
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Software Engineering Curriculum

Karina Karimova

Enhancement of iOS Application
Accessibility: Automation of Testing and

Guidelines

Master’s Thesis (30 ECTS)

Supervisor(s):

Ishaya Peni Gambo, PhD

Tartu 2023

Enhancement of iOS Application Accessibility: Automation of Testing
and Guidelines

Abstract:
Mobile application accessibility is an essential part of user interface and experience, that
ensures all individuals, regardless of their disabilities such as blindness, low vision, or
color blindness, can access and use the functionalities of the digital product successfully.
Considering the widespread use of smartphones and the fact that they have become an
indispensable part of daily routines, it is crucial to enhance the accessibility level of
mobile applications.

The primary objective of this study was to contribute to the development of more
inclusive mobile apps, specifically those based on the iOS platform offered by Apple.
There is a lack of cost-free automated tools that can help identify accessibility issues
of mobile applications. Thus, an automated testing tool, named Open Accessibility
Tool (OAT), with accessibility faults detection and descriptive error reports has been
developed.

The OAT tool is based on a preliminary in-depth exploration of the accessibility guide-
lines required by European Union regulations, generally accepted industry standards,
and Apple’s UI design principles. Guidelines and their Success Criteria are assessed
regarding their capability for automated testing on iOS. Based on these prerequisites, the
developed tool can help applications to ensure compliance with accessibility criteria.

Considering the significance of this subject and its dynamic nature, OAT was devel-
oped as an open-source library, offering convenient options for expanding its function-
alities by using modulated architecture and a modern technical stack. Tool quality is
ensured by an extensive code coverage encompassing all prevailing accessibility checks.

The OAT tool was checked on sample projects. Additionally, a comparative analysis
has been conducted against the solution available in the market. The results showcase
OAT’s superiority in terms of the quantity of identified issues over the competing free-of-
cost alternative.

Keywords:
Accessibility, automated accessibility testing, iOS, mobile applications, accessibility
guidelines

CERCS: P170 Computer science, numerical analysis, systems, control

2

iOS rakenduste ligipääsetavuse täiustamine: testimise ja juhiste auto-
matiseerimine
Lühikokkuvõte:

Mobiilirakenduste ligipääsetavus on kasutajaliidese ja kogemuse oluline osa, mis
tagab, et kõik inimesed, olenemata nende puuetest, nagu pimedus, vaegnägemine või
värvipimedus, pääsevad edukalt digitaalse toote funktsioonidele ligi ja saavad neid
kasutada. Arvestades nutitelefonide laialdast kasutust ja seda, et need on muutunud
igapäevase rutiini lahutamatuks osaks, on oluline tõsta mobiilirakenduste ligipääsetavuse
taset.

Selle uuringu esmane eesmärk on aidata kaasa kaasavamate mobiilirakenduste, eelkõi-
ge Apple’i pakutava iOS platvormil põhinevate, arendamisele. Hetkel on puudus tasuta
automatiseerimise tööriiste, mis aitaksid tuvastada mobiilirakenduste ligipääsetavuse
probleeme. Seega on käesoleva lõputöö raames välja töötatud automaatne testimistööriist
nimega Open Accessibility Tool (OAT), millega on võimalik tuvastada ligipääsetavuse
vigu ja genereerida veaaruandeid.

OAT-tööriist põhineb Euroopa valitsuse määrustes, üldtunnustatud standardites ja
Apple’i kasutajaliidese kujundamise põhimõtetes nõutavate ligipääsetavuse juhiste esialg-
sel põhjalikul uurimisel. Juhiseid ja nende edukriteeriume hinnatakse vastavalt nende
võimele toetada iOS rakenduste automaattestimist. Nendest eeldustest lähtuvalt arendati
välja tööriist, mis aitab rakendustel tagada ligipääsetavust vastavalt kriteeriumitele.

Arvestades selle teema olulisust ja selle dünaamilist olemust, arendati OAT välja kui
avatud lähtekoodiga teek, mis pakub mugavaid võimalusi oma funktsionaalsuse laienda-
miseks moduleeritud arhitektuuri ja kaasaegse tehnilise pinu abil. Tööriista kvaliteedi
tagab ulatuslik koodikatvus, mis hõlmab kõiki kehtivaid ligipääsetavuse kontrolle.

OAT-tööriista kontrolliti näidisprojektides. Lisaks on turul pakutavate lahenduste
kohta tehtud võrdlev analüüs. Tulemused näitavad OAT-tööriista paremust tuvastatud
probleemide arvu osas võrreldes konkureeriva tasuta alternatiiviga.

Võtmesõnad:
Ligipääsetavus, automaatne ligipääsetavuse testimine, iOS, mobiilirakendused, ligipääse-
tavuse juhised

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

3

Contents

1 Introduction 8
1.1 Problem statement . 9
1.2 Research goal . 9
1.3 Thesis outline . 10

2 Background 11
2.1 Related work . 11
2.2 Gap analysis . 11

3 Methodology 12
3.1 Approach to Answering Research Questions 12

3.1.1 Approach for RQ1 . 12
3.1.2 Approach for RQ2 . 12
3.1.3 Approach for RQ3 . 13
3.1.4 Sample projects overview . 14

4 Results 15
4.1 Answering RQ1 . 15

4.1.1 Perceivable Principle . 15
4.1.2 Operable Principle . 21
4.1.3 Understandable Principle . 24
4.1.4 Robust Principle . 26
4.1.5 Summary . 27

4.2 Answering RQ2 . 28
4.2.1 GTXiLib analysis . 28

4.3 Answering RQ3 . 32
4.3.1 Overview of OAT . 32
4.3.2 Practical use of OAT . 33
4.3.3 Quality Assurance of OAT . 38
4.3.4 Comparing test results of GTXiLib and OAT 41

5 Discussion 48
5.1 Answers to the research questions . 48
5.2 Limitations of the study . 49

6 Threats to validity 50

7 Conclusion and future work 50

8 Acknowledgements 51

4

Appendix 58
I. Glossary . 58
II. Licence . 59

5

List of Figures

1 GTXiLib setup. 28
2 GTXiLib testLoginView false positive result. 29
3 GTXiLib testCustomViewaccessibility faults detection. 30
4 GTXiLib testCustomViewaccessibility faults report. 31
5 FinanceFuel Welcome and Login views design 34
6 OAT FinanceFuel accessibility faults detection. 35
7 OAT testCustomViewaccessibility faults report. 36
8 OAT testLoginView accessibility faults report. 36
9 OAT OATFinanceFuelTestssucceed. 37
10 Tests forAccessibilityHintError negative cases 39
11 Tests forAccessibilityHintError positive case 40
12 Iteration through allAccessibilityHintError cases for testing 40
13 FailedAccessibilityHintError test 41
14 OATtestButton() report . 42
15 GTXiLib testButton() report . 43
16 OAT Expense Tracker tests result . 44
17 GTXiLib Expense Tracker tests result 45
18 OAT Expense Tracker accessibility issues report 1 45
19 OAT Expense Tracker accessibility issues report 2 46

6

List of Tables

1 Accessibility testing tools . 13
2 Accessibility issues covered by OAT and GTXiLib testing tools 47
3 Perceivable Principle . 54
4 Operable Principle . 55
5 Understandable Principle . 56
6 Robust Principle . 56
7 Dependency managers for iOS projects (brief overview) 57

7

1 Introduction

The increasing popularity of smartphones has been leading to a surge in the development
of mobile applications. However, despite the importance of designing for accessibility
in digital products and services, accessibility remains an area that is often overlooked
in software engineering. This is particularly concerning given the large number of
individuals who rely on mobile devices to access information and perform daily tasks [18].
Today an approximated 1.3 billion people experience disability, which is 16% of the
world's population, or 1 in 6 of us [12].

In Europe, the European Accessibility Act (Directive 2019/882) is a landmark EU
law that requires everyday products and services to be accessible for persons with
disabilities [16]. The directive will apply from 28 June 2025. As of that date, companies
must ensure that the newly marketed products and services covered by the Act are
accessible. The standard EN 301 549 for Information and Communications Technology
(ICT) products and services supports the legislation mentioned above [4]. The European
digital accessibility standard adopts the Web Content Accessibility Guidelines (WCAG)
from the World Wide Web Consortium (W3C) as it provides comprehensive accessibility
recommendations for web and non-web technologies [17]. It also follows WCAG
four principles: Perceivable, Operable, Understandable, Robust, and three Levels of
conformance: A, AA and AAA. Mobile applications accessibility requirements are stated
in clause 11 and directly reference 44 WCAG Success Criteria. Within those Success
Criteria, only A and AA Levels are required, because AAA Level is not recommended
by W3C to be mandatory as a general policy, since it is not possible to satisfy fully for
some content1.

The most signi�cant role in an accessibility topic on the mobile application market is
played by Apple and its iOS operating system. It sets the industry standards and trends
subsequently adopted by competitors. However, iOS remains a relatively understudied
subject within the area of scienti�c research, receiving less attention compared to its
Android counterpart.

Besides the law, in iOS development it is necessary to follow Human Interface
Guidelines provided by Apple [6]. This guideline includes the chapter on accessibility as
well. By following The Accessibility Law and Apple Inc guidelines, this study aims to
ensure that required accessibility features are incorporated into the development process
of iOS mobile applications with the help of an automated accessibility testing tool, named
Open Accessibility Tool (OAT).

1https://bit.ly/3qsGpif

8

1.1 Problem statement

Accessibility testing is an expensive and challenging procedure. Manual testing requires
dedicated employees with expertise in the guidelines, standards set by the law, and
knowledge of assistive technologies and disabilities. Another approach is user testing,
which by involving people with disabilities adds to the expenses because of recruiting and
compensating participants. Automated tests can be written during development process
by using platform-speci�c testing tools; however, it is time-consuming and requires
developers with expertise in the accessibility topic. Even when developers are aware of
these accessibility needs, the lack of tool support makes the development and assessment
of accessible apps challenging [3]. Existing automated accessibility testing tools are
either paid or require a lot of additional manual checks. Although free testing tools
are also available, they are usually unsupported, have limited accessibility checks, low
ratings and quality, or use outdated technologies. Overall, all testing approaches require
time and money investments.

This research aims to create an automated accessibility testing tool, which is open-
source, written with the latest updates for iOS platforms, and free-of-costs. In order to
accomplish the goal, the following Research Questions are formulated to investigate the
accessibility requirements, existing testing tools, and potential advantages of the OAT
tool.

RQ1: What are the required accessibility Success Criteria for mobile applications?
How each criterion can be tested on iOS?

RQ2: What are the existing accessibility testing tools and what are their capabilities?
RQ3: What are the advantages of the new testing tool offered by this study over

existing tools? What is the quality assurance of the tool?

1.2 Research goal

The goal of the research is to enhance the accessibility level of iOS applications by
providing an automated testing tool, which can indicate all in-depth research-based
important accessibility issues in the application and highlight proposed solutions to
improve ones. This approach allows to make accessibility checks built-in in the source
code almost seamless and therefore makes testing and supporting accessibility effortless,
which leads to ensuring that iOS mobile applications are accessible to all individuals,
regardless of their disabilities, and enables them to fully participate in today's digital
world.

9

1.3 Thesis outline

Chapter 2 presents the research background and shows other existing approaches. Chapter
3 describes the methodology and approach used in answering the research questions.
Chapter 4 presents the study results based on the methodologies used. Chapter 5 presents
a discussion of the results. Lastly, the threats to validity, conclusions, and future work
are presented in Chapter 6 and Chapter 7 accordingly.

10

2 Background

2.1 Related work

One of the very �rst accessibility guidelines for digital products provided by the World
Wide Web Consortium (W3C) initially were written for web only. Background to web
accessibility guidelines with their regulations were clearly explained by Juha-Pekka
Jokinen in his research towards implementing accessibility to the web application [9].
Guidelines were explained with the concrete requirements formulation. The research
gave the initial understanding of where to search for of�cial laws and policies that were
subsequently referenced in this study.

There are several related works done by the researchers that investigate accessibility
of mobile applications based on Android OS and offer automated accessibility testing
tools. One such example is a tool named MATE [3], which provides checks for several
types of visual impairment and motor skill issues and implements ef�ciency optimizations
tailored towards the use for accessibility testing. Authors of MATE tool conducted a
survey on 73 open-source Android projects to indicate MATE tool's advantages over
existing accessibility testing tools [3].

Another example of related work done by other researchers [11], where they offered
a plugin for extending Figma to analyze how automated accessibility evaluation is
accomplished in the design stage. They systematized WCAG 2.1 techniques in order to
reduce the time and budget required to detect accessibility issues in the early application
stages of the application development process.

There is also research where an automatic evaluation tool of mobile accessibility for
Android applications [13] was developed. Eunju Park et al. designed an accessibility
evaluation tool that checks mobile apps for conformance with accessibility standards and
developed a prototype of the evaluation tool. The proposed tool veri�es the existence (or
nonexistence) of alternative text for non-text content, which is an important accessibility
factor for visually impaired users. It discovers missing alternative text by checking the
contentDescription attribute of theImageViewelement in Android XML �les.

2.2 Gap analysis

Much theoretical and practical work was done in accessibility research area. However,
most of them are for mobile applications based on Android OS and analyze only few
guidelines and mostly for visually impaired people. By analyzing the required accessi-
bility guidelines Success Criteria and their possible automation on iOS, we will be able
to broaden the scope of the research area of digital product accessibility speci�cally for
devices that use iOS as their operating system.

11

3 Methodology

This section covers the methodology and approach used in answering the research
questions.

3.1 Approach to Answering Research Questions

3.1.1 Approach for RQ1

First, to answer theRQ1, we will conduct research to identify regulations related to ac-
cessibility requirements for mobile applications. This review will include an examination
of required WCAG guidelines [17] that are referenced by EN 301 549 document [4] that
supports the European Accessibility Act.

Next, the identi�ed list of required Success Criteria outlined in the guidelines will
be assessed to establish the potential for automating the evaluation of each Criterion by
investigating its possible implementation on iOS. This process will involve an examina-
tion of of�cial iOS developer documentation and best practices from Human Interface
guidelines for accessibility [6] provided by Apple. Any potential challenges or limitations
for automated testing will be identi�ed.

Overall, this methodology will provide a comprehensive analysis of WCAG guide-
lines, and a comparison with Apple Inc developer documentation which will be syn-
thesized and applied to the practical part of this study. The result will be as a basis for
accessibility checks that will be implemented by OAT inRQ3.

3.1.2 Approach for RQ2

The preliminary research about existing accessibility tools showed that they are limited
in number and can be grouped into three types [10]: automated testing tools, auditing/in-
spection tools and linting tools Table 1 [1].

Linting tools conduct static analysis which limits it to inspection of only one or
three rules, such asaccessibiltyLabel . That is because their main purpose of use is
formatting source code for programmatic and stylistic errors [15], while accessibility
checks are side effects and have a different level of complexity [1].

Auditing and Inspection tools are speci�cally dedicated for accessibility testing and
discover a signi�cantly larger number of accessibility issues. For example, Apple's
integrated development environment tool Xcode has Accessibility Inspector that scans
the view by going through elements as Voice Over would do and allows to operate
speci�c activities of iOS applications. However, it requires manual work by means of
managing navigation and processes of the testing [8].

Automated testing tools are mostly coming as extensions to UI tests. UI tests are
usually fragile and overlooked by projects. Speci�cally, this research will investigate

12

Table 1. Accessibility testing tools

Type Tools
Linting Tools XibLint (free)

Swiftlint (free)
Auditing & Inspection Tools Accessibility Inspector (free)

Accessibility Menu (free)
Evinced Flow Analyzer (free)
Reveal ($)

Automated Testing Tools Evinced SDK ($)
Deque SDK ($)
A11yUITests (free)
XCUITest (free)
GTXiLib (free)

testing tools that use Unit Testing approach and execute the accessibility checks along
with them. Since such tools are mostly paid, to answerRQ2 the study investigates the
practical implementation of GTXiLib. This is primarily due to the fact that GTXiLib [5]
is the sole freely available option.

Next, we will evaluate the selected testing tool in order to understand the level of
maintainability and �exibility, as well as the possibility to extend or contribute to it. It
will be implemented by reading available documentation and evaluating the technical
stack used to build it.

To test the GTXiLib in practice, we will integrate it into a sample project. The
integration process will be assessed as well. Checks provided by the tool will be
launched on example views or their elements.

3.1.3 Approach for RQ3

The outcomes derived from the analysis of required Success Criteria and examination of
the existing tool (GTXiLib), from answeringRQ1 andRQ2 respectively, will serve as a
base and preconditions to offer a new optimized solution - the automated accessibility
testing tool OAT2. This tool will be implemented with a modern technical stack, a
self-testable approach, and a modulate architecture with a possibility to be easily ex-
tended and adapted to any possible accessibility changes. Additionally, by taking into
consideration recommendations from Dias et al. [2] in research on improving future
automated accessibility tools, the tool will provide informative reports with suggestions
for improvements.

OAT quality assurance approach is to write tests for itself. Each type of accessibility

2https://github.com/KarimovaKarina/OAT

13

fault that the tool is going to detect will be validated by writing tests and checking if
the fault is detected correctly on special mock UI elements. Testing coverage will check
both cases, positive and negative scenarios.

For example, we will set up a UI element that has intentionally violated the acces-
sibility requirement which is currently tested. By running OAT checks on the element
we assert that the checks have returned speci�c issues and the result about the element
is not accessible. Along with negative tests, positive tests will be written as well. The
UI element with required accessibility features will be set and we will assert that the
element is accessible.

XCTAsser tFa lse (n o t A c c e s s i b l e E l e m e n t . i s A c c e s s i b l e ())
XCTAssertTrue (a c c e s s i b l e E l e m e n t . i s A c c e s s i b l e ())

Next, the OAT tool will be validated on the same sample project which was used in
RQ2 in order to show how it works in practice. Following this, the comparison of OAT
with GTXiLib will be implemented and outcomes will be depicted visually based on the
number of detected issues.

3.1.4 Sample projects overview

FinanceFuel3 is a sample project that we will use in this study for the purpose of
conducting evaluations using automated accessibility testing tools. The source code
was forked from the origin repository of the project for the convenience of testing
processes. FinanceFuel contains different types of UI elements which can be evaluated for
compliance with accessibility criteria. The project is currently undergoing development,
and it is considered a best practice to integrate accessibility assessments in the early stages.
FinanceFuel adopts the Moonlight architecture, inspired by The Elm Architecture's
concepts4. This architecture has the following key advantages which are useful during
testing process:

• business and presentation logic are strongly separated;

• most of logic is pure functions;

• provides simpli�ed testing of each layer.

Another sample project is Expense-Tracker. It is an open-source iOS application
for managing expenses from daily income5. The app was chosen because it has a
programmatic UI setup and no storyboards, which makes it possible to test views with
automated testing tools.

3https://github.com/KarimovaKarina/Thesis
4https://github.com/mooncascade/MoonKit
5https://github.com/abdorizak/Expense-Tracker-App

14

4 Results

This chapter presents the study results based on the methodologies used.

4.1 Answering RQ1

There are four principles of WCAG 2.2: Perceivable, Operable, Understandable and
Robust. Each principle has Success Criteria with a description written on the of�cial
website [17].

4.1.1 Perceivable Principle

The �rst principle is Perceivable, which means that information and UI components
must be presented in a way that users can perceive them. The content of the website
or application must be presented in different formats such as text, images, videos, and
sounds to accommodate different user needs. All four guidelines are presented with
Success Criteria and their Level on Table 3.

Success Criterion 1.1.1 Non-text content.The Criterion ensures that non-text
content, such as images, have the alternative presented to users via speech output unless
the non-text content is pure decoration or is used only for visual formatting6. On iOS,
UIAccessibility protocol provides accessibility features for UI elements. BasicUIKit
controls and views implement this protocol by default. But assistive technologies get
information about UI element if it hasisAccessibilityElement property set totrue .
Only controls in UIKit haveisAccessibilityElement default value as true. In this
case it is possible to check elements that subclassUIView, exceptUIControl , only if they
set as accessible and show failure on automated testing, with possibility to silent the error
case for non-essential elements. Possible error cases forisAccessibilityElement
== true condition are presented in further analysis by checking basic accessibility
properties:accessibilityLabel, accessibilityValue, accessibilityHint and
accessibilityTraits . (SC 1.3.3 Sensory characteristics and SC 4.1.2 Name, role,
value)

Success Criterion 1.2.1 Audio-only and video-only (pre-recorded).The intent
of Criterion is to ensure that if a UI element provides pre-recorded auditory or video
information, it has a text-based alternative, for example, a transcript. Except for the cases
if audio or video is a media alternative for text. This can be validated only manually by a
quality assurance representative.

Success Criterion 1.2.2 Captions (pre-recorded).Captions or subtitles (as it is
called in some countries), shall provide synchronized visual and text alternative for both
speech and non-speech audio information needed to understand the media content where

6https://bit.ly/non-text-content

15

non-speech information includes sound effects, music, laughter, speaker identi�cation
and location [4]. On iOS,AVFoundationframework among a wide range of tasks allows
capturing and processing audiovisual media. Testing a mobile application content for
conforming to this criterion requires a human being to check it visually7[7].

Success Criterion 1.2.3 Audio description or media alternative (pre-recorded).
The Criterion ensures that video content, which has parts that are not audible, also has an
audio description or text alternative. An alternative for time-based media should provide
a running description of all that is going on in the synchronized media content. For
instance, in a movie when actors stop their dialogue, audio or text description explains
the actions and expressions of actors, and any other visual material during that pause.
The testing process of the video content for following this Criterion is possible only by a
real person and cannot be automated.

Success Criterion 1.2.4 Captions (live).This Success Criterion ensures that if the
video has sound, real-time captions are presented. On iOS, AVFoundation framework
supports the required functionality starting from iOS 16 and in Beta??. The testing
method is the same as in SC 1.2.2.

Success Criterion 1.2.5 Audio description (pre-recorded).The Criterion requires
that an audio description is provided for all prerecorded video content in synchronized
media. This requirement can be met as part of Success Criteria 1.2.3

Success Criterion 1.3.1 Info and relationships.The Criterion requires related UI
elements to be grouped to help assistive technology users to understand the relationship
between them. For instance, the visual formatting of list items is that they are preceded by
a bullet and perhaps indented, or items that share a common characteristic are organized
into tabular rows and columns. On iOS, such formatting can be achieved by gathering
related elements in one view, which would have a descriptive label or header and subviews
would be grouped by settingshouldGroupAccessibilityChildren property on that
view to true . However, the testing process for this Criterion can be implemented only
manually, because the correct relationship as it was intended by an author (designers,
clients etc) requires an understanding of the mental model and perception of the screen
that is possible to test only by a human being.

Success Criterion 1.3.2 Meaningful Sequence.The Criterion ensures that in a case
when the sequence in which content is presented affects its meaning, a correct read-
ing sequence is determined programmatically. On iOS,UIAccessibilityContainer
protocol provides necessary methods for UIView subclasses that serve mainly as con-
tainer to make subcomponents accessible as separate elements. The difference be-
tweenUIAccessibilityContainer and the approach offered in previous SC 1.3.1
is thatUIAccessibilityContainer cares about subviews order. The elements can
be gathered in one property of containeraccessibilityElements as an array and
isAccessibilityElement property should be set tofalse , otherwise assistive tech-

7apple.co/4515nV4

16

nologies will ignore subviews. A real person is required to check if VoiceOver reads all
UI elements in the correct order and none of the elements were missed to be added to the
container.

Success Criterion 1.3.3 Sensory characteristics.This Success Criterion requires
that additional instructions are provided to understand and operate content that relies on
sensory characteristics, for example, shape, size, location, orientation or sound8 [17].

On iOS, instructions can be conveyed viaaccessibilityHint property, which
should contain a brief description of the result of performing an action on the accessibility
element. SinceaccessibilityHint should be set only if the results of an action are not
obvious from the element's label, checks for its string can be implemented when it exists.
By following Apple Inc guidelines for creating hints9 here areaccessibilityHint
possible errors under the conditionaccessibilityHint != nil :

1. accessibilityHint should not be empty string

2. accessibilityHint should begin with a capitalized word

3. accessibilityHint should end with a period

4. accessibilityHint should not repeat label

5. accessibilityHint should not contain stop words (the type of the control or
view)

6. accessibilityHint should be localized

Success Criterion 1.3.4 Orientation. The Criterion requires content view and
operation be presented by user-preferred display orientation, such as portrait or landscape,
unless a speci�c display orientation is essential10 [17]. This criterion can be tested only
manually, as the automation tool cannot know if the view is needed to be forced to a
certain orientation. Furthermore, it is not able to detect if the layout has become broken
after orientation changes or should be speci�c for this case.

Success Criterion 1.3.5 Identify input purpose.All input �elds should have a
clear purpose11 [17]. On iOS, input forms are represented by classes that conform to
UITextInput protocol, for example,UITextField or UITextView. In order to satisfy
criterion text input element should be set up with appropriate content type and its key-
board type by usingtextContentType 12 andkeyboardType13 properties respectively.

8https://www.w3.org/WAI/WCAG21/Understanding/sensory-characteristics
9https://apple.co/3QC2ghQ

10https://www.w3.org/WAI/WCAG21/Understanding/orientation
11https://www.w3.org/WAI/WCAG21/Understanding/identify-input-purpose
12https://developer.apple.com/documentation/uikit/uitextcontenttype
13https://developer.apple.com/documentation/uikit/uikeyboardtype

17

It is possible partially automate the testing for this criterion. AstextContentType is an
optional property and provides a limited number of types, whilekeyboardTypehas a
default value, it is possible to test the obvious cases. For instance,emailAddress content
type requiresemailAddress type of keyboard.

The followingUITextInput error case can be shown during automated testing:

• keyboardTypeshould be set toUIKeyboardType.self for de�nedtextContentType
UITextContentType.self

Success Criterion 1.4.1 Use of colour.The Criterion ensures that color is not used
as the only visual means of conveying information, indicating an action, prompting a
response, or distinguishing a visual element14 [17]. For example, in an input form, the
required text �eld is in red color or the error is shown in red. Manual testing is required
for checking the user interface for such accessibility faults if color has a meaning assigned
to elements.

Success Criterion 1.4.2 Audio control.If any audio content plays automatically
for more than 3 seconds, it should have the possibility to be paused or stopped. This
criterion can be tested with UI Testing, where actions on video content can be set with a
timer for 3 seconds and check if the required buttons exist or not.

Success Criterion 1.4.3 Contrast (minimum).This Success Criterion requires the
visual presentation of text and images of text to have a contrast ratio between the text
colour and background colour of at least 4.5:1, with an exception for the following15 [17]:

• Large Text: Large-scale text and images of large-scale text have a contrast ratio of
at least 3:1;

• Incidental: Text or images of text that are part of an inactive user interface compo-
nent, that are pure decoration, that are not visible to anyone, or that are part of a
picture that contains signi�cant other visual content, have no contrast requirement.

• Logotypes: Text that is part of a logo or brand name has no contrast requirement.

Conformance to this Criterion can be partially tested, mainly on text content. Contrast
ratio calculation16 is:

(L1 + 0:05)=(L2 + 0:05)

,
whereL1 is the relative luminance of the lighter of the colors, andL2 is the relative

luminance of the darker of the colors. Label background color and its text color can be

14https://www.w3.org/WAI/WCAG21/Understanding/use-of-color
15https://www.w3.org/WAI/WCAG21/Understanding/contrast-minimum
16https://www.w3.org/TR/2016/NOTE-WCAG20-TECHS-20161007/G18.html

18

compared by that formula. The following errors can be shown during automated testing
if contrast is not conforming to Criterion:

• Contrast ratio should be at least 4.5:1 for small text (below 18 point regular or 14
point bold)

• Contrast ratio should be at least 3.0:1 for large text (18 point and above regular or
14 point and above bold)

Success Criterion 1.4.4 Resize text.This Criterion requires text to be resized
without assistive technology up to 200 percent without loss of content or functionality.
The requirement is not applied to captions and images of text. However, not every content
part should be resizable, otherwise main parts can be lost, unless a special design is
provided for the case when all UI elements are in the largest or smallest scales. Although
visual and semantic testing is required by a real person, part of preventing the loss of
content can be automated. For example, it is possible to prevent a label's text cutting
by setting the property of labelnumberOfLines = 0. For the case when truncating is
intended it would be possible to silence the error in the testing process.

Here isUILabel possible errors:

• numberOfLines property should be set to 0

and separately forUIButton:

• titleLabel?.numberOfLines property should be set to 0

• titleLabel?.textAlignment should be de�ned whentitleLabel?.numberOfLines
= 0, to avoid text going out of bounds

Success Criterion 1.4.5 Images of text.This Success Criterion ensures that infor-
mation is conveyed through text instead of images containing textual content except for
the following images of text17 [17]:

• Customizable: The image of text can be visually customized to the user's require-
ments;

• Essential: A particular presentation of text is essential to the information being
conveyed. For example, logotypes (text that is part of a logo or brand name) are
considered essential.

17https://www.w3.org/WAI/WCAG21/Understanding/images-of-text

19

The testing process can be implemented only manually.
Success Criterion 1.4.10 Re�ow.The Success Criterion requires the content to be

easily readable without requiring horizontal scrolling. In case of large text font size,
when other elements might be pushed out of view, make sure that users can still access the
content, for instance, by vertical scrolling. Except for the cases when two-dimensional
scrolling is required, for example, maps, diagrams, videos, games, presentations, data
tables, and so on. Usually, content should be put on a scrollable layout and have
constraints instead of �xed sizes, but sometimes there can be a case when a �xed size
is needed for UI elements that cannot calculate their own size due to initialization in
the early stages of the view lifecycle. The conformance to this Criterion can be tested
manually with the help of assistive technologies by increasing the font size and checking
if the layout is broken. By automated testing, it is possible only to ensure that labels
were set correctly to adapt for resized text (SC 1.4.4 Resize text).

Success Criterion 1.4.11 Non-text contrast.The Criterion ensures that meaningful
visual cues achieve 3:1 against the background18 [17]. Designers should provide images
with the required contrast. The conformance for this Criterion can be tested with the help
of assistive technologies. However, it is possible to test contrast ratio of controls, for
example, by comparing background color and borders color (the calculation can be taken
from SC 1.4.3 Contrast (minimum))

Success Criterion 1.4.12 Text spacing.This Success Criterion ensures that content
implemented using markup languages adapts to user-de�ned text settings. On iOS, Swift
is not a markup language. However, text style properties can be changed onUILabel by
settingattributedString property with modi�ed styleNSMutableParagraphStyle.
According to Criterion, no loss of content or functionality should occur by setting all of
the following and by changing no other style property:

• Line height (line spacing) to at least 1.5 times the font size;

• Spacing following paragraphs to at least 2 times the font size;

• Letter spacing (tracking) to at least 0.12 times the font size;

• Word spacing to at least 0.16 times the font size.

During testing in case ifattributedString of UILabel orUITextViewhasparagraphStyle 19,
then the following should be correct:

lineHeightMultiple >= 1.5

or
lineSpacing >= (font * 1.5)

18https://www.w3.org/WAI/WCAG21/Understanding/non-text-contrast
19https://developer.apple.com/documentation/uikit/nsmutableparagraphstyle

20

otherwise show error. The same audit can be implemented on other properties. Here is
the possible error of paragraph style:

• lineSpace (lineHeightMultiple) should be at least 1.5 times the font size

• paragraphSpacing (paragraphSpacingBefore) should be at least 2 times the font
size

• kern (tracking) should be at least 0.12 times the font size

Success Criterion 1.4.13 Content on hover or focus.This Success Criterion ensures
that when pointer hover or keyboard focus causes extra content to appear and disappear,
the following conditions apply:

• Dismissible: Users can dismiss the additional content without having to move the
pointer hover or keyboard focus, except when the content conveys an input error
or doesn't obstruct or replace other content.

• Hoverable: If pointer hover can reveal the extra content, users can move the pointer
over the additional content without it disappearing.

• Persistent: The additional content remains visible until the hover or focus trigger
is removed, the user dismisses it, or the information it provides becomes invalid.

On iOS, the additional content can be presented byUIAlertController , where accord-
ing to this requirement should always be a cancel action to close the view. Another
way is to useUIPopoverPresentationController where its behavior is managed by
UIPopoverPresentationControllerDelegate . However, the testing requires a man-
ual method. From automated testing, it is possible to ensure only ifUIAlertViewController
has more than one action then check for the following error:

• UIAlertViewController should have action with cancel style

The reason to check only if more than one action is because the alert view with one
action can be as con�rmable with OK button. And usually it is set asdefault style.

4.1.2 Operable Principle

The second principle is Operable: UI components and navigation must be operable by in
the users' preferred way. This means that users must be able to navigate and interact with
the application using a variety of input methods such as a screen reader, voice control,
keyboard, mouse, touch screen and etc. All guidelines with Success Criteria for this
principle are listed in Table 4.

21

Success Criterion 2.1.1 Keyboard.The Criterion requires all app functionalities to
be accessible with a keyboard. On iOS, the propertyaccessibilityRespondsToUserInteraction
can be set to false for UI elements that only display information. But the testing process
requires manual checks with the help of assistive technologies.

Success Criterion 2.1.2 No keyboard trap.A mobile application should allow users
to navigate through all interactive elements using the keyboard without getting stuck in a
keyboard trap. A keyboard trap is a situation where a user cannot move focus away from
a particular element or section of the app using only the keyboard. Meeting SC 1.4.13
and SC 2.1.1 can help to satisfy this criterion as well.

Success Criterion 2.1.4 Character key shortcuts.The criteria guarantee that
accidental activation of shortcuts is prevented while using assistive technologies20 [17].
Some assistive technologies imitate keystrokes to execute actions, which can lead to
unintended shortcuts being triggered. If a keyboard shortcut is implemented in content
using only letters (including upper- and lower-case letters), punctuation, number, or
symbol characters, then at least one of the following is true:

• Turn off: it is possible to turn the shortcut off;

• Remap: it is possible to remap the shortcut to include one or more non-printable
keyboard keys (Command, Alt);

• Active only on focus

On iOS, turn off option can be implemented viaUIViewController method:

func removeKeyCommand (_ keyCommand : UIKeyCommand)

Remapping should be done by initialisingUIKeyCommandwith modifierFlags prop-
erty 21:

l e t deleteCommand = UIKeyCommand (
t i t l e : " D e l e t e " ,
a c t i o n : # s e l e c t o r (d e l e t e) ,
i n p u t : " d " ,
m o d i f i e r F l a g s : . command

)

And the availability is managed bystate property ofUIKeyCommand. However, the
testing requires manual audit with the help of keyboard-type assistive technology to
indicate if shortcut invoke wrong action.

Success Criterion 2.2.1 Timing adjustable.The criterion ensures that each time
limit is enough to implement the task. There are 6 requirements provided by WCAG21

20https://www.w3.org/WAI/WCAG21/Understanding/character-key-shortcuts
21https://developer.apple.com/documentation/uikit/uikeymodi�er�ags

22

where at least one is required22 [17]. However, the use of a timer in presenting content
or implementing a task may vary from showing a short message named Toast or pop-ups
(for example, on Google mail when a message send the pop-up appears to cancel the
sending) to updating API call. It is not possible to test the purpose of timer via an
automated tool, which is why it requires only manual testing.

Success Criterion 2.2.2 Pause, stop, hide.The criterion ensures that users have
the ability to pause, stop, or hide any moving, blinking or scrolling elements displayed
on the screen, unless those are essential. The example of essential moving is a loading
indicator. It is usually animating to show a pre-load phase or similar situation in order to
not cause users to think that content was frozen or broken. On iOS, ifBooleanproperty
UIAccessibility.isReduceMotionEnabled it is possible to disable non-essential ani-
mations. However, it is dif�cult to test to via automated test, as the purpose of moving,
blinking or scrolling element can be indicated by a real person.

Success Criterion 2.3.1 Three �ashes or below threshold.Success Criterion
allows users to access the full content of a site without inducing seizures due to photo-
sensitivity23. The purpose of this criterion is to ensure that no more than three �ashes
per second are being presented, because it can cause an epileptic seizure. Flashing can
occur from the rendering process of an image, and developers have no authority over
these aspects, which can be addressed through device/connection performance. However,
such features as animation, device torch or video content should be used carefully to
not exceed the �ash thresholds, and testing requires a human to understand the semantic
purpose.

Success Criterion 2.4.3 Focus order.The Criterion requires that navigation focus or-
der over elements preserves both meaning and operational signi�cance of the view24 [17].
As the testing of meaning and operations can be tested only by humans, no automation is
possible for this case.

Success Criteria 2.4.4 Link purpose (in context).The purpose of each link should
be clear without needing additional context. It can be tested manually or by using
assistive technologies, because automated test cannot identify if the purpose is clear.

Success Criterion 2.4.6 Headings and labels.The intent of this Success Criterion
is to help users understand what information is contained on a screen. This criterion
does not check the presence or identi�cation of content serving as headings or labels,
because it is addressed separately by SC 1.3.1: Info and Relationships. It rather requires
headings or labels be descriptive if presence. Such aspects as descriptiveness or clearness
can be tested by human being25 [17]. However, the conformance to Apple Inc provided
guidelines for labels and headings text can be tested, and it is shown on SC 4.1.2 Name,
role, value.

22https://www.w3.org/WAI/WCAG21/Understanding/timing-adjustable
23https://www.w3.org/WAI/WCAG21/Understanding/three-�ashes-or-below-threshold
24https://www.w3.org/WAI/WCAG21/Understanding/focus-order
25https://www.w3.org/WAI/WCAG21/Understanding/headings-and-labels

23

Success Criterion 2.4.7 Focus visible.Any operable UI element should have a
visible focus indicator26 [17]. On iOS, VoiceOver and Switch Control already have a
focus frame. The testing process will require manual using this technologies to indicate
if the placement is correct and that the colour is clearly visible.

Success Criterion 2.5.1 Pointer gestures.The Success Criterion requires to provide
one �nger (single-point) and reduced gestures operation for all functions27 [17]. For
instance, the scrolling or zooming can be additionally provided by buttons with arrows
up and down or plus and minus respectively. The presence of alternative operation can
be tested only manually by human.

Success Criterion 2.5.2 Pointer cancellation.The Criterion requires touches to be
cancellable, with exception for cases when the down-event triggered by touch is essential
or the up-event reverses any outcome of the preceding down-event. The purpose of touch
can be tested manually or with the help assistive technologies. UI tests can also test the
results of touch events.

Success Criterion 2.5.3 Label in name.The Criterion requires visual label for
controls to be a trigger for speech activation. This can be tested manually with the
help of Voice Control28 or by automated tool. The second option should check if
accessibilityLabel of controls is equal or contained in the text that is presented
visually. The following error case can be added to cases mentioned in SC 4.1.2 Name,
role, value:

• accessibilityLabel should match or be contained in title of element, to trigger
Voice Contol.

Success Criterion 2.5.4 Motion actuation.Following this Criterion, functionality
should not rely solely on device or user motion. Alternative UI component should be
provided for motion-triggered actions and responding to the motion can be disabled to
prevent accidental actuation, except when supported interface or essential29 [17]. The
conformance to this Criterion can be tested manually or by UI tests.

4.1.3 Understandable Principle

The third principle is Understandable: information and the operation of the user interface
must be understandable. This means that the language and presentation of the content
must be clear and easy to understand, and that the user interface should be consistent
and predictable. All guidelines with Success Criteria for this principle are gathered in
Table 5.

26https://www.w3.org/WAI/WCAG21/Understanding/focus-visible
27https://www.w3.org/WAI/WCAG21/Understanding/pointer-gestures
28https://support.apple.com/en-us/HT210417
29https://www.w3.org/WAI/WCAG21/Understanding/motion-actuation

24

Success Criterion 3.1.1 Language of software.The default human language of all
content should be programmatically determined. Each mobile application source code
has its own speci�c implementation of setting default language which cannot be tested
by using common approach.

Success Criterion 3.2.1 On focus.The functionality of UI element that receives
focus should be predictable and it does not initiate a change of context30 [17]. On
iOS, assistive technologies that uses focus frame are not triggering an action on element
while just listing or describing elements on a view. Actions are taken, for example, after
double tap on screen for VoiceOver. However, there is possibility to override function
namedaccessibilityElementDidBecomeFocused, where no actions on changing con-
text should be implemented. Changes of context dif�cult to indicate by automation
testing, unless using UI or Screenshot testing and comparing view state before and after
actions. Manual testing with the help of assistive technologies is the most effective one.

Success Criterion 3.2.2 On input.The intent of this Criterion is to assure that
entering data or selecting a form control has predictable effects. Context changes are
acceptable only when it is predictable that they will occur as a direct result of the user's
action. For example, checking a checkbox button or inserting text into a text �eld changes
setting of the control, but tapping on links or tabs in a tab control should activate the
control and not change the setting of that control. It is also considered a failure of the
criterion if after changing setting a new window is appearing without advanced warning
or the data from text �elds is submitted automatically31 [17]. The testing process can be
implemented by UI tests to check if only intended changes has appeared on a screen, and
manually.

Success Criterion 3.3.1 Error identi�cation. The Criterion requires to notify users
that an error has occurred while entering data and to determine what is wrong by showing
and announcing error message32 [17]. Error message visual presentation can be imple-
mented withUIAlertViewController orUILabel near to input �eld. The second option
should be followed with the accessibility announcement byUIAccessibility.post
static method33. Testing is possible with UI tests and manually.

Success Criterion 3.3.2 Labels or instructions.The intent of this Success Criterion
is to have instructions or labels that explain what data is needed for input control. This
criterion is only about clear instructions that provided for all users. It does not require
that labels or instructions be correctly marked up or identi�ed, that is required in SC
1.3.1: Info and Relationships. Furthermore, this Criterion does not take into consideration
whether or not accessibility label or hint were provided for text �elds as this aspect is
covered separately by next SC 4.1.2: Name, Role and Value. Therefore, the testing
can be implemented manually for checking if the instruction has clear, comprehensive

30https://www.w3.org/WAI/WCAG21/Understanding/on-focus
31https://www.w3.org/WAI/WCAG21/Understanding/on-input
32https://www.w3.org/WAI/WCAG21/Understanding/error-identi�cation
33https://apple.co/3rZ1NvQ

25

explanation for all users by Accessibility Quality Assurance person.
Success Criteria 3.3.3 Error suggestion.This Success Criterion ensures that users

receive appropriate suggestions for correction of an input error if it is possible. Albeit
Success Criterion 3.3.1 ensures noti�cation of errors, persons with cognitive limitations
may �nd it dif�cult to understand how to correct the errors34 [17]. That is important to
test the suggestion text for correctness and descriptiveness manually.

Success Criteria 3.3.4 Error prevention (legal, �nancial, data).Actions that cause
legal commitments or �nancial transactions, that modify or delete user-controllable data
in data storage systems, or that submit user test responses, at least one of the following is
true35:

• Reversible: submissions are reversible.

• Checked: SC 3.3.2 Labels or instructions, SC 3.3.3 Error suggestion.

• Con�rmed: it is possible to review, con�rm and correct data before the submission.

Functionalities such as undo, correct and con�rm can be tested manually depending
on a context and required business logic.

4.1.4 Robust Principle

The last principle is Robust: content must be robust enough that it can be interpreted
reliably by a wide variety of user agents, including assistive technologies. This means
that the content should be compatible with current and future technologies and should be
able to adapt to changes in user agent technology. All guidelines with Success Criteria
for this principle are listed in Table 6.

Success Criteria 4.1.1 Parsing.This Success Criterion requires code be error-free
and without deprecated functions. Failure to update the code to modern standards may
lead to unexpected behavior with assistive technologies. Application functionality should
work correctly on all supported iOS versions. Automated Unit, UI and manual tests as
well as linting tools can ensure the quality of a code base.

Success Criteria 4.1.2 Name, role, value.The Criterion ensures that all UI elements
have name and role programmatically determined; states, properties, and values that
set by the user are programmatically set; and noti�cation of changes to these items is
available to user, including assistive technologies36 [17].

On iOS, settingisAccessibilityElement to true makes UI element visible for
assistive technologies. The property for instances ofUIControl class istrue by default,

34https://www.w3.org/WAI/WCAG21/Understanding/error-suggestion
35https://www.w3.org/WAI/WCAG21/Understanding/error-prevention-legal-�nancial-data
36https://www.w3.org/WAI/WCAG21/Understanding/name-role-value

26

while other elements requires manual settings if needed. For accessibility-visible ele-
ments accurate and helpful information should be set for next properties: label, trait,
hint, frame and value. By following Apple Inc guideline it is possible to test if there is
accessibility faults.

The propertyaccessibilityLabel gives succinct name for element, which takes
element title or text as its default value37 [7]. Here are accessibility label possible error
cases38:

1. accessibilityLabel or its default value by means of title/text of element should
be de�ned.

2. accessibilityLabel should not be empty string.

3. accessibilityLabel should not contain Stop Words (the type of the control or
view)

4. accessibilityLabel should not be a white space

5. accessibilityLabel should start with a capitalized letter

6. accessibilityLabel should not end with a period.

7. there should be no repeated strings foraccessibilityLabel

The propertyaccessibilityTraits gives combination of accessibility traits that
best characterizes the accessibility element. There are traits that are mutually exclusive
and con�icting traits can be indicated during automated testing39. Here are accessibility
traits possible error case:

• accessibilityTraits for element are con�icting.

Success Criteria 4.1.3 Status messages.The intent of Success Criterion is to ensure
users are noti�ed by assistive technologies about status changes that don't take focus.
Such changes can be announced by the same method as in SC 3.3.1 Error identi�cation.

4.1.5 Summary

The analysis of required accessibility Success Criteria for mobile applications showed
that automating accessibility testing is challenging task, because accessibility testing
checks semantic complexity of the UI that computers cannot independently comprehend.
Therefore, it is not possible to cover all 44 criteria. However, automated testing tools can
cover important basic requirements and possible accessibility issues that can be detected
by automated testing tool were offered.

37https://developer.apple.com/documentation/uikit/uiaccessibilityelement/1619577-accessibilitylabel
38https://apple.co/3OQ8TvJ
39https://apple.co/47pJgJu

27

4.2 Answering RQ2

4.2.1 GTXiLib analysis

Description. GTXiLib is Google tool for Accessibility Testing for the iOS applications.
As stated in documentation, it enhances unit tests by conducting accessibility checks
alongside. GTXiLib is able to accomplish this by hooking into the test tear-down
process and invoking the registered accessibility checks (such as check for presence of
accessibility label) on all elements on the screen [5].

Initial analysis. Based on technical stack and requirements a few important disad-
vantages could be highlighted:

• it is written in Objective-C which is old, non-popular programming language for
iOS platforms. As a consequence, providing support becomes challenging;

• there is no comprehensive documentation for the tool;

• integration into projects with CocoaPods only, disadvantages of which are shown
on Table 7;

• it has low popularity and unresolved opened issues for last few years.

Testing. Testing process by GTXiLib starts with integration of tool into sample
project FinanceFuel via installing CocoaPods and initializing required �les. Next, in
test target of project, to run all tests of speci�c test class the following snippet of code
Figure 1 was added.

Figure 1. GTXiLib setup.

28

GTXiLib needs to be setup and installed once per test suite, sosetup function of
the class was overridden. To test the view it needs to be added to the keyWindow, as
the library uses it's root object and then runs the checks on its subviews. However,
the most important part is to set the frame for the view, which was not mentioned in
the documentation for the tool. The frame of view is a rectangle, which describes the
view's location and size in its superview's coordinate system. It means that test will
not run on view's which has Auto Layout. Auto Layout makes UI layout adaptive
and �exible for different screen sizes, which is important for accessible application. It
dynamically calculates the size and position of all the views in your view hierarchy,
based on constraints placed on those views40.

As an example,LoginViewwhich is setup with Auto Layout was tested with GTXiLib
on all checks available there. In order to fail test, the button was set intentionally with
punctuation error, but tests showed false positive results Figure 2

Figure 2. GTXiLibtestLoginView false positive result.

For comparison, another view was created with frame setups instead of constraint-
based approach with the same intentional error. Tests failed (Figure 3) and showed
description in project navigator sections shown in Figure 4.

40https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/index.html

29

Figure 3. GTXiLibtestCustomViewaccessibility faults detection.

30

Figure 4. GTXiLibtestCustomViewaccessibility faults report.

Another issue with the tool was indicated. Running both teststestLoginView from
Figure 2 andtestCustomViewfrom Figure 3 in one class gives misleading report by
showing errors of the latter in the test report of the former. Although some manipulations
with UIWindowScenemight help, it requires additional setups and workarounds. Also,
when running tests on Xcode(14.3.1 version) simulator, for making next launches of
tests work correctly, simulator should be quit. Otherwise, no checks will be applied and
all views will pass the tests successfully, even though they were failed on a preceding
launch.

The results of examining GTXiLib code base on what the checks are implemented
there are shown in Table 2 by means of "yes" in the row of the covered accessibility issue.
Furthermore, another accessibility issue was added to the table, as the tool had check on
target size of touch for the controls, such as button. The issue is marked with asterisk
because it non-required Criterion by the EN 301 549 Standard[4].

The code presented in this section is available in commit with the message "Analyse
GTXiLib testing tool"41.

41https://github.com/KarimovaKarina/Thesis/commit/ffbaf03735e2022f4d0aaf54eced72b3caf21316

31

4.3 Answering RQ3

4.3.1 Overview of OAT

OAT42 is open-source automated accessibility testing tool, written in Swift. The integra-
tion of the tool into the project is managed by native package manager Swift Package
Manager described in Table 7 [14]. To start the testing package needs to be imported in
the swift �le with test class and the view can be tested by sending it as a parameter to the
function namedcheckAccessibility . Overall, the function has few parameters:

p u b l i c func c h e c k A c c e s s i b i l i t y (
_ view : UIView ,
w i th s e t t i n g s : A c c e s s i b i l i t y S e t t i n g s = . d e f a u l t ,
f i l e : S t a t i c S t r i n g = # f i l e ,
tes tName : S t r i n g = # f u n c t i o n ,
l i n e : UInt = # l i n e

) {
l e t e r r o r s = c o l l e c t E r r o r s (f o r : view , w i th : s e t t i n g s)
e r r o r s . fo rEach { e r r o r i n

XCTFail (" \ n �> " + e r r o r . e r ro rMessage , f i l e : f i l e , l i n e : l i n e
)

}
}

where,view is the view to be tested.settings is the public structure which contains
two properties:excluding andrecursiveChecking . The former is the list of excluded
checks. The latter is ofBool value and stands for whether checks should be applied
recursively for subviews or not.file is the �le where the failure occurs. The default
is the �lename of the test case where this function is called.testNameis the name
of test function where the failure occurs. The default is the function name where
checkAccessibility function is called. line is the line number where the failure
occurs. The default is the line number where this function is called. However, last three
parameters are service parameters of the function which are not supposed to be �lled in.

p u b l i c s t r u c t A c c e s s i b i l i t y S e t t i n g s {
l e t e x c l u d i n g : [Exc ludedChecks]
l e t r e c u r s i v e C h e c k i n g : Bool

p u b l i c i n i t (
e x c l u d i n g : [Exc ludedChecks] ,
r e c u r s i v e C h e c k i n g : Bool

) {
s e l f . e x c l u d i n g = e x c l u d i n g
s e l f . r e c u r s i v e C h e c k i n g = r e c u r s i v e C h e c k i n g

}
}

42https://github.com/KarimovaKarina/OAT

32

p u b l i c e x t e n s i o n A c c e s s i b i l i t y S e t t i n g s {
s t a t i c va r ` d e f a u l t ` : S e l f {

. i n i t (e x c l u d i n g : [] , r e c u r s i v e C h e c k i n g : t r u e)
}

}

The parameterexcluding has type[ExcludedChecks], which is list of enumeration
cases. It represents the list of checks, that can be excluded from test, for exampleimages,
as images can be just a decoration part of UI.

In case when accessibility testing of some project is planned to be iterated, it is possi-
ble to check speci�c UI element without passing its subviews by settingrecursiveChecking
to true

Accessibility faults that were offered to be checked in section 4.1 are used as values
that have a common type, for instance,AccessibilityHintError :

enum A c c e s s i b i l i t y H i n t E r r o r : E r r o r {
case h in t I sEmp ty
case con ta i ns Ty pe ([S t r i n g])
case f i r s t W o r d I s N o t C a p i t a l i z e d
case doesNotEndWi thPer iod
case c o n t a i n s L a b e l (S t r i n g)

}

Each accessibility error enumeration is conforming to commonAccessibilityError
and its own setup of valueerrorMessage. The value represents a textual explanation of
detected accessibility faults.

p r o t o c o l A c c e s s i b i l i t y E r r o r {
va r e r ro rMessage : S t r i n g { g e t }

}

When tests has failed the description of accessibility issues are presented in the �le
sent as parameter. Also they can be checked on project's Issue Navigator and Report
Navigator.

4.3.2 Practical use of OAT

To show how the tool works in practice it is integrated into sample project FinanceFuel.
We will test the �rst two views that users see when launching the app depicted on Figure 5:
WelcomeViewandLoginViewclasses.

33

	Introduction
	Problem statement
	Research goal
	Thesis outline

	Background
	Related work
	Gap analysis

	Methodology
	Approach to Answering Research Questions
	Approach for RQ1
	Approach for RQ2
	Approach for RQ3
	Sample projects overview

	Results
	Answering RQ1
	Perceivable Principle
	Operable Principle
	Understandable Principle
	Robust Principle
	Summary

	Answering RQ2
	GTXiLib analysis

	Answering RQ3
	Overview of OAT
	Practical use of OAT
	Quality Assurance of OAT
	Comparing test results of GTXiLib and OAT

	Discussion
	Answers to the research questions
	Limitations of the study

	Threats to validity
	Conclusion and future work
	Acknowledgements
	Appendix
	I. Glossary
	II. Licence

