
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Software Engineering Curriculum

Peter Kallaste

How do developers update dependencies in
iOS libraries?

Master’s Thesis (30 ECTS)

Supervisor(s): Kristiina Rahkema, MSc
     

Tartu 2023

How do developers update dependencies in iOS libraries?

Abstract:
Software developers use third-party libraries to help with their coding process. Although they
are often tested by multiple developers, they still need to be regularly updated. For example,
when a library adds a new feature or library contains a bug. It is helpful to know if there are
any updating patterns for libraries, so that library developers can better understand their
users. Multiple related studies have analysed the updating patterns of many environments, but
none are for iOS environments.

The goal of this study is to analyse iOS libraries and find if there are any patterns for
updating them. We will use the preexisting Swift Library Dependency Network (Swift LDN)
dataset that contains libraries from CocoaPods, Carthage and SwiftPM package managers.
We will check if and how the iOS developers update their libraries. During the analysis, we
found that iOS developers usually choose the latest version of the library and later do not
update that library anymore.

Keywords:
Third-party libraries, data analysis, Neo4j database, iOS

CERCS:
P170 - Computer science, numerical analysis, systems, control

Kuidas tarkvara arendajad uuendavad oma iOS teekide sõltuvusi?

Lühikokkuvõte:
Tarkvara arendajad kasutavad kolmanda osapoolte teeke, et lihtsustada oma arenduse
protsessi. Kuigi need teegid on tavaliselt testitud mitmete osapoolte poolt, siis ikkagi leidub
olukordi, kus seda teeki on vaja uuendada. Näiteks kui teegile lisatakse uued võimalused või
teegi seest leitakse mingi viga. Kasulik on teada, kas leidub mingeid mustreid teeki
uuendamise kohta, mis aitaks teekide arendajatel mõista paremini oma kasutajaid. Olemas on
mitu sarnast teadustööd, mis uurivad teekide sõltuvuste uuendusi, aga see puudub iOS teekide
jaoks.

Selle töö eesmärgiks on analüüsida iOS teeke ja uurida välja, kas leidub mingeid mustreid
nende uuendamisete kohta. Selle jaoks, me kasutame olemasolevat Swift LDN andmekogu,
mis sisaldab teeke CocoaPods, Carthage ja SwiftPM paketihalduriest. Me vaatame kas ja
kuidas iOS teekide arendajad uuendavad oma teekide sõltuvusi. Selle analüüsi käigus me
leidsime, et iOS arendajad tavaliselt valivad kõige viimase teegi versiooni projekti tegemisel
ja hiljem enam seda ei uuenda.

Võtmesõnad:
Kolmandate osapoolte teegid, andmete analüüs, Neo4j andmebaas, iOS

CERCS:
P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

2

Table of Contents

1 Introduction 4
1.1 Motivation 4
1.2 Research questions 5
1.3 Thesis structure 5

2 Related work 6
2.1 Update patterns in Java library dependencies 6
2.2 Update patterns in Android library dependencies 6

3 Background 8
3.1 Package managers 8
3.2 Neo4j graph platform 8
3.3 Swift LDN dataset 9

4 Methodology 12
4.1 Using the Swift LDN dataset 12
4.2 RQ1: Library dependency updating 13
4.3 RQ2: Dependency updating patterns 13
4.4 RQ3: Vulnerability affect on updates 14

5 Results 15
5.1 RQ1: Library dependency updating 15
5.2 RQ2: Dependency updating patterns 17

5.2.1 Results for alamofire library 18
5.2.2 Results for nimble library 20
5.2.3 Results for afnetworking library 21

5.3 RQ3: Vulnerability affect on updates 23
5.3.1 Vulnerability in afnetworking library 24
5.3.2 Vulnerability in starscream library 24
5.3.3 Vulnerability in swift-nio-ssl library 26

6 Discussion 28
6.1 Discussing results 28
6.1 Comparing results with related papers 29
6.2 Threats of validity 29

7 Conclusion 30
References 31
Appendix 32

I. Neo4j graph queries 32
II. Licence 35

3

1 Introduction

Software developers often use third-party libraries or packages to help them speed up the
code development process. Third-party libraries are collections of resources containing
different functionalities, which developers can use in their programs or in other libraries [1].
Those are often preferred over custom code because multiple people have tested them [2].
Some popular libraries are, for example, OpenCV1, which is used for real-time computer
vision tasks, and TensorFlow2, which is for machine learning and artificial intelligence.
Furthermore, large companies like Google provide hundreds of different libraries.

To make software developers’ lives easier, they can use package managers to control their
project dependencies. The primary function of package managers is to install necessary
dependencies that are defined in user-created configuration files [3]. There are different types
of package managers, but most of them can also do automatic updating, or by writing the
version number, it instals that version. Most programming languages have dedicated package
managers. For example, Java developers most commonly use Maven3 or Gradle4, and
JavaScript has npm5 and Yarn6.

1.1 Motivation

However, even libraries must be updated regularly because of security issues or new
requirements [2]. Because of that, new versions should contain improvements that the
previous version did not have, and software developers can decide if they should upgrade to a
newer version or stay with the old one. There can be different reasons for the developer to
stay with the old version. For example, the new version requires too much effort to update, or
the new version contains some bugs [4].

Many research papers have already analysed update patterns of different library
dependencies. For example, Kula et al. [4] analysed Java library dependencies, and Salza et
al. [3] analysed Android library dependencies. They bring insight into how libraries are
updated and if they already follow any trends for updating libraries or bring out trends that
developers should follow. However, there are no papers that conduct update analyses on iOS
library dependencies. Therefore, our thesis goal would be to analyse iOS library
dependencies and compare the result with the other papers. It would be interesting to see if
there are any differences across the platform and why they are different or similar. One of the
differences may be that Swift language, which is used for developing iOS projects, is not
backwards compatible, unlike Java language.

6 https://yarnpkg.com/

5 https://www.npmjs.com/

4 https://gradle.org/

3 https://maven.apache.org/

2 https://www.tensorflow.org/

1 https://opencv.org/

4

In this thesis, we will use a library dependency network dataset [5] that compiled libraries
from CocoaPods, Carthage and Swift PM. Those are the three package managers for iOS
projects.

1.2 Research questions

In this thesis, we have formulated the following three research questions:

RQ1: To what extent do developers update their iOS library dependencies?

RQ2: What types of update patterns do developers follow when updating their iOS
library dependencies?

RQ3: How do developers respond to vulnerability discovery in iOS libraries?

These research questions should overall answer the thesis question, how developers update
dependencies in iOS libraries. The first research question is more general and gives
information on how developers update their library dependencies. The second research
question dives more in-depth and checks what patterns developers use when updating iOS
library dependencies. The third research question will analyse if there are any links between
vulnerability discovery and library updates. At the end of the thesis, we will compare those
results with other platform results.

This will help us understand how developers update their libraries and allows us to analyse
if there is a better way of doing it.

1.3 Thesis structure

This thesis consists of seven chapters. Chapter 2 gives a general overview of related work.
Chapter 3 describes the starting point of this thesis. Chapter 4 goes in-depth on how the data
is going to be analysed. Chapter 5 presents the results of the analysis. Chapter 6 discusses the
results. Chapter 7 concludes the thesis.

5

2 Related work

Many package manager dependency networks have been studied throughout the years, for
example, Kula et al. paper [4] about Java library dependencies. This chapter will describe
some of those studies and how they are related to this thesis. One of the largest differences
between this thesis and the papers below is that they analyse other programming languages,
as there are no papers about iOS library dependency updates.

2.1 Update patterns in Java library dependencies

One of the papers that analysed Java libraries is “Do developers update their library
dependencies?” by Kula et al. [4]. Their goal for the paper was to analyse whether developers
update their library dependencies and how aware they are of migration opportunities. They
analysed 4659 GitHub projects and 2736 library dependencies and conducted surveys.

Similarly to this thesis, Kula et al. paper also formulated a research question where they
analysed if Java developers update their library dependencies. During their investigation, they
found that most developers often do not update their dependencies, and 81.5% of studied
systems have outdated dependencies. Kula et al. pointed out that most developers do not
update because it requires much effort that could be used elsewhere. Additionally, they
analysed why vulnerability discovery does not affect library updates. They speculated that
one of the reasons could be a lack of motivation. It is interesting to compare the results with
iOS library dependencies because Java language is backwards compatible, but Swift language
is not, and it could affect the results.

One of the differences to Kula et al. paper is that this thesis also analyses library
dependencies update patterns.

2.2 Update patterns in Android library dependencies

Research on library dependencies in mobile applications has been carried out on the Android
platform [2]. One of the research papers that analyses them is “Do Developers Update
Third-Party Libraries in Mobile Apps?” by Salza et al. [2]. They used 291 open-source
Android applications from the F-Droid repository and analysed their evolution history.

They found that developers rarely update third-party libraries, and most of the updates are
for UI libraries because of new features. For their research, they also looked through some of
the communication channels where they were talking about updating libraries and found out
that the most likely reasons for not updating are developers' carelessness and high
cost/benefit ratio.

6

Salza et al. paper also contained a research question about Android updating patterns
where they categorised 1126 library histories. They divided them into six update patterns,
where the biggest were not updating and diligent updating patterns. This is similar to our
research question about updating patterns. Salza et al. paper did not include research into
developer responsiveness to vulnerability discovery.

7

3 Background

This section will give an overview of the package managers, Neo4j graph database and
dataset that we will refer to in this thesis.

3.1 Package managers

A package manager is a tool used by software developers that is utilised for managing
dependencies of software projects. Package managers can install and upgrade dependencies
based on user input configuration or remove the dependencies when they are no longer
needed [6]. Package managers are often capable of installing direct and transitive
dependencies. Direct dependencies are packages that developers’ projects use directly. They
are specified in the package manager manifest file. Transitive dependencies are the libraries
that other dependencies use, which are needed for them to function correctly.

In this thesis, we will be examining libraries used in Swift projects. There are three
prominent package managers for Swift development. They are CocoaPods, Carthage and
SwiftPM.

CocoaPods was released in September 2011 and is a package manager for XCode projects
[7]. XCode is one of the applications that can be used for iOS app development. To create a
library for CocoaPods, the developer needs to specify a podspec file containing the name,
version, source and other fields later used in library details. To use a dependency from the
CocoaPods platform, the developer needs to specify the podfile with the dependency name
and version.

Carthage is a decentralised package manager meaning it does not have a central
repository where developers can access Carthage dependencies [8]. Swift developer only
needs to specify the source location then it downloads and builds the dependencies for the
project. However, the developer still needs to manually add it to the project, giving them
complete control of the project structure.

The Swift Package Manager (Swift PM) is the official package manager for Swift code.
Swift PM is also a decentralised package manager [9]. Swift PM was released in December
2017, but only after Swift 5 was released in March 2019 it can build applications for iOS
platforms.

Additionally, when libraries are updated to package managers, then they usually use
Semantic Versioning Specification (SemVer) scheme [10]. SemVer numbering consists of
three parts: major, minor and patch. For example, if we have version number 1.2.3, then 1 is
the major part, 2 is the minor part, and 3 is a patch part of the version.

3.2 Neo4j graph platform

For this thesis, we will be using the Neo4j environment for analysis. To give some context,
we will give a brief introduction to Neo4j and Cypher language. Neo4j is a popular graph

8

database system that easily handles large and highly connected databases [11]. The neo4j
graph database is divided into nodes, relationships, properties and labels.

Nodes represent entities in a graph and are labelled, depicting the type of an entity. For
example, we will have nodes with Library and App labels. Nodes can also contain
properties, which are key-value pairs that can store any sort of data. For example, a Library
node can have name and version properties.

Relationships are connections between node pairs. They are also named and are also
directional. Therefore, they have a start and end node where direction shows which way they
are connected. Like nodes, relationships can also have properties with different key-value
pairs.

Cypher is a graph query language used by the Neo4j graph management system [12]. It
allows for creating queries that can retrieve and create data for the Neo4j database. Cypher
was inspired by SQL language and because of that, Cypher query syntax is very similar to
SQL syntax [12]. In Cypher, nodes and relationships are represented with
(:Node)-[:RELATIONSHIP] ->(:Node) syntax, where nodes are between parentheses
and relationships are between square brackets. Angle brackets represent in which direction
the relationship is pointing or oriented. This syntax system allows us to create graph patterns
that help us to retrieve the correct data. The following pattern can then be inserted into the
MATCH keyword, which matches the pattern with database data and with the RETURN

keyword, it can be retrieved from the database. Additionally, there is the WHERE keyword that
allows the creation of conditional clauses for filtering the data.

MATCH (a:App)-[:DEPENDS_ON]->(l:Library)

WHERE l.name = "shibapm/rocket"

RETURN a

Figure 1. Cypher language example

Figure 1 represents an example query that gets all app versions that use shibapm/rocket
library. Cypher language allows us to create complicated queries to analyse the Swift LDN
dataset.

3.3 Swift LDN dataset

This thesis aims to analyse and compare the results of update patterns for iOS library
dependencies. For this reason, we need a dataset containing a dependency network of iOS
libraries. Such a dataset was described in a research paper, “Dataset: dependency networks of
open source libraries available through CocoaPods, Carthage and Swift PM” [5]. They
collected libraries from CocoaPods, Carthage and Swift PM package managers. Additionally,
they utilised the NVD database to search for known vulnerabilities in those libraries. In the

9

research paper, they called it the Swift Library Dependency Network (Swift LDN) dataset
that we will also use throughout this thesis.

Figure 2. Structure of the Swift LDN dataset [5]

Swift LDN data is stored inside the Neo4j7 dataset. As represented on Figure 2, in the dataset
of the Swift LDN contains five different nodes with labels:

● Project - stores project repository information

● App - stores different project versions

● Library - stores libraries that were collected from the project resolution file

● LibraryDependency - stores libraries that were collected from the project manifest
file

● Vulnerability - stores known library vulnerabilities

Table 1. Node count in Swift LDN dataset [5]

Project App Library LibraryDependency Vulnerability
75550 572131 576144 19390 159

The total count of all of these nodes is represented in Table 1. From there, we can see that the
Swift LDN dataset contains application information from 75550 project repositories. Along
with that, there are 159 different vulnerabilities for those libraries.

Additionally, as seen in Figure 2, there are 13 different relationships with patterns:

● (:Project)-[:HAS_APP]->(:App) - indicates from which project the app is
from.

7 https://neo4j.com/

10

● (:App)-[:CHANGE_TO]->(:Library) - indicates application next version
change.

● (:App)-[:DEPENDS_ON]->(:Library),
(:App)-[:DEPENDS_ON]->(:LibraryDefinition),
(:Library)-[:DEPENDS_ON]->(:Library),
(:Library)-[:DEPENDS_ON]->(:LibraryDefinition),
(:Library)-[:LIBRARY_DEPENDS_ON]->(:Library) - indicates which are
direct dependencies of a library.

● (:App)-[:DEPENDS_ON_INDIRECLY]->(:Library) - indicates which are
transitive dependencies of a library.

● (:App)-[:IS]->(:Library) - indicates which application and library are the
same.

● (:App)-[:MISSING]->(:Library) - indicates that the resolution file is missing
from the project and the library version is determined based on the manifest file.

● (:LibraryDefinition)-[:MATCHES]->(:Library),
(:LibraryDefinition)-[:MATCHES]->(:Library) - indicates that
LibraryDefinition matches completely or either by name with the Library node.

● (Library)-[:HAS_VULNERABILITY]->(:Vulnerability) - indicates which
libraries contain vulnerabilities.

We will use multiple of these relationships and nodes to create an analysis for our thesis.

11

4 Methodology

One of this thesis’s main goals is to analyse the Swift LDN dataset and find out how
developers update iOS libraries. We have formulated some research questions that would help
us to compare the results with other related works. Therefore, the research questions are
chosen similarly to those brought out in those works.

4.1 Using the Swift LDN dataset

For the purposes of this project, Python scripts will be created to analyse the database. Python
has a Neo4j driver library which easily allows us to make the connection to the database and
read the graph. However, to read the Neo4j data, it first needs to establish a connection with
the Neo4j database. For that, we are going to run the Neo4j server on the Debian server
environment. We need to install openjdk-11-jdk and neo4j packages that are required for
running the database and configure the Neo4j server to allow connections from outside the
network. Then we will download the Swift LDN dataset and load it into the Neo4j server.
This would now allow us to access the Swift LDN dataset from the Neo4j server and easily
access the data for our Python script.

// Creating new relationship between two library nodes

MATCH (l:Library)<-[:IS]-(a:App)-[:CHANGED_TO]->(a2:App)-[:IS]->(l2:Library)

MERGE (l)-[:CHANGED_TO]->(l2);

// Adding indexes for faster lookup

CREATE INDEX app_timestamp_index IF NOT EXISTS FOR (a:App) ON (a.timestamp);

CREATE INDEX app_name_index IF NOT EXISTS FOR (a:App) ON (a.name);

CREATE INDEX library_name_index IF NOT EXISTS FOR (l:Library) ON (l.name);

CREATE INDEX library_version_index IF NOT EXISTS FOR (l:Library) ON (l.version);

Figure 3. Cypher query for improving dataset

Additionally, to help us with the analysing procedure, we added an additional relationship
that can be seen in Figure 3. It will create a direct relationship between two updated library
nodes. Furthermore, Figure 3 additional contains queries for indexing the database. Indexing
the database will help with speeding up the lookup performance of the database. When
creating an index, it creates an additional data storage for indexed property values that later
the Neo4j database engine can use for finding quickly relevant nodes. The following indexes
were chosen based on the queries that were created during this thesis.

12

4.2 RQ1: Library dependency updating

The first research question is a preliminary question that helps us understand if iOS
developers generally update their library dependencies. For that, we are going to check if and
how many times the library upgraded, downgraded or stayed with the same version.

First of all, we need to establish a connection with our Neo4j database. This requires us to
use a Python library for Neo4j and configure it to connect to our database. Then we will need
to create a cypher query for returning the upgrade/downgrade counts. Using the CHANGE_TO
relationship, we can check where there has been a new library version. Additionally, with the
DEPENDS_ON relationship, we will see if the library changed existing dependencies and if the
change was upgrading or downgrading the library. However, if there has not been any
change, then it will count as not updated. For simplicity reasons, we will create separate
queries for upgrade and downgrade counts as we can easily change the CHANGE_TO

relationship direction, and it will change from an upgrade to a downgrade or a downgrade to
an upgrade.

It is also interesting to see how many dependencies there are overall, on average, for a
Swift library. We will select all the latest library versions and count the number of
dependencies that have been defined in the project manifest.

Created upgrade, downgrade and dependency count queries that will be used in the results
are brought out in Appendix 1. Given this information, we will see how many times the
developers have upgraded or downgraded their library dependencies and compare the results
with other similar papers.

4.3 RQ2: Dependency updating patterns

With the second research question, we want to find out if there are any patterns or trends for
updating iOS libraries. For that, we are going to see if developers update their library, then
how many will use the new version in their projects. This approach is from the view of a
library developer. It will be interesting to see whether other developers will adopt the library
version once the iOS developer releases the new update. We will select libraries by their
usage count (popular libraries) and manually analyse some of the first ones.

First, we need to get the most popular libraries from the Swift LDN dataset. We can use
the DEPENDS_ON relationship and count the number of libraries found for each App node.
The result will then be sorted by usage count and displayed in a graph. This allows us to
select libraries that we want to analyse further. Then we need to determine what library
versions we want to plot a graph. For that, we first can use the IS relationship on the Library
node to find out the date of the library release and again use the DEPENDS_ON relationship to
collect library usages based on the library version. From the query result, we can pick out the
library version for getting version usage trends over time. Then we will use a complex query
that gets all the months from the library release timestamp to our selected period, for which
we choose 03/2022 as the last library release in the dataset was from 02/2022. This allows us

13

to check how many usages the library version had every month. Next, we need to use the
DEPENDS_ON and CHANGED_TO relationship and get the last library version every month to
check if the dependency is there. If it is, it will be counted for the library version. This will
return as with library version usages aggregated to every month.

Completed query can also be checked in Appendix 1.

4.4 RQ3: Vulnerability affect on updates

The third research question allows us to see if and how iOS developers react to vulnerability
discovery in the library. For every library vulnerability, we would see if the usage has
decreased in projects and how many implement the new version.

To implement this, we need to check when the vulnerability was published and what
versions of the library were affected. Therefore, we need to use the publishedDate property
from the Vulnerability node and HAS_VULNERABILITY relationship that shows what
libraries were affected by that vulnerability. The resulting function for retrieving vulnerable
library versions can be found in Appendix 1. This allows us to create a table with
vulnerability_id, library_name, publish_date, usages and vulnerable_versions. From the
table, we can get the vulnerable versions and their subsequent versions that need to be
examined and then plot them with a usage graph function that was created for RQ2 to analyse
any trend changes. We will be plotting the graphs for 3 most popular libraries with
vulnerabilities, as there are not many vulnerabilities in the Swift LDN database and other
libraries are with few usages and not very popular.

14

5 Results

In the following sections, we will describe the results of the dependency analysis. The results
are based on the methods that were described before and can be viewed with all the outputs in
the Jupyter Notebook8.

5.1 RQ1: Library dependency updating

For the first research question, we want to know how many libraries have updated their
dependencies. First, we are going to check how many libraries have upgraded their
dependencies and then how many libraries have downgraded their dependencies.

From the Swift LDN dataset, we found that there are a total of 7024 different iOS libraries
that use dependencies, but only 6602 of those libraries have released new versions.

Figure 4. Update count for iOS libraries

Figure 4 shows that 3322 of the libraries do not update their dependencies, while 3280 have
updated their dependencies at least once. 827 libraries updated their dependencies once, 508
libraries updated twice, 319 libraries updated three times, and so on. The table shows that the
number of dependencies steadily decreases as the update count increases, with only 59
libraries updating their dependencies twelve times. Additionally, there are 591 libraries that
have upgraded over 12 times and the maximum update count is 827. This information would

8 https://github.com/PeterkalM/swift-ldn-notebook/blob/main/swift-ldn-notebook.ipynb

15

https://github.com/PeterkalM/swift-ldn-notebook/blob/main/swift-ldn-notebook.ipynb

suggest that most iOS libraries do not update their dependencies frequently, and those that
update are in the minority.

Figure 5. Downgrade count for iOS libraries

In Figure 5, we present a visual representation of the number of downgrades that have
occurred in projects with dependencies. The figure shows that the majority of the projects
have not downgraded libraries. Only 485 of the libraries have ever downgraded
dependencies, and 6117 libraries have not. Specifically, 180 of the libraries have downgraded
their dependencies once, and 74 libraries downgraded twice. Furthermore, only 281 libraries
have downgraded their dependencies less than 50 times. Additionally, there are 111 libraries
that have been downgraded over 5 times and the maximum count is 74 updates.

Table 2. Dependency count statistics for libraries

mean std min 25% 50% 75% max
2.42 2.39 1 1 2 3 47

We also created a query to check how many dependencies are in each latest library. The
resulting data is brought out in Table 2. It shows that the library has 2.41 dependencies on
average, but there is also a library with 47 dependencies. This shows that most libraries have
very few libraries, and the update count could be low because of that.

16

5.2 RQ2: Dependency updating patterns

For RQ2, we are trying to find out if there are any patterns for updating iOS dependencies.
This would help us understand if and how developers update their library dependencies and if
there are any correlations with iOS and other platforms.

As there are over 6000 libraries that have released new versions, we will be only
investigating update patterns for more popular libraries. We will base the popularity by how
many projects have used the library in any given time.

Figure 6. Most popular iOS libraries

From Figure 6, we can see that there are a total of 5 libraries that have over 500 usages.
Those top-5 libraries are alamofire, nimble, afnetworking, rxswift and quick. With alamofire
library having 662 usages, nimble library having 578 usages, afnetworking 545 usages,
rxswift 524 usages and quick 510 usages. We found out that on average iOS developers have
updated their libraries dependencies only 4 times, and library update standard deviation is 22.

17

Additionally, we create a version usage history graphs for those top-5 libraries that would
show how many libraries have used that particular library version as dependency. This helps
us understand what versions we should look at more closely.

5.2.1 Results for alamofire library

Alamofire is a popular networking library for iOS applications [13]. It features HTTP request
handles, JSON parsing, and similar features.

Figure 7 represents version-specific usages for the alamofire library. There are three
significant spikes for versions 4.7.3, 4.8.2 and 4.9.1. They are the last patch updates for those
versions. Furthermore, the next major update, notably version 5 and so forth, has fewer
usages. This could indicate that developers that use alamofire are reluctant to upgrade to the
next major version or prefer to use the next minor or patch versions.

Figure 7. Version usage history for alamofire library

18

Figure 8. Version usage history over time for alamofire library

For further analysis, we selected the last ten alamofire versions and checked how many
libraries use it as a dependency in each month. Figure 8 shows that versions 5.2.0 and 5.2.1
were released in the same month, and developers were usually using the library with the
newer version. When the new version came out, 5.2.2, then usage of the old ones only
dropped slightly. But mostly, we see a trend that if a new version comes out, then the version
usage goes up significantly initially and, after a couple of months, is relatively steady. This
would indicate that there are a large number of users who update straight away. However, a
considerable amount stays with old versions.

19

5.2.2 Results for nimble library

Nimble is one of the popular testing frameworks developed for Swift applications [14]. It has
multiple assert functions that allow the user to test how the data should look and match it
with expected values.

Figure 9 shows the overall usage of the nimble library versions. There are multiple
versions of libraries that have fewer than five total usages. Because of that, we will skip those
and select versions with a higher number of total usages for further analysis. However, those
smaller versions were also checked, and they were usually released within a few days apart.
Therefore, when the iOS developer updated the library, then they probably just chose the
version which was most recently released.

Figure 9. Version usage history for nimble library

20

Figure 10. Version usage history over time for nimble library

Figure 10 shows the last ten popular versions of the nimble library. From there, it can be seen
that after the initial version release, there are a bunch of usages, and usage will stabilise and
stay the same after a couple of months. This is a similar result to the alamofire library that we
analysed in the previous chapter. In Figure 10, it is seen that after the 9.0.0 version was
released, it became most popular quite quickly, and after a new release of the library, then
9.0.0 usage dropped, and 9.2.0 increased.

5.2.3 Results for afnetworking library

Afnetworking is a networking library similar to alamofire [15]. It also simplifies managing
HTTP requests and has other similar features. As of January 17, 2023, the afnetworking
library is deprecated, and it is now recommended to use the alamofire library.

Figure 11 represents the version usage history for afnetworking library. It shows that
multiple versions are quite popular, but only recent versions have much more usage.
Therefore, we select the last eight libraries that we will analyse further.

21

Figure 11. Version usage history for afnetworking library

Figure 12. Version usage history over time for afnetworking library

Figure 12 shows the last eight popular versions of the afnetworking library. It shows that
developers usually use the last available version of the afnetworking library. When the new
library version is released, the old library version usage stays the same and new version usage
grows. Afnetworking library also made very few releases over the six years, which could
indicate that library is stable enough, and developers do not want to update to a new version.

22

5.3 RQ3: Vulnerability affect on updates

For the third research question, we wanted to find out if discovery of a vulnerability in a
library would affect the usual update pattern for that library.

Figure 13. Libraries with vulnerabilities by popularity

We found out that there are a total of 147 vulnerabilities in 39 different libraries for Swift
LDN. In Figure 13, we see that the most popular library where vulnerability was found is
afnetworking. Afnetworking library usage was 120 while other libraries had usages of 23 and
20 which are considerably lower.

23

5.3.1 Vulnerability in afnetworking library

Figure 14. Afnetworking library usages with vulnerability

Found vulnerability entry code was CVE-2015-39969 and it affected 2.5.2 version and below.
Based on Figure 11, we selected three versions after and before the library version where the
vulnerability was found and made a graph about its version usages. In Figure 14, it can be
seen that after discovery of the vulnerability, which was published on 27/10/2015, there were
not any major changes to affected version usages in the graph. When the vulnerability was
published then, there was already a new version with a fixed version. New users were already
using the new version, and there were no significant changes in old versions.

5.3.2 Vulnerability in starscream library

The next two vulnerabilities (CVE-2017-588710 and CVE-2017-719211) we will analyse
where found in the starscream library. They were published on the same date, 06/04/2017
and affected the same library versions, version 2.0.3 and below. Therefore, based on Figure
15, we selected versions that were next to the vulnerability and plotted them in Figure 16. It
shows that the affected versions were unpopular (fewer than five usages) and had no
significant changes. Initially, there was one additional usage for version 2.0.3 as there were
no new versions, but later one of the libraries updated to a new 2.1.0 version.

11 https://nvd.nist.gov/vuln/detail/CVE-2017-7192

10 https://nvd.nist.gov/vuln/detail/CVE-2017-5887

9 https://nvd.nist.gov/vuln/detail/CVE-2015-3996

24

https://nvd.nist.gov/vuln/detail/CVE-2017-7192
https://nvd.nist.gov/vuln/detail/CVE-2017-5887
https://nvd.nist.gov/vuln/detail/CVE-2015-3996

Figure 15. Version usage history for starscream library

Figure 16. Starscream library usages with vulnerability

25

5.3.3 Vulnerability in swift-nio-ssl library

The next vulnerability by popularity was swift-nio-ssl library. The vulnerability entry code
was CVE-2019-884912 and was published on 18/12/2019. The vulnerability affected version
2.4.0 and below. Based on Figure 17, we saw there were a few versions of this library and we
displayed all of the versions in Figure 18. It shows that during the publishing date, there was
already a fixed version available, and there were not any trends changes. When analysing
what the libraries were, we found that they were all forks of grpc/grpc-swift library, and when
it updated the version, then all other forks also updated their versions.

Figure 17. Version usage history for swift-nio-ssl library

12 https://nvd.nist.gov/vuln/detail/CVE-2019-8849

26

https://nvd.nist.gov/vuln/detail/CVE-2019-8849

Figure 18. Swift-nio-ssl library usages with vulnerability

27

6 Discussion
In the following sections, we will discuss the results and compare our findings with the
related papers.

6.1 Discussing results

When we brought out RQ1 results in the previous chapter, we found that most software
developers do not update their library dependencies. We found that there were around 50% of
libraries that have not updated their libraries at all, with only 12% of libraries updating their
libraries only once. This would indicate that most developers would use the latest library
version that is available until there is no need for updating it. Then we described the results of
library downgrades, where we also found that only 0.07% of libraries have ever been
downgraded. This is quite normal because developers usually want to have new features and
only downgrade when they are not satisfied with the new version. Additionally, we found that
most libraries have, on average, about three dependencies, with a minimum count of 1 and a
maximum count of 47. As we only looked at libraries that have dependencies, then the
minimum count is as expected.

For RQ2, we analysed three popular libraries for Swift applications: alamofire, nimble and
afnetworking. There was a similar trend across those three libraries. Which was that when the
library version was brought out then, new libraries would start using that new version, and
libraries with older versions would stay with the older version. This was brought out by the
fact that usage count would stay the same or only slightly decrease when a new version was
introduced. One of the reasons could be that as iOS projects are not backwards compatible,
then it is always beneficial to use the latest version to support the newer version of iOS
environments. Another interesting fact was that there were some instances of cases where
developers would create a fork for that new library instead of updating the library. This would
allow the developers to make slight changes to existing library code. However, this could
also impact the library usage graphs as not all library usages would not be displayed there.

For RQ3, we selected only the three most popular libraries with any vulnerabilities. This
would get us one larger library, afnetworking, and two smaller ones: starscream and
swift-nio-ssl. We found that there were not any changes to the normal library usage trend
after the vulnerability was found. For afnetworking and starscream cases, this could be
because a new version was already available, and developers who would usually update were
already using the new version. This resulted in no significant vulnerable library version drop.
For swift-nio-ssl library, all usages were from the same library fork, and that library diligently
updated to the newer version.

28

6.1 Comparing results with related papers

One related paper was Salza et al. paper “Do Developers Update Third-Party Libraries in
Mobile Apps?” which analysed library updates for the Android environment. They found that
Android developers rarely update their project dependencies, with 33% of libraries with
outdated versions. Additionally, when Android developers update the library, then it would
usually be upgraded and there would be only a few cases where the library was downgraded.
This sufficiently correlates with our findings. As in RQ1, we found that iOS developers do
not update their libraries very often and most version changes are upgrades. Interestingly,
they also brought out that Android applications, on average, contain 3.8 dependencies but
with a maximum amount of 37 dependencies. This is similar to our dataset because we found
that our average dependency count is 2.42 with a maximum dependency count of 47.

They also looked for update patterns in updating Android libraries and found that 63% of
libraries are not updated after the first application release, with only 13% of libraries having
diligent updates. This is similar to our finding with most of the developers staying with old
versions and only a small portion of libraries constantly using the newest dependency
version.

We also brought out a Kula et al. paper about “Do developers update their library
dependencies?”. in the related section. It analyses how libraries from the maven repository
are updated, and it additionally focuses more on vulnerability discovery effects. From there, it
was seen that 85.5% of studied systems have outdated libraries. This indicates that developers
often do not update libraries and is the same as our findings.

Additionally, they found that developers often do not respond to vulnerability discoveries.
This discovery is similar to our RQ3 result, as we saw no significant changes to update
trends. In the research paper, it is brought out that most developers do not even know that the
library has a vulnerability.

6.2 Threats of validity

The Swift LDN dataset is newly created and has yet to have this kind of analysis done before.
When we analysed the results of vulnerability impacts on update patterns, there were not
many vulnerabilities found in Swift libraries, and the most vulnerabilities found were from
small libraries. Afnetworking library was the only large library where vulnerability was
found and it may not represent situations with other large libraries.

Furthermore, we selected only the three most popular libraries and analysed only them.
There were similar graphs for two other libraries, but the results were the same. However, if
we would select another set of libraries, then the results could be different. To mitigate this,
we could have analysed more libraries, but due to time constraints, we were not able to do
that as it would increase the workload.

29

7 Conclusion

The goal of this thesis was to analyse the Swift LDN dataset. We formulated three research
questions to help our research and tried to find answers for them.

For the first research question, we wanted to know if developers update their iOS library
dependencies. That resulted in us creating two graphs that showed how many libraries have
upgraded or downgraded the dependencies. We found that over 50% of the libraries have yet
to update their dependencies after the first release, and there were only a few cases where the
library was downgraded to a lower version.

After that, we wanted to know if we see any patterns for updating libraries. We analysed
the three most popular libraries from the Swift LDN dataset and created version trend graphs
for each. That allowed us to see how the latest library version usages change over time. We
saw that most of the libraries stay with the same dependency versions, and only a small
amount of libraries update their dependencies diligently. This was similar to other research
papers that we compared with our results.

Finally, Swift LDN also contained some information about known library vulnerabilities.
We found out what vulnerable libraries were most popular and looked up the affected
versions. Following that, we got those and subsequent versions and plotted a usage graph for
them. The results showed that there were not any significant changes to affected version
usage. From the related research paper, we found the same results.

Future work on this thesis could include more in-depth analysis on the second research
question. This could mean selecting more libraries to analyse or looking for other patterns
inside library version updates. Additionally, libraries could be categorised into different types
and checked if some types are more prone to update than others

30

References

[1] Library (computing). (Sep. 9, 2022). In Wikipedia.
https://en.wikipedia.org/wiki/Library_(computing) (accessed Oct. 17, 2022)

[2] P. Salza, F. Palomba, D. Di Nucci, C. D'Uva, A. De Lucia and F. Ferrucci, "Do
Developers Update Third-Party Libraries in Mobile Apps?," 2018 IEEE/ACM 26th
International Conference on Program Comprehension (ICPC), 2018, pp. 255-265,
doi: 10.1145/3196321.3196341.

[3] D. Spinellis, "Package Management Systems," in IEEE Software, vol. 29, no. 2,
pp. 84-86, March-April 2012, doi: 10.1109/MS.2012.38.

[4] R.G. Kula, D.M. German, A. Ouni, T. Ishio and K. Inoue, "Do developers update
their library dependencies?," Empirical Software Engineering 23, 2018, pp.
384–417, doi: 10.1007/s10664-017-9521-5.

[5] V. Bauer, L. Heinemann and F. Deissenboeck, "A structured approach to assess
third-party library usage," 2012 28th IEEE International Conference on Software
Maintenance (ICSM), 2012, pp. 483-492, doi: 10.1109/ICSM.2012.6405311.
D. Pfahl, K. Rahkema, "Dataset: dependency networks of open source libraries
available through CocoaPods, Carthage and Swift PM,", Proceedings of the 19th
International Conference on Mining Software Repositories, 2022, pp. 393–397,
doi: 10.1145/3524842.3528016.

[6] What is a package manager? Debian manual.
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html (accessed May 8,
2023)

[7] CocoaPods project repository. GitHub. https://github.com/Alamofire/Alamofire
(accessed May 9, 2023)

[8] Carthage project repository. GitHub. https://github.com/Carthage/Carthage
(accessed May 9, 2023)

[9] Swift Package Manager documentation. Swift.
https://www.swift.org/package-manager/ (accessed May 9, 2023)

[10] Semantic Versioning. https://semver.org/ (accessed May 8, 2023)
[11] What is a graph database?. Neo4j documentation.

https://neo4j.com/docs/getting-started/get-started-with-neo4j/graph-database/
(accessed May 9, 2023)

[12] Introduction to Cypher. Neo4j documentation.
https://neo4j.com/docs/getting-started/cypher-intro/ (accessed May 9, 2023)

[13] Alamofire project repository. GitHub. https://github.com/Alamofire/Alamofire
(accessed May 8, 2023)

[14] Nimble project repository. GitHub. https://github.com/Quick/Nimble (accessed
May 8, 2023)

[15] Afnetworking project repository. GitHub.
https://github.com/AFNetworking/AFNetworking (accessed May 9, 2023)

31

https://en.wikipedia.org/wiki/Library_(computing)
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://github.com/Alamofire/Alamofire
https://github.com/Carthage/Carthage
https://www.swift.org/package-manager/
https://semver.org/
https://neo4j.com/docs/getting-started/get-started-with-neo4j/graph-database/
https://neo4j.com/docs/getting-started/cypher-intro/
https://github.com/Alamofire/Alamofire
https://github.com/Quick/Nimble
https://github.com/AFNetworking/AFNetworking

Appendix

I. Neo4j graph queries

Cypher query for optimising query performance:

// Creating new relationship between two library nodes

MATCH (l:Library)<-[:IS]-(a:App)-[:CHANGED_TO]->(a2:App)-[:IS]->(l2:Library)

MERGE (l)-[:CHANGED_TO]->(l2);

// Adding indexes for faster lookup

CREATE INDEX app_timestamp_index IF NOT EXISTS FOR (a:App) ON (a.timestamp);

CREATE INDEX app_name_index IF NOT EXISTS FOR (a:App) ON (a.name);

CREATE INDEX library_name_index IF NOT EXISTS FOR (l:Library) ON (l.name);

CREATE INDEX library_version_index IF NOT EXISTS FOR (l:Library) ON (l.version);

Cypher query for getting label counts:

MATCH (n)

RETURN DISTINCT labels(n) as labels, count(*) as count

ORDER BY labels

Cypher query for getting library upgrade counts:

MATCH (l:Library)<-[r:DEPENDS_ON]-(a:App)-[:CHANGED_TO]->(a2:App)

OPTIONAL MATCH (a2)-[:DEPENDS_ON]->(l2:Library)

WHERE (l)-[:CHANGED_TO*]->(l2) AND r.from_manifest IS NULL

WITH a.name AS name, count(l2) AS update_count

RETURN name, update_count

ORDER BY update_count

Cypher query for getting library downgrade counts:

MATCH (l:Library)<-[r:DEPENDS_ON]-(a:App)-[:CHANGED_TO]->(a2:App)

OPTIONAL MATCH (a2)-[:DEPENDS_ON]->(l2:Library)

WHERE (l)<-[:CHANGED_TO*]-(l2) AND r.from_manifest IS NULL

WITH a.name AS name, count(l2) AS downgrade_count

RETURN name, downgrade_count

ORDER BY downgrade_count

32

Cypher query for getting latest dependency count for each library:

MATCH (a:App)

WITH a.name as name, a

ORDER BY a.version_number

WITH name, last(collect(a)) as latest

MATCH (latest)-[:DEPENDS_ON]->(l:Library)

WITH name, count(l) as libraries

RETURN name, libraries

Cypher query for gettings most popular libraries (popularity by usages count):

MATCH (a:App)-[r:DEPENDS_ON]->(l:Library)

WITH l.name AS name, count(DISTINCT a.name) AS usages

RETURN name, usages

ORDER BY usages DESC

Cypher query for gettings poplar libraries that also have vulnerabilities:

MATCH (:Project)-[:HAS_APP]->(:App)-[:IS]->(l:Library)-

[:HAS_VULNERABILITY]->(v)

OPTIONAL MATCH (a:App)-[:DEPENDS_ON]->(l)

WITH a, l, v

ORDER BY l.version

WITH l.name AS name, count(DISTINCT a.name) AS usages,

count(DISTINCT v) AS vul_count, collect(DISTINCT l.version) AS

vul_versions

RETURN name, usages, vul_count, vul_versions

ORDER BY usages DESC

Cypher query for library version usages count:

MATCH (a:App)-[r:DEPENDS_ON]->(l:Library)<-[:IS]-(a2:App)

WHERE r.from_manifest IS NULL

WITH l.name AS name, l.version AS version, a2.version_number AS

version_number, a2.time AS time, size(collect(DISTINCT a.name)) AS

usages

RETURN name, version, version_number, usages, time

ORDER BY name, version_number

33

Cypher query for version usage trends over time:

MATCH (a:App)-[:IS]->(l:Library {name: $library, version:

$version})

WITH l, date.truncate('month',

datetime({epochSeconds:toInteger(a.timestamp)})) AS start_date,

datetime($end_date) AS end_date

WITH l, [month in range(0, duration.between(start_date,

end_date).months) | start_date + duration({months: month})] AS

dates

UNWIND dates AS date

WITH l, dateTime({year:date.year, month:date.month}) AS time

MATCH (l)<-[r:DEPENDS_ON]-(a:App)

WHERE toInteger(a.timestamp) < time.epochSeconds AND

r.from_manifest IS NULL

OPTIONAL MATCH (a)-[:CHANGED_TO]->(a2:App)

WHERE toInteger(a2.timestamp) < time.epochSeconds

WITH date(time) AS date, a.name AS name, collect(a2 IS NOT null

AND NOT exists((a2)-[:DEPENDS_ON]->(l))) AS uses_different_library

RETURN date, count(

CASE

WHEN true IN uses_different_library THEN null

ELSE name

END

) AS count

Cypher query for vulnerable library versions:

MATCH (:Project)-[:HAS_APP]->(:App)-[:IS]->(l:Library)-

[:HAS_VULNERABILITY]->(v)

OPTIONAL MATCH (a:App)-[:DEPENDS_ON]->(l)

WITH a, l, v

ORDER BY l.version

WITH v.id AS id, l.name AS name, v.publishedDate AS date,

count(DISTINCT a.name) AS usages, collect(DISTINCT l.version) AS

vul_versions

RETURN id, name, date, usages, vul_versions

ORDER BY usages DESC, name, date

34

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Peter Kallaste,
(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to
reproduce, for the purpose of preservation, including for adding to the DSpace digital
archives until the expiry of the term of copyright,

How do developers update dependencies in iOS libraries,
(title of thesis)

supervised by Kristiina Rahkema.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to
the public via the web environment of the University of Tartu, including via the
DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0,
which allows, by giving appropriate credit to the author, to reproduce, distribute the
work and communicate it to the public, and prohibits the creation of derivative works
and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Peter Kallaste
09/05/2023

35

