 No

libssh2/libssh2 CVE-2019-17498 CWE-190 1.4.3 No Found issues: 42

libssh2/libssh2 CVE-2019-13115 CWE-190,

CWE-125

c07bc647f2 No Found issues: 54

libssh2/libssh2 CVE-2019-3859 CWE-125 1.4.3 No

libssh2/libssh2 CVE-2016-0787 CWE-200 d453f4ce3c No Found issues: 56

libssh2/libssh2 CVE-2015-1782 CWE-20 1.4.3 No

jbeder/yaml-cpp CVE-2019-6285 CWE-674 0.6.3 No Found issues: 82

jbeder/yaml-cpp CVE-2019-6292 CWE-674 0.6.3 No

jbeder/yaml-cpp CVE-2017-11692 CWE-617 0.6.3 No

jbeder/yaml-cpp CVE-2018-20573 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2018-20574 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2017-5950 CWE-119 0.6.3 No

libimobiledevice/li-

busbmuxd

CVE-2016-5104 CWE-284 1.0.10

configure file gets generated with er-

rors, can't get it to work on the

Github runner

aomediacodec/li-

bavif

CVE-2020-36407 CWE-787 0.8.1 No Found issues: 115

flif-hub/flif CVE-2018-11507 CWE-834 0.3 No Found issues: 265

flif-hub/flif CVE-2018-12109 CWE-787 0.3 No

flif-hub/flif CVE-2018-14876 NVD-CWE-

noinfo

0.3 No

flif-hub/flif CVE-2017-14232 CWE-399 0.3 No

flif-hub/flif CVE-2018-10971 CWE-770 0.3 No

flif-hub/flif CVE-2019-14373 CWE-125 0.3 No

redis/hiredis CVE-2020-7105 CWE-476 0.14.0 No Found issues: 13

mailcore/mailcore2 CVE-2021-26911 CWE-295 0.6.4 No Found issues: 102

dinhviethoa/libetpan CVE-2020-15953 CWE-74 1.7.2 No Found issues: 378

dinhviethoa/libetpan CVE-2017-8825 CWE-476 1.7.2 No

leethomason/ti-

nyxml2

CVE-2018-11210 CWE-125 6.2.0 No Found issues: 17

eclipse/mosquitto CVE-2017-7655 CWE-476 1.4.14 No Found issues: 143

eclipse/mosquitto CVE-2021-34431 CWE-401 2.0.10 No Found issues: 238

eclipse/mosquitto CVE-2018-20145 CWE-732 1.5.4 No Found issues: 166

eclipse/mosquitto CVE-2017-7654 CWE-401 1.4.14 No

strukturag/libheif CVE-2020-23109 CWE-120 1.6.2 No Found issues: 104

strukturag/libheif CVE-2020-19498 NVD-CWE-

noinfo

commit

fd0c01d

No Found issues: 106

strukturag/libheif CVE-2020-19499 CWE-125 1.4.0 No Found issues: 109

strukturag/libheif CVE-2019-11471 CWE-416 1.4.0 No

webmproject/lib-

webp

CVE-2018-25012 CWE-125 1.0.0 No Found issues: 68

https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libssh2/libssh2/tree/c07bc647f2b181199561bbccc1a0695caba8822c
https://github.com/libssh2/libssh2/tree/d453f4ce3c87c4dbe1f86be4913d0018bb602b42
https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e
https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e

44

webmproject/lib-

webp

CVE-2018-25013 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2020-36328 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2020-36329 CWE-416 1.0.0 No

webmproject/lib-

webp

CVE-2020-36331 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25010 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25011 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2018-25009 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25014 CWE-908 1.0.0 No

webmproject/lib-

webp

CVE-2020-36332 CWE-400,

CWE-20

1.0.0 No

webmproject/lib-

webp

CVE-2020-36330 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2016-9085 CWE-190 0.5.1 No Found issues: 55

webmproject/lib-

webp

CVE-2016-9969 CWE-415 0.5.1 No

google/protobuf CVE-2015-5237 CWE-787 3.1.0 No Found issues: 366

libgit2/libgit2 CVE-2020-12278 CWE-706 0.27.2 No Found issues: 248

libgit2/libgit2 CVE-2020-12279 CWE-706 0.27.2 No

libgit2/libgit2 CVE-2018-10887 CWE-190,

CWE-125,

CWE-681,

CWE-194

0.27.2 No

libgit2/libgit2 CVE-2018-10888 CWE-125,

CWE-20

0.27.2 No

libgit2/libgit2 CVE-2018-15501 CWE-125 0.27.2 No

akheron/jansson CVE-2020-36325 CWE-125 2.13.1 No Found issues: 103

akheron/jansson CVE-2016-4425 CWE-20 2.7 No Found issues: 82

aubio/aubio CVE-2018-14523 CWE-125 0.4.6 No Found issues: 185

aubio/aubio CVE-2018-19802 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19801 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19800 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14522 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14521 CWE-119 0.4.6 No

aubio/aubio CVE-2017-17554 CWE-476 0.4.6 No

aubio/aubio CVE-2017-17054 CWE-369 0.4.6 No

facebook/folly CVE-2021-24036 CWE-190,

CWE-122

2019.10.28.00

Can't get it to compile on GitHub

facebook/folly CVE-2019-11934 CWE-125 2019.10.28.00

IV. Testing results for Clang-tidy

Package CVE CWE Version

tested

Found vul-

nerability

Notes

k-takata/onigmo CVE-2019-16162 CWE-125 6.2.0 No

k-takata/onigmo CVE-2019-16161 CWE-476 6.2.0 No

45

libevent/libevent CVE-2016-10195 CWE-125 2.1.4 Yes Dangerous function call: memcpy

libevent/libevent CVE-2016-10197 CWE-125 2.1.4 No

libevent/libevent CVE-2016-10196 CWE-787 2.1.4 Yes Dangerous function call: memcpy

libevent/libevent CVE-2014-6272 CWE-189 2.1.4 Partially Dangerous function call: memcpy

libevent/libevent CVE-2015-6525 CWE-189 2.1.4 Partially Dangerous function call: memcpy

libuv/libuv CVE-2015-0278 CWE-273 0.10.33 No

mongodb/mongo-c-

driver

CVE-2018-16790 CWE-125 1.12.0 Yes Dangerous function call: memcpy

libimobi-

ledevice/libplist

CVE-2017-7982 CWE-190 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5545 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5209 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5835 CWE-770 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5836 CWE-415 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5834 CWE-125 bbd3379 No

nanopb/nanopb CVE-2021-21401 CWE-763 0.4.0 No

nanopb/nanopb CVE-2020-26243 CWE-20,

CWE-119

0.4.0 No

nanopb/nanopb CVE-2020-5235 CWE-125 0.4.0 No

libssh2/libssh2 CVE-2019-17498 CWE-190 1.4.3 No

libssh2/libssh2 CVE-2019-13115 CWE-190,

CWE-125

c07bc647f2 No

libssh2/libssh2 CVE-2019-3859 CWE-125 1.4.3 No

libssh2/libssh2 CVE-2016-0787 CWE-200 d453f4ce3c No

libssh2/libssh2 CVE-2015-1782 CWE-20 1.4.3 No

jbeder/yaml-cpp CVE-2019-6285 CWE-674 0.6.3 No

jbeder/yaml-cpp CVE-2019-6292 CWE-674 0.6.3 No

jbeder/yaml-cpp CVE-2017-11692 CWE-617 0.6.3 No

jbeder/yaml-cpp CVE-2018-20573 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2018-20574 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2017-5950 CWE-119 0.6.3 No

libimobiledevice/li-

busbmuxd

CVE-2016-5104 CWE-284 1.0.10 No

aomediacodec/li-

bavif

CVE-2020-36407 CWE-787 0.8.1 No

flif-hub/flif CVE-2018-11507 CWE-834 0.3 No

flif-hub/flif CVE-2018-12109 CWE-787 0.3 No

flif-hub/flif CVE-2018-14876 NVD-CWE-

noinfo

0.3 No

flif-hub/flif CVE-2017-14232 CWE-399 0.3 No

flif-hub/flif CVE-2018-10971 CWE-770 0.3 No

flif-hub/flif CVE-2019-14373 CWE-125 0.3 No

redis/hiredis CVE-2020-7105 CWE-476 0.14.0 No

mailcore/mailcore2 CVE-2021-26911 CWE-295 0.6.4 No

dinhviethoa/libetpan CVE-2020-15953 CWE-74 1.7.2 No

dinhviethoa/libetpan CVE-2017-8825 CWE-476 1.7.2 No

https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libssh2/libssh2/tree/c07bc647f2b181199561bbccc1a0695caba8822c
https://github.com/libssh2/libssh2/tree/d453f4ce3c87c4dbe1f86be4913d0018bb602b42

46

leethomason/ti-

nyxml2

CVE-2018-11210 CWE-125 6.2.0 No

eclipse/mosquitto CVE-2017-7655 CWE-476 1.4.14 No

eclipse/mosquitto CVE-2021-34431 CWE-401 2.0.10 No

eclipse/mosquitto CVE-2018-20145 CWE-732 1.5.4 No

eclipse/mosquitto CVE-2017-7654 CWE-401 1.4.14 No

strukturag/libheif CVE-2020-23109 CWE-120 1.6.2 No

strukturag/libheif CVE-2020-19498 NVD-CWE-

noinfo

commit

fd0c01d

Yes Division by zero, reported with the

path the program would take to get

there

strukturag/libheif CVE-2020-19499 CWE-125 1.4.0 No

strukturag/libheif CVE-2019-11471 CWE-416 1.4.0 No

webmproject/lib-

webp

CVE-2018-25012 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25013 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2020-36328 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2020-36329 CWE-416 1.0.0 No

webmproject/lib-

webp

CVE-2020-36331 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25010 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25011 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2018-25009 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25014 CWE-908 1.0.0 No

webmproject/lib-

webp

CVE-2020-36332 CWE-400,

CWE-20

1.0.0 No

webmproject/lib-

webp

CVE-2020-36330 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2016-9085 CWE-190 0.5.1 No

webmproject/lib-

webp

CVE-2016-9969 CWE-415 0.5.1 No

google/protobuf CVE-2015-5237 CWE-787 3.1.0 No

libgit2/libgit2 CVE-2020-12278 CWE-706 0.27.2 No

libgit2/libgit2 CVE-2020-12279 CWE-706 0.27.2 No

libgit2/libgit2 CVE-2018-10887 CWE-190,

CWE-125,

CWE-681,

CWE-194

0.27.2 Yes Dangerous function call: memcpy

libgit2/libgit2 CVE-2018-10888 CWE-125,

CWE-20

0.27.2 Yes Dangerous function call: memcpy

libgit2/libgit2 CVE-2018-15501 CWE-125 0.27.2 No

akheron/jansson CVE-2020-36325 CWE-125 2.13.1 No

akheron/jansson CVE-2016-4425 CWE-20 2.7 No

aubio/aubio CVE-2018-14523 CWE-125 0.4.6 No

aubio/aubio CVE-2018-19802 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19801 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19800 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14522 CWE-119 0.4.6 No

https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e
https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e

47

aubio/aubio CVE-2018-14521 CWE-119 0.4.6 No

aubio/aubio CVE-2017-17554 CWE-476 0.4.6 No

aubio/aubio CVE-2017-17054 CWE-369 0.4.6 No

facebook/folly CVE-2021-24036 CWE-190,

CWE-122

2019.10.28.00 No

facebook/folly CVE-2019-11934 CWE-125 2019.10.28.00 No

V. Testing results for SonarLint

Package CVE CWE Version

tested

Found vul-

nerability

Notes

k-takata/onigmo CVE-2019-16162 CWE-125 6.2.0 No

k-takata/onigmo CVE-2019-16161 CWE-476 6.2.0 No

libevent/libevent CVE-2016-10195 CWE-125 2.1.4 No

libevent/libevent CVE-2016-10197 CWE-125 2.1.4 No

libevent/libevent CVE-2016-10196 CWE-787 2.1.4 No

libevent/libevent CVE-2014-6272 CWE-189 2.1.4 No

libevent/libevent CVE-2015-6525 CWE-189 2.1.4 No

libuv/libuv CVE-2015-0278 CWE-273 0.10.33 No

mongodb/mongo-c-

driver

CVE-2018-16790 CWE-125 1.12.0 No

libimobi-

ledevice/libplist

CVE-2017-7982 CWE-190 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5545 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5209 CWE-125 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5835 CWE-770 bbd3379 No

libimobi-

ledevice/libplist

CVE-2017-5836 CWE-415 bbd3379 Yes Recommends that dynamic heap

memory allocation should not be used

libimobi-

ledevice/libplist

CVE-2017-5834 CWE-125 bbd3379 No

nanopb/nanopb CVE-2021-21401 CWE-763 0.4.0 No

nanopb/nanopb CVE-2020-26243 CWE-20,

CWE-119

0.4.0 No

nanopb/nanopb CVE-2020-5235 CWE-125 0.4.0 No

libssh2/libssh2 CVE-2019-17498 CWE-190 1.4.3 No

libssh2/libssh2 CVE-2019-13115 CWE-190,

CWE-125

c07bc647f2 No

libssh2/libssh2 CVE-2019-3859 CWE-125 1.4.3 No

libssh2/libssh2 CVE-2016-0787 CWE-200 d453f4ce3c No

libssh2/libssh2 CVE-2015-1782 CWE-20 1.4.3 No

jbeder/yaml-cpp CVE-2019-6285 CWE-674 0.6.3 No

jbeder/yaml-cpp CVE-2019-6292 CWE-674 0.6.3 No

jbeder/yaml-cpp CVE-2017-11692 CWE-617 0.6.3 No

jbeder/yaml-cpp CVE-2018-20573 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2018-20574 CWE-119 0.6.3 No

jbeder/yaml-cpp CVE-2017-5950 CWE-119 0.6.3 No

libimobiledevice/li-

busbmuxd

CVE-2016-5104 CWE-284 1.0.10 No

https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libimobiledevice/libplist/tree/bbd33793d62ef9c9dbd6f69aa2fd0ced1b163e2f
https://github.com/libssh2/libssh2/tree/c07bc647f2b181199561bbccc1a0695caba8822c
https://github.com/libssh2/libssh2/tree/d453f4ce3c87c4dbe1f86be4913d0018bb602b42

48

aomediacodec/li-

bavif

CVE-2020-36407 CWE-787 0.8.1 No

flif-hub/flif CVE-2018-11507 CWE-834 0.3 No

flif-hub/flif CVE-2018-12109 CWE-787 0.3 No

flif-hub/flif CVE-2018-14876 NVD-CWE-

noinfo

0.3 No

flif-hub/flif CVE-2017-14232 CWE-399 0.3 No

flif-hub/flif CVE-2018-10971 CWE-770 0.3 No

flif-hub/flif CVE-2019-14373 CWE-125 0.3 No

redis/hiredis CVE-2020-7105 CWE-476 0.14.0 Yes Recommends that dynamic heap

memory allocation should not be used

mailcore/mailcore2 CVE-2021-26911 CWE-295 0.6.4 No

dinhviethoa/libetpan CVE-2020-15953 CWE-74 1.7.2 No

dinhviethoa/libetpan CVE-2017-8825 CWE-476 1.7.2 No

leethomason/ti-

nyxml2

CVE-2018-11210 CWE-125 6.2.0 No

eclipse/mosquitto CVE-2017-7655 CWE-476 1.4.14 No

eclipse/mosquitto CVE-2021-34431 CWE-401 2.0.10 Yes Recommends that dynamic heap

memory allocation should not be used

eclipse/mosquitto CVE-2018-20145 CWE-732 1.5.4 No

eclipse/mosquitto CVE-2017-7654 CWE-401 1.4.14 No

strukturag/libheif CVE-2020-23109 CWE-120 1.6.2 No

strukturag/libheif CVE-2020-19498 NVD-CWE-

noinfo

commit

fd0c01d

No

strukturag/libheif CVE-2020-19499 CWE-125 1.4.0 No

strukturag/libheif CVE-2019-11471 CWE-416 1.4.0 No

webmproject/lib-

webp

CVE-2018-25012 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25013 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2020-36328 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2020-36329 CWE-416 1.0.0 No

webmproject/lib-

webp

CVE-2020-36331 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25010 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25011 CWE-787 1.0.0 No

webmproject/lib-

webp

CVE-2018-25009 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2018-25014 CWE-908 1.0.0 No

webmproject/lib-

webp

CVE-2020-36332 CWE-400,

CWE-20

1.0.0 No

webmproject/lib-

webp

CVE-2020-36330 CWE-125 1.0.0 No

webmproject/lib-

webp

CVE-2016-9085 CWE-190 0.5.1 No

webmproject/lib-

webp

CVE-2016-9969 CWE-415 0.5.1 Yes Recommends that dynamic heap

memory allocation should not be used

google/protobuf CVE-2015-5237 CWE-787 3.1.0 No

libgit2/libgit2 CVE-2020-12278 CWE-706 0.27.2 No

libgit2/libgit2 CVE-2020-12279 CWE-706 0.27.2 No

https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e
https://github.com/strukturag/libheif/commit/fd0c01d07af9b268e80a830d69920fc398d9311e

49

libgit2/libgit2 CVE-2018-10887 CWE-190,

CWE-125,

CWE-681,

CWE-194

0.27.2 No

libgit2/libgit2 CVE-2018-10888 CWE-125,

CWE-20

0.27.2 No

libgit2/libgit2 CVE-2018-15501 CWE-125 0.27.2 No

akheron/jansson CVE-2020-36325 CWE-125 2.13.1 No

akheron/jansson CVE-2016-4425 CWE-20 2.7 No

aubio/aubio CVE-2018-14523 CWE-125 0.4.6 No

aubio/aubio CVE-2018-19802 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19801 CWE-476 0.4.6 No

aubio/aubio CVE-2018-19800 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14522 CWE-119 0.4.6 No

aubio/aubio CVE-2018-14521 CWE-119 0.4.6 No

aubio/aubio CVE-2017-17554 CWE-476 0.4.6 No

aubio/aubio CVE-2017-17054 CWE-369 0.4.6 No

facebook/folly CVE-2021-24036 CWE-190,

CWE-122

2019.10.28.00 No

facebook/folly CVE-2019-11934 CWE-125 2019.10.28.00 No

50

VI. License

Non-exclusive licence to reproduce the thesis and make the thesis public

I, Karl Jääts,

1. grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the

purpose of preservation, including for adding to the DSpace digital archives until the

expiry of the term of copyright, my thesis “How well could have existing static vulner-

ability detection tools prevented publicly reported vulnerabilities in iOS open source

packages”, supervised by Kristiina Rahkema.

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available

to the public via the web environment of the University of Tartu, including via the

DSpace digital archives, under the Creative Commons licence CC BY NC ND 4.0,

which allows, by giving appropriate credit to the author, to reproduce, distribute the

work and communicate it to the public, and prohibits the creation of derivative works

and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’ intel-

lectual property rights or rights arising from the personal data protection legislation.

Karl Jääts

15/08/2023

