
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Denys Kaliuzhnyi

Reducing the Effect of Incomplete
Annotations in Object Detection for

Histopathology

Master’s Thesis (30 ECTS)

Supervisor(s): Mikhail Papkov, MSc

Dmytro Fishman, PhD

Tartu 2023



Reducing the Effect of Incomplete Annotations in Object Detection
for Histopathology

Abstract:
Histopathology is a crucial component of clinical practice involving microscopic tissue
examination. Typically, pathologists manually analyse tissue to locate and label structural
units, cells, and organoids. The properties and quantity of these objects can indicate
a patient’s condition, e.g., the presence of tumours. Recent advancements in artificial
intelligence (AI) have created the potential to automate this process. However, AI
methods either provide limited accuracy or require a lot of densely annotated data, which
is prohibitively time-consuming and expensive in the histopathology domain due to high
object density and labelling difficulty.

In this study, we address the challenge of training object detection neural networks on
histology data with incomplete annotations. We demonstrate that hyperparameter tuning
can mitigate the negative effects of sparsely labelled data. Additionally, we propose a
novel model component called the Generalised Background Recalibration Loss to further
improve detection rates. It can be adapted to a broader class of object detection models
than previous solutions.

Our results should facilitate the development of object detection neural networks
for histology images by demonstrating the efficient use of sparsely labelled data. Our
method reduces the impact of missing annotations on detection rates and thereby eases
the most time-consuming aspect of data preparation for neural network training.

Keywords:
deep learning, computer vision, neural networks, object detection, sparsely annotated
objects, training under incomplete annotations, histopathology, microscopy imaging

CERCS: P176 – Artificial intelligence; T111 – Imaging, image processing; B110 –
Bioinformatics, medical informatics, biomathematics, biometrics

2



Mittetäielike Annotatsioonide Mõju Vähendamine Histopatoloogia
Objektide Tuvastamisel
Lühikokkuvõte: Histopatoloogia on kliinilise praktika oluline komponent, mis hõlmab
kudede mikroskoopilist uurimist. Tavaliselt analüüsivad patoloogid kudesid käsitsi, et
leida ja märgistada struktuuriüksused, rakud ja organoidid. Nende objektide omadused ja
kogus võivad viidata patsiendi seisundile, nt kasvajate olemasolule. Hiljutised edusam-
mud tehisintellekti (AI) vallas on loonud potentsiaali selle protsessi automatiseerimiseks.
AI-meetodid pakuvad aga kas piiratud täpsust või nõuavad palju tihedalt annoteeritud
andmeid. Annoteeritud andmete vajadus on histopatoloogiliste objektidesuure tiheduse
ja märgistamisraskuste tõttu ülemäära aeganõudev ja kulukas.

Selles uuringus käsitleme närvivõrkude koolitamise väljakutset mittetäielike annotat-
sioonidega histoloogiliste objektide andmete tuvastamiseks. Näitame, et hüperparameet-
rite häälestamine võib leevendada hõredalt märgistatud andmete negatiivseid mõjusid.
Lisaks pakume välja uudse mudelikomponendi, Üldistatud Tausta Ümberkalibreerimist,
et veelgi parandada tuvastamissagedust. Seda saab kohandada laiemale objektituvastus-
mudelite klassile kui varasemaid lahendusi.

Meie tulemused peaksid hõlpsustama närvivõrkude arendamist histoloogiliste piltide
objektide tuvastamise jaoks, näidates hõredalt märgistatud andmete tõhusat kasutamist.
Meie meetod vähendab puuduvate annotatsioonide mõju tuvastamismääradele ja lihtsust-
abseeläbi närvivõrkude koolitamise andmete ettevalmistamise aeganõudvaimat aspekti.

Võtmesõnad:
sügavõpe, tehisnägemine, neurovõrgud, objektituvastus, hõredalt annoteeritud objektid,
koolitus mittetäielike annotatsioonide alusel, histopatoloogia, mikroskoopiakujutised

CERCS: P176 – Tehisintellekt; T111 – Pilditehnika; B110 – Bioinformaatika, meditsii-
niinformaatika, biomatemaatika, biomeetrika

3



Contents
1 Introduction 6

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Writing assistance 8

3 Background 9
3.1 Histopathology imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Digital pathology . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Neural networks in deep learning . . . . . . . . . . . . . . . . . . . . . 12
3.3 Convolutional neural networks in computer vision . . . . . . . . . . . . 15
3.4 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 One-stage detectors . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Training losses . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 YOLO models . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.5 YOLOv5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Handling missing annotations in object detection . . . . . . . . . . . . 31

4 Data and methods 34
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 MoNuSeg 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Testis histology dataset . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Generalised Background Recalibration Loss . . . . . . . . . . . 38

5 Experiments and results 41
5.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 MoNuSeg 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Testis histology dataset . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 47

7 Acknowledgments 48

4



References 54

Appendix 55
I. Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
II. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5



1 Introduction
Microscopy imaging is a crucial tool in modern medicine that opens up the possibility
of treatment development, disease exploration, and investigation [7]. Many microscopy
studies require manual labelling and classification of objects observed in a tissue sample.
Such annotation is usually time-consuming, error-prone, and requires prior professional
training. Automated microscopy image analysis can aid by speeding up medical special-
ists’ workflow and improving diagnostic accuracy [38, 37]. Such automation is usually
powered by large quantities of imaging data, where the expert annotates objects of inter-
est. Images and labels combined create a dataset that serves as an input to algorithms that
search for patterns in data and their relation to annotations. These algorithms produce
so-called trained models that can run on new incoming images and output predictions
based on extracted knowledge.

Software like Ilastik [55] and CellProfiler [59] provides a simple interface to au-
tomate a variety of histology image analysis tasks (e.g., cell detection, segmentation,
classification). Such programs embed a list of common tasks (i.e., templates) and corre-
sponding methodologies, the complexity of which is hidden from the user. In a common
workflow scenario, the user iteratively adds annotations to image regions, bringing the
most valuable gain to model performance until saturation. Alternatively, more advanced
automation solutions can be based on ad-hoc neural network development. The latest
discoveries in artificial intelligence [58, 36] have shown a huge potential to advance
microscopy image analysis. Neural networks allow for building more custom models
that typically work faster and more accurately than out-of-the-box solutions.

1.1 Problem
Template software for automated histology image analysis can usually provide only
limited accuracy. The reason is that these tools incorporate decision models that cannot
perform equally well on all possible input data. Sometimes, a more detailed selection
or customisation of the model is required to achieve the best performance. In addition,
embedded algorithms are frequently outdated compared to the current state-of-the-art
solutions. Lastly, the possibilities of the software application are bounded by the built-in
functionality, which sometimes cannot cover specific needs. On the other hand, these
tools have the advantage of being able to achieve decent accuracy with low volumes
of annotated data. Pathologists do not need to annotate every object of interest present
in the image. As a result, they save time by only focusing on a critical portion of data,
producing sparse annotations. Such simplification is essential for the histopathology
domain, where object density in the image can be very high.

In contrast, custom solutions based on neural networks can adapt to a wide range of
tasks and provide state-of-the-art output accuracy. The speed of some neural networks
enables real-time computing on edge devices [18, 57, 20]. Moreover, they are flexible and

6



can adjust the trade-off between model speed and accuracy. However, their performance
highly depends on the volume of data they are built on. Most importantly, these models
are trained upon the assumption that the annotation data is dense, meaning that every
relevant object is properly identified and labelled in the image. If this assumption does not
hold, missing annotations send misleading signals to the model, which hurts performance.

In this work, we search for a solution that keeps the positive features of existing
methodologies and eliminates their weaknesses. That way, we attempt to solve the
problem of efficient neural network training on histology data in sparse annotation
settings. Our central hypothesis is that modern neural networks can perform well on
histology data even under extreme annotation incompleteness, especially when dedicated
model adjustments are employed.

1.2 Motivation
Sparse annotations are common in histopathology due to the image’s high labelling
cost and rich object density. We aim to relax the requirement of dense (i.e., complete)
annotations in object detection neural network training. Efficient model training on
sparse annotations will significantly free specialists’ time for data preparation while
preserving the use of the latest artificial intelligence methods.

Although there were works that suggested special methodologies to train object
detectors in sparse annotation settings [67, 42, 62], they primarily tested proposed
solutions on natural image datasets like PASCAL VOC [4] and COCO [32], which are
substantially different from histology images. Consequently, our work aims to test the
performance of such methods in the histopathology domain and see if they bring the
same or similar gain to the model detection rate.

1.3 Contribution
In this work, we study the performance of state-of-the-art object detection neural networks
in sparse annotation settings for histopathology. We conduct a model hyperparameter tun-
ing to aid in training. We also adapt techniques from previous works and propose a new
solution to alleviate neural network training under extreme annotation incompleteness
(up to 95% missing). In particular, we propose the Generalised Background Recalibration
Loss neural network component that extends previous work [67] by making the imple-
mentation compatible with a broader range of models. As a result, we demonstrate that
efficient object detection on histology data is feasible even under significant annotation
incompleteness, especially with the employment of dedicated methodologies.

7



2 Writing assistance
Grammarly and ChatGPT assisted in the writing of this thesis. Grammarly, a cloud-based
typing assistant, uses AI technology to check for grammar, spelling, punctuation, clarity,
engagement, delivery mistakes, and plagiarism detection [2]. We utilised Grammarly to
correct grammar mistakes, restructure sentences for better clarity, and properly punctuate
the text. ChatGPT is a chatbot that utilises the Generative Pre-trained Transformer
(GPT-3.5) language model and can perform tasks such as question answering, generating
text, summarising articles, and translating text [3]. We employed ChatGPT to paraphrase
sentences in a more academic manner and fix grammar mistakes.

8



3 Background
In this section, we first make an overview of the histopathology domain and present the
Whole Slide Image data representation format used in our work. Then, we introduce deep
neural networks and focus on solutions and peculiarities of object detection, including
architecture and training aspects. Afterwards, we discuss YOLOv5 [22] state-of-the-art
object detection model we based our experiments on. Lastly, we describe previous
works that studied the methods of improving object detection performance in missing
annotation settings.

3.1 Histopathology imaging
Histopathology is the study of changes in tissue caused by the disease. Histopathologists
often employ microscopes to carefully study the tissue samples extracted from patients
to make diagnostic or treatment decisions. Histopathology can focus on various parts of
the human body. Organs like the skin, liver, kidney, breast, bladder, colon, and stomach
are all viable subjects for histopathological examination if non-invasive methods do
not provide enough information for diagnosis. Histopathology has a wide range of
applications in clinical practice. Most commonly, it is used to provide a precise diagnosis.
It can help to diagnose diseases like ulcerative colitis, Crohn’s disease, cancer and
infections. In all cases, tissue must be first extracted i.e., biopsied and then preprocessed
before the pathologist can examine it.

Figure 1. Stages involved in biopsy preparation [39].

9



A biopsy is followed by multi-step processing to make raw tissue suitable for exami-
nation. The exact methodology can vary depending on the laboratory setting. However,
generally, the process comprises the following steps: cutting tissue samples into smaller
pieces, dehydration, fixation in paraffin medium, sectioning (i.e., slicing into pieces
of 3-4 µm thickness), and staining to enhance the visibility of desired objects. Digital
pathology also includes a digitization step at the end. All stages are illustrated in Figure 1.

3.1.1 Digital pathology

Digital imaging is a method of creating a digital representation of the visual charac-
teristics of real-world objects. Just like a regular smartphone takes the scenic view of
the sunset, there are devices designed to electronically capture the appearance of tissue.
Digital pathology is the study of digital representations (i.e., images) of tissue samples
that uses dedicated hardware and software, usually a microscope with an embedded
camera. That way, image of obtained biopsy can be preserved on a computer for later
examination. The benefits of such an approach are evident: there is no need to keep the
original tissue as the corresponding digital copy is always available. Also, one can use
specialised algorithms to automatically analyse it.

Figure 2. Whole Slide Image format structure [40].

So-called virtual slides gained a lot of popularity across various applications of
pathology. Whole Slide Image (WSI) is a widespread format for storing digital images
of tissue samples. It was introduced in 1999 and became a handy and efficient way of

10



storing high-resolution views of the entire tissue on a glass slide. The critical feature of
the WSI format is its hierarchical structure. During tissue capturing, the microscope’s
software takes images of the tissue slide at multiple resolution levels. In other words,
several independent images at varying magnifications describe biopsy with different
levels of detail. These magnifications are usually referred to as powers because each
subsequent zoom level gains a double increase in resolution. WSI format structure is
illustrated in Figure 2.

WSI format may seem overly complex and has a number of downsides. First, storing
only the image corresponding to the largest magnification scale would be sufficient to
comprehensively explore the obtained tissue sample. Hence, removing unnecessary
representations would reduce the file size overall. Secondly, such a complex file format
makes it hard to operate. WSI requires dedicated software to open and examine the
content. However, the hierarchical structure is necessary to lift computational constraints,
because the largest magnification level frequently occupies a lot of disk memory (up to
hundreds of gigabytes). Hence, loading the whole image would be unfeasible on most
workstations. The magnification pyramid of the WSI makes it possible to dynamically
adjust zoom levels when a pathologist examines the slide. Fine-grained representations
are loaded into memory when a user zooms in on the image, and smaller powers are
loaded for a zoomed-out view. The organisation of this process is analogous to view
scaling in digital world map applications.

3.1.2 Image processing

Image processing algorithms help to prepare the input data for downstream analysis,
including training the AI models. In histopathology, image processing is more complex
than in many applications due to complicated WSI data format. Firstly, The entire WSI
slide is rarely used as input to the AI model. Often, information is taken from a particular
WSI magnification level. For example, minor structure analysis like individual cells is
typically conducted on higher resolution levels as X20 or X40. Lower resolutions can be
helpful when performing high-level investigation. Secondly, the fine-grained resolutions
are too large for a direct AI model input, reaching hundreds of thousands of pixels in both
dimensions. Even modern computational hardware cannot handle so large inputs because
of memory and computational restrictions. Typical input size for modern AI models is
hundreds or, at most, thousands of pixels. Hence, WSI files need to be preprocessed for
downstream analysis.

The key processing step for WSI data is patch generation. The patch, which is also
referred to as an image crop, is a sub-region of the initial large-resolution image. The
size of this sub-region is fixed by the human engineer. For example, common resolutions
are 224× 224 and 512× 512 pixels. Generally, AI models trained on larger-size patches
perform better because of broader context integration. Patch sampling methodology de-
pends on the exact application, but generally, it is either random or integrates information

11



about annotation locations to only select labelled regions. Sampling can be done with
overlaps (meaning that different patches can share some number of pixels) or without,
e.g., splitting an initial image into a tile-like grid of non-overlapping patches. Mentioned
above methodologies are shown in Figure 3.

Figure 3. Methodologies for generating patches based on high-resolution WSIs [11, 25].

3.2 Neural networks in deep learning
Machine learning is a computer science subfield that takes advantage of dedicated
algorithms to let computers learn from the provided data. It encompasses many methods
that allow one to solve a wide range of tasks. These methods are classified into the
following four groups: supervised learning (each input data sample X is accompanied by
a know target value y we aim to predict, so-called labelled data), unsupervised learning
(only input X is provided, so-called unlabelled data), semi-supervised learning (a hybrid
of two previous: combination of labelled and unlabelled data), and reinforcement learning
(there is no data prepared in advance; instead, the so-called agent interacts with the
predefined environment to obtain X and y samples). In supervised machine learning,
which is in the scope of our work, the most common tasks are classification and regression.
Classification aims to assign a class label to the entity where a set of labels does not
possess any relative ordering. In contrast, regression assigns a continuous label to the
entity, which provides a scale to rank them.

Deep learning is a machine learning subfield that employs artificial neural networks
as learning algorithms. Neural network can be defined as a function f : Rn → Rm,

12



which is a transformation of input X ∈ Rn to an output Y ∈ Rm. From an architectural
point of view, a neural network is a sequence of layers where input data is transformed
and passed within them to produce a desired output. In this sequence, the very first
layer is called the input layer, and the last one is the output layer. All the others in
between are hidden layers. The number of layers is usually referred to as the depth of
a neural network. Deeper neural networks can learn more complex features from data
but are also prone to overfitting (memorizing training data) and have other problems like
vanishing gradients [17]. The particular connection of layers defines the information
flow route. Some neural network architectures use a strict layer connection sequence
order where information is passed from one layer to a succeeding one and no others [27].
Other architectures allow more sophisticated information flow that can be described
with directed acyclic graph [30, 50]. In more specific application cases, circuit types of
connections can take place.

Figure 4. Activation of the output neuron. Input neuron activations xi are multiplied with
corresponding synapse weights wi, then summed up and passed through the activation
function f [19].

Each layer inside contains a number of structural units — neurons. A neuron is
responsible for transmitting particles of information throughout a network. The trans-
mission is conducted via synapses — connections between neurons that hold learnable
parameters. When information flow reaches a particular neuron, we call this event a
neuron activation. In a typical scenario, neuron activation is calculated via summing up
a pairwise multiplication of connected inputs and associated synapse weights and then
applying an activation function, which usually introduces non-linearity (see Figure 4).
In a feed-forward network, synapse weight connects neurons between layers, but it
can be used within layers in different architectures like recurrent neural networks. In
addition, layer connection density can vary much. For instance, in a fully connected
neural network (FCN), each neuron of one layer is connected to all the neurons of the

13



subsequent layer. In contrast, synapses between the convolutional layers are sparse (not
fully-connected) and shared between multiple input and output neurons. Figure 5 shows
a simplified example of FCN architecture.

Figure 5. Example fully-connected network with three hidden layers of four neurons
each. The input layer accepts three units of information, and the output layer returns a
single value [6].

Neural networks would only be helpful with an efficient algorithm to train them.
The loss function is an integral part of the training procedure. This function serves as a
measure of the match between the network’s real and desired outputs. The point of neural
network training is to minimise the loss value as much as possible. The choice of the loss
function is tightly bounded to the type of task the network solves. For example, the most
common loss function in classification is cross-entropy (i.e., negative log-likelihood),
while in regression, it is a mean squared error. Differentiability is the key demanded
property of the loss function that makes it suitable for training.

The conventional network training procedure is comprised of two main steps: forward
pass and backward pass. The forward pass (also called inference or prediction) is simply
a transition of the data throughout the neural network from input to output layers. In
an ideal setup, we expect a model to give us a correct output (e.g., classify an image as
the one showing a dog). However, that most probably will not be the case if a model is
not trained yet. At this point, the second stage of actual learning begins. The purpose of
the backward pass is to utilise loss function to adjust the model parameters (including
connection weights but not limited to them) in order to make the prediction match
the desired value. Backward pass is associated with backpropagation — a crucial and
efficient algorithm for neural network training.

14



Backpropagation [51] begins by applying the loss function: predicted and expected
values are used to calculate the loss representing the error measure. Further, this error is
propagated throughout the network layers in a reversed direction using the chain rule of
differentiation. The backpropagation aims to find the weights responsible for deviating
the output value from the desired one and then assigns adjustment coefficients that
should move the model parameters toward producing the aimed output. The network’s
weights adjustment itself is accomplished with the help of the optimiser. There are
many, but stochastic gradient descent (SGD) and Adam [26] are two common examples.
Optimiser moves the parameter values in a direction opposite to the gradient with a step
size proportional to the magnitude of the gradient itself and an adjustable learning rate
parameter. Learning rate can be either a constant or defined by a so-called scheduler
function, e.g., One Cycle [54] or Cosine [35] schedulers.

3.3 Convolutional neural networks in computer vision
Computer vision is a subfield of computer science that deals with information extraction
from image data. For instance, computer vision can be used to perform edge detection
for fingerprint matching or detection of pedestrians crossing the road. The complexity of
the tasks can vary much, as well as the applied methods. In general, neural networks are
used in tasks that require complex pattern recognition, semantic understanding of the
scene, knowledge integration, etc. For example, instance segmentation of cars on the
road or generating new images from a text prompt require the application of sophisticated
neural networks. Otherwise, more simple tasks can be solved using dedicated algorithms.
For example, Hough transformation algorithm [12] works well for line and circle shape
detection.

Figure 6. Widespread tasks in computer vision [23].

The most popular tasks in computer vision are image classification, object detection,
and image segmentation (see Figure 6). Image classification is a particular case of

15



classification (described in Subsection 3.2), where input is image data. In addition,
the task can also include localisation (drawing the bounding box) of the object that
reaffirms the class. Object detection is similar to classification with localisation but
assumes localising multiple objects of possibly varying classes in a single image. In
other words, object detection combines regression on parameters of bounding boxes and
classification of their labels. Image segmentation goes further with the granularity of the
image analysis. It assigns class labels on a pixel level, which results in a meaningful
mask prediction that can be overlaid with the original input image. Image segmentation
can be semantic and instance-based. The former does not segregate pixels based on the
objects they belong to (e.g., pixels can be of the same class cat but belong to different
cats). In contrast, instance segmentation identifies individual objects.

Figure 7. Convolution operation on image I with
filter (kernel) K [49].

A convolutional neural net-
work is a particular type of net-
work designed to deal with spa-
tially correlated data. It is based
on convolution, a mathematical
operation on two functions that
produces a third function that ex-
presses how the shape of one is
modified by the other. In the case
of CNN input, one function repre-
sents the so-called kernel (or fil-
ter), and the other is the input im-
age. The kernel is defined as a
matrix, usually way smaller than
the image it is applied over. The kernel is iteratively shifted across spatial image dimen-
sions with step size defined by stride parameter: from left to right and from top to bottom.
For a particular image pixel location, convolution is calculated as a dot product of a
kernel rotated by 180 degrees and the corresponding image region that overlaps with the
kernel. An example of a convolution is illustrated in Figure 7. The kernel in convolution
operation acts as an extractor of the particular type of information. CNNs utilise multiple
kernels in order to let each of them focus on different information patterns.

One reasonable interpretation of convolution in CNNs is that a layer structure of
a network turns convolution into an iterative information merge procedure. Previous
experiments showed [66] that CNNs tend to extract simple features (e.g., edges, basic
shapes like circles or rectangles) from an image in the early layers (closer to the input)
and more complex morphologies (e.g., faces) in the end layers. The hierarchical nature of
the objects justifies such behaviour: faces are comprised of simple line and circle shapes,
and the face itself is part of another object — a person. Besides convolutions, there
are also different types of layers that can be crucial for many CNN architectures. For

16



example, these are pooling layers (rapidly reducing spatial dimensionality of the image
to speed up training), normalization layers (re-scales distribution of layer activations to
make training more stable and fast), etc. In addition, fully connected layers are often
applied on the top of a CNN for some computer vision tasks like image classification.

The main difference between CNN architecture compared to FCN is that convolu-
tion’s connections are not dense. The same synapse weights are used to extract spatial
information from different parts of the image. That approach highly reduces the training
time and model size. In addition, pattern recognition becomes position-independent in
CNN. That means if a network learns to detect a dog in the centre of the image, it will
most probably be able to find it in all the other possible locations.

Figure 8. VGG-16 CNN architecture. Each block describes kernel size (except fully
connected layers), operation (convolution or max-pooling or fully connected layer),
activation function (for convolution only), and output feature map resolution. [24].

A VGG-16 CNN architecture [53] can be seen in Figure 8. That is an example of
a tiny and straightforward structure model for illustration purposes. A VGG-16 model
consists of convolution, max-pooling and fully connected layers. Layer connections are
strictly sequential, and model depth accounts for 16 layers, as the model name stands
for. Note that pooling layers are not counted for network depth because they do not own
trainable parameters.

To illustrate the input image transformation evolution throughout the network,
Figure 9 shows how the input is being modified from layer to layer of the VGG-16
neural network. Initially, the input is a matrix of size 224× 224 representing a grayscale
image (channel dimension equals one). Then, succeeding layers tend to squeeze spatial
image resolution and enrich channel dimension. In the end, input data is turned into
1000-dimensional output vector. The such architectural pattern of image transformation
is common to many CNNs. Although, some models have no fully connected layers. For
example, an image segmentation model instead frequently performs a reversed operation
of upsampling of reduced-size images to restore the input spatial resolution.

17



Figure 9. VGG-16 image transformation. Text subscriptions at the top denote layer
names, and at the bottom are transformed data resolution of the indicated layer [13].

Nowadays, state-of-the-art CNNs are often very deep, with hundreds of layers.
Networks often incorporate complex structure units (often referred to as neural network
blocks, e.g., inception blocks [64]) with non-trivial connections between them (e.g.,
spatial pyramid pooling layers [16]). Architectural patterns can vary much and usually
depend on computer vision task network solves. But they all share the idea of efficient
feature extraction through convolution operation and utilise knowledge of hierarchical
feature build.

3.4 Object detection
As already described in Subsection 3.3, object detection is a widespread task in computer
vision that deals with identifying objects in the image. The detection usually assumes
drawing a bounding box around the object of interest and then classifying it in the case
of necessity. The application of object detection is vital in many fields, like autonomous
driving, robotics, medicine, etc.

There are many approaches to detecting objects in the image, but nowadays, most
successful methods are based on deep neural networks. Detection CNNs are also
classified depending on the architectural patterns. There are one-stage and multi-stage
(e.g., two-stage) detectors. The former ones are known to be faster and easier to train
compared to the latter ones [10, 34]. However, two-stage detectors usually provide

18



higher detection accuracy [10, 34]. This work is focused on the application of one-stage
detectors.

This section first introduces the standard structure of one-stage detectors. Secondly,
it describes the most common evaluation metrics for object detection tasks, which we
used in our experiments. Thirdly, we explain peculiarities and give examples of the
loss functions utilised in object detector training. Fourthly, we describe the approach
of the You Only Look Once (YOLO) method [44] and briefly describe the members
of the YOLO model family. Finally, we present the YOLOv5 model [22] used in our
experiments in more detail.

3.4.1 One-stage detectors

One-stage detectors perform inference in a single-stage fashion. In the opposite case, an
intermediate component is responsible for generating region proposals, which will be
further refined and classified by the main network. In contrast, one-stage detectors employ
a single end-to-end seamless image transformation sequence to extract predictions. Such
model architecture provides more straightforward and faster model training. Fast test
time prediction of one-stage models enables real-time object detection on edge devices.

One-stage detectors share many standard architectural features. First of all, they
are usually comprised of the following structural components: backbone, neck and
head. Secondly, many detectors take advantage of non-max suppression algorithm.
Additionally, anchor boxes are widely used. We will explain each concept in detail.

Detector backbone. A backbone in object detection is a feature extraction network
(typically CNN) that serves the crucial function of feature representation learning. Pop-
ular architectures developed for image classification often find application in object
detector backbones. For example, ResNet [17], VGG [53], and MobileNet [18] model
families are frequently used. Alternatively, there are CNN models designed specifically
to work best in object detection tasks, for example, DarkNet19 model [45], a variant
of the ResNet architecture. In both scenarios, pretraining on a classification task for
these models and then utilizing obtained weights as a starting point for training detection
backbones is common.

Detector head. The detector head is also an integral unit for every CNN. It is a sub-
network that resides at the very end of the model and contains output layers. Detection
head build varies depending on the particular model type. Nevertheless, in all cases,
it outputs bounding boxes and object class scores. Bounding boxes are usually rep-
resented as centre or corner coordinates plus spatial dimensions, accounting for four
parameters. Object class score can be a conditioned confidence score C, but some
architectures also provide object presence probability score in a separate field, also

19



known as objectness score. In such case, object confidence score C is modelled as
C = P (obj, cls) = P (cls|obj)P (obj), where P (cls|obj) is a predicted class probability
(under the assumption that object exists) and P (obj) is the probability of object presence
regardless the class. Lastly, P (obj, cls) is the probability of the object presence of the
particular class, which is treated as prediction confidence C.

Detector neck. The neck is an optional intermediate structure between the detector
backbone and the head. It is usually implemented as an additional set of layers dedicated
to collecting and integrating feature maps from different backbone layers. Usually,
so-called top-down and bottom-up paths in the neck combine feature representations
from different abstraction levels. For example, Feature Pyramid Network (FPN) [30]
is a popular choice for the detector neck. Modern architectures frequently utilise it to
substantially improve the detection rate [46, 9, 20, 15, 47].

Non-max suppression. A non-max suppression (NMS) algorithm is crucial for many
architectures. It is applied over the predicted bounding boxes as the last step. NMS
iteratively eliminates box candidates by considering highly overlapped pairs. An inter-
section over Union (IOU, see details in Subsection 3.4.2) threshold parameter defines
a sufficient overlap to consider candidates. In each pair, the box with lower predicted
confidence is filtered out. Then the process repeats until no pairs above the threshold
remain. The application of NMS for some models is necessary because detectors often
tend to produce an abundance of boxes.

Anchor boxes. Anchor boxes are a set of predefined boxes of a certain width and
height. In some detector architectures, output bounding box dimensions are regressed
directly. However, this approach often performs poorly when the dataset contains objects
of irregular shapes and scales. Anchor boxes aim to let each anchor specialise in different
object sizes and aspect ratios. That way, we replace direct box dimensions regression
with regression on anchor boxes. Hence, the model learns to predict offsets for particular
anchor box instances. That solution also enables the increase of possible object density
in the image. In case two objects highly overlap, especially when two centres are nearby,
many models struggle to detect both due to architectural limitations. However, with
anchor boxes, two objects can now be located very close to each other in the image. The
model will easily handle such cases because separate anchors will be responsible for
detecting two boxes.

20



3.4.2 Evaluation metrics

Model evaluation metrics are a necessary utility that enables model training tracking and
summarizing obtained performance. They are also important because they are used for
comparing and ranking different models. Metrics are usually designed to be intuitive and
complete, which means a comprehensive reflection of model performance. Although, the
standard metrics used in object detection are far from being simple and easy to capture
at first glance. However, they are pretty robust as for the methods that estimate such
complex systems of object detection with a single number.

A conventional metric in object detection is a mean average precision (mAP ). This
term name should not be perceived literally, meaning that metric is not about averaging
precisions. We will explore the hidden implementation complexity step-by-step.

Precision =
TP

TP + FP
; Recall =

TP

TP + FN
(1)

In order to estimate model performance, we classify predicted bounding boxes into
three cases. The first case is true positive (TP ), which denotes objects detected and
classified correctly. Then there are two types of errors: false positives (FP ) and false
negatives (FN ). Detection is FP if the predicted bounding box has no corresponding
ground truth object, meaning the prediction is wrong. Conversely, FN means that there
is a ground truth object, but the model did not output the corresponding bounding box,
meaning that the prediction is missing.

Figure 10. Example of Intersection over Union (IOU) application in object detection [65].

When the detection is done on a labelled image, the TP , FP and FN counts are
summarised for each object class separately. Then, we derive the following two metrics:

21



precision and recall. Precision denotes the correctly identified object count ratio to the
whole prediction count. Conversely, recall denotes the ratio of detected object count to
the whole volume of ground truth annotations. The exact formulas are in Equation 1.

Returning to the prediction type identification, clarifying the logic behind box match-
ing is essential. Calculation uses the Intersection over Union (IOU) metric to determine
pairs of ground truth and predicted boxes that match. If IOU between boxes is larger than
the predefined threshold, then the prediction is considered to correspond to the ground
truth object. Otherwise, the prediction is either wrong or missing. The example is given
in Figure 10. We conduct the matching for each object class separately so that we do
not consider overlapped box pairs when ground truth and prediction belong to different
classes.

Intersection over Union itself is a standalone metric used to estimate the overlap
between two objects. IOU equals the intersection area between the objects divided by
the area of their union. The formula is illustrated in Figure 11. That way, IOU equals 1 if
and only if predicted and ground truth boxes ideally match. Conversely, IOU is 0 if and
only if no intersection exists between objects.

Figure 11. Intersection over Union (IOU) calculation formula [52].

The next step of mAP calculation is building precision-recall curves per class.
We previously mentioned that number of TP , FP and FN is counted for each class
prediction over the image. However, these counts can vary greatly if we change the
model confidence threshold. This value is used to divide continuous model probability
prediction into yes and no answers. Increasing the confidence threshold will result in
higher precision but lower recall and vice-versa. The precision-recall curve is built by
plotting these values in the 2-D plane obtained at different tabulated threshold values
from 0 to 1. The purpose of the curve is to calculate the area under it, which will
correspond to the average precision (AP ) for the particular class. Larger AP means
better model performance. The example curve is in Figure 12.

22



Figure 12. Typical appearance of the area under the
precision-recall curve (PR-AUC) [5].

At this point, we obtained AP
values per each class category.
Lastly, the AP values are aver-
aged out to obtain the final mAP
score. Note that we initially as-
sumed a particular IOU thresh-
old to be used for accounting cor-
rect and wrong or missing pre-
dictions. Usually, this threshold
equals 0.5. In order to explicitly
showcase the threshold applied in
calculations, it is often appended
to the mAP acronym as follows:
mAP50. In addition, mAP50:95:5 denotes the average of mAP scores obtained at a series
of IOU thresholds: from 50% to 95% with step size 5%. It is considered to be more
robust as accounts mAP scores at higher IOU thresholds. In other words, mAP50 is
generally used to compare models from a detection rate point of view. On the other hand,
mAP50:95:5 score rather corresponds to bounding box localisation accuracy comparison.

There is one important note regarding frequent confusion about the mAP metric.
Terms mAP and AP are often used interchangeably, meaning that the word mean is
optional in the metric name. However, to be more transparent, we denote AP as the
score for the particular class category and mAP as their average. In the case of detection
without box classification, there is no difference between these two terms.

Described mAP metric helps to estimate model performance. However, it does not
provide any guidance regarding the optimal prediction confidence value threshold to use
in testing. There is a different metric called F1 score that aids the situation. It equals
the harmonic mean of precision and recall. Its primary purpose in object detection is to
select the model confidence threshold that will give an optimal trade-off between recall
and precision. In a typical scenario, F1 scores are calculated over the tabulated range of
confidence thresholds, and then the one giving the highest F1 is selected for the model
detection testing.

3.4.3 Training losses

Training of object detectors is similar to other neural networks (described in Subsec-
tion 3.2). Although the application of the backpropagation algorithm and optimiser
remains the same, the embodiment of loss penalty changes significantly compared to
other tasks. Some detection models utilise specific types of loss functions to learn
efficiently.

Many detectors use standard functions such as cross-entropy, mean squared error, and
mean absolute error. Some solutions utilise a specific detection IOU box loss. The final

23



detector penalty is usually a compound of multiple losses calculated on separate output
pieces. In particular, bounding box loss λbox and classification loss λcls typically come
separately. Moreover, if a model predicts objectness score apart from the classification
one, then the objectness loss factor λobj is added as an additional component. Then, the
total loss is calculated as λtotal = aλbox + bλcls + cλobj , where a, b and c are calibrating
weights. Such an approach is necessary to learn each output parameter of object detection.

Classification loss. Classification loss is essential for any object detector that classifies
objects into categories. Usually, if the dataset is comprised of N object classes, then the
network output contains N fields per predicted box to assign confidence for each class.
The most common loss function used for classification prediction is a cross-entropy, also
known as log-loss.

Objectness loss. If object presence probability is modelled separately from classi-
fication, the respective score should have an additional single output field. Like in
classification, the conventional loss function for objectness score prediction is a binary
cross-entropy (BCE) loss because objectness score prediction is a binary classification
task. The formula of BCE is given in Equation 2, where y and p are ground truth and
predicted values, respectively, ranging from 0 to 1.

BCE(y, p) = −y log p− (1− y) log (1− p) (2)

Another common loss for the objectness score penalty is a focal loss (FL). It modifies
BCE by adding the term that down-weights easy examples and lets the model focus on
hard negative (i.e., confidently misclassified) cases. The formula of binary focal loss
(BFL) is given in Equation 3, where γ is a hyperparameter to tune (higher values lead to
more concentration on hard negatives). The standard default value for γ is 2.

BFL(y, p) = −y(1− p)γ log p− (1− y)pγ log (1− p) (3)

Box loss. The selection of the box loss is a more creative task. First, the favoured
choice depends on whether anchor boxes are used. But in any scenario, bounding box
coordinates can be learned in many ways. One option is common regression losses,
for instance, variants of mean squared error or mean absolute error. Another option
is classification losses, like cross-entropy, which is often employed in anchor-based
architectures. It is important to emphasise that mentioned approaches directly regress
box parameter values (x coordinate, y coordinate, box width, and height). That means
these four parameters are treated independently from a loss point of view.

A different box loss is designed for object detection. IOU loss is derived from a differen-
tiable implementation of the IOU metric. It is computed as one minus the mean of the

24



IOU scores between prediction and corresponding ground truth boxes (see Equation 4).
IOU loss application is very intuitive. Instead of penalising predicted box parameter
values directly, we integrally teach the model to achieve the initial goal of the object
detector — to maximise the overlap between predicted and expected bounding boxes

λIoU = 1− 1

N

N∑
i=1

IoU(Predboxi
, GTboxi

) (4)

It is worth noting that, in practice, a pure IOU metric is unsuitable for neural network
training. The reason is that if there is no overlap between the prediction and target, the
IOU is 0, and hence there is no gradient to learn from. To aid this issue, the new variants
of the IOU metric were developed to be used in IOU loss. For example, dedicated
well-performing losses are Generalised IOU (GIOU) [48], Distance IOU (DIOU) [69]
and Complete IOU (CIOU) [69]. They add extra components to classic IOU loss that
enable non-zero gradients for non-overlapped predictions. For example, DIOU loss adds
Euclidean distance factor between the centres of two boxes.

3.4.4 YOLO models

The most inherent example of one-stage detectors is the You Only Look Once (YOLO)
model. The first YOLO paper was published by Joseph Redmon et al [44] in 2015. The
main idea lies in performing detector training and prediction in one end-to-end stage.
The model consists of the feature extraction backbone network based on GoogLeNet
[56] and a fully connected layer head attached on top of it. The GoogLeNet is a typical
CNN architecture formed from interleaving convolutional and pooling layers. Lastly, the
NMS algorithm filters redundant boxes.

One of the leading architectural novelties of YOLO resides in its head component.
The last output layer is designed to represent a grid of cells that can be logically mapped
back to the input image regions. Mapping is done by dividing the original image into the
S × S grid of evenly sized regions. This size corresponds to the output layer’s spatial
resolution. Then, the centre coordinates of an input bounding box determine the grid cell
responsible for detecting the object. The whole process is displayed in Figure 13.

It is important to note that the output cell grid has a depth resolution in addition to
a spatial one. That is essential because each cell must contain objectness score, box
location and dimensions, resulting in a 5-parameter vector (c, x, y, w, h). Additionally,
the architecture allows the prediction of multiple B boxes per grid cell to diminish the
limited object density issue partially. Lastly, we need the score fields for each of the C
classes. The complete shape of the output is defined as S × S × (5 ∗ B + C) tensor.
In the original YOLO paper, the authors used S = 7, B = 2, and C = 20 because the
model was trained on the PASCAL VOC [4] dataset with the corresponding number of
classes. The model adopted mean squared error loss for learning the whole output tensor.

25



Figure 13. YOLO model architecture [44].

The subsequent development of the YOLO model was YOLOv2 [45]. It introduced

Figure 14. Anchor box to native space pre-
diction transformation in YOLOv2 [45].

many novelties that improved model
speed and accuracy even further. Firstly,
YOLOv2 replaces the backbone with the
new Darknet-19 [45] architecture explic-
itly developed for object detection. Sec-
ondly, the model eliminates fully con-
nected layers and integrates anchor boxes.
Moreover, the incorporated algorithm au-
tomatically determines the best suitable an-
chors using dimensionality clustering over
training data. Thirdly, the new model in-
creases input image and output prediction
resolutions. Lastly, YOLOv2 incorporates
many other improvements. For example,
each of the individual B boxes in a grid
cell got a separate vector of C class scores
instead of sharing a single one.

YOLOv2 anchor boxes are explained in Figure 14. The model predicts offsets tx and
ty that represent the shift within an image grid cell. It also regresses tw and th, which
correspond to anchor box width and height offsets. Formulas in Figure 14 show how
model drives native box coordinates (bx, by) and dimensions (bw, bh). In the example, pw
and ph denote anchor box width and height. Lastly, cx and cy are the spatial sizes of a
grid cell.

The next generation of YOLO was YOLOv3 [46] which was an incremental im-
provement of YOLOv2. It updated the backbone architecture to Darknet53. Then, there
are changes in loss functions: objectness and class scores are now penalised by a log
loss instead of a mean squared error. But most importantly, YOLOv3 manifested the

26



usage of Feature Pyramid Networks as a model neck in the YOLO family. FPN makes
efficient feature integration from different representation layers. Consequently, FPN
allows YOLOv3 to make predictions at three different scales, meaning that multiple
output tensors predict objects at different granularity levels.

The YOLOv4 [9] further refined the object detection accuracy and speed by intro-
ducing a broad list of so-called universal features. They include Weighted Residual
Connections (WRC), Cross Stage Partial connections (CSP), Cross mini-Batch Normal-
ization (CmBN), Self-adversarial Training (SAT), and Mish activation.

In summary, YOLO family models showed to be very efficient in terms of both speed
and accuracy. The release of the prior version initialised a series of derived and improved
YOLO models that have been developing since 2015, and new versions are still under
research nowadays. Today YOLO model family accounts for dozens of instances.

3.4.5 YOLOv5

Since 2015 the Ultralytics team have been developing a new YOLO model based on
the preceding YOLO architectures [44, 45, 46, 9]. As a result, the initial release of the
YOLOv5 model [20] published in 2020 incorporated the best practices of ancestors and

Figure 15. Simplified architecture of YOLOv5 model. Note: the v6 release of YOLOv5
replaced SPP layer with SPPF. Exact number of layers and convolutions depends on the
selected model size [63].

27



introduced many novelties. Important to note that YOLOv5 is still under active develop-
ment, and new sub-versions are regularly being released. In particular, authors decided
to tag two subsequent major updates of the YOLOv5 model as v6 [22] and v7 [21]
versions, respectively. Such naming introduced confusion in a YOLO model family line
classification. In our work, we use the v6 release and base the further discussion on it.
Hence, we emphasise that we will refer to the v6 release of the YOLOv5 model as just
YOLOv5 if not mentioned otherwise.

The YOLOv5 model is comprised of backbone, neck and head networks as many
other one-stage detectors. Although these sub-modules are similar to those used in
previous YOLO versions, YOLOv5 incorporated changes to each of them to make the
whole network faster and more accurate compared to predecessors. In addition, the
authors introduced other training improvements like the elimination of grid sensitivity,
new activation and loss functions, model scaling etc. Last, many techniques, like data
augmentation, were taken from the previous YOLO versions. The simplified visualisation
of YOLOv5 model architecture is shown in Figure 15.

Backbone. Cross Stage Partial (CSP) network strategy [60] was combined with Dark-
net53 backbone from YOLOv3 and that resulted in a new CSP-Darknet53 model ar-
chitecture. CSP networks are designed to aid deep neural networks in overcoming the
redundant gradients problem, which in turn occurs due to tackling the vanishing gradients
problem. CSP network reduces the excessive amount of gradient information caused by
dense layer connections by truncating the gradient flow. In particular, CSP partitions the
feature map of the base layer into two parts and then merges them through a cross-stage
hierarchy. That way, the information flow scope is preserved while computations are
reduced. Figure 16 shows architecture modification by CSP connections.

Figure 16. Applying CSP connections to DenseNet and ResNet architectures [60].

Neck. YOLOv5 uses a variant of Feature Pyramid Network (FPN) [30] called Path
Aggregation Network (PANet) [33] which was adapted from YOLOv4. Just like in the

28



YOLOv5 backbone, CSP connections are also incorporated into PANet, which resulted
in a new CSP-PANet architecture. In addition, the initial YOLOv5 version uses a Spatial
Pyramid Pooling (SPP) layer on top of the very last layer of the backbone. It aggregates
input information and returns a fixed-length output, greatly increasing the receptive
field and segregating the most relevant context while having almost no effect on model
speed. In the v6 version of YOLOv5, authors implemented a new SPPF architecture that
achieves identical computations as SPP with fewer parameters.

Head. YOLOv5’s head is identical to those used in YOLOv3 and YOLOv4. It
comprises three convolutional layers used to predict bounding box dimension offsets
tx, ty, tw, th as well as objectness and class scores. However, formulas that derive na-
tive box coordinates space bx, by, bw, bh have changed as shown in Equation 5, where
cx, cy, pw, ph correspond to pairs of grid cell offsets and anchor box dimensions, respec-
tively. YOLOv5 preserved the application of Non-Max Suppression (NMS) on top of the
head predictions which was used from the very first YOLO model.

bx = (2 · σ(tx)− 0.5) + cx

by = (2 · σ(ty)− 0.5) + cy

bw = pw · (2 · σ(tw))2

bh = ph · (2 · σ(th))2

(5)

Activation and loss functions. The authors chose a Sigmoid Linear Unit (SiLU, aka
Swish activation) [43] activation function for all the hidden layers, which is smooth and
differentiable at each point version of the ReLU function. YOLOv5 inherited CIOU loss
for box regression from the YOLOv4 model. Lastly, objectness and classification scores
are penalised by binary cross-entropy loss. Regarding the objectness loss, it is important
to emphasise that the YOLOv5 network predicts the objectness score as an CIOU of
ground truth and predicted box. In other words, the ground truth objectness value is
not binary (i.e., 0 and 1 for object absence and presence, respectively) but continuous,
representing how well the predicted box matches the ground truth object. Although the
objectness loss penalty teaches the network to predict a correct CIOU without the aim of
moving it toward 1, the coordinate loss forces the model to output a better box, which
eventually pushes the CIOU to grow.

Eliminating grid sensitivity As explained in a Subsection 3.4.4, the YOLO model
family produces dense predictions on the grid that are mapped back to the original input
image space. Such segregation negatively impacts detection of objects that reside on
the edge of 2 grid cell regions (or even worse in the case of 4 corners location). A
model may struggle to assign a proper cell index for the input annotation. Hence, the
authors eliminated such grid sensitivity by allowing neighbouring cells to predict objects

29



if they fall within the extended receptive region. In particular, the grid receptive field was
expanded from [0; 1] to [-0.5, 1.5]. That means that close enough to the object center
adjacent grid cells will be responsible for predicting objects in the neighbouring region
(see Figure 17 for visual explanation). Important to note that this modification caused the
change in bx, by derivation formulas (Equation 5) in order to match a new offset range.

Figure 17. Grid cells assignment to an input ground truth (GT) box in YOLOv5 [22].

Data augmentation. Most of the data augmentation techniques were adapted from
previous YOLO models. In particular, the most prominent are mosaic data augmenta-
tion [9] (stacking four images in a grid fashion to produce a new single input image),
MixUp [68] (overlapping two images in a semi-transparent manner), CopyPaste [14]
(pasting parts of one image into another). Other regular and more straightforward aug-
mentation techniques like image axis flips, multi-scale resize, HSV colour space shifts,
etc., are also present.

Model scaling. In the initial YOLOv5 release, authors provided pre-trained weights
for 4 different model sizes: small, medium, large and extra large. Since the v6 release,
they added a new nano model, which is incredibly small and is supposed to work fast
on mobile CPUs. Model size scaling is achieved by compound shrinking/expanding the
model’s depth and width (number of feature maps per layer) using respective multiple
coefficients. That approach is similar to EfficientDet solution [57], although YOLOv5
scaling does not automate image input size adjustment. In order to aid this, the v6 release

30



also incorporated new 5 models with larger default input sizes, although with the same
nano, small, medium, large and extra large ranking.

3.5 Handling missing annotations in object detection
Missing annotations in object detection mean that data is only partially annotated, leaving
some objects without labels. In other words, data mixes annotated and unannotated
objects on an individual image level (see Figure 18). That phenomenon is sometimes
referred to as a sparse annotation setting [61, 67]. Such a setting should not be confused
with a partial case of a typical semi-supervised learning setup when the data comprises
two sets: images with complete annotations and without annotations at all.

Figure 18. Example dataset with missing labels synthetically generated from PASCAL
VOC dataset [4]. The green boxes are the ones present in the annotations. The red
boxes are the ones that should have been annotated, but they are missing from the
annotation. Each column represents from left to right the normal, easy, hard, and extreme
settings [67].

The semi-supervised learning is an extension of regular supervised learning. It aims
to discover more data to improve the performance of existing detectors. In contrast, a
sparse annotation setting is an unavoidable constraint that makes the learning process
less stable and transparent. In such a scenario, there is no obvious trustworthy way to

31



validate the object’s presence in an unannotated image region. The only information
that sometimes is known about the labelling quality is the approximate percentage of the
annotated objects to the total of existing ones (overall in the dataset).

Missing annotation issue is inherent to many application domains. It frequently arises
when the annotation process is time-consuming and/or challenging. For example, the
high density of objects and expertise needed to perform labelling can become a significant
obstacle to producing large high-quality datasets. Such a situation is widespread in the
histopathology domain. Data comes with only a portion of objects being annotated, which
makes neural network learning controversial because the network is taught inconsistently.
In other words, objects that share the same features are simultaneously treated as positive
(labelled) and negative (unlabelled) cases, which can result in unstable gradients.

A handful of research was conducted to address the issue of neural network training
in missing annotation settings. Most of the primary solutions adopted various resampling-
based methods to handle this problem. For example, Wu et al. [62] proposed a soft
sampling technique to re-weight the gradients of object regions based on the overlaps
with positive instances. Another work [42] suggested part-aware sampling that employs
human intuition for establishing the hierarchical relation between labelled and unlabelled
regions.

Figure 19. The plot of Background Recal-
ibration Loss is denoted with blue colour.
The pt denotes negative class probability.
The hard negative branch is replaced with
mirrored easy positive branch up to the
threshold t [67].

In a more recent study, Zhang et
al. [67] moved further and proposed Back-
ground Recalibration Loss (BRL) to soften
the penalty from unannotated objects. The
idea was simple yet efficient. The authors
suggested mirroring the focal loss function
(explained in Activation and loss functions
paragraph of Subsection 3.4.5) at the se-
lected threshold value to lower the loss for
confident false positives. They replaced
the left-most part (up to threshold t) of the
focal loss negative branch (i.e., the one
that corresponds to the negative ground
truth labels) with mirrored right-most part
of the positive branch (i.e., the one that
corresponds to the positive ground truth
labels). The positive branch remains the
same, but employs the poitive class weight
factor α. The illustration of mirroring is
shown in Figure 19 and the complete loss formula is in Equation 6. Thus, the new
loss implicitly relabels negative samples as positive if the model confidently assumes a
positive class. The authors showed that with their method, at least one annotated object

32



per image (in PASCAL VOC 2007 dataset [4]) is sufficient to prevent unstable gradients.
Hence, they proved that efficient learning is feasible even under extreme annotation
incompleteness.

BRL(y, p) =

{
−α (1− p)γ log p, if y = 1 or y = 0 and p > 1− t

−pγ log(1− p), if y = 0 and p ≤ 1− t
(6)

An alternative solution of using the co-mining technique was proposed by Wang et
al. [61]. The authors designed a Siamese network of two branches that send a positive
supervision signal to each other to mine pseudo-labels. With that methodology, the
authors reported 1.4% – 2.1% improvements compared to previous baselines. Although
this approach provides a more substantial treatment of sparse annotations compared to
previously published approaches [62, 42, 67], it comes with a cost of way more complex
integration into existing frameworks due to significant model architecture changes.

33



4 Data and methods
This section first introduces two histology datasets used for our experiments. Then, it
describes the methods we employed for training object detection models on this data.
Most importantly, we describe solutions to aid training in missing annotation settings.

4.1 Datasets
Digital pathology is accompanied by a wide range of open-source datasets that can
be used to train deep neural networks for supervised learning [8]. In our work, we
employ two data sources for our experiments and performance tests. We select the
publicly available MoNuSeg 2018 dataset [29, 28] for the purpose of model tuning and
development. The dataset’s versatility and abundance of annotations make it a powerful
starting point for neural network training. Another dataset is private and is comprised
of testis histology images and corresponding manual annotations. It is provided by the
East Tallinn Central Hospital and incorporates intrinsically sparse and lower in volume
annotation data.

We consider these datasets as instances of two different data provisioning scenarios.
In the case of MoNuSeg 2018, it is polished, diverse, and high-quality data with an
abundance of dense annotations. In contrast, testis data corresponds to real-world
settings when the labelling budget is constrained, resulting in modest annotation volume
with sparse labels. The subsequent subsections will introduce each dataset in more detail.

4.1.1 MoNuSeg 2018

We base our model training experiments on the MoNuSeg 2018 dataset [29, 28]. The
subset of the data devoted for model training is comprised of 30 images of tissue samples
extracted from 7 different organs, each of size 1000× 1000 pixels. Each image is a X40
magnification sample from WSIs of individual patients downloaded from The Cancer
Genomic Atlas [1]. These crops belong to separate unique WSIs, and the selection
strategy was guided to choose the sub-regions with higher cell density. That was done to
obtain maximum diversity while minimizing computational burden by creating a limited
number of images.

Table 1. MoNuSeg 2018 training and testing datasets composition [41].

Subset Nuclei Images

Total Total Breast Liver Kidney Prostate Bladder Colon Stomach Lung Brain

Train 21 623 30 6 6 6 6 2 2 2 - -
Test 7 223 14 2 - 3 2 2 1 - 2 2

Total 28 846 44 8 6 9 8 4 3 2 2 2

34



Training set images come with 21,623 hand-annotated nuclear boundaries. In addition,
there is a test set comprised of 14 images that also include 7,223 manual annotations.
Both train and test sets were prepared in the same way. The statistics of slides (including
organ types) in the train and test sets are given in Table 1. Note that some organs are
exclusive to the train and test sets. In MoNuSeg 2018 competition, such data split is
supposed to promote generic models rather than those performing well only on training
data.

The attractive property of the MoNuSeg 2018 dataset is its variability. Firstly, as it
can be seen from the Table 1, it includes images of multiple organs, namely the kidney,
lung, colon, breast, bladder, prostate, brain, stomach, and liver. That accounts for 9 organ
types, although only 7 are used in both train and test sets. There is much diversity in
organ appearance. For example, tissue colouring, cell morphology (size and shape), and
cell density are notably different. All these can be concluded from Figure 20, which
illustrates sample images from the test set. Secondly, both benign and malignant tissue
samples were included. Finally, data came from many places. In particular, images
were gathered from 18 different hospitals. Such acquisition introduced diverse staining
practices and acquisition equipment (e.g., scanners). Hence, the inherent MoNuSeg
dataset versatility makes it a good starting point for AI modelling.

Figure 20. MoNuSeg 2018 test set sub-images taken from different organs. The first and
the second rows show images with and without nuclei boundary annotations, respectively.
Columns correspond to organ types [28].

4.1.2 Testis histology dataset

We obtained testis histology images from the East Tallinn Central Hospital. The dataset
contains cells from five classes: spermatogonia, spermatocyte, spermatid, spermatozoa,
and sertoly. Cells are annotated with bounding boxes and one of the five classes. Quan-
tifying these cells in testis tissue is essential for studying spermatogenesis (germ cell
development). Abnormalities in cell stages evolution can indicate spermatogenesis arrest,
a phenomenon that causes men’s infertility.

35



Table 2. Testis training and testing datasets composition.

Subset # WSIs # Crops Cells

Total Spermatogonia Spermatocyte Spermatid Spermatozoa Sertoly

Train 6 257 1468 336 383 353 80 334
Test 1 68 2325 907 691 489 - 238

Total 7 325 3793 1243 1074 842 80 572

The testis dataset consists of training and testing images. The training set comprises
6 WSIs, while the test set consists of 1 WSI. We selected a number of filtered patches (as
described in Figure 3b of Subsection 3.1.2) of size 1024× 1024 pixels from each slide
at X40 magnification level. This resulted in 257 train and 68 test image patches. These
sets contain 1486 and 2325 annotated cells, respectively. The summary of the testis data
statistics is presented in Table 2.

Figure 21. Sample train and test testis WSI crops at X40 magnification scale with
overlaid cell annotations. The train set contains sparse annotations, while the test set has
complete ones. The respective bounding box colour highlights cell class segregation.

Although the training data comprises a larger set of image crops than the test set
(nearly four times more), the latter still contains nearly 60% more annotations than the
former. Such a situation is conditioned by the inherently sparse training set, which
means it lacks some portion of annotations. In contrast, the test set possesses complete
annotations, which is essential to correctly estimate the model’s training performance.
Though, the spermatozoa class is missing from test images, so we omit it from the
performance report. Sample tissue images from the train and test sets with overlaid cell
annotations are shown in Figure 21.

36



It is important to emphasise that the cell counts in Table 2 refer to the number of
annotated cells in the images. Consequently, the total count of cell objects present (in-
cluding unannotated ones) in the training set significantly exceeds the reported numbers.
Assuming that the distribution of cell frequency appearance in train and test samples is
equal, we estimated that the train set includes nearly 8800 objects, out of which only
17% are annotated. Hence, we are dealing with significant annotation incompleteness.

4.2 Methods
Our work employs the YOLOv5 model [22] to train a cell detector in histology images.
We chose this model as it provides both high detection speed and accuracy. We made sev-
eral model adjustments to improve its performance further. Our development contributed
to both improving the overall model detection rate (i.e., in complete annotation settings),
but mainly focused on diminishing the accuracy drop due to missing annotations. As
mentioned in Subsection 4.1, we employed the MoNuSeg 2018 dataset for performance
estimates. The objective of obtaining better results on the test set guided our model
tuning and development.

We performed simple model improvements like tweaking hyperparameters. But
most importantly, we introduced more complex changes by customising the network
loss function to achieve better performance under missing annotation constraints. In
particular, we designed a new Generalised Background Recalibration Loss by adapting
the Background Recalibration Loss [67] to the YOLOv5 model architecture, which
required rethinking loss implementation. We describe model tuning and the new loss
function in the subsequent sections.

4.2.1 Hyperparameter tuning

The YOLOv5 model has an extensive list of hyperparameters (listed in Appendix I)
to tune the training process. We employed several techniques to find the best values.
Since the hyperparameter space is too ample, it was only possible to partially automate
the search. We used a combination of a grid search and a guided search. Grid search
constructs a multitude of configurations to test the model by combining different values
from the predefined ranges or sets. Since grid search is less efficient and requires much
time to run, it was used for hyperparameters that have a less predictable impact on
the training process (e.g., optimiser, its learning rate and momentum, learning rate
scheduler). By guided search, we assume manual pick of configurations based on
expected hyperparameter impact on our data. In other words, we integrated domain
knowledge into our search decisions. For example, it is easier to figure out suitable data
augmentation techniques because of their relatively transparent impact.

All the hyperparameters can be roughly separated into three main categories: architec-
ture- (e.g., model size), optimisation- (e.g., learning rate) and data-related (e.g., image

37



flip). We adjusted these variables according to the best-performing configurations ob-
tained during our search. The following paragraphs describe only variables that we
changed as compared to the default values. The complete list of the default and our tuned
hyperparameter values can be found in Appendix I.

Architecture-related. As described in Model scaling paragraph of Subsection 3.4.5,
YOLOv5 encloses a family of models varied in size. Smaller models are faster but have
limited learning capacity. However, bigger architectures are also prone to overfit. Since
our image variability is low (300 images in the MoNuSeg 2018 training set), we decided
to go with quite a limited model size. We chose a small model (YOLOv5s), which
employs a 0.33 depth multiple ratio and 0.50 width multiple ratio, resulting in nearly
1.9M model parameters. In comparison, for the large configuration (YOLOv5l), both
ratios are set to 1, and it has 46.5M parameters.

Optimisation-related. Optimisation parameters are crucial to make learning efficient.
They allow for achieving the maximum performance within the given model learning
capacity. Based on conducted hyperparameter search (including grid search), we lowered
the learning rate (set lr0 and lrf to 0.005 and 0.05, respectively) and increased momentum
(set to 0.977). We also doubled the batch size up to 32 to speed up learning and make
batch statistic calculations more representative during training. Additionally, we found
enabling the cosine learning rate scheduler and learning with image weights (calculated
internally) beneficial. Regarding the loss component, we slightly increased the objctness
loss gain (contribution to the total loss coefficient) from 0.7 to 1. In some experiment
setups (described in Subsection 5.2), we employed the change of obj_pw (positive class
weight in objectness loss) hyperparameter from 1 to 0.1.

Data-related. The YOLOv5 offers a broad list of built-in data augmentation image
transformations. However, our tuning tests showed that default values already provide
the best configuration for our data. The only related hyperparameter value we changed
is enabling up-down image flip augmentation with 0.5 probability. It is evident that
histology images are invariant to any axis flip, which is a good example of domain
knowledge integration in our model tuning process.

4.2.2 Generalised Background Recalibration Loss

Inspired by the Background Recalibration Loss discussed in Subsection 3.5, we designed
a variation of this loss that is suitable for a broader set of object detection models
(e.g., YOLOv5) and named it a Generalised Background Recalibration Loss (GBRL).
The main obstacle that makes straightforward usage of BRL in models like YOLOv5

38



impossible is related to how ground truth probability scores are composed in different
models. In more straightforward architectures, models learn to predict binary objectness
scores (or conditioned class scores). In other words, ground truth negative and positive
labels are equal to 0 and 1 probabilities, respectively, which was the assumption for the
original BRL implementation. As described in Activation and loss functions paragraph of
Subsection 3.4.5, YOLOv5 composes the ground truth objectness score as a CIOU metric
between the ground truth and prediction boxes. Hence, ground truth values are no longer
binary but continuous, ranging from 0 to 1. Such differences in model architectures can
require the necessity of rethinking the implementation of the model loss.

As described in Subsection 3.5, BRL is based on a focal loss function. In our work,
we employ γ = 0, which makes BRL a regular BCE loss. Hence, we onwards build our
discussion based on BCE loss. The key feature of the BRL function is in the different
treatment of positive and negative loss branches. The definition of these branches is
straightforward when targets are binary. According to the Equation 2, positive and
negative branches are defined as − log p and − log (1− p), respectively, when y equals
1 and 0 (See Figure 22a). However, with continuous y values, there is no evident loss
segregation into positive and negative branches. The resulting loss is a combination of
branches weighted by y and 1− y, ranging from 0 to 1 (See Figure 22b).

Figure 22. Figures a and b show BCE loss for binary and continuous ground truths,
respectively. Figure a employs two line plots for respective y values, while Figure b
shows a heatmap with continuous y range. In Figure b, a loss is truncated to a maximum
value of 1 for better visualisation.

The main task for adapting BRL to continuous ground truth targets lay in rethinking
the loss branch segregation concept. Since targets are built from a CIOU score, we

39



treat loss branches as follows. The negative branch corresponds to 0 CIOU because
no object overlap means the absence of the ground truth object. Contrary, the positive
branch corresponds to CIOU, which is strictly greater than 0 because any measure of
objects overlap means the presence of the ground truth object. Then, we replace the hard
negative part of the negative branch (up to threshold t) with the mirrored positive branch
(i.e., easy positive). That way, if a model confidently predicts a positive class (i.e., over
the threshold 1− t) for the negative ground truth label, our loss implicitly relabels the
object to the positive instance. The GBRL loss is defined by the Equation 7. Here α is
a positive class weight factor, which was shown to be important in missing annotation
settings by Zhang et al.

GBRL(y, p) =


−α y log p− (1− y) log(1− p), if 0 < y ≤ 1

− log(1− p), if y = 0 and p ≤ 1− t

−α log(p), if y = 0 and p > 1− t

(7)

With a new loss formula, we still can interpret the negative branch using a line plot as
shown in Figure 23a. It now has less penalty for a confidently misclassified negative
class, which should aid in missing annotation settings. The heatmap in Figure 23b shows
loss values for the whole y range. Note how the upper row of the heatmap has changed
compared to Figure 22b. This row now reflects the loss magnitude of the easy and hard
negative branches shown in Figure 23a.

Figure 23. Generalised Background Recalibration Loss with threshold t = 0.4 and
α = 1. Figure a shows a new negative branch as a conjunction of the initial easy and
changed hard negative subbranches while b shows a 2D heatmap for continuous y range.
In Figure b, a loss is truncated to a maximum value of 1 for better visualisation.

40



5 Experiments and results
In this section, we describe training experiments conducted to test the methods proposed
in Subsection 4.2. We first describe data preparation part, outline the experiment settings,
and then present the results.

5.1 Data preparation
We followed a set of preprocessing operations documented by Nguyen et al. [41] to
prepare MoNuSeg 2018 dataset [29, 28] for our experiments. First of all, the original
MoNuSeg 2018 training set was separated into new training and validation sets of 25 and
5 images, respectively. Then, for initial 1000× 1000 images, authors took 10 random
sub-samples of size 512× 512. That methodology was applied to all subsets, producing
250 training, 50 validation, and 140 testing images. Important to note that such an
approach resulted in duplicate cell annotations because samples inevitably overlap. In
particular, the whole dataset volume of annotations increased nearly three times. On the
other side, image dimensions were reduced by almost a factor of 2, which made model
training faster and less resource-consuming.

Figure 24. Annotation sampling strategy. Upper-left image shows a sample from
MoNuSeg 2018 training set. Upper-centre image shows complete annotations. Other
images illustrate sampled annotations with respective rates.

41



The next aspect of data preparation is a synthetic generation of annotation subsets.
We uniformly sampled 50%, 25%, 10%, and 5% of annotations for each image in the
training set to simulate incompleteness (illustrated in Figure 24). The validation and test
sets remained complete for meaningful estimates. Important to note that the number of
images in the whole dataset remained the same. In addition, we independently repeated
random samplings five times (defined by random seeds) for each annotation percentage
value to diminish the influence of lucky and unlucky seeds.

Regarding the histology testis dataset, there are no additional preprocessing stages in
addition to those described in Subsection 4.1.2. The training set is intrinsically sparse
(we estimated 83% of missing annotations), and the test set is complete.

5.2 Experiments
In our work, we employed several model training settings that varied in the combination
of methodologies introduced in Subsection 4.2. We created five experiment settings to
demonstrate an iterative performance gain (an ablation study). The following paragraphs
describe each setup.

Setup 1: Model with no hyperparameter tuning. This is the most straightforward
setup that involves no tuning of YOLOv5’s hyperparameters. The only values we
customised were the batch size (doubled from 16 to 32 to speed up training) and image
size (to use the original 512 × 512 pixel resolution). The performance of this default
configuration serves as a baseline benchmark to compare our methods.

Setup 2: Model with hyperparameter tuning. We applied hyperparameter tuning
of the YOLOv5 model as described in Subsection 4.2.1, but left the obj_pw value with
a default of 1. With this experiment, we planned to explore the performance potential
of the existing model without changing its architecture, although we omitted the alpha
factor adjustment to show its importance in further experiments.

Setup 3: Model with hyperparameter tuning and GBRL. In addition to the previous
setup, we replaced the default BCE loss function of YOLOv5 with Generalised Back-
ground Recalibration Loss with parameters t = 0.3 (validated to give the best results)
and α = 1 (no weight shift, i.e., analogous to obj_pw = 1). In this experiment, we
estimated the benefit of introducing the GBRL.

Setup 4: Model with hyperparameter tuning and adjusted α factor. In addition
to the second setup, we changed the objectness positive class weight factor obj_pw
of the default YOLOv5 BCE loss to 0.1. In other words, we employ hyperparameter
tuning described in Subsection 4.2.1 including the change of obj_pw. This benchmark

42



showcases the importance of calibrating the loss weight even without replacing the loss
function.

Setup 5: Model with hyperparameter tuning, GBRL and adjusted α factor. Based
on the third setup, but with α set to 0.1. This benchmark incorporates all the incremental
improvements of the previous setups to establish the high accuracy gain in missing
annotation settings.

In a context of MoNuSeg 2018 dataset, we followed the following steps for each
of the five experiment settings. Firstly, we trained a single YOLOv5 model on the
complete annotations to obtain a benchmark score. Secondly, we trained the YOLOv5
model for each sampling ratio and random seed, resulting in 20 independent models. We
then averaged the performance metrics across different seeds to obtain representative
estimations. Additionally, we calculated the standard deviation of scores to understand
their variability. In result, we summarized the mAP50 scores on the test set for each
experiment setup and missing annotation settings.

For the testis histology data, we used the baseline and best-performing models
according to the results on MoNuSeg 2018 to estimate the performance on the test set.
We preserved the model hyperparameter and loss modifications (described in Subsection
4.2) developed based on the MoNuSeg 2018 without any changes, except for the input
image size and optimiser that we set to Adam instead of SGD (tested to work better).

5.3 Results
The following two subsection describe experiment results on MoNuSeg 2018 and testis
histology datasets, respectively.

5.3.1 MoNuSeg 2018

The results of the experiments with the described setups are displayed in Table 3. Among
all the highlights, we first want to emphasise the superior detection accuracy of YOLOv5
in complete annotation settings. The baseline model achieved a mAP50 score of 90.3%,
and our best setup pushed it towards 90.9%. This is a significant improvement of 5.3%
mAP50 compared to the results reported by Nguyen et al. The authors achieved a mAP50

score of 85.6% on the MoNuSeg 2018 test set with the dedicated CircleNet model [41].
Secondly, we would like to emphasise the intrinsic robustness of YOLOv5 to missing

annotation settings. According to the baseline model, removing half of the annotations
caused a drop of 1.1% in mAP50. Going further to the extreme case of preserving only
5% of the annotations, the drop in performance was 6.7% in such a setting. Therefore,
we can conclude that in this setup YOLOv5 is robust to sparsely annotated training
data, indicating that large percentages of missing annotations lead to only small drops

43



in performance. In comparison, Zhang et al. reported a more significant accuracy drop
when using RetinaNet [31] with a ResNet-101 [17] backbone over the PASCAL VOC
2007 dataset [4] with missing annotations. Although MoNuSeg 2018 and PASCAL VOC
2007 are very different datasets in terms of domains, it is worth noting that they possess
similar amounts of annotations. Hence, the differences in results should be attributed to
the applied models, although we cannot exclude the impact of the other factors.

Table 3. YOLOv5 object detection mAP50 scores on MoNuSeg 2018 test set obtained
with different model setups and missing annotation settings. Note, Alpha term is used to
denote α from Equation 7 and obj_pw hyperpararmeter of YOLOv5 in respective setups.

Experiment Setup Data Subset

№ Tuned GBRL Alpha 100% 50% 25% 10% 5%

1 0.903 0.892± 0.003 0.883± 0.015 0.870± 0.015 0.836± 0.030
2 0.896 0.898± 0.005 0.890± 0.010 0.873± 0.018 0.840± 0.033
3 0.893 0.897± 0.010 0.888± 0.009 0.869± 0.022 0.838± 0.024
4 0.909 0.907 ± 0.002 0.901± 0.007 0.890± 0.012 0.847± 0.023
5 0.906 0.905± 0.003 0.903 ± 0.004 0.893 ± 0.005 0.868 ± 0.010

Thirdly, we are comparing the performance across setups. According to Setup 2, our
hyperparameter tuning (excluding obj_pw) brought minor improvements to detection
accuracy on annotation subsets, except for the complete training set, which decreased
accuracy. However, with an additional tuning of α (including obj_pw) in Setup 4, the
model’s performance substantially improved (see example detections in Figure 25),
leading to the best results on the 100% and 50% annotation sets. Setup 3 shows that
BRL without α tuning did not consistently improve performance compared to Setups 1
and 2. Lastly, and most importantly, Setup 5 demonstrates that combining all proposed
features yields the best-performing model in highly sparse settings (≤ 25% annotations).
Moreover, the standard deviation across the seeds was consistently reduced in Setups 4
and 5.

As a result, using Setup 5, we increased the mAP50 score on the 5%, 10%, and 25%
of variants with the corresponding amount of annotated samples by 3.2%, 2.3%, and
2%, respectively, compared to the baseline Setup 1. Similarly, Setup 4 improved scores
for 100% and 50% annotations by 1.5% and 0.6%. In this way, we further reduced the
performance gap between the edge cases of annotation completeness (100% and 5%):
there was a 3.8% gap in Setup 5 compared to 6.7% in the baseline. Interestingly, Setup
5 under 25% of annotations achieved the same score of 90.3% mAP50 as the baseline
YOLOv5 model configuration in complete annotation settings.

44



Figure 25. Example MoNuSeg 2018 test predictions of YOLOv5 models trained on
datasets with randomly sampled annotations. Subset sampling ratio is displayed below
the image (100% denotes no sampling). Red boxes correspond to ground truth, green
ones — to predictions. Yellow arrows highlight false predictions.

Lastly, although we present the performance results of the GBRL under the complete
annotations, its application is not reasonable in such a setup. Nevertheless, Zhang et al.
showed that employing BRL did not significantly hurt performance while training with a
fully annotated dataset. Surprisingly, in our experiments, GBLR with scaled alpha factor
increased the mAP50 score slightly compared to the baseline.

5.3.2 Testis histology dataset

We got 44.4% and 50.7% mAP50 scores for the baseline (Setup 1) and best-performing
in sparse settings (Setup 5) models, respectively, when analysing testis histology data.
Employment of GBRL with alpha and hyperparameter tuning resulted in a 6.3% increase
in scores. This is a high relative improvement, although it is important to note that the
overall scores are lower for testis data than for MoNuSeg 2018, for a few reasons.

Firstly, the testis data incorporates a classification challenge with a high similarity of
cell classes, making it difficult even for experts. Secondly, unlike in MoNuSeg 2018, the
testis images contain cell objects that look very similar to the ones we are classifying, but
do not belong to any of our target classes, and therefore they are not annotated. This led to
frequent false positive confusion on these objects. Lastly, during the annotation process,
cell class segregation depended on the higher-level information, such as cell location
within the tubule. However, this information was often missing from the extracted image
crops of WSIs at X40 magnification (i.e., the lack of a broader context), making inference
of the proper class label challenging.

To test our assumption that the score decrease was due to the difficult classification
problem, we conducted the same model training experiments but excluded the classi-
fication task. The results were 64.6% and 68.9% of mAP50 for Setup 1 and 5 models,
respectively. Eliminating cell classification resulted in a significant score improvement
of nearly 20% mAP50 for each model. The relative improvement between setups con-

45



stituted 4,3% of mAP50. Figure 26 provides an example detections for each mentioned
experiment on testis data, which clearly demonstrates the performance gain of our GBRL
and model tuning solutions.

Figure 26. The YOLOv5 model trained on the incomplete annotations testis dataset
predicted examples of testis images in the test set. The first column displays the ground
truth boxes, the second column shows the predictions of the baseline model (Setup 1), and
the third column shows the predictions of the best model (Setup 5). The first row shows
models trained for detection and classification, while the second row shows detection
only. In the first row, orange, blue, and green boxes correspond to the spermatogonia,
spermatocyte, and sertoli classes. The yellow arrows indicate wrong predictions.

46



6 Conclusion
In this study, we investigated the training of object detection YOLOv5 model for
histopathology in sparse annotation settings. Firstly, we demonstrated that hyperpa-
rameter tuning alone can enhance model performance. Thus, we increased the detection
rate on MoNuSeg 2018 dataset over the previous state-of-the-art benchmarks [41] by
5.3% of mAP50. We emphasised the importance of calibrating the objectness positive
weight factor, denoted as α. This approach was most effective with complete and rela-
tively high (50%) annotation completeness. Secondly, we proposed a novel Generalised
Background Recalibration Loss (GBRL) function that extended previous works to be
compatible with a broader range of models, including YOLOv5. When combined with
α tuning, GBRL yielded a substantial performance gain in extremely sparse annotation
scenarios with up to 95% missing labels. Our results showed that YOLOv5 trained on
histopathology data was more robust to missing annotations than anticipated from prior
work [67].

Sparse labelling can significantly reduce the time and budget costs associated with
data preparation, which is especially critical in medical imaging. The outcomes of our
work should facilitate the development of object detection models in histopathology
domains using sparse data.

47



7 Acknowledgments
This work was funded by PerkinElmer, Inc. and the Estonian Ministry of Foreign Affairs
Development Cooperation and Humanitarian Aid funds. The computational resources
were provided by the High Performance Computing Center of the University of Tartu. I
want to thank my supervisors, Mikhail Papkov and Dmytro Fishman, for their patient
assistance and insightful feedback in accomplishing and writing this work. Also, I am
grateful to Georgi Džaparidze and Erik Tamp, who prepared data for research purposes
and consulted on histopathology domain-specific questions.

48



References
[1] The cancer genome atlas (tcga). http://cancergenome.nih.gov/.

[2] Grammarly: Writing ai assistance.

[3] Introducing chatgpt.

[4] The pascal visual object classes homepage. http://host.robots.ox.ac.uk/
pascal/VOC/. Accessed: 2023-04-25.

[5] Precision-recall area under the curve (pr auc). https://www.stateoftheart.ai/
concepts/a468a5b3-605a-4010-a8c5-2337b5275e43. Accessed: 2023-04-25.

[6] What is a neural network? https://www.tibco.com/reference-center/
what-is-a-neural-network. Accessed: 2023-04-25.

[7] AmScope. Medicine and microscopes: How microscopes have impacted
the healthcare field, September 2019. https://amscope.com/blogs/
news/medicine-and-microscopes-how-microscopes-have-impacted-the-
healthcare-field.

[8] Aïcha BenTaieb and Ghassan Hamarneh. Deep learning models for digital pathol-
ogy, 2019.

[9] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4:
Optimal speed and accuracy of object detection, 2020.

[10] Manuel Carranza-García, Jesús Torres-Mateo, Pedro Lara-Benítez, and Jorge
García-Gutiérrez. On the performance of one-stage and two-stage object detectors
in autonomous vehicles using camera data. Remote Sensing, 13:89, 12 2020.

[11] Angel Cruz-Roa, Ajay Basavanhally, Fabio González, Hannah Gilmore, Michael
Feldman, Shridar Ganesan, Natalie Shih, John Tomaszewski, and Anant Madab-
hushi. Automatic detection of invasive ductal carcinoma in whole slide images
with convolutional neural networks. Progress in Biomedical Optics and Imaging -
Proceedings of SPIE, 9041, 02 2014.

[12] Richard O. Duda and Peter E. Hart. Use of the hough transformation to detect lines
and curves in pictures. Commun. ACM, 15(1):11–15, jan 1972.

[13] Max Ferguson, Ronay ak, Yung-Tsun Lee, and Kincho Law. Automatic localization
of casting defects with convolutional neural networks. pages 1726–1735, 12 2017.

49

http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
https://www.stateoftheart.ai/concepts/a468a5b3-605a-4010-a8c5-2337b5275e43
https://www.stateoftheart.ai/concepts/a468a5b3-605a-4010-a8c5-2337b5275e43
https://www.tibco.com/reference-center/what-is-a-neural-network
https://www.tibco.com/reference-center/what-is-a-neural-network
https://amscope.com/blogs/news/medicine-and-microscopes-how-microscopes-have-impacted-the-
https://amscope.com/blogs/news/medicine-and-microscopes-how-microscopes-have-impacted-the-
healthcare-field


[14] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D. Cubuk,
Quoc V. Le, and Barret Zoph. Simple copy-paste is a strong data augmentation
method for instance segmentation, 2021.

[15] Ross Girshick. Fast r-cnn, 2015.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In Computer Vision – ECCV
2014, pages 346–361. Springer International Publishing, 2014.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[18] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications, 2017.

[19] Lee Jacobson. Introduction to artificial neural networks -
part 1. https://www.theprojectspot.com/tutorial-post/
introduction-to-artificial-neural-networks-part-1/7, 2013. Ac-
cessed: 2023-04-25.

[20] Glenn Jocher, Liu Changyu, Adam Hogan, Lijun Yu , changyu98, Prashant Rai,
and Trevor Sullivan. ultralytics/yolov5: Initial release, June 2020.

[21] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012,
Yonghye Kwon, Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, (Zeng
Yifu), Colin Wong, Abhiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Jebastin
Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai, yxNONG, Piotr Skalski,
Adam Hogan, Dhruv Nair, Max Strobel, and Mrinal Jain. ultralytics/yolov5: v7.0 -
YOLOv5 SOTA Realtime Instance Segmentation, November 2022.

[22] Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka Borovec, NanoCode012,
TaoXie, Yonghye Kwon, Kalen Michael, Liu Changyu, Jiacong Fang, Abhiram V,
Laughing, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Jebastin Nadar, imyhxy,
Lorenzo Mammana, AlexWang1900, Cristi Fati, Diego Montes, Jan Hajek, Lauren-
tiu Diaconu, Mai Thanh Minh, Marc, albinxavi, fatih, oleg, and wanghaoyang0106.
ultralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models, Roboflow integration, Tensor-
Flow export, OpenCV DNN support, October 2021.

[23] Dae-Young Kang, Pham Duong, and Jung-Chul Park. Application of deep learning
in dentistry and implantology. The Korean Academy of Oral and Maxillofacial
Implantology, 24:148–181, 09 2020.

50

https://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7
https://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7


[24] Vaibhav Khandelwal. The architecture and imple-
mentation of vgg-16. https://pub.towardsai.net/
the-architecture-and-implementation-of-vgg-16-b050e5a5920b. Ac-
cessed: 2023-04-25.

[25] Inho Kim, Kyungmin Kang, Youngjae Song, and Tae-Jung Kim. Application of
artificial intelligence in pathology: Trends and challenges. Diagnostics, 12:2794,
11 2022.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[27] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks,
2014.

[28] Neeraj Kumar, Ruchika Verma, Deepak Anand, Yanning Zhou, Omer Fahri Onder,
Efstratios Tsougenis, Hao Chen, Pheng-Ann Heng, Jiahui Li, Zhiqiang Hu, et al.
A multi-organ nucleus segmentation challenge. IEEE transactions on medical
imaging, 39(5):1380–1391, 2019.

[29] Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Va-
hadane, and Amit Sethi. A dataset and a technique for generalized nuclear seg-
mentation for computational pathology. IEEE transactions on medical imaging,
36(7):1550–1560, 2017.

[30] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection, 2017.

[31] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal
loss for dense object detection, 2018.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2015.

[33] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network
for instance segmentation, 2018.

[34] Aditya Lohia, Kalyani Kadam, Rahul Joshi, and Arunkumar Bongale. Bibliometric
analysis of one-stage and two-stage object detection. 02 2021.

[35] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts, 2017.

51

https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b
https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b


[36] Cui M. and D.Y Zhang. Artificial intelligence and computational pathology, January
2021. https://doi.org/10.1038/s41374-020-00514-0.

[37] Salinas M, Rosas J, Iborra J, Manero H, and Pascual E. Revealing
the precision of your manual cell counts. https://chemometec.com/
perfect-precision-manual-cell-counting/#precision.

[38] Salinas M, Rosas J, Iborra J, Manero H, and Pascual E. Comparison of manual and
automated cell counts in edta preserved synovial fluids. storage has little influence
on the results, October 1997. https://pubmed.ncbi.nlm.nih.gov/9389224/.

[39] Michael T McCann, John A. Ozolek, Carlos A. Castro, Bahram Parvin, and Jelena
Kovacevic. Automated histology analysis: Opportunities for signal processing.
IEEE Signal Processing Magazine, 32(1):78–87, 2015.

[40] David S. McClintock, Jacob T. Abel, and Toby C. Cornish. Whole Slide Imaging
Hardware, Software, and Infrastructure, pages 23–56. Springer International
Publishing, Cham, 2022.

[41] Ethan H Nguyen, Haichun Yang, Ruining Deng, Yuzhe Lu, Zheyu Zhu, Joseph T
Roland, Le Lu, Bennett A Landman, Agnes B Fogo, and Yuankai Huo. Circle
representation for medical object detection. IEEE transactions on medical imaging,
41(3):746–754, 2021.

[42] Yusuke Niitani, Takuya Akiba, Tommi Kerola, Toru Ogawa, Shotaro Sano, and
Shuji Suzuki. Sampling techniques for large-scale object detection from sparsely
annotated objects, 2019.

[43] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation
functions, 2017.

[44] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection, 2016.

[45] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger, 2016.

[46] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks, 2016.

[48] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid,
and Silvio Savarese. Generalized intersection over union: A metric and a loss for
bounding box regression, 2019.

52

https://doi.org/10.1038/s41374-020-00514-0
https://chemometec.com/perfect-precision-manual-cell-counting/#precision
https://chemometec.com/perfect-precision-manual-cell-counting/#precision
https://pubmed.ncbi.nlm.nih.gov/9389224/


[49] Janosh Riebesell. Convolution operator. https://tikz.net/conv2d/. Accessed:
2023-04-25.

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation, 2015.

[51] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[52] Deval Shah. Mean average precision (map) explained: Everything you need to know.
https://www.v7labs.com/blog/mean-average-precision, 2022. Accessed:
2023-04-25.

[53] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015.

[54] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part
1 – learning rate, batch size, momentum, and weight decay, 2018.

[55] C Sommer, C Straehle, U Köthe, and F A Hamprecht. Ilastik: Interactive learning
and segmentation toolkit. In 2011 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, pages 230–233, March 2011.

[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions, 2014.

[57] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient
object detection. 2019.

[58] Baxi V., Edwards R., and Montalto M. Digital pathology and artificial intelligence
in translational medicine and clinical practice, October 2021. https://doi.org/
10.1038/s41379-021-00919-2.

[59] Martha S Vokes and Anne E Carpenter. Using CellProfiler for automatic identifica-
tion and measurement of biological objects in images, 2008.

[60] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang
Chen, and Jun-Wei Hsieh. Cspnet: A new backbone that can enhance learning
capability of cnn, 2019.

[61] Tiancai Wang, Tong Yang, Jiale Cao, and Xiangyu Zhang. Co-mining: Self-
supervised learning for sparsely annotated object detection, 2021.

53

https://tikz.net/conv2d/
https://www.v7labs.com/blog/mean-average-precision
https://doi.org/10.1038/s41379-021-00919-2
https://doi.org/10.1038/s41379-021-00919-2


[62] Zhe Wu, Navaneeth Bodla, Bharat Singh, Mahyar Najibi, Rama Chellappa, and
Larry S. Davis. Soft sampling for robust object detection, 2019.

[63] Renjie Xu, Haifeng Lin, Kangjie Lu, Lin Cao, and Yunfei Liu. A forest fire
detection system based on ensemble learning. Forests, 12:217, 02 2021.

[64] Samir Yadav, Rahul Rathod, Sugat Pawar, Vaishali Pawar, and Sitaram More.
Application of deep convulational neural network in medical image classification.
04 2021.

[65] Shivy Yohanandan. What is mean average precision (map)
and how does it work. https://xailient.com/blog/
what-is-mean-average-precision-and-how-does-it-work/, 2020. Ac-
cessed: 2023-04-25.

[66] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks, 2013.

[67] Han Zhang, Fangyi Chen, Zhiqiang Shen, Qiqi Hao, Chenchen Zhu, and Marios
Savvides. Solving missing-annotation object detection with background recali-
bration loss. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1888–1892. IEEE, 2020.

[68] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization, 2018.

[69] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren.
Distance-iou loss: Faster and better learning for bounding box regression, 2019.

54

https://xailient.com/blog/what-is-mean-average-precision-and-how-does-it-work/
https://xailient.com/blog/what-is-mean-average-precision-and-how-does-it-work/


Appendix

I. Training details
Table 4 lists hyperparameters that control the training process of the YOLOv5 model [22].
The list includes a variable name, default value, changed (tuned) value, and description.

Table 4. Hyperparameters of YOLOv5. Changed parameters highlighted in bold.

Hyperparameter Default value Tuned value Explanation

lr0 0.01 0.005 initial learning rate
lrf 0.1 0.05 final learning rate (lr0 * lrf)

momentum 0.937 0.977 SGD momentum/Adam beta1
weight_decay 0.0005 0.0005 optimiser weight decay

warmup_epochs 3.0 3.0 warmup epochs
warmup_momentum 0.8 0.8 warmup initial momentum

warmup_bias_lr 0.1 0.1 warmup initial bias lr
box 0.05 0.05 box regression loss weight
cls 0.3 0.3 classification loss weight

cls_pw 1.0 1.0 classification positive weight
obj 0.7 1 objectness loss gain

obj_pw 1 1 or 0.1 objectness positive weight
anchor_t 4.0 4.0 anchor-multiple threshold

fl_gamma 0.0 0.0 focal loss gamma
hsv_h 0.015 0.015 image HSV-Hue augmentation
hsv_s 0.7 0.7 image HSV-Saturation augmentation
hsv_v 0.4 0.4 image HSV-Value augmentation

degrees 0.0 0.0 image rotation (+/- deg)
translate 0.1 0.1 image translation (+/- fraction)

scale 0.9 0.9 image scale (+/- gain)
shear 0.0 0.0 image shear (+/- deg)

perspective 0.0 0.0 image perspective (+/- fraction)
flipud 0 0.5 image flip up-down (probability)
fliplr 0.5 0.5 image flip left-right (probability)

mosaic 1.0 1.0 image mosaic (probability)
mixup 0.1 0.1 image mixup (probability)

copy_paste 0.0 0.0 segment copy-paste (probability)
weights YOLO-v5s.pt YOLO-v5s.pt pretrained model weights
epochs 300 300 number of training epochs

batch-size 16 32 batch size
imgsz 640 512 input image size (resize)

rect disabled disabled rectangular training
noautoanchor disabled disabled disable AutoAnchor algorithm

image-weights disabled enabled weighted image selection for training
multi-scale disabled disabled vary img-size +/- 50%

optimizer SGD SGD neural network optimiser
cos-lr disabled enabled cosine LR scheduler

patience 100 100 early stopping patience

55



II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Denys Kaliuzhnyi,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Reducing the Effect of Incomplete Annotations in Object Detection for
Histopathology,

( title of thesis)

supervised by Mikhail Papkov and Dmytro Fishman.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Denys Kaliuzhnyi
08/05/2023

56


	Introduction
	Problem
	Motivation
	Contribution

	Writing assistance
	Background
	Histopathology imaging
	Digital pathology
	Image processing

	Neural networks in deep learning
	Convolutional neural networks in computer vision
	Object detection
	One-stage detectors
	Evaluation metrics
	Training losses
	YOLO models
	YOLOv5

	Handling missing annotations in object detection

	Data and methods
	Datasets
	MoNuSeg 2018
	Testis histology dataset

	Methods
	Hyperparameter tuning
	Generalised Background Recalibration Loss


	Experiments and results
	Data preparation
	Experiments
	Results
	MoNuSeg 2018
	Testis histology dataset


	Conclusion
	Acknowledgments
	References
	Appendix
	I. Training details
	II. Licence


