

UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Joosep Kaimre

Proficiency and Usage of AI in an Introductory

Object-Oriented Programming Course

Master’s Thesis (30 ECTS)

Supervisor: Marina Lepp, PhD

Tartu 2024

2

Proficiency and Usage of AI in an Introductory Object-Oriented

Programming Course

Abstract:

In the year 2022, there was a breakthrough in the usage of AI chatbots thanks to the release of

ChatGPT. One affected field is computer science and its teaching due to the possibility of

generating code snippets with AI chatbots. Due to the newness of the topic, there is a lack of

consensus on how students use these tools and how proficient AI chatbots are in solving

different tasks. The aim of this master's thesis is to understand how proficient different AI-

based chatbots are in solving tasks in the course “Object-Oriented Programming” and how

students use these tools. To achieve this, ChatGPT and Copilot were used to solve tests and

exams, and their results were compared to students’ results. Additionally, data regarding

students’ usage of AI chatbots was gathered with a questionnaire focused on frequency of use,

ways of use, and impact on learning. Currently, the free version of ChatGPT-3.5 performs

worse than the average student, and Copilot is about on par with the average student. However,

they are both still capable of passing the course. The students stated they used AI chatbots

mainly for programming tasks, and students with lower grades use them more frequently.

Keywords:

artificial intelligence (AI), object-oriented programming, teaching programming, ChatGPT,

Copilot, novice programmers

CERCS:

P175 Informatics, systems theory, S281 Computer-assisted education

3

Tehisintellekti võimekus ja kasutus algajatele suunatud objektorienteeritud

programmeerimise kursusel

Lühikokkuvõte:

Aastal 2022 toimus läbimurre tehisintellektil põhinevate juturobotite kasutuse osas tänu

ChatGPT avalikustamisele. Üks tugevalt mõjutatud valdkond on informaatika ja selle

õpetamine, arvestades erinevate juturobotite pädevust koodilahendusi genereerida. Teema

uudsuse tõttu puudub konsensus ja üldine arusaam, kuidas üliõpilased kasutavad selliseid

abivahendeid ja kui hästi suudavad need abivahendid lahendada erinevaid ülesandeid.

Magistritöö eesmärk on välja selgitada, kui hästi suudavad tehisarul põhinevad juturobotid

lahendada kursusel “Objektorienteeritud programmeerimine” erinevaid ülesandeid ning

mismoodi üliõpilased ise neid abivahendeid kasutavad. Selle tegemiseks lahendati ChatGPT ja

Copilotiga kursuse kontrolltöö ja eksami ülesanded ning võrreldi nende tulemusi üliõpilaste

tulemustega. Lisaks uuriti küsitlusega üliõpilaste tehisintellektil põhinevate juturobotite

kasutust, keskendudes sagedusele, viisidele ja mõjule õppimisel. Selgus, et ChatGPT-3.5 tasuta

versioon on hetkel veel keskmisest üliõpilasest kehvem ja Copilot on laias laastus sama

võimekas kui keskmine üliõpilane. Siiski on mõlemad juturobotid piisavalt võimekad, et saada

positiivne hinne. Üliõpilaste sõnul kasutavad nad juturoboteid põhiliselt

programmeerimisülesandeid lahendades ning nõrgemad üliõpilased kasutavad neid rohkem kui

võimekamad.

Võtmesõnad:

tehisintellekt (TI), objektorienteeritud programmeerimine, programmeerimise õpetamine,

ChatGPT, Copilot, algajad programmeerijad

CERCS:

P175 Informaatika, süsteemiteooria, S281 Arvuti õpiprogrammide kasutamise metoodika ja

pedagoogika

4

Table of Contents

Introduction .. 6

1 Background ... 8

1.1 ChatGPT .. 8

1.1.1 Background of ChatGPT... 9

1.1.2 Versions of ChatGPT .. 9

1.2 Microsoft Copilot ... 10

1.3 Usage of AI in Courses .. 11

1.3.1 AI Performance in University Courses ... 11

1.3.2 AI Usage as a Lecturer .. 13

1.3.3 Students Opinions on Usage of AI in University Courses 15

2 LTAT.03.003 “Object-Oriented Programming” ... 17

2.1 Object-Oriented Programming... 17

2.2 Course .. 17

2.2.1 Course Structure.. 18

2.2.2 Tests .. 19

2.2.3 Exam ... 19

3 Method .. 22

3.1 Analysing AI Proficiency .. 22

3.2 Student Feedback ... 22

4 Results ... 24

4.1 AI Proficiency in Tests .. 24

4.1.1 Test 1 ... 24

4.1.2 Test 2 ... 26

4.1.3 Exam ... 29

4.2 Student Questionnaire .. 36

5

4.2.1 Non-users .. 37

4.2.2 Users ... 37

4.2.3 Usage of AI and Its Correlation With Grades ... 44

5 Discussion ... 46

5.1 AI Comparison to Students .. 46

5.2 Common AI Mistakes .. 48

5.3 Students Usage and Perception Regarding AI Assistants .. 50

Conclusions .. 54

References .. 56

Appendix .. 61

I. Test sample task ... 61

II. Example of Short Exam Tasks ... 64

III. Example of Long Exam Tasks ... 65

IV. Student Questionnaire .. 67

V. Licence ... 70

6

Introduction

The year 2022 was a breakthrough for Artificial Intelligence. Following the public release of

ChatGPT in November of that yesar [1], different AI assistants and chatbots received

significant attention [2-3], with fears of AI replacing humans and making some jobs obsolete.

One clearly affected field is Computer Science and its education [4].

The breakthrough of AI has sparked an avalanche of research on the topic of AI proficiency in

university courses [4-7], its usage as a tool [8-10] and how it affects studying [11-12]. There

currently is no consensus on whether AI is more capable than the average student, with some

studies indicating that it is outperforming students [5-7], whilst others have found that AI is

capable of passing the courses but is worse than students [13-14]. When focusing specifically

on courses held on object-oriented programming, there is less research on how AI chatbots

compare to students and whether there are specific problems AI makes mistakes in.

Additionally, there has not been any significant research on how the AI assistants are capable

of parsing input in Estonian and if it significantly impacts their skill level.

Limited research exists on students' perceptions, usage, and attitudes toward AI chatbots and

their impact on learning in higher education, particularly in the realm of Computer Science.

Some studies indicate that using AI chatbots during the learning process increases self-efficacy

and computational skills [11], whilst others have found no statistically significant differences

between users and non-users [12]. Supplementary AI materials have also been created [15],

with findings suggesting a boost in students' internal motivation when engaging with such

resources. In general, students seem to use it more whilst coding and less for explanations and

other tasks [12]. Still, there is little research on how AI impacts student performance and skill

acquisition.

The main goal of this thesis is to analyse the proficiency of different AI chatbots in an

introductory object-oriented programming course and compare them to those of students taking

the course. Additionally, students’ usage and thoughts regarding AI assistants will be analysed

to gauge their perceived positives and negatives. In this thesis, AI assistants, chatbots and AI

chatbots are used interchangeably to indicate models based on AI with which students can

communicate. To achieve the goal, this thesis will focus on the following research questions:

1. How do different chatbots perform in the course “Object-Oriented Programming” in

comparison to students?

7

2. What are the common mistakes that AI chatbots make in the course “Object-Oriented

Programming”?

3. How much and in what ways do students use various artificial intelligence-assisted

methods during the course?

The thesis begins by giving an overview of the chatbots used for the analysis of the results. It

is followed by a summary of current research on AI chatbots’ proficiency in Computer Science

courses, their usage by lecturers as a resource and their impact on students and on students’

perceptions of them. An overview of the course “Object-Oriented Programming” is given in

section 2, followed by the method section, which describes how AI chatbots were evaluated in

the course and how student feedback was gathered. Section 4 presents the results, followed by

section 5, in which the results are analysed.

8

1 Background

This section covers the background of the AI chatbots ChatGPT and Microsoft Copilot that

were used for comparison with students. This is followed by a literature overview on AI

performance in computer science university courses, its role as a tool for both lecturers and

students and the perspectives of students regarding the utilisation of AI chatbots in university

courses.

1.1 ChatGPT

ChatGPT (Chat Generative Pre-trained Transformer) is a chatbot based on a Large Language

Model (LLM), developed by OpenAI and released to the general public on November 30th,

2022 [1]. After its release, it became one of the fastest-growing websites in history [2], reaching

100 million users in about two months and six months after its release, it is estimated that 58%

of the population of the USA knew of it [3]. The chatbot has different versions, with the GPT-

3.5 version being free to use and the more complex GPT-4 version being available to paying

subscribers.

ChatGPT can be interacted with via a message prompt. The message prompt can be on any

topic, and ChatGPT will answer. An example prompt can be seen in Figure 1.

Figure 1. Example of a ChatGPT prompt and answer

9

As can be seen in Figure 1, it responds to code prompts with a general description and a

specially formatted code block. Usually, the code block also contains all the necessary imports,

making it possible to directly copy the proposed answer to a file and run it.

1.1.1 Background of ChatGPT

Generative Pre-trained Transformers are a type of NLP (natural language processing) models.

The generative indicates [16] the ability to create text based on a prompt, the pre-trained

indicates that the model is pre-trained on data and does not continuously update its parameters.

Transformers [17] are a type of NLP model that was introduced in 2017 based on a self-

attention mechanism with multi-head attention and positional encoding. Self-attention enables

the model to weigh the importance of each token in a sequence relative to others. Multi-head

attention allows the capture of diverse types of information by applying self-attention in

parallel. Data about token order is given by positional encoding. Each token's representation

passes through a feed-forward network, with layer normalisation and residual connections

aiding training stability. This all together helped to create a model that is state of the art and

was able to outperform other models.

1.1.2 Versions of ChatGPT

ChatGPT is based on this model, with the first version released in 2018 [18] and subsequent

versions released in 2019 (version 2), 2020 (version 3), and the most recent version released in

2023 (version 4). The parameters of the versions can be seen in Table 1.

Table 1. Data about ChatGPT versions [18]

Version GPT-1 GPT-2 GPT-3 GPT-4

Release date June 2018 February 2019 May 2020 March 2023

Model parameters 117 million 1.5 billion 175 billion Unpublished

Model layers 12 layers 48 layers 96 layers Unpublished

Model parameter

dimension

768

dimensions

1600

dimensions

12 888

dimensions

Unpublished

Pre-training data

size

5 GB 40 GB 45 TB Unpublished

As seen in Table 1, each subsequent version was trained on a larger dataset with more input

variables and parameters, leading to a more complex and better-performing model. However,

10

the official data about GPT-4 has not been revealed, but the assumption is that the number of

parameters, layers, dimensions, and training data sizes have all increased to create a better-

performing model. The models were trained on unlabeled data to promote a wider

understanding of text for different uses and to not focus only on a singular use [16].

1.2 Microsoft Copilot

Copilot is a chatbot developed by Microsoft which was released for public use on February 7,

2023 [19]. On release, it carried the name Bing Chat, but its name changed following its release.

Microsoft Copilot uses Microsoft’s Prometheus model, which is built on OpenAI’s GPT-4, and

additional tweaks and changes have been made to it. Similarly to ChatGPT, it has a free and a

paid version, with the paid version being faster [20] and having additional features. As Copilot

is built on OpenAI’s GPT-4, it is assumed that it has a similar amount of data, parameters,

layers and dimensions. However, as Microsoft made additional changes, they are probably not

identical. Additionally, as it is based on the same technology, it has the same benefits of having

been trained on unlabeled data to gain a wider understanding of different text types and

languages.

Copilot can be interacted with via a message prompt, similar to ChatGPT. Figure 2 shows the

message prompt with a generated answer.

Figure 2. Example of a Copilot prompt and answer

Overall, the prompt and text fields are similar to ChatGPT, with the user being able to ask about

any topic and Copilot generating a response to it. Similarly to ChatGPT, Copilot formats code

11

examples differently from surrounding text. The biggest difference is the fact that Copilot has

an input character limit. In Figure 2, it is 8000, but it varies from 2000 to 16000 based on time

and current usage.

1.3 Usage of AI in Courses

As the topic of AI assistants is currently relevant, multiple recent studies have come out

regarding AI and university courses [5-7, 13-14]. Most of the works have focused on ChatGPT

[7, 11-14], however, some have used others, such as GitLab Codex [5-6]. The focus has varied,

with some focusing on AI proficiency and ability to pass courses [5-7], some focusing on the

usage of AI as a supplementary study tool [21-22], and some focusing on the impact of

knowledge acquisition [11-12, 15]. There have been papers published reviewing AI usage in

non-English courses [23], however, there have been no papers written covering the subject in

the Estonian university system and for courses held in Estonian. This section highlights the

papers on performance and proficiency, student usage and supplementary materials.

1.3.1 AI Performance in University Courses

There have been multiple studies that estimate how effective different LLM AI approaches are

for solving tasks for different courses in economics [24], law [25], computer science [5-7, 13]

and medical studies [26]. However, the main focus of this thesis is on computer science and

programming courses.

Multiple studies [5-7] have found that AI tools (Github Codex, ChatGPT) performance places

it in the top quartile of class performance in introductory programming courses. AI approaches

perform especially well in tasks covering introductory topics but with greater variance in more

complex tasks pertaining to data structures and algorithms [6]. This variance in data structures

is confirmed by Bordt and Luxburg [13], who found out that ChatGPT-3.5 was able to pass a

course on the topic but performed worse than the students on average, whilst ChatGPT-4

performed on par with the students. Shoufan [14] had similar results, with ChatGPT achieving

a passable grade but performing worse than students. Richards et al. [7] findings complement

these, as they found that ChatGPT was able to pass in undergraduate programmes but failed at

the postgraduate level and that it was able to outperform students at introductory topics but was

surpassed by students at more complex levels. Contrary to these findings, Savelka et al. [27]

found that there was no difference in performance comparing introductory and intermediate

results, and in some cases, AI even performed better in intermediate-level assessments. Overall,

it appears that AI assistants demonstrate superior performance at the introductory level

12

compared to the expert level. However, the distinction between introductory and intermediate-

level tasks and exams is less straightforward. Moreover, it appears that at the introductory level,

AI can even surpass students' grades while facing more challenging problems, courses and

tasks, the AI's performance may lag behind students, yet still suffice to meet passing standards.

Looking at the variance regarding topics, Joshi et al. [28] have found that AI performed the

best in algorithm and data structures, followed by operating systems, machine learning and

database management systems. Outside of university courses, AI chatbots have been evaluated

against competitive programming challenges such as Leetcode [29]. ChatGPT outperformed

the average human acceptance rate for human submission in almost every category and

difficulty level (easy, medium, hard) with the sole exception being tasks on bit manipulation.

However, these tasks are not as directly comparable to university courses, as individuals may

not feel as compelled to perform to the best of their ability, given that the grades from these

online tasks do not affect their GPA.

ChatGPT specifically has been evaluated for generating solutions from non-English input

(Czech) in information security courses [23]. In the information security courses, ChatGPT

was capable of passing all four courses in which its outputs were evaluated, and it usually

outperformed students in full-text exams where a text-based answer or solution must be

provided. However, the students on average performed better in tasks related to projects, essay

writing and completing small snippets of code. All in all, in Czech information security courses

the AI outperformed the students' average in one evaluated course, and the students

outperformed the AI in the other three courses.

When focusing on AI courses held in Java on object-oriented programming, there is less

research, especially on comparing student results to AI assistants. Ouh et al. [30] have found

that ChatGPT can solve easier tasks but runs into problems when the tasks get more complex.

However, it still offers partial solutions that give students a starting point. The author noted

that another issue is that when tasks give some data as UML diagrams or API documentation,

then the chatbots are incapable of parsing the whole text input. This problem is not specific to

Java or object-oriented tasks, but how AI assistants are capable of parsing non-text input still

needs to be taken into consideration. This is supported by Camara et al. [31], who found that

ChatGPT is not capable of reliably generating UML outputs and has problems with its syntax.

The problems with object-oriented concepts are confirmed by Cipriano and Alves [32], who

tried different AI chatbots to generate solutions to object-oriented programming tasks. They

found that the AI-generated code often had compilation errors, needed multiple prompts to

13

generate all the necessary classes and functions and did not pass all the unit tests that were used

to evaluate task correctness. Overall, it seems that AI assistants can solve easier tasks, but when

dealing with more complex and difficult concepts, they have problems. The lack of studies

comparing AI assistants to students also makes it hard to gauge whether AI’s problems with

the tasks are similar to those of students or if it can outperform them on some tasks and

underperform in others.

In general, it seems that AI has reached a point where it is able to successfully pass university

courses but is not proficient enough yet to outperform the students' average regularly. This

could stem from the fact that AI proficiency in different tasks varies greatly. Small code snippet

tasks and even exam paragraph questions are easily solved by AI, but larger, complex projects

and programs and essays are not yet done well by the AI. For essays, the AI often has problems

with correct citations and generating false citations [23]. Hence, whether AI outperforms the

students’ average in a course is often dependent on the grading scheme of the course and which

tasks make up what percentage of the final grade. An additional factor that determines AI

performance is how the descriptions of the tasks are presented, as it has problems with parsing

input from UML diagrams and API documentation. AI can also pass courses not in English,

but there has not been sufficient research on whether this is exclusive to Czech or is true in

other languages as well, especially on tasks in Estonian. There is also a lack of research that

focuses specifically on courses given in Java on the topic of object-oriented programming, but

in general, it seems to follow the trend seen in other courses, where it is great at easier and

smaller tasks, but when the tasks get more complex, the performance falls. The lack of materials

on AI compared to students in Java courses also makes it difficult to see where AI performance

differs from the students and whether the mistakes are similar.

1.3.2 AI Usage as a Lecturer

AI also offers additional support for students in introductory programming courses. Becker et

al. [33] propose that code-generation AI tools can be used by students to get exemplar solutions

for tasks, see multiple ways to solve a task and get examples of code written with good style

and quality. However, Cipriano and Alves [32] have found that when AI assistants generate

code, they often use bad style, indicating that using AI assistant-generated code for better style

should be taken cautiously. Becker et al. [33] also mention that AI assistants can be used to get

comments and explanations for code that works well. Sarsa et al. [34] have similarly found that

LLM can be used to comment on codes to gain a better understanding of it. The models usually

comment on every line, however, they often contain small mistakes, particularly regarding

14

being specifically correct about comparisons and other small, easily fixable problems. These

AI-based code explainers have also been made into plugins that students can use. GPTutor [21]

is an example that uses ChatGPT to provide explanations inside Visual Studio Code. Another

code explainer tool was created by Wang [22], who used it as a tutor for students to help learn

object-oriented programming. Both of these tools received positive feedback from students,

indicating a possibility of integrating AI code explainers into IDEs to help ease programming

study. However, as they are still prone to mistakes, communicating the fallibility of these

comments is paramount.

Denny et al. [8] compared AI-generated learning materials to student-created resources and the

two were evaluated by the students to be of equal value to them. Some researchers have created

AI assistants (WorkedGen) [35] specialised in creating step-by-step solution guides with code

examples and comments. This assistant was evaluated by students, and the majority of them

found it to be useful and would use it again when doing their tasks and homework. This overall

indicates a possibility of using AI-generated materials in courses, however, their quality should

be assessed and using AI-generated code for style examples should be used cautiously.

In the context of lecturers using AI to ease their work, Kiesler et al. [9] analysed the quality of

ChatGPT provided feedback for homework with mistakes. They found that for the majority of

the prompts, the AI provided factually incorrect information, which indicates that automating

feedback for students with chatbots is not currently viable. These findings are similar to those

of Jukiewicz [10], who found that whilst AI and teacher gradings are statistically correlated,

they also statistically differ, indicating that AI sometimes makes mistakes when grading

students' homework. Overall, this shows that human supervision on grading is still needed and

full automation is not currently possible as mistakes, where the teacher gave full marks and the

AI gave a 0 are too problematic to make replacing human graders with purely AI ones not

feasible.

Sarsa et al. [34] have written about using AI to generate programming tasks for students and

evaluated their novelty, the proposed sample solution and automatic tests provided for the

programming tasks. About 75% of the AI-generated tasks were novel and sensible, and a

matching sample solution was provided. However, only about a quarter of the provided sample

solutions passed the tests the AI also proposed. This shows that using AI for tasks is a

possibility, however, it is incapable of reliably providing a full set of tasks with solutions and

tests, indicating that the generated content needs further human moderation.

15

Artificial Intelligence offers a range of potentials for educators developing programming

courses. AI-generated materials have demonstrated comparable value to those created by

students, presenting opportunities for students to explore diverse sample solutions to

complement their own solutions. Nevertheless, the quality of AI-generated code varies,

cautioning against solely relying on them for teaching good coding practices. Presently, AI

assistants remain unreliable for replacing human grading due to significant errors. However,

they excel in providing explanations and comments on existing code examples, making them

valuable resources for students encountering difficulties with course materials. Additionally,

AI can assist in generating ideas and test cases for programming tasks, although their inability

to provide a comprehensive set of tasks, solutions, and tests underscores the necessity of human

oversight. In essence, AI materials serve as supplementary resources, enriching the learning

experience, but their current limitations underscore the continued need for human involvement

and supervision.

1.3.3 Students Opinions on Usage of AI in University Courses

Students’ perception, usage and thoughts of AI chatbots for higher education in Computer

Science is a topic that has limited research, with the majority of existing research being written

in the last few years due to their recent breakthrough into public consciousness. Strzelecki [36]

has analysed the adoption of AI by students in the context of unified theory of acceptance and

use of technology (UTAUT) in a Polish University. He found that the biggest impact on

students' usage was habit, performance expectancy and hedonic motivation, indicating that

when students see an AI performing to a good standard for their work and form a habit of

asking for help from it, it leads to more prevalent usage. These findings are supported by Lai

et al. [37], who found that positive experiences and accurate answers help promote the regular

use of AI chatbots in students. Sun et al. [12] noted that the students’ perceived usefulness,

perceived ease of use, and intention to use AI assistants increased after using them, however,

their attitude regarding AI remained unchanged. Overall, this indicates that students seem to

understand and use AI assistants more after having to use them and learning about their

strengths. However, this does not seem to affect their attitude regarding its usage, which is

interesting.

Some studies have also analysed the impact of supplementary AI materials on students. Wu et

al. [15] found that introducing a supplementary chatbot that helped students engage with the

material increased their internal motivation to study and engage with the material. This increase

in motivation could be useful for propagating programming learning, however, there are no

16

comparisons as to whether this was specifically due to AI or just that additional supporting

study materials increase motivation.

A study conducted in Turkey [38] found that students found the speed of AI chatbots to be their

main advantage, with them being always available, speeding up learning about problems, and

students even came to perceive the AI as a teacher, which indicates a high level of

dependability. However, the perceived negatives were occupational anxiety and incorrect

answers. The students seem to mainly use AI helpers specifically when coding [12] and also

whilst debugging, but less for other tasks such as task decomposition or theory. This could just

indicate that students think that AI assistants are purely for coding and less for getting

explanations and comments.

The effects of AI usage on students' skills have also been studied, but the research is limited.

Some have found [11] that programming students who used ChatGPT whilst studying

improved their computational thinking skills and programming self-efficacy more than

students who did not use AI. The subcategories that saw the difference in improvement were

creativity, algorithmic thinking and programming itself. However, others [12] have found that

there are no statistical differences in results between students who use AI to learn and those

who do not. In conclusion, while some studies suggest that incorporating AI into programming

education enhances students' computational thinking skills and programming self-efficacy,

further research is needed to fully understand the impact of AI usage on student outcomes.

Overall, students' adoption of AI chatbots seems to hinge on forming a habit and the chatbot's

ability to give correct and good answers. However, it seems that this change in usage does not

translate into an attitude change. It also seems that introducing AI-based materials increases

the students’ internal motivation for studying, yet it is unclear whether any additional study

material could cause this increase. Students valued the speed and constant availability of AI

chatbots, even viewing them as teachers, but mentioned occupational anxiety and incorrect

answers as negative. They primarily utilised AI assistants for coding and debugging tasks,

suggesting a perception that AI is mainly suited for coding assistance rather than broader

educational support. The influence of AI usage on students’ abilities is unclear, with some

research indicating that using AI benefits the students using it, while others noted no

differences. All in all, students seem ready to use AI chatbots and AI-generated materials for

study purposes, and it seems that these tools positively impact studying.

17

2 LTAT.03.003 “Object-Oriented Programming”

Object-oriented programming (OOP) is a widespread paradigm in modern-day programming.

It is based on the idea of objects, which are instances of classes that encapsulate data and

behaviour related to those data, and these objects interact with each other via interfaces to

exchange messages and manipulate data [39]. This paradigm is taught to first-year university

students at the University of Tartu in the course LTAT.03.003 “Object-Oriented Programming”

using the programming language of Java. The data, tasks, and results from this course were

used to compare the proficiency of AI chatbots in programming tasks to that of beginners in

programming.

2.1 Object-Oriented Programming

Object-oriented paradigm got its start in the 60s with the programming language Simula [39],

however, it reached mainstream popularity in the 90s with languages such as Java, Python and

C++ becoming ubiquitous. Their usage remains high to this day, as all three place in the top 4

of the TIOBE index [40], which tracks the popularity of different programming languages.

Their rise and stay in popularity can be explained by their ability to ease computer program

complexity using abstraction [41], as it helps to select and choose only necessary parts of

different models. Capretz [41] also argues that the rise in GUI (graphical user interface) helped

facilitate the rise in popularity as they are easier to create when using the object-oriented

paradigm. These factors remain important to this day, keeping these languages relevant.

Java programming language was released for public use in 1995 [42] and rapidly gained

popularity. Java was based on C++ but with cleaner constructs and a more pure object-oriented

approach [41], which helped to maintain its popularity. It is supported to this day, with the most

recent long-term support release being Java 21 in 2023 [43], with a newer version of Java 22

being released in 2024. Its sustained popularity can be explained by the prevalence of the

object-oriented programming paradigm and it being one of the most common languages to

study object-oriented programming in.

2.2 Course

The course “Object-Oriented Programming” is mainly taught to first-year Computer Science

students as it is a mandatory course. However, it is chosen as an elective by many other

students, making it one of the largest courses at the University of Tartu, with a yearly

registration between 270-330 students [44]. As a prerequisite for the "Object-Oriented

18

Programming" course, students must complete an introductory course in the Python

programming language.

As the students are not required to have previous experiences with object-oriented

programming or Java, majority of them are complete beginners with the language and topic at

the start of the course. As stated on the course website [45], the aim of the course is to give

foundational knowledge about the object-oriented paradigm. During the course, the students

will learn about encapsulation, inheritance, polymorphism, method overriding, data structures,

and event-driven programming. By the end, they are expected to understand and be capable of

independently creating, testing and debugging programmes.

2.2.1 Course Structure

The course is built on weekly lectures, homeworks and practice seminars. Each week, the

students are expected to watch the weekly lecture videos, take a short quiz on them, solve the

homework on the weekly topic and participate in the practice seminar to reinforce their

understanding of the topic. During the course, they are expected to take two larger tests and

complete two group assignments. At the end of the course, they have to take the exam. The

distribution of the assignments, their point values, and the timeline can be seen in Table 2.

Table 2. Course assignments

Assignment Week Points Minimum score to pass

Homework Weekly 12x0.5

Practice Seminar Weekly 12x0.5

Test 1 Week 7 16 12

Test 2 Week 13 16

Group assignment 1 Weeks 6-8 5

Group assignment 2 Weeks 12-14 5

Group assignment

presentation

Week 15 3

All practice assignments 57 28

Lecture Weekly 12x1 6

Exam Week 16 33 15

Total score 102 51

19

As seen from Table 2, the final grade of the students is most dependent on the exam and the

tests. The points earned in practice seminars are participation points and only require

attendance; most homework assignments have automated tests that provide immediate

feedback and allow students to submit their assignments until they achieve the maximum score.

Group projects are open-ended tasks with specific requirements, but students have the freedom

to choose the topic and implementation, resulting in less uniform assessment as the graders

also consider the students' level. Therefore, we focus on comparing the results of AI and the

students in the exam and tests, as they have clear and consistent grading schemes, enabling

more precise comparisons of results. As these two also impact the final grade the most, it gives

an insight into how proficient AI is compared to students and whether students could use AI

for academic dishonesty, and how much it could actually help them.

2.2.2 Tests

The two tests take place respectively on weeks 7 and 13, and the tests contain the topics covered

in the previous weeks. The students are given a description of a program, which includes the

name of the classes that they have to create, the methods which the classes have to contain,

whether some classes implement an interface or inherit some properties from a superclass and

how the main workflow of the program is supposed to look like. To complete the program, the

students have 105 minutes, they can use all materials except for communicating with another

person or asking an AI chatbot for assistance. A sample test task can be seen in Appendix I.

Both tests make up 16 points of the final grade with test 1 having a required minimum score of

12 to pass the course.

The first test mainly focuses on abstract classes, inheritance, polymorphism and interfaces. The

second test also contains these topics, however in addition it also covers exceptions and

exception handling, streams and more complex data structures. There is an automatic test that

checks if all the necessary classes and methods are present and that the class hierarchy is

correct, however, it does not check the internal logic of the program. The students themselves

have to test and debug their program and be certain that it corresponds to the task description

given.

2.2.3 Exam

The exam is taken at the end of the course and makes up 33 points of the final grade. The exam

consists of a declaration of honesty, 13 short questions and a long more open-ended question.

The exam is taken as a computer test on Moodle, and students can use course materials, look

20

at code examples, and use documentation and Google. However, communicating with other

people, using AI assistants, opening IDEs, compiling codes and running them is forbidden. The

students have 60 minutes to complete the test. Table 3 shows the topics of the questions and

the points distribution of the exam.

Table 3. Topics and points of exam questions

 Topic of Question Points

Q1 Declaration of Honesty 1

Q2 Objects, Classes 2

Q3 Strings, Files, Lists 2

Q4 Interfaces 2

Q5 Interfaces 2

Q6 Subclasses, Superclasses 2

Q7 Subclasses, Superclasses 2

Q8 Abstract classes 2

Q9 Abstract classes 2

Q10 Graphics 2

Q11 Events 2

Q12 Streams 2

Q13 Exception handling 2

Q14 Data structures 2

Q15 Long question 6

Total 33

As can be seen from Table 3, the exam covers all the topics learned during the course. To pass

the course, a minimum score of 15 points is needed. The first question is always the declaration

of honesty and the last question is the longer, open-ended question. Between them are the other

questions, however, they are in a randomised order. The other questions consist of multiple-

choice, single-choice, fill in the gap and matching. Each question set may contain any of these

options. The student cannot move back and forth between the questions, once they have moved

on to the next question the previous question becomes unavailable. Examples of the short

21

question can be seen in Appendix II. The longer open-ended question makes the students

explain and reason for the answers they provided. The open-ended question has two different

types. One consists of filling in the gaps of an existing code snippet where the student has to

write all possibilities and give reasons for their answers. The other type consists of an existing

code snippet with mistakes where there are multiple statements about what is wrong with the

code. The students have to decide if the statement applies to the code snippet and explain their

decision. Both versions of the longer task can be seen in Appendix III.

22

3 Method

This section gives a short overview of how the AI proficiency of the two chatbots was evaluated

and how student feedback was gathered for analysis.

3.1 Analysing AI Proficiency

ChatGPT-3.5 and Microsoft Copilot were used for the purpose of testing. ChatGPT-3.5 was

chosen as it was free to use, while ChatGPT-4 needed a paid subscription. As this is the more

accessible version, it was also assumed that if students were to use AI for the course, then they

would choose the free version. Microsoft Copilot was selected as University of Tartu students

get free access via their emails to the paid version of the AI chatbot, which makes it more

probable that students would use this AI.

To gauge how well ChatGPT and Copilot are capable of solving tasks in the introductory

programming course, they were given the full text of the tests and tasks and the output was

graded. ChatGPT was capable of handling the full text, Copilot had a character limit of 4000,

which meant that sometimes tasks needed to be split into multiple queries. However, there were

no additional modifications made meaning that the AI assistants were given the texts in

Estonian, with no translation done. This created the additional aspect of the chatbots

understanding text written in Estonian and giving the answers in Estonian.

The tests have a clear standardised grading guide which was used to evaluate the level at which

the AI chatbots are capable of solving the tasks. The common mistakes were written down to

understand which subjects can cause problems and if there are clearly repeating mistakes the

AI chatbots make when solving the tests. As there were multiple variants of each test, the AI

assistants were given three different versions to get more data points. As the exam is conducted

as a Moodle test with many questions in the question bank, the assistants were given 10

questions from each set to get a more robust and trustworthy average performance for each

question topic.

3.2 Student Feedback

Students' usage, thoughts and opinions on AI assistants were gathered with a survey conducted

on the course Moodle page. The survey was conducted during the 8th week of the course which

is roughly the midpoint. The survey contained six parts, some focusing on general feedback to

lectures, seminars, tests, and homeworks. This year a section regarding AI assistants was

added. Answering the questionnaire was voluntary, but completing it awarded a bonus point.

23

233 people answered the questionnaire, which is about 71% of the whole course. The

questionnaire was not anonymous in order to award extra points to students and to tie answers

about usage with a student's score in test 1. However, complete anonymity was ensured whilst

analysing the results of the students' answers.

The AI section (Appendix IV) contained single and multiple-choice, open-ended and Likert

scale questions. It began with a single-choice question of whether the student used any AI

assistant for this course. Based on the answer the student saw different follow-up questions.

Non-users saw a multiple-choice question and an open-ended question where they could

answer why they had not used AI assistants. Students who had used them saw questions which

gathered data about their experiences with AI assistants. The questionnaire aimed to find out

how often, for which tasks and in which ways the students used the assistants. Additionally,

we asked students to evaluate how much help they received from the assistants. Students could

also write down what they liked and disliked about the AI assistants. The final section consisted

of 5 statements in which students had to mark down their agreement or disagreement on a

Likert scale. Additionally, a statistical analysis was conducted on the topic of students’ results

in test 1 in relation to the frequency with which they used AI assistants. To analyse the results

the students were divided into two groups based on the frequency of their usage where one

group used AI assistants rarely or never whilst the other group contained the students who used

them more frequently. The Shapiro-Wilk test was used to check whether the group results

follow normal distribution and based on the results the Mann-Whitney U-test was used to see

if there was a statistically significant difference between the two groups.

24

4 Results

This section covers the results of students and AI score comparison with a focus on the two

tests and the exam. This is followed by an analysis of the answers to the student questionnaire

and a statistical analysis of the difference in grades for students depending on AI assistant

usage.

4.1 AI Proficiency in Tests

ChatGPT and Copilot were given the full texts of the tests and tasks and the output was graded

according to the grading guide. There exist multiple versions of each test as there are numerous

time slots when the tests and exams are taken. Each slot has a unique set of tasks so the AI

assistants were given multiple versions of the tasks and each task was graded to get more insight

and data regarding the chatbot’s performance in the course. The course is in Estonian, so the

input was Estonian and no modification was made to it.

4.1.1 Test 1

Test 1 covers the topics of Java classes, objects, Strings, files, lists, polymorphism, interfaces,

and abstract, super- and subclasses. The test gave 16 points to the final grade and the minimum

amount of points required to pass is 12 out of 16.

ChatGPT and Copilot were given the problem descriptions of three tests and their output was

graded. As Copilot has a character limit on its input, the test description was split into two,

whilst ChatGPT was given the test description with no modification. The results of the grading

can be seen in Table 4.

On average, ChatGPT was capable of solving the tests to a score of 14.65 points out of 16 and

Copilot was capable of solving the tests to a score of 15.85 points out of 16. These results

surpass the required minimum score. There were two repeating mistakes in ChatGPT solutions:

it never specified the required encoding for files and it defined the logic in superclass abstract

methods and did not override it in subclasses. There were no repeating mistakes for Copilot as

out of the 3 tests only once did it not specify the encoding and only once it added null values

to a toString method.

25

Table 4. ChatGPT and Copilot results in test 1

Test version T1.1 T1.2 T1.3

ChatGPT mistakes ● Does not use

the required

encoding for

files (-0.25p)

● A method

that needs to

be abstract is

defined (-1p)

● Does not use

the required

encoding for

files (-0.25p)

● A method

that needs to

be abstract is

defined (-1p)

● Uses wrong

method

names

(-0.4p)

● A mistake in

application

logic (-0.4p)

● Does not use

the required

encoding for

files (-0.25p)

● Does not

read data

from a file

(-0.5p)

ChatGPT points 14.75 p 13.95 p 15.25 p

Copilot mistakes ● Displayed

null values in

toString

method

(-0.2p)

● Made no

mistakes

● Does not use

the required

encoding for

files (-0.25p)

Copilot points 15.8 p 16 p 15.75 p

Number of students 43 113 127

Student average 13.76 p (SD = 4.33) 14.55 p (SD = 2.98) 14.95 p (SD = 2.68)

Student median 15.75 p 15.6 p 15.7 p

ChatGPT average 14.65 p

Copilot average 15.85 p

Student average 14.61 p

This test was taken by 285 students and the average amount of points for this test among

students was 14.61 points. Compared to this, both ChatGPT and Copilot performed better as

their averages were higher. However the difference between ChatGPT and the students was

relatively small, whilst Copilot’s difference was larger. Comparing individual tests, ChatGPT

outperformed the student average on two of them, however, non-compiling solutions were

given an automatic 0 that brought the student average down. Copilot outperformed the students

on all tests.

26

Figure 3. Students’ and AI chatbots’ results in test 1

Figure 3 depicts the boxplot of students' and AI chatbots’ results for test 1. When visualising,

the outliers were not included to enhance the readability of the figure as the non-compiling

solutions were an automatic zero. The AI chatbots are indicated with coloured crosses and the

student average is also shown as a cross on the boxplot. When looking at how the scores would

have placed when looking at quartiles, ChatGPT scores were below the bottom quartile for

T1.2, T1.3 and barely above it for T1.1. This indicates that ChatGPT does perform worse than

the average student on long and complex problem tasks. Copilot fared better as it was above

the upper quartile for T1.2 and between the median and upper quartile for T1.1 and T1.3

indicating that it outperforms the average student.

4.1.2 Test 2

Test 2 covers the topics of streams, exception handling, and data structures in addition to the

topics already covered in test 1. The test gave 16 points to the final grade and there is no

minimum score required to pass.

ChatGPT and Copilot were given the problem descriptions of three tests and their outputs were

graded. As Copilot has a character limit on its input, the test description was split into two,

whilst ChatGPT was given the test description with no modification. The results of the grading

can be seen in Table 5.

27

Table 5. ChatGPT and Copilot results in test 2

Test version T2.1 T2.2 T2.3

ChatGPT

mistakes

● Methods are not

private (-1p)

● The logic for

asking user input

does not work

correctly (-0.5p)

● Does not use

user input

(-0.7p)

● Multiple

mistakes in

application logic

(-2.2p)

● Methods are not

private (-1p)

● The logic for

asking user input

does not work

correctly (-0.5p)

● Sorts in the wrong

direction (-0.5p)

● Has not generated

some

functionalities

(-2.5p)

● Does not use user

input (-0.7p)

● Methods are

not private

(-1p)

● Sorts in the

wrong

direction

(-0.5p)

● Small

mistake in

reading

input

(-0.5p)

ChatGPT

points

11.60 p 10.80 p 14.0 p

Copilot

mistakes

● Did not generate

get and set

methods (-1p)

● Did not generate

some get methods

(-0.8p)

● Sorts in the wrong

direction (-0.5p)

● Did not

generate

some get

methods

(-0.6p)

● A method

was not

private

(-0.5p)

Copilot

Points

15 p 14.7 p 14.9 p

Number of

students

114 38 110

Student

average

13.1 p (SD = 4.06 p) 13.93 p (SD = 2.71 p) 13.51 p (SD = 2.89

p)

Student

median

14.8 p 14.9 p 14.5 p

ChatGPT

average

12.13 p

Copilot

average

14.87 p

Student

average

13.39 p

28

On average, ChatGPT was capable of solving the tests to a score of 12.13 points out of 16 and

Copilot was capable of solving the tests to a score of 14.87 points out of 16. ChatGPT had

multiple repeating mistakes, the most prevalent was that methods were public, not private. This

requirement was written in the test as the methods should not be callable outside the class,

which probably affected the outcome. The tests were different from each other in the sense that

two required students to use queues and one required them to use maps. The tests (T2.1, T2.2)

that used queues had noticeably more mistakes and had problems with reading user input whilst

the version with maps did not have these problems. Also, there was a mistake regarding sorting,

the tests required the sorting to be non-decreasing, but it sorted in the other direction.

Copilot had a repeating mistake in the fact that it did not generate some of the required get

methods for any of the three tests and circumvented using them, other mistakes were more

unique. Copilot also had a problem with sorting directions and making a method private just

like ChatGPT. However, Copilot made these mistakes only in one variant, not across multiple

tests which happened with ChatGPT. Copilot had no noticeable differences between the

variants with queues (T2.1, T2.2) and the variant with maps (T2.3).

Figure 4. Students’ and AI chatbots’ results in test 2

The student average for these tests was 13.39 points out of 16. Here, ChatGPT got a lower

score and Copilot got a higher score compared to the student. However, when looking at the

29

tests individually, ChatGPT performed better than the students on T2.3, but it was worse at

T2.1 and T2.2, whilst Copilot outperformed the students on all tests. Figure 4 depicts students’

and AI chatbot’ results in test 2. When visualising, the outliers were not included to enhance

the readability of the figure as the non-compiling solutions were an automatic zero. The AI

chatbots are indicated with coloured crosses and the student average is also shown as a cross

on the boxplot. When looking at which quartile the chatbot scores would have placed, ChatGPT

was below the bottom quartile for T2.1, T2.2 and above the bottom quartile, but below the

median for T2.3. However, Copilot placed above the median for T2.1 and T2.3 and just below

it in T2.2. These results reinforce that ChatGPT performs worse than the average student and

Copilot outperforms the average student when doing these tests.

4.1.3 Exam

The exam covers all the topics taught in the course. It is taken as a computer quiz on Moodle

in which the students need to declare that they will not use prohibited materials, answer 13

short questions and a longer, more difficult question in which students have to reason and

explain their answers. The quiz chooses a question from a data bank of questions and each

question covers different topics. A more in-depth overview was given in 2.2.3.

To aggregate ChatGPT and Copilot proficiency in the different questions and topics, they were

given ten different questions from each block and the results were averaged to get a better

overview of its results. The questions presented were the same for both AI assistants. The

results can be seen in Tables 6-10.

As seen in Table 6, the AI assistants performed similarly in the questions on the topic of objects

and classes. A clear difference in performance can be seen in Q2 on the topic of String, Files

and Lists. Both of them had problems with different String methods, but ChatGPT also had

problems with Collections.sort and list indexes. Their biggest difference which also resulted in

the large point difference was the fact that ChatGPT had problems comprehending the String

values saved in variables by confusing the values between different variables or making up

new values. This problem was not present in Copilot solutions.

30

Table 6. AI assistant results in exam questions (part 1)

 Topic AI Points Mistakes

Q1
Declaration

of Honesty
- - -

Q2
Objects,

Classes

ChatGPT

Avg = 1.9

SD = 0.32

min = 0

max = 2

● Did not choose answers from the

possible answer list given

Copilot

Avg = 1.95

SD = 0.16

min = 1

max = 2

● Did not follow the order of arguments

of a method

Q3
Strings,

Files, Lists

ChatGPT

Avg = 0.995

SD = 0.74

min = 0

max = 2

● Comparing substrings indexes

● Problems with uppercase and

lowercase comparison

● Thought Collections.sort returned, not

changed existing list

● Made mistakes with lists related to

them being reference-based

● Did not comprehend which String

value was saved in the variable

Copilot

Avg = 1.7

SD = 0.63

min = 0

max = 2

● Problems with uppercase and

lowercase comparison

● String contains method had problems

As can be seen in Table 7, Copilot consistently outperformed ChatGPT on the topics of

interfaces, subclasses and superclasses as even if they made the same mistakes, Copilot made

them less often. Both of them had identical problems regarding class hierarchy: confused the

order of searching for a method declaration and had problems with how a superclass’s

constructor is called in instance creation. Another common mistake was thinking that an

abstract class needs to implement an interface’s methods. A mistake unique to Copilot was that

it tried to define an abstract method in an abstract class without using the keyword abstract in

front of the method. ChatGPT had more unique mistakes with it confusing when to use extends

and implements, confused when you can use and when you have to use access keywords,

abstract and what can be done in classes and what can be done in abstract classes.

31

Table 7. AI assistant results in exam questions (part 2)

 Topic AI Points Mistakes

Q4

Interfaces

ChatGPT

Avg = 1.563

SD = 0.37

min = 1

max = 2

● Said that abstract class needs to

implement interface methods

● An empty method body is still an

implementation of a method

● Used extends for interfaces

● Said that interface methods need access

keywords

● Used abstract methods in non-abstract

classes

Copilot

Avg = 1.847

SD = 0.63

min = 1.6

max = 2

● Said that abstract class needs to

implement interface methods

Q5

ChatGPT

Avg = 1.4

SD = 0.78

min = 0

max = 2

● Used keyword class when methods are

not implemented

● Said abstract cannot be used in interfaces

● Said you have to specify the access

modifier in an interface

● Sorted in the wrong direction with

comparable

Copilot

Avg = 1.82

SD = 0.38

min = 1

max = 2

● Defined abstract methods without using

the keyword abstract in an abstract class

Q6

Class

hierarchy

ChatGPT

Avg = 1.64

SD = 0.39

min = 1

max = 2

● Failed to realise a superclass's constructor

with no arguments is always called when

creating an instance of a subclass

● Failed to realise when a subclass calls a

superclass constructor with arguments

then the constructor with no arguments is

not called Copilot

Avg = 1.904

SD = 0.22

min = 1.33

max = 2

Q7

ChatGPT

Avg = 1.733

SD = 0.64

min = 0

max = 2

● Method declarations are searched for

starting from subclasses, not from

superclasses

Copilot

Avg = 1.8

SD = 0.63

min = 0

max = 2

32

Table 8. AI assistant results in exam questions (part 3)

 Topic AI Points Mistakes

Q8

Abstract

classes

ChatGPT

Avg = 1.516

SD = 0.14

min = 0.66

max = 2

● Said that abstract classes cannot have

realised methods

● Did not add the keyword abstract to

abstract methods

● Said that abstract classes cannot have

abstract subclasses

● Used extends with interfaces

● Did not implement all abstract

methods in non-abstract subclass

Copilot

Avg = 1.68

SD = 0.35

min = 1

max = 2

● Said that an abstract class needs to

implement all superclass methods

● Used extends with interfaces

● Said that you can override method

only when superclass is abstract

Q9

ChatGPT

Avg = 1.663

SD = 0.26

min = 1.33

max = 2

● Thought that interfaces cannot contain

variables

● Thought that abstract classes cannot

contain only non-abstract methods

Copilot

Avg = 1.826

SD = 0.29

min = 1.33

max = 2

● Said that abstract classes cannot have

realised methods

● Implemented methods in interfaces

● Thought that interfaces cannot contain

variables

Q10 Graphics - -
● Could not be analysed (contained

pictures in the questions)

Q11 Events

ChatGPT

Avg = 1.45

SD = 0.50

min = 0.5

max = 2

● Made mistakes when String

comparison and methods were used

● Confused < and <=

● Sometimes confused different

variables

Copilot

Avg = 1.75

SD = 0.35

min = 1

max = 2

● Made mistakes when String

comparison and methods were used

● Confused != and ==

● Sometimes confused different

variables

● Confusion with list indexes

Table 8 contains AI performance in abstract class and event problems. The graphics question

could not be analysed as it contained a picture of a JavaFX program which could not be given

as input to the AI assistants. Copilot continued to outperform ChatGPT on these topics. Both

33

continued to have problems with how inheritance, abstract classes and interfaces interact with

each other and which methods need to be realised where and which methods do not have to be

realised. For events, all of the problems stemmed from logical and string comparison mistakes,

not from misunderstanding how events and changes work. Overall, Copilot and ChatGPT made

quite similar mistakes and the main difference in points stems from the fact that ChatGPT just

made those mistakes more often than Copilot.

Table 9. AI assistant results in exam questions (part 4)

Topic of

Question
AI Points Mistakes

Q12 Streams

ChatGPT

Avg = 1.799

SD = 0.34

min = 1.14

max = 2

● Had a problem of not understanding

when reading the input file had

reached the end of the file

● readUTF cannot comprehend input

written with the method writeInt

● Had a problem understanding how

long the input file is

Copilot

Avg = 1.869

SD = 0.29

min = 1.14

max = 2

● readUTF cannot comprehend input

written with the method writeInt

Q13
Exception

handling

ChatGPT

Avg = 1.857

SD = 0.12

min = 1.75

max = 2 ● Did not notice a print statement

● An exception thrown in a catch

block is not caught

Copilot

Avg = 1.732

SD = 0.62

min = 0

max = 2

Q14
Data

structures

ChatGPT

Avg = 1

SD = 1.05

min = 0

max = 2

● Did not understand how Stack data

structure works

● Had problems with Queue element

removal, and did not understand it

worked as FIFO

● Had problems when a set was given

the same element multiple times

Copilot

Avg = 1.6

SD = 0.84

min = 0

max = 2

● Did not understand how Stack data

structure works

34

The AI results on the topic of streams, exception handling and data structures can be seen in

Table 9. Overall, there was only one topic in which ChatGPT was capable of outperforming

Copilot and it was exception handling, which is interesting as in all other topics Copilot gained

better marks. The AI assistants both had problems noticing print statements and just ignored

them and thought that if in a catch block an exception is thrown then it is automatically caught

which is not true. Another common mistake for them was that they did not understand that data

streams cannot use readUTF and writeUTF for readInt and writeInt and vice versa, with

ChatGPT having additional problems comprehending file lengths. Stack data structure was

something that both AI assistants had problems with and it was the only topic where both AIs

were always fully wrong, which probably indicates that the training data did not contain enough

relevant data about it. ChatGPT had additional problems with Queues and Sets, which is

something that was also present in test 2 solutions, indicating that Copilot seems to comprehend

different less common data structures better than ChatGPT.

Table 10. AI assistant results in the long exam question

Topic of

Question
AI Points Mistakes

Q15
Long

question

ChatGPT

Avg = 4.3

SD = 1.06

min = 3

max = 5.5

● Did not add Comparable interface when

necessary

● Did not add access modifiers

● Had a problem with String to Integer and

Double conversions

● Did not use interfaces

● Thought that method signatures must

contain throws NumberFormatException

● Non-static methods cannot be called directly

in a static context

● Did not mention creating subclass instances

both with subclass and superclass types

Copilot

Avg = 4.65

SD = 0.66

min = 3.5

max = 5.5

● Did not use interfaces or abstract classes,

only class

● Did not mention creating subclass instances

both with subclass and superclass types

● Said that protected methods cannot be called

from other classes

● Said that a class’s main method cannot

contain instances of said class

● Did not add access modifiers

● Did not add a call to superclass constructor

in subclass

35

The result of AI in the longer tasks with explaining can be seen in Table 10. The long tasks

needed understanding the topics from the whole course, which meant that the mistakes present

there were quite wide-ranging and often were similar to mistakes seen in the previous

questions, like superclass constructor calls and String-to-number conversion. One quite

prevalent problem was that when the task needed filling in the gaps then the answer needed all

possible solutions, not just one correct. However, the AI assistants almost never gave multiple

possible answers, only just one, for example, only using public whilst other keywords also fit

or just using abstract class or the superclass for instance creation. The tasks also contained

explaining the proposed solution, which the AI assistants excelled at if their initial answer was

correct. Here Copilot also outperformed ChatGPT, which is similar to previous topics and

tasks.

Table 11. Comparison of results between ChatGPT, Copilot and students

 ChatGPT Copilot

Points 23.816 27.128

Number of Students 287

Student Average 26.898 (SD = 3.624)

Student Median 27.33

A comparison of students' results and AI assistants' results can be seen in Table 11. As the AI

is unable to solve the JavaFX task where some of the input is given as a picture, it is an

automatic 0 points. Additionally, one point comes from accepting the declaration of honesty,

but as all students must check it to complete the exam and you cannot fail it, we automatically

give this point to AI as well for better comparison sake. Copilot has a higher average than the

students whilst ChatGPT has a lower average. The students’ and AI chatbots’ results in the

exam can be seen as a boxplot in Figure 5.

36

Figure 5. Students’ results in exams

Even though Copilot had a higher average than the students, it places below the median

indicating that more than half the students are more capable than it. ChatGPT performed even

worse, with its average being below the bottom quartile indicating that 75% of students are

more capable than it. This overall indicates that half of the students know the topics better than

the AI chatbots.

4.2 Student Questionnaire

The first question of the questionnaire focused on whether the students had used AI assistants

for this course. The results of the question can be seen in Figure 6.

Figure 6. Number of students that have used AI assistants

37

The results show that 79.8% of the students have used AI-based assistants at least once for this

course.

4.2.1 Non-users

The non-users were shown a follow up question to get to know why they have refrained from

using AI assistants. It was a multiple-choice question where students could choose different

reasons for their lack of use. The answers to the question can be seen in Figure 7.

Figure 7. The reasons students have not used AI assistants

Clearly, the most chosen answer is “I want to learn the material myself” with 32 selections,

and the least chosen is “I am afraid of plagiarism” with 7.

The students also had an open-ended question where they could give additional reasons why

they had not used them. A common reason given was that googling is quicker than using AI

assistants and that Java documentation or friends were a more trustworthy helper. One person

wrote how they had used AI assistants in a previous course and felt they did not obtain the

material and had to relearn it for the exam.

4.2.2 Users

The students who have used AI assistants were shown another set of questions. The first follow-

up question was regarding their frequency of use, which is shown in Figure 8.

38

Figure 8. The frequency of using AI assistants

Interestingly the usage frequency was divided almost in half with 47% of the students having

used it only once or a couple of times and 53% using it every other week or more. Still, only

5% of the students use it every week indicating that currently, the number of students that rely

a lot on different AI assistants is small. When taking into account the students who do not use

AI assistants, the numbers drop down to 3.9%.

Figure 9 shows how much the students felt the AI assistants helped them when using them.

Overall the feeling was of them helping, with only one student choosing 1 which stands for no

help. The most popular answer was 4, a step below always helping. This could indicate that

they ran into some problems with AI giving them non-helpful answers or it could come down

to not knowing how to ask for their specific problem. Still, only 33 students which is about

18% picked options 1 or 2 which seems to show that the majority of them found AI assistants

at least somewhat helpful.

39

Figure 9. Help received from AI assistants

Figures 10 and 11 contain information about which tasks and how students used AI assistants.

Here they could mark multiple answers or just one. Clearly, the most prevalent use for them

was when solving homework tasks. As the homework tasks are presented together with the

materials and relevant code snippets, the two most popular choices in Figure 10 being solving

homework tasks and understanding code examples with 129 choices and 99 choices clearly

show that this is where it is most used. This also correlates with Figure 11, where the most

popular way of using AI assistants was for finding mistakes in their code and explaining

existing code snippets with 156 and 111 students choosing them respectively. Still, students

used them during the group assignment and preparing for the test as well with those choices

being chosen by 73 and 75 students respectively. Students used AI assistants the least for

answering the lecture quizzes with only 14 students choosing that answer. This seems in

correlation with the fact that answering theoretical questions was one of the least popular ways

to use them with only 37 students choosing it.

40

Figure 10. During which tasks students used AI assistants

Figure 11. The ways students used AI assistants

Students also had an optional open-ended question where they could mention during which

tasks and in which ways they have used AI assistants in this course. The majority of the answers

repeated the answers given in previous questions. However, some novel uses were for

generating data for either group work assignments or for testing their homework solutions.

Another mentioned usage was decomposing a task to understand better where to begin solving

it. Maybe the most interesting use was translating Python code to Java code as at the beginning

of the course the student had experience with Python but not with Java, indicating an interesting

41

possibility of learning a new programming language using previous experiences in a different

programming language.

This section was followed by an open-ended question about what students like about AI

assistants. The most prevalent answer was regarding their speed: they instantly replied and

lessened the wait that would be asking a question from a teaching assistant and being always

available is comfortable. They also mentioned that asking an AI assistant was faster than

googling and got a more specific answer. Students also mentioned that it gives good and easy

explanations with the possibility of re-asking for another wording if the given explanation is

confusing. Another student noted the fact that AI is capable of giving feedback in Estonian is

helpful. Multiple students also mentioned the fact that AI assistants are capable of finding

mistakes in their code quickly which helps them to discover small errors or typos more quickly.

Students were also asked an open-ended question where they could write about their dislikes

regarding AI assistants. The two most prevalent answers were about their mistakes or

misunderstandings. The students felt that in some cases the AI assistant made mistakes and

they had to ask multiple times to fix the AI answer which ended up taking up more time.

Another thing they disliked was the fact that AI did not understand their question or prompt so

it answered off-topic. Also when given code snippets the AI often changed it even when only

asked to comment on it. Some students mentioned the fact that using them was too easy and

comfortable which made them too susceptible to using it instead of trying different solutions

themselves. One person mentioned that they were slow and another lamented that the better

performing ones are paid. Some students mentioned the fact that the AI-proposed solution was

too complex and contained topics and materials that were not covered in the course which made

it confusing to use and understand them. One person mentioned a social stigma related to using

AI assistants feeling that people perceive them badly for using them. Interestingly, here nobody

mentioned the plagiarism and academic integrity aspect.

The final part of the questionnaire consisted of 5 statements where students had to mark

whether they agreed with the statements on a Likert scale where 1 indicated full disagreement,

5 indicated full agreement and 3 indicated neutrality. The results of the first two statements can

be seen in Figure 12.

42

Figure 12. Impact of AI assistants on trying different solutions

The first two statements focused on the impact of AI assistants on the students' experiments

with different solutions for tasks. We wanted to see how students agreed with the statements

“I have tried fewer solutions due to AI assistants” (statement 1) and “Due to AI assistants I did

not try as much whilst solving homeworks and other graded tasks” (statement 2). The majority

of students disagreed with both of these statements as for both of these statements 108 students

picked either options 1 or 2 which indicate disagreement which is about 58% of the surveyed

students. For statement 1, 52 students were neutral with only 26 agreeing with it, making up

28% and 14% respectively. For statement 2 there were 46 neutral students which is about 25%

and 32 students who agreed which is 17%.

The third statement was “I did not work through the course materials, but used an AI assistant”

and answers regarding it can be seen in Figure 13.

Figure 13. Impact of AI assistants on working through the course materials

The majority of the students strongly disagreed with this statement, with 135 students (73%)

choosing option 1 with an additional 33 students (18%) choosing option 2, indicating that there

43

is no problem with students not working through the study materials and relying on AI

assistants to learn the materials. This is reinforced by the fact that no students picked the fully

agree option and only 3 chose the somewhat agree option.

The fourth statement was “I asked for help less from teaching assistants due to AI assistants”

and answers regarding it can be seen in Figure 14.

Figure 14. Impact of AI assistants on asking for help from TA

This statement had quite an even distribution of answers, with the most popular choice being

4 with 52 students (28%), followed by 1 with 45 students (24%), with answers 2, 3, and 5 being

chosen by 28 students (15%), 32 students (17%) and 29 students (16%). This seems to indicate

that there was no clear majority.

The fifth and final statement was “The existence of AI assistants motivated me to solve more

homework tasks” and answers to it can be seen in Figure 15.

Figure 15. Impact of AI assistants on motivation to solve homework

44

This statement had quite an even distribution of answers as well, with the most popular answer

being the neutral 3 with 51 students (27%) followed by the full disagreement with 49 students

(26%) and those who somewhat agree with 41 students choosing (22%).

4.2.3 Usage of AI and Its Correlation With Grades

To analyse the impact of AI assistant usage on grades, we combined the answers to the

questions of whether the students used AI assistants and how often they used them to their

results in test 1. The results of this can be seen in Table 12.

Table 12. Usage of AI assistant and statistics about students' grades in test 1

AI usage Never Once Couple times Every

other week

Almost

every week

Every

week

Student Average 15.29 15.42 13.83 13.47 12.75 14.73

Amount of

Students

46 13 72 40 45 8

Standard

Deviation

0.96 0.88 3.86 3.56 3.87 0.98

Standard Error 0.14 0.24 0.45 0.56 0.58 0.34

Group I II

Group Average 14.5 13.23

Amount of

Students

131 (58.5%) 93 (41.5%)

Group Standard

Deviation

3.01 3.60

As can be seen from Table 12, the more students used AI assistants during the course, the lower

their score for test 1 was. The sole exception was those who used AI assistants every week with

them having a higher average than those who used them a couple of times or more. To see

whether there was a statistical difference between those who used AI assistants rarely and those

who used them regularly, the students were divided into two groups based on their AI usage

with one group consisting of students who either never used AI assistants, only used them once

or a couple of times. The second group consists of students who use them biweekly or more

often. To confirm whether the two group results follow a normal distribution the Shapiro-Wilk

test was used. Neither of the groups followed a normal distribution as the results were for group

45

1 (W = 0.494, p < 0.0001) and for group 2 (W = 0.726, p < 0.0001). To see if this difference

was statistically significant, the Mann-Whitney U-test was used to compare the averages of the

two groups. The results were statistically significant (U = 8083.0, p < 0.0001), meaning that

those who used AI assistants less performed better than those who used them regularly.

46

5 Discussion

The main goal of this thesis was to analyse the proficiency of different AI chatbots in an

introductory object-oriented programming course, to compare their results with students taking

the course and to gather students' perceptions and usage regarding AI assistants. This section

analyses the results to answer the stated research questions.

5.1 AI Comparison to Students

One of the goals was to analyse how different chatbots perform in the course “Object-Oriented

Programming” in comparison to students. To answer this question ChatGPT and Copilot were

given the full text of the tests and tasks and the output was graded. The texts were given in

Estonian to additionally see whether the AI chatbots are capable of understanding it.

When looking at test 1, then both the AI chatbots outperformed the student average. However,

this was due to the fact that non-compiling solutions resulted in an automatic zero which

brought the student average down. When looking at quartiles, then ChatGPT was always below

the bottom quartile, indicating that 75% of the students are better than it. Copilot fared better

with it scoring higher than the median student on all three versions of the test and on one test

it scored in the upper quartile. These results seem in line with Bordt and Luxburg's [13] findings

who found that ChatGPT-3.5 was able to pass a course whilst performing worse than the

students whilst ChatGPT-4 performed on par with students. As Copilot is based on GPT-4

while ChatGPT-3.5 was used for ChatGPT analysis then the results indicate a similarity. These

findings do seem to differ from other studies [5-7] that found that different AI tools (ChatGPT,

Github Codex) placed above the upper quartile in introductory computer science courses when

compared to students. It is unclear what could be the cause, one possible reason is the fact that

the tasks were in English when the different AI tools placed above the upper quartile whilst

here the tasks were in Estonian. This would be in line with research conducted on ChatGPT

capability in Czech information security courses [23] where students outperformed ChatGPT

in three of the evaluated courses whilst AI outperformed students in one of the courses,

indicating a variance similar to what was present in this course regarding Copilot and ChatGPT.

When looking at test 2, the AI results differed when looking at the student average with

ChatGPT scoring worse and Copilot scoring better. Looking at AI placements regarding

students, ChatGPT was in the bottom 25% for two of the test variants and in the bottom half

for the third test variant. Copilot performed better with it scoring higher than the median for

two of the variants and being below the median score for one of the variants. Overall, these

47

results seem to continue the trend seen in test 1 where ChatGPT-3.5 is passing the test but

scoring worse than the students whilst Copilot is performing about on par with them. Still, it is

noticeable that the AI chatbots performed worse comparatively than in test 1 when looking at

their placements compared to students. These findings are in line with some of the previous

research [6-7] that found that AI assistants are more capable in introductory topics, but perform

worse when more complexity is introduced. This however contradicts other research that found

that there was no difference in AI chatbot performance when comparing introductory and

intermediate results [27].

Exam results confirm the previous findings with ChatGPT performing worse than the student

average while Copilot outperformed it. However, when looking at the median score then both

of the AI assistants performed worse than the median student with ChatGPT being below the

lower quartile. However, the difference in averages is somewhat the result of the fact that AI

assistants were incapable of parsing one question as the data was given as a picture which

resulted in an automatic loss of 2 points. These input parsing problems are similar to problems

with interpreting UML diagrams [30-31].

An additional interesting facet is AI performing comparatively better on tests than in the exam.

The test tasks consist of creating a program with multiple classes and functionalities based on

a long textual description whilst the exam questions are shorter with having to decide on

smaller code snippets. It would seem more probable that longer texts contain more possible

mistakes, but here the AI assistants struggled relatively more with shorter questions. These

findings are somewhat similar to previous research [23] which found that students performed

better at completing small code snippets than AI chatbots, but AI proficiency in creating larger

programmes based on longer textual descriptions is interesting.

All in all, ChatGPT and Copilot are capable of passing a course in an introductory object-

oriented programming course in Estonian. However, ChatGPT consistently lagged behind the

student average, especially evident in its placing below the lower quartile multiple times in the

tests and in the exam. Copilot exhibited a more competitive performance, often surpassing the

median and once the upper quartile. The chatbots performed better at introductory topics with

more variance when more complex subjects were introduced. These findings are similar to

previous research findings which have found that depending on the AI used the results differ

and ChatGPT is often passing the courses, but not surpassing the average students with the

performance dependent on the complexity of the topic. Interestingly, AI assistants are more

48

capable of solving larger programming tasks based on a long textual description than shorter

exam tasks with shorter descriptions.

5.2 Common AI Mistakes

The second research question focused on the common mistakes that AI chatbots make whilst

solving the tasks of the course. When grading the solutions provided by ChatGPT and Copilot

the mistakes were written down to see whether there are repeating mistakes.

When looking at test 1, the most prevalent mistake was not specifying the encoding of the files.

This mistake was present in all ChatGPT solutions and once in Copilot’s solutions. This

requirement was mentioned in the text as a fact that files are in a specific encoding with the

assumption being that reading data from files uses that encoding. Additionally, Copilot

displayed null values in a toString method once and ChatGPT had problems reading data from

a file and used wrong method names once. Another repeating mistake for ChatGPT was not

making a superclass method abstract and defining subclass method logic in it. It worked

correctly in the context of the program but went against the provided specification.

Test 2 had more mistakes, with both ChatGPT and Copilot not making some methods private.

However, this requirement was written in Estonian as the methods should not be callable

outside of the class, which could be a reason for the AI assistants not understanding it correctly

as they did not make such mistakes in test 1. An additional repeating mistake was sorting in

the wrong direction. However, this was specified in Estonian as “non-decreasing” which could

create confusion. Copilot had problems with generating get and set methods, whilst ChatGPT

had many problems when the test task required it to use Queue data structures and confused

the way the task was supposed to work.

Interestingly enough, whilst there were similar mistakes for ChatGPT and Copilot for the same

tests, there were no repeating mistakes when comparing tests 1 and 2. This could stem from

the tests focusing on different topics and reducing the possibility of similar mistakes happening.

When looking at previous research on object-oriented programming [32], a common problem

was the prevalence of compilation errors and needing multiple prompts to generate all the

necessary functions. Whilst ChatGPT and Copilot did not have compilation problems, there

was the problem of not generating some get and set methods.

The exam covered all of the topics of the course, meaning that the AI assistants had to solve

the tasks on a variety of topics. A common mistake that was not related to topics, but to the

presentation of the question was the fact that AI did not choose its answer from the multiple

49

choices given. Often the AI assistants chose or gave one of the correct options, but did not list

all of them. Both ChatGPT and Copilot had problems with String comparison, making mistakes

based on case and other String methods. ChatGPT specifically had problems with

comprehending the values saved in variables. Additionally, ChatGPT had problems with lists

as it also made mistakes regarding them being reference-based, with their indexes and sort

methods.

Interfaces, abstract classes and class hierarchy were topics that were all intertwined in the exam

as they have similarities and differences. Abstract methods and their implementation in

subclasses was a topic in which ChatGPT made mistakes in the tests and both AI chatbots had

problems regarding them in the exam as well, indicating overall that they fully do not

comprehend it. An additional problem was failing to understand how method implementations

are searched starting from subclasses and moving upwards with additional problems failing to

realise how superclass constructors are called in subclasses. ChatGPT and Copilot also had

problems when to use the keywords abstract, extends and implements and which access

keywords can be used in interfaces and abstract classes. Collectively, these mistakes illustrate

that when having to deal with less common problems and more edge-cases then AI assistants

make more mistakes.

The graphics questions had the problem of the AI assistants being unable to parse image data,

similar to the problems described in previous research regarding UML diagrams [30-31]. On

the topic of events, the AI assistants usually understood event logic correctly but made

previously described mistakes regarding String comparison and logical comparison, with them

even confusing variable values as mentioned previously. Regarding data streams, both

ChatGPT and Copilot had problems with how methods readInt and writeUTF interact with

each other with additional problems of comprehending input file size. Both AI assistants made

similar mistakes in exception handling where they just did not take into consideration some

print statements, which is not a problem with exception handling. However, both of the AIs

made the mistake of assuming that an exception thrown in a catch block would be caught. Data

structures were another topic where the AI assistants made mistakes. The stack data structure

was the only topic in which the AI assistants always made mistakes. ChatGPT specifically had

problems with Queues, which was similar to problems seen in test 2, which seems to indicate

a problem distinct to it.

The exam ended with a longer question which necessitated knowledge regarding all of the

topics covered in the course and required giving explanations for the answers. The mistakes

50

made here were similar to those made in previous questions, with the AI having problems with

how interfaces, abstract classes and class hierarchy interact with each other and when to add

access modifiers. Additionally, here the AI ran into the problem of only proposing one possible

solution, not all of them as was required in the task. However, when their answers were correct,

then their given explanations were also sufficient. This seems to align with previous research

[23], which found that AI was more capable than students in giving explanations for questions.

All in all, both ChatGPT and Copilot made mistakes whilst solving the tasks. One common

problem was not comprehending what was asked of them, with not choosing the answer from

the given answer list. An additional problem was regarding answer generation, when asked for

all possible solutions they often just gave one correct answer, not all possible ones. Many times

it seemed that AI was not as capable of parsing hidden intent in tasks, as it failed to specify

encoding or use keyword private for methods that need not be accessed outside of their class.

Some of those mistakes could stem from the tasks being in Estonian, as some of the sorting

direction mistakes could come from misunderstanding the text. Similarly to previous research,

there was a problem of not just generating all of the methods that were mentioned in the text.

When looking at specific topics, there were many mistakes made regarding abstract classes,

interfaces and class hierarchy. An additional common problem was the stack data structure and

ChatGPT specifically had problems with queues. Still, both of the AI assistants were in general

quite capable of solving the different tasks, giving explanations and proposing at least one

correct solution.

5.3 Students Usage and Perception Regarding AI Assistants

The third research question focused on how much and in what ways students use various

artificial intelligence-assisted methods during the course. Data relating to this question was

gathered with a questionnaire that the students taking this course could answer for an additional

point.

79.8% of the surveyed students had used them, which is similar to a survey conducted in Japan

[46], which found that 78.8% of the students surveyed had used ChatGPT for programming

exercises. This seems to indicate that about 4/5 students try using AI assistants for

programming.

The most popular answer among non-users when inquired about reasons for not using AI

assistants was “I want to learn the material myself” with 68% of them choosing it. This overall

seems to align with a study conducted in Turkey [38] which found that students perceived the

51

biggest negative to using AI assistants to be programmer laziness. Hence it makes sense that

the biggest reason not to use them would be the desire to learn the materials themselves. The

least popular answer being “I am afraid of plagiarism” with only 15% of the non-users picking

it indicates that students are not afraid of plagiarism or they might not perceive using AI

assistants as plagiarism. In the open feedback section, a common reason given for not using AI

assistants was that googling information was actually quicker, which indicates that previous

bad experiences have limited students’ willingness to use AI. This aligns with previous findings

[36-37] which found that positive experiences and good performance help promote the usage

of AI, meaning inversely that negative experiences inhibit the adoption of AI chatbot usage

into the workflow.

The students who had used AI assistants were asked about the frequency of use. The students

were roughly divided in half with 47% of them having used AI assistants only a couple of times

and 53% of them using them every other week or more often. However the number of students

using AI assistants every week is small (3.9%) when taking into account all users and non-

users. This is good as it reduces the likelihood of students becoming solely dependent on them

for programming and still personally learning the material. Overall, the users found the AI

assistants to generally be helpful as about 72% of the students chose a positive rating when

having to describe how much the AI assistant helped them.

When looking at when and how students used AI assistants, then the most popular answers

were related to coding. Students used AI assistants the most to solve homework tasks and to

understand code examples and the most popular use case was for finding mistakes in code.

These findings are similar to Sun et al. [12] who found that students mostly used AI assistants

for debugging and coding and less for theory and task decomposition. Additionally, this aligns

with previous research [33-34], that proposed the usage of AI chatbots for getting explanations

about existing code snippets. A surprise was the fact that not many students used AI assistants

for generating example solutions as it was the least popular choice, which might indicate that

students are not comfortable with generating solutions with AI chatbots as they might feel it

veers into plagiarism or that they might not learn the material. Some interesting uses for AI

were mentioned in the open-ended question, where AI chatbots were used to generate test data

for tasks and AI chatbots were used to translate code from Python to Java indicating future

research possibilities.

When asked about what students liked about AI, the most common answers were related to

their speed and availability, understanding of Estonian and the possibility of repeating

52

questions. An interesting contrast was that some who had used it felt that using AI chatbots

was quicker than googling, which directly contradicts the feelings of some of the non-users.

These answers are mostly in line with previous research [33-34, 38], which also mentioned

speed, availability and AI’s commenting skill as the main positives perceived by students. The

most often mentioned negatives were AI making mistakes or misunderstanding the input, with

AI sometimes answering off-topic or changing the code snippet which was given to them.

Additionally, occupational anxiety was mentioned, with feelings of AI limiting the amount of

different solutions tried by students. These reasons align with previous research [38], which

also found that mistakes and occupational anxiety were some of the biggest perceived

negatives. What was interesting, was that nobody mentioned the plagiarism and academic

integrity aspect, which seems to continue to indicate that students are not thinking about that

aspect.

Whilst some mentioned trying fewer solutions as a negative about using AI chatbots, generally

the students disagreed with the sentiment that AI chatbots made them try less different solutions

to different tasks. The majority disagreed with statements “I have tried fewer solutions due to

AI assistants” and “Due to AI assistants I did not try as much whilst solving homeworks and

other graded tasks” as only 14% and 17% agreed or somewhat agreed with the respective

statements. Overall this seems to indicate that the average student was not negatively affected

by the possibility of using AI assistants and still tried different solutions to learn and study the

course material. This is reinforced by the fact that the majority of students (90%) disagree with

the statement “I did not work through the course materials, but used an AI assistant” and only

1.6% somewhat agree with this statement.

When looking at how the existence of AI impacts students' interactions with lecturers and

teaching assistants, there was no clear majority when indicating agreement or disagreement

with the statement “I asked for help less from teaching assistants due to AI assistants“.

However, as there were 81 students (44%) that agreed with the statement at least somewhat, it

indicates a possibility of easing teaching assistant and lecturer workload by propagating the

usage of AI chatbots for answering questions initially and following up with the teaching

assistants and lecturers when it is necessary. Overall, this shows the need for teaching assistants

and lecturers still as there are students who feel that AI chatbots are unable to replace humans.

Some previous research [15] has found that introducing a supplementary chatbot to a course

increased students’ motivation to study and engage with the material. However, when the

students taking this specific course had to indicate their agreement with the statement “The

53

existence of AI assistants motivated me to solve more homework tasks”, the most popular

answer was the neutral one. This seems to indicate that the existence of AI assistants does not

really have that strong of an impact on student motivation. However, the difference in results

could stem from the fact that this course had no specialised AI assistant whilst the previous

research was focused on a chatbot trained to answer questions regarding the specific course.

Still, those who agreed might have gotten help for solving their homework tasks from AI

chatbots indicating they could help to motivate some students, but clearly not all.

Research regarding how AI chatbot usage impacts students’ skills is limited and contradictory.

Some [11] have found that students who used AI chatbots improved their computational

thinking skills and programming self-efficacy more. However, others [12] have found no

differences between users and non-users. In this course, those who had used AI assistants rarely

or never had a higher average score in test 1 than those who had used them regularly with the

difference being statistically significant. However, it is unclear whether this stems from the

fact that using chatbots inhibited learning or that weaker students use supplementary study

materials more often, as in a similar course it was found that students with a lower grade used

supplementary materials more often [47].

All in all, the majority of students have used AI assistants, primarily for coding-related tasks

such as debugging and understanding code examples. However, only a tiny minority use AI

assistants every week, indicating that currently, the students have not developed a dependency

on them. While some expressed concerns about chatbots potentially limiting their exploration

of different solutions, overall it seems that AI has not reduced the amount of various solutions

the students try and helps them when studying the materials.

54

Conclusions

The aim of this master's thesis was to understand how proficient different AI-based chatbots

are in solving tasks in the course “Object-Oriented Programming”, what are the common

mistakes and how students use these tools. To achieve this, ChatGPT and Copilot were made

to solve tests and exams and their results were compared to students’ results. Additionally, data

regarding students’ usage of AI chatbots was gathered with a questionnaire with a focus on

frequency of use, ways of use and impact on learning.

To gauge the proficiency of ChatGPT and Copilot, they were given task descriptions of the

multiple variants of the tests and multiple exam questions. Their answers were evaluated in

accordance with the grading guide and their scores were compared to students’ scores.

ChatGPT often performed worse than the median score and multiple times it placed below the

bottom quartile. Copilot fared better, with it performing about on par with the median students.

The AI chatbots performed better in introductory topics with more variance when more difficult

themes were introduced. Additionally, they performed better in the longer test tasks than the

shorter exam tasks.

One of the common mistakes of the AI chatbots was not giving all of the possible solutions

when asked. Additionally, they struggled with understanding requirements that were written

more as an implication than a clear statement. When looking at topics, both of the chatbots

made mistakes when interfaces, abstraction and class inheritance were intertwined.

Additionally, they were incapable of solving tasks that had some of the information given as a

picture. The only topic in which the chatbots were always wrong was the data structure Stack.

Still, both of the AI assistants were quite capable of solving the different tasks, giving

explanations and proposing at least one correct solution.

About 80% of the students had used an AI chatbot for solving tasks related to the course, but

only a small minority (3.9%) used them every week. The students mainly used them for tasks

related to coding and valued the AI assistants' speed and availability and disliked the mistakes

AI made and how AI misunderstood their input. It was shown that students who used AI

assistants more frequently scored lower on test 1 compared to the students who used AI

assistants less. Still, the students did not feel that using AI tools made them not learn the

material or restricted their exploration of various solutions.

This thesis gave an overview of ChatGPT and Copilot proficiency in an introductory object-

oriented course and compared their results to students. Additionally, students' perceptions of

55

AI chatbots were gathered. These findings are valuable to the conductors of this course and

other similar courses as they give an insight into how these AI chatbots compare to students,

what common mistakes these AI assistants make and how students perceive, use and feel about

them to help make changes to computer science courses and education.

A limitation of this thesis was the fact that it focused only on one course and one year due to

the timescale of AI chatbots becoming prevalent. This makes future research on more courses

and more years an interesting prospect. This thesis mainly focused on AI proficiency and

students’ usage of them, but the AI tools are also available to lecturers and how to combine

teaching and grading automation with AI assistants is another way to approach the topic, which

could lead to some interesting discoveries. As more AI assistants are developed and existing

ones are continuously updated, additional research on the changes in proficiency in relation to

updates and upgrades is another interesting research avenue.

56

References

[1] Introducing ChatGPT. https://openai.com/blog/chatgpt (04.04.2024)

[2] Hu, K. ChatGPT Sets Record for Fastest-Growing User Base - analyst note. 2023.

https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-

note-2023-02-01/ (04.04.2024)

[3] Vogels, E. A. A Majority of Americans Have Heard of ChatGPT, but Few Have Tried It

Themselves. 2023. https://www.pewresearch.org/short-reads/2023/05/24/a-majority-of-

americans-have-heard-of-chatgpt-but-few-have-tried-it-themselves/ (04.04.2024)

[4] Denny, P., Prather, J., Becker, B., A., Finnie-Ansley, J., Hellas, A., Leinonen J., Luxton-

Reilly, A., Reeves, B., N., Santos, E., A., Sarsa, S. Computing Education in the Era of

Generative AI. Communications of the ACM, Vol. 67, No. 2, pp. 56–67, 2024.

https://doi.org/10.1145/3624720

[5] Finnie-Ansley, J., Denny, P., Becker, B., Luxton-Reilly, A., Prather, J. The Robots Are

Coming: Exploring the Implications of OpenAI Codex on Introductory Programming. In

Proceedings of the 24th Australasian Computing Education Conference, pp. 10–19, 2022.

https://doi.org/10.1145/3511861.3511863

[6] Finnie-Ansley, J., Denny, P., Luxton-Reilly, A., Santos, E., Prather, J., Becker, B. My AI

Wants to Know if This Will Be on the Exam: Testing OpenAI’s Codex on CS2 Programming

Exercises. In Proceedings of the 25th Australasian Computing Education Conference, pp. 97–

104, 2023. https://doi.org/10.1145/3576123.3576134

[7] Richards, M., Waugh, K., Slaymaker, M., Petre, M., Woodthorpe, J., Gooch, D. Bob or

Bot: Exploring ChatGPT's Answers to University Computer Science Assessment. ACM

Transactions on Computing Education, Vol. 24, No. 5, pp. 1–32, 2024.

https://doi.org/10.1145/3633287

[8] Denny, P., Khosravi, H., Hellas, A., Leinonen, J., Sarsa, S. Can We Trust AI-Generated

Educational Content? Comparative Analysis of Human and AI-Generated Learning Resources,

2023. https://doi.org/10.48550/arXiv.2306.10509

[9] Kiesler, N., Lohr, D., Keuning, H. Exploring the Potential of Large Language Models to

Generate Formative Programming Feedback. In 2023 IEEE Frontiers in Education Conference

(FIE), pp. 1–5, 2023. https://doi.org/10.48550/arXiv.2309.00029

https://openai.com/blog/chatgpt
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.pewresearch.org/short-reads/2023/05/24/a-majority-of-americans-have-heard-of-chatgpt-but-few-have-tried-it-themselves/
https://www.pewresearch.org/short-reads/2023/05/24/a-majority-of-americans-have-heard-of-chatgpt-but-few-have-tried-it-themselves/
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3633287
https://doi.org/10.48550/arXiv.2306.10509
https://doi.org/10.48550/arXiv.2309.00029

57

[10] Jukiewicz, M. The Future of Grading Programming Assignments in Education: The Role

of ChatGPT in Automating the Assessment and Feedback Process. Thinking Skills and

Creativity, Vol. 52, 2024. https://doi.org/10.1016/j.tsc.2024.101522

[11] Yilmaz, R., Yilmaz, F., G., K. The Effect of Generative Artificial Intelligence (AI)-based

Tool Use on Students' Computational Thinking Skills, Programming Self-efficacy and

Motivation. Computers and Education: Artificial Intelligence, Vol. 4, 2023.

https://doi.org/10.1016/j.caeai.2023.100147

[12] Sun, D., Boudouaia, A., Zhu, C., Li, Y. Would ChatGPT-facilitated Programming Mode

Impact College Students’ Programming Behaviors, Performances, and Perceptions? An

Empirical Study. International Journal of Educational Technology in Higher Education, Vol.

21, No. 14, 2024. https://doi.org/10.1186/s41239-024-00446-5

[13] Bordt, S., Luxburg, U. ChatGPT Participates in a Computer Science Exam. 2023.

https://doi.org/10.48550/arXiv.2303.09461

[14] Shoufan, A. Can Students without Prior Knowledge Use ChatGPT to Answer Test

Questions? An Empirical Study. ACM Transactions on Computing Education, Vol. 23, No. 45,

pp. 1–29, 2023. https://doi.org/10.1145/3628162

[15] Ting-Ting Wu, T-T., Li, P.H., Huang, C.-N., Huang., Y.-M. Promoting Self-Regulation

Progress and Knowledge Construction in Blended Learning via ChatGPT-Based Learning Aid.

Journal of Educational Computing Research, Vol. 61, No. 8, pp. 3–31, 2024.

https://doi.org/10.1177/07356331231191125

[16] Yenduri, G., Murugan, R., Govardanan, C., S, Supriya, Y, Srivastava, G., Maddikunta, P.,

K., R., Deepti Raj, G., Jhaveri, R., H., Prabadevi, B., Wang, W., Vasilakos, A., Gadekallu, T.,

R. Generative Pre-trained Transformer: A Comprehensive Review on Enabling Technologies,

Potential Applications, Emerging Challenges, and Future Directions. IEEE Access, Vol. 12,

pp. 54608–54649, 2023. https://doi.org/10.48550/arXiv.2305.10435

[17] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L.,

Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, pp. 6000–6010, 2017.

https://doi.org/10.48550/arXiv.1706.03762

[18] Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q., L., Tang, Y. A Brief Overview of

ChatGPT: The History, Status Quo and Potential Future Development. IEEE/CAA Journal of

https://doi.org/10.1016/j.tsc.2024.101522
https://doi.org/10.1016/j.caeai.2023.100147
https://doi.org/10.1186/s41239-024-00446-5
https://doi.org/10.48550/arXiv.2303.09461
https://doi.org/10.1145/3628162
https://doi.org/10.1177/07356331231191125
https://doi.org/10.48550/arXiv.2305.10435
https://doi.org/10.48550/arXiv.1706.03762

58

Automatica Sinica, Vol. 10, No. 5, pp. 1122–1136, 2023.

https://doi.org/10.1109/JAS.2023.123618

[19] Mehdi, Y. Reinventing search with a new AI-powered Microsoft Bing and Edge, your

copilot for the web. 2023. https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-

with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/ (24.04.2024)

[20] Microsoft Copilot Pro. https://www.microsoft.com/en-us/store/b/copilotpro (24.04.2024)

[21] Chen, E., Huang, R., Chen, H.-S., Tseng, Y.-H., Li, L.-Y. GPTutor: A ChatGPT-Powered

Programming Tool for Code Explanation. Communications in Computer and Information

Science, Vol. 1831, pp. 321–327, 2023. https://doi.org/10.1007/978-3-031-36336-8_50

[22] Wang, F., H. Efficient Generation of Text Feedback in Object-oriented Programming

Education Using Cached Performer Revision. Machine Learning with Applications, Vol. 13,

No. 34, 2023. https://doi.org/10.1016/j.mlwa.2023.100481

[23] Malinka, K., Peresíni, M., Firc, A., Hujnák, O., Janus, F. On the Educational Impact of

ChatGPT: Is Artificial Intelligence Ready to Obtain a University Degree? Proceedings of the

2023 Conference on Innovation and Technology in Computer Science Education, pp. 47–53,

2023. https://doi.org/10.1145/3587102.3588827

[24] Geerling, W., Mateer, G., D., Wooten, J., Damodaran, N. ChatGPT Has Mastered the

Principles of Economics: Now What?, SSRN Electronic Journal, 2023.

https://doi.org/10.2139/ssrn.4356034

[25] Bommarito, M., Katz, D., M. GPT Takes the Bar Exam. 2022.

https://doi.org/10.48550/ARXIV.2212.14402

[26] Lee, H. The Rise of ChatGPT: Exploring its Potential in Medical Education. Anatomical

sciences education, 2023. https://doi.org/10.1002/ase.2270

[27] Savelka, J., Agarwal, A., Bogart, C., Song, Y., Sakr, M. Can Generative Pre-trained

Transformers (GPT) Pass Assessments in Higher Education Programming Courses?. In

Proceedings of the 2023 Conference on Innovation and Technology in Computer Science

Education, pp. 117–123, 2023. https://doi.org/10.1145/3587102.3588792

[28] Joshi, I., Budhiraja, R,, Dev, H,, Kadia, J., Ataullah, M., Mitra, S., Akolekar, H., Kumar,

D. ChatGPT in the Classroom: An Analysis of Its Strengths and Weaknesses for Solving

Undergraduate Computer Science Questions. In Proceedings of the 55th ACM Technical

https://doi.org/10.1109/JAS.2023.123618
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://www.microsoft.com/en-us/store/b/copilotpro
https://doi.org/10.1007/978-3-031-36336-8_50
https://doi.org/10.1016/j.mlwa.2023.100481
https://doi.org/10.1145/3587102.3588827
https://doi.org/10.2139/ssrn.4356034
https://doi.org/10.48550/ARXIV.2212.14402
https://doi.org/10.1002/ase.2270
https://doi.org/10.1145/3587102.3588792

59

Symposium on Computer Science Education, pp. 625–631. 2024.

https://doi.org/10.1145/3626252.3630803

[29] Kadir, M., Rahman, T., Barman, S., Al-Amin, M. Exploring the Competency of ChatGPT

in Solving Competitive Programming Challenges. International Journal of Advanced Trends

in Computer Science and Engineering, Vol 13, No. 1, pp. 13–23, 2024.

https://doi.org/10.30534/ijatcse/2024/031312024

[30] Ouh, E., L., Gan, B., K., S., Jin Shim, K., Wlodkowski, S. ChatGPT, Can You Generate

Solutions for my Coding Exercises? An Evaluation on its Effectiveness in an Undergraduate

Java Programming Course. In Proceedings of the 2023 Conference on Innovation and

Technology in Computer Science Education, pp. 54–60, 2023.

https://doi.org/10.1145/3587102.3588794

[31] Cámara, J., Troya, J., Burgueño, L., Vallecillo, A. On the Assessment of Generative AI in

Modeling Tasks: An Experience Report with ChatGPT and UML. Software and Systems

Modeling (SoSyM), Vol 22, No. 3, pp. 781–793, 2023.

https://doi.org/10.1007/s10270-023-01105-5

[32] Cipriano, B., P., Alves, P. LLMs Still Can’t Avoid Instanceof: An Investigation Into GPT-

3.5, GPT-4 and Bard’s Capacity to Handle Object-Oriented Programming Assignments. 2024.

https://doi.org/10.48550/arXiv.2403.06254

[33] Becker, B., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., Santos, E.

Programming Is Hard - Or at Least It Used to Be: Educational Opportunities and Challenges

of AI Code Generation. In Proceedings of the 54th ACM Technical Symposium on Computer

Science Education, pp. 500–506, 2023. https://doi.org/10.1145/3545945.3569759

[34] Sarsa, S., Denny, P., Hellas, A., Leinonen, J. Automatic Generation of Programming

Exercises and Code Explanations Using Large Language Models. In Proceedings of the 2022

ACM Conference on International Computing Education Research, Vol. 1, pp. 27–43, 2022.

https://doi.org/10.1145/3501385.3543957

[35] Jury, B., Lorusso, A., Leinonen, J., Denny, P., Luxton-Reilly, A. Evaluating LLM-

generated Worked Examples in an Introductory Programming Course. In Proceedings of the

26th Australasian Computing Education Conference, pp. 77–86, 2024.

https://doi.org/10.1145/3636243.3636252

https://doi.org/10.1145/3626252.3630803
https://doi.org/10.30534/ijatcse/2024/031312024
https://doi.org/10.1145/3587102.3588794
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.48550/arXiv.2403.06254
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3636243.3636252

60

[36] Strzelecki, A. To Use or Not to Use ChatGPT in Higher Education? A Study of Students’

Acceptance and Use of Technology. Interactive Learning Environments, pp. 1–14, 2023.

https://doi.org/10.1080/10494820.2023.2209881

[37] Lai, C., Y., Cheung, K., Y., Chan, C., S. Exploring the Role of Intrinsic Motivation in

ChatGPT Adoption to Support Active Learning: An Extension of The Technology Acceptance

Model. Computers and Education: Artificial Intelligence, Vol. 5, 2023.

https://doi.org/10.1016/j.caeai.2023.100178

[38] Yilmaz, R., Yilmaz, F., G., K. Augmented Intelligence in Programming Learning:

Examining Student Views on the Use of ChatGPT for Programming Learning. Computers in

Human Behavior: Artificial Humans, Vol. 1, No. 2, 2023.

https://doi.org/10.1016/j.chbah.2023.100005

[39] Gabbrielli, M., Martini, S. Object-Oriented Paradigm. In: Programming Languages:

Principles and Paradigms. Undergraduate Topics in Computer Science. Second Edition. Cham:

Springer Nature. 2023.

[40] TIOBE index. https://www.tiobe.com/tiobe-index/ (15.03.2024)

[41] Capretz, L. A Brief History of the Object-oriented Approach. ACM SIGSOFT Software

Engineering Notes, Vol. 28, No. 2, 2003. https://doi.org/10.1145/638750.638778

[42] Arnold, K., Gosling, J. The Java Programming Language. Massachusetts: Addison-

Wesley, 1996.

[43] OpenJDK webpage. https://openjdk.org/projects/jdk/21/ (15.03.2024)

[44] University of Tartu Study Infosystem. https://ois2.ut.ee (15.03.2024)

[45] Object-oriented course home webpage.

https://courses.cs.ut.ee/2023/OOP/spring/Main/KursuseKorraldus (15.03.2024)

[46] Rahman M., M., Watanobe Y. ChatGPT for Education and Research: Opportunities,

Threats, and Strategies. Applied Sciences, Vol. 13, No. 9, 2023.

https://doi.org/10.3390/app13095783

[47] Lepp, M., Kaimre, J. Providing Additional Support in an Introductory Programming

Course. In 2022 IEEE Global Engineering Education Conference (EDUCON), pp. 210–216,

2022. https://doi.org/10.1109/EDUCON52537.2022.9766661

https://doi.org/10.1080/10494820.2023.2209881
https://doi.org/10.1016/j.caeai.2023.100178
https://doi.org/10.1016/j.chbah.2023.100005
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/638750.638778
https://openjdk.org/projects/jdk/21/
https://ois2.ut.ee/
https://courses.cs.ut.ee/2023/OOP/spring/Main/KursuseKorraldus
https://doi.org/10.3390/app13095783
https://doi.org/10.1109/EDUCON52537.2022.9766661

61

Appendix

I. Test sample task

This section contains an example of a test task.

Kontrolltöö 1 aines Objektorienteeritud programmeerimine

Automaattestimise võimaldamiseks peavad kõik klassid asuma kindlas paketis ja kõik Java
failid peavad olema kindla kodeeringuga. Antud juhul lepime kokku, et klassid asuvad
vaikepaketis (st failide alguses ei ole package direktiivi) ja failide kodeering on UTF-8.

Raamatupoes müüakse nii raamatuid (mõned nendest on õppevahendid) kui ka ajakirju.
Eesti käibemaksuseaduse järgi on erinevate toodete jaoks erinev käibemaksumäär:
ajakirjade jaoks 5%, raamatute jaoks 9%, aga õppevahendeid käibemaksuga ei maksustata.
Nimekiri toodetest on salvestatud tekstifaili järgmiselt:

raamat;3239363520;O. Luts;Kevade;4.45

ajakiri;(01)0123128TEC-IT;Tehnikamaailm;2023-1;7.60
raamat;06-000-00-0034;P. Mancini;Õpime lõbusalt!

Tehnoloogia;12;õppevahend
raamat;9789916164358;N. d’Estienne d’Orves;Eiffel;22.75

ajakiri;123423-IT;Imeline teadus;2023-1;11.90

Iga rida algab toote tüübiga. Tüübile järgneb tootekood. Kui tegu on raamatuga, siis
järgnevad tootekoodile raamatu esimene autor, raamatu pealkiri ja hind ilma käibemaksuta.
Kui tegu on õppevahendiga, siis on lõpus vastav kommentaar. Kui tegu on ajakirjaga, siis
järgnevad tootekoodile ajakirja pealkiri, aasta ja number eraldatud kriipsuga ning hind
käibemaksuta. Eraldajaks on semikoolon.

Kontrolltöö seisneb toodete ja raamatupoe tööd käsitleva programmi koostamises.
Programm peab vastama alltoodud nõuetele (isegi kui need kummalised tunduvad).
Programm peab sisaldama klasse Toode, Ajakiri, Raamat, Klient ning peaklassi.
Peaklassis loetakse sisse toodete andmed ning kliendid ostavad raamatuid ja ajakirju.
Peaklassis testitakse ka erinevate isendimeetodite tööd. Kõikide klasside kõik isendiväljad
peavad olema privaatsed.

1. (3 p) Abstraktses klassis Toode peavad olema privaatsed isendiväljad tootekoodi

(String), pealkirja (String) ja hinna (double) jaoks.
1. Klassis peab olema kolme parameetriga konstruktor koodi, pealkirja ja hinna

määramiseks. Klass peab hoolitsema, et hiljem koodi muuta ei saaks.
2. Vajadusel võib teha isendiväljade jaoks get- ja set-meetodid.
3. Klassis peab olema abstraktne double-tüüpi parameetriteta meetod

hindMaksuga, mis tagastab hinna käibemaksuga.
4. Klassis peab olema ka meetod toString toote info mõistlikult tekstina

esitamiseks, tuues välja tootekoodi, pealkirja ja hinna käibemaksuga.

62

5. Klass Toode peab realiseerima liidese Comparable<Toode>, kusjuures

compareTo meetod realiseeritakse nii, et võrdlemine toimub käibemaksuga hinna
alusel.

2. (2 p) Klass Ajakiri on klassi Toode alamklass. Ülemklassis olemasolevaid isendivälju
siin uuesti mitte kirjeldada. Lisaks peavad olema privaatsed isendiväljad ajakirja aasta (int)
ja numbri (int) jaoks.

1. Klassis peab olema viie parameetriga konstruktor, mille abil saab määrata ajakirja
koodi, pealkirja, hinna, aasta ja numbri (nimetatud järjekorras).

2. Klassis peab olema meetod hindMaksuga, mis käibemaksuga hinna arvutamisel
arvestab ajakirjade käibemaksumääraga (5%). Vihje: hind käibemaksuta * 1.05.

3. Klassis peab olema ka meetod toString ajakirja info mõistlikult tekstina
esitamiseks, mille ülekatmisel on rakendatud ülemklassi meetodit toString,

lisades ajakirja aasta ja numbri.

3. (2 p) Klass Raamat on klassi Toode alamklass. Ülemklassis olemasolevaid isendivälju siin
uuesti mitte kirjeldada. Lisaks peavad olema privaatsed isendiväljad raamatu autori
(String) ja õppevahendi staatuse (boolean; true, kui raamat on õppevahend) jaoks.

1. Klassis peab olema viie parameetriga konstruktor, mille abil saab määrata ajakirja
koodi, pealkirja, hinna, autori ja õppevahendi staatuse (nimetatud järjekorras).

2. Klassis peab olema meetod hindMaksuga, mis käibemaksuga hinna arvutamisel

arvestab sellega, kas raamat on õppevahend (siis käibemaksuga ei maksustata) ning
raamatute käibemaksumääraga (9%).

3. Klassis peab olema ka meetod toString raamatu info mõistlikult tekstina
esitamiseks, mille ülekatmisel on rakendatud ülemklassi meetodit toString,

lisades raamatu autori ja teate, kas raamat on õppevahend või mitte.

4. (4 p) Klassis Klient peavad olema privaatsed isendiväljad kliendi nime (String) ja

ostetud toodete nimekirja (List<Toode>) jaoks.
1. Klassis peab olema ühe parameetriga konstruktor kliendi nime määramiseks.
2. Äsjaloodud Klient-tüüpi isendil ei olegi ühtegi ostetud toodet. Toodete lisamiseks

peab olema void-tüüpi meetod lisaToode, mis jätab argumendiks antud
Toode-tüüpi isendi meelde.

3. Klassis peab olema double-tüüpi parameetriteta meetod toodeteSumma, mis
tagastab ostetud toodete käibemaksuga hindade summa.

4. Klassis peab olema void-tüüpi parameetriteta meetod prindiTooted, kus
ostetud tooted sorteeritakse vastavalt meetodis compareTo kirjeldatud

järjekorrale ja väljastatakse ekraanile nii, et iga toode on eraldi real.
5. Klassis peab olema ka meetod toString kliendi info mõistlikult tekstina

esitamiseks, näidates kliendi nime, ostetud toodete arvu ja toodete summat.

5. (5 p) Peaklass peab olema nimega Peaklass. Klassis peab olema staatiline avalik
meetod loeTooted tagastustüübiga List<Toode>, mis võtab argumendiks faili nime
(sõnena) ja tagastab selles failis olevad toodete andmed. Meetod võib visata erindi (st
meetodi signatuuris võib olla throws Exception). Toodete faili formaat on ülalpool

toodud. Toodete arv failis ei ole teada (programm peaks töötama suvalise arvu toodetega).
Kui failist lugemist ei õnnestu programmeerida, siis kirjutage selles meetodis vastav list
programmi sisse (vähendab tulemust 2 punkti võrra).

63

Peameetodis tehakse järgmised tegevused.
1. Rakendatakse vastavat staatilist meetodit, et lugeda failist tooted.txt toodete

andmed.
2. Luuakse 5 klienti (nimed mõtelge ise välja).
3. Tehakse kõikidest klientidest Klient[]-tüüpi massiiv. (Massiivi võib ka enne

klientide tegemist luua ja järjest täita.)
4. Iga kliendi jaoks genereeritakse üks arv n vahemikust [0; toodete arv] ja see klient

ostab nii palju juhuslikult valitud tooteid. Iga kliendi jaoks peab toodete listi ka
segama. Selleks tuleb kasutada Collections.shuffle meetodit. See meetod
võtab argumendiks listi ning järjestab selle suvalises järjekorras. Toodete list
järjestada iga kliendi jaoks uuesti ümber ning lisada kliendile esimesed n toodet.

5. Väljastatakse ekraanile iga kliendi info.
6. Väljastatakse ekraanile iga kliendi tooted.

Programmi väljund peab olema arusaadav ja loetav. Andmete fail on aadressil
https://kodu.ut.ee/~marinai/tooted.txt. Salvestage see oma arvutisse. Fail on kodeeringus
UTF-8.

Mittekompileeruva programmi eest punkte ei saa. Kontrolltöö ajal on Moodle’is
kättesaadav automaatne test, mis kontrollib, kas lahendus sisaldab nõutud komponente.
Meetodite sisu see test ei kontrolli.

Palun esitada viimane töötav versioon! Palun esitada Moodle’isse (Kontrolltöö nr 1 järeltöö).

https://kodu.ut.ee/~marinai/tooted.txt

64

II. Example of Short Exam Tasks

This section contains examples of the short exam tasks.

65

III. Example of Long Exam Tasks

This section contains examples of the two long tasks.

66

67

IV. Student Questionnaire

The questionnaire is presented as pictures.

68

69

70

V. Licence

Non-exclusive licence to reproduce the thesis and make the thesis public

I, Joosep Kaimre,

grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives

until the expiry of the term of copyright, my thesis

“Proficiency and Usage of AI in an Introductory Object-Oriented Programming Course”,

supervised by Marina Lepp.

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available to

the public via the web environment of the University of Tartu, including via the DSpace digital

archives, under the Creative Commons licence CC BY NC ND 4.0, which allows, by giving

appropriate credit to the author, to reproduce, distribute the work and communicate it to the

public, and prohibits the creation of derivative works and any commercial use of the work until

the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Joosep Kaimre

15.05.2024

