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Drone sound recognition and tracking system using machine learning and 

acoustic localization 

Abstract: 

Radar-based detection systems are expensive, and it is currently not possible to cover all of 

the combat territory with them. However, modern warfare employs numerous aerial strikes 

with drones. In this thesis, we develop a proof-of-concept system that can detect and locate 

(with some special pre-conditions) Shaheed drones, used in the Russo-Ukrainian war against 

Ukraine. We test several approaches, from a simple boosted tree approach on low-level audio 

features up to transfer learning on a SOTA foundation model. Although a specific drone can 

be successfully identified, locating the target proved to be very hard.  

Keywords: machine learning, military intelligence, sound processing, machine listening 

CERCS: P176 Artificial intelligence 

Drooni helide tuvastamine ja lokaliseerimine masinõpe abil riigikaitseks 

Lühikokkuvõte: Radaripõhised lennuki tuvastussüsteemid on kallid ja seega ei ole võimalust 

katta nendega terve lahinguala. Kaasaegses sõjas kasutatakse aga arvukalt õhulööke odavate 

droonidega. Selles diplomitöös kirjeldame süsteemi prototüüpi, mis suudab tuvastada ja 

lokaliseerida (mõningate eeltingimustega) Shaheedi droone, mida kasutatakse Venemaa-

Ukraina sõjas Ukraina vastu. Testime mitmeid lähenemisviise, alates puudest kuni 

ülekandeõppeni SOTA alusmudelil. Testid näitasid et kuigi drooni saab piisavalt edukalt 

tuvastada, selle asukoha ja suunda määramine osutus helipõhises süsteemis keeruliseks. 

 

Võtmesõnad: masinõpe, sõjaväeluure, helitöötlus, masin kuulamine 

CERCS: P176 Tehisintellekt 
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Introduction 

The goal of this thesis is to develop an early alert system capable of timely notifying soldiers 

about approaching enemy drones in combat zones. The Russo-Ukrainian War of 2022 

introduced an urgency in developing such solutions and was the main reason why we started 

developing it. Traditional radar systems, often hindered by terrain and constrained by the size 

of operational areas, face challenges in detecting small, agile targets like drones. Our solution 

utilizes sound-based drone detection, offering a more responsive and accurate alternative to 

human detection and, in theory, a much cheaper solution than a radar. Conventional radars are 

very efficient and robust solutions for tracking the aerial intrusion overall, but due to their cost, 

mass production of them could not be launched to cover huge territories. In contrast, a portable 

smart system consisting only of several microphones located in a particular distance from 

each other (for triangulation) could be a nice and quick solution for this detection problem. 

In September 2022, Russian military started to use Shaheed-136 drones to attack Ukrainian 

infrastructure and cities. Since Ukrainian forces don’t use Shaheed-136 drones, the sound they 

make is specific to enemy forces and can be used to identify enemy attacks.  

Such a system could consist of two modules: one for sound anomaly detection, and another for 

anomaly classification. A system monitors its environment for acoustical anomalies, records 

sound, evaluates whether unusual sound is Shaheed-135, and outputs a probability of attack. In 

addition, a system needs to report where the attack is coming from, which means we need a 

localization system as well.  

The solution developed in this thesis was created as a teamwork between Ukrainian military 

representatives, who helped with sound recording on a battlefield and with developing and 

testing a hardware prototype, and the author, who was responsible for the ML prototype.  

The thesis is structured to provide a comprehensive overview of the development and 

implementation of the sound detection system. It begins with a background on signal 

processing and audio analysis. We also briefly review how machine learning is used for sound 

recognition. In the next chapter we describe the data collection process, including filtering 

external audio datasets for recordings and scraping YouTube for relevant data. In the next 

chapter, the implementation of the system is discussed, describing XGBoost, LSTM, and CNN 

based approaches. Also, the hardware parts that were used in creation of the test system are 

briefly discussed. Subsequent sections present the conclusions and discussion. 
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1 Terms and Notations 

 

Audio 

Classification 

The process of identifying and categorizing segments of audio into different classes 

based on their characteristics. 

Convolutional 

Neural 

Network 

(CNN) 

A type of artificial neural network commonly applied to image recognition, image 

classification, and object detection. CNNs are designed to automatically and 

adaptively learn spatial hierarchies of features from input data, which allows CNNs 

to effectively capture patterns and structures within images. 

Cross Entropy 

Loss 

 A loss function used in machine learning that quantifies the difference between 

two probability distributions - the actual output and the predicted output by the 

model. 

Data 

Augmentation 

(in ML 

context) 

 A technique that helps enhance the diversity of the dataset and improve model 

generalization, which involves creating new training data by applying 

transformations. For instance, rotation, flipping, scaling, or adding noise, in case of 

images. 

Decision Tree  A machine learning algorithm that partitions the input space into subsets based on 

the values of input features, with each node representing a decision based on a 

feature value. Decision trees are used for classification and regression tasks and are 

interpretable. 

Deep learning Deep learning is a subset of machine learning that utilizes artificial neural networks 

with many layers (hence "deep") to learn from large amounts of data. Each layer 

extracts increasingly abstract features from the input data, allowing the network to 

learn complex representations. Methods used can be supervised, semi-supervised or 

unsupervised.[34] 

Fine Tuning An approach to transfer learning in which the parameters of a pre-trained model are 

tuned on new data with a small learning rate. [11] Fine-tuning can be done on the 

entire neural network, or on only a subset of its layers, in which case the layers that 

are not being fine-tuned are "frozen" (not updated during the backpropagation 

step). [46] 

Long Short-

Term Memory 

(LSTM) 

LSTM stands for Long Short-Term Memory, which is a type of recurrent neural 

network (RNN) architecture designed to capture long-term dependencies in 

sequential data. 

Machine 

learning (ML) 

 A field of study in artificial intelligence concerned with the development and study 

of statistical algorithms that can learn from data and generalize to unseen data, and 

thus perform tasks without explicit instructions.[32] 

Miltech Military Technology, refers to the advanced technological tools and systems used 

in military applications. 

Overfitting  A modeling error in machine learning where a function is too closely aligned to a 

limited set of data points and fails to generalize well to new data. 



 

6 

Recurrent 

Neural 

Network 

(RNN) 

RNN, or Recurrent Neural Network, is a type of artificial neural network designed 

to process sequential data by maintaining a state or memory of previous inputs. 

Unlike feedforward neural networks, which process data in a fixed sequence, 

RNNs have connections that form a directed cycle, allowing them to exhibit 

dynamic temporal behavior. 

 
Regularization  A technique in machine learning that constrains or regularizes the model's learning 

capacity to prevent overfitting. 

ROC curve 

(receiver 

operating 

characteristic 

curve)  

A graph showing the performance of a classification model at all classification 

thresholds [77] 

Spectrogram A spectrogram is a visual representation of the spectrum of frequencies in a signal 

as it varies with time. It is a three-dimensional plot where the x-axis represents 

time, the y-axis represents frequency, and the color intensity (or brightness) 

represents the strength or amplitude of the signal at each time-frequency point. [69] 

Time 

difference of 

arrival 

(TDOA) 

A difference between the absolute time instants, between time of transmission 

(when a radio signal (electromagnetic impulse) emanates from a transmitter) and 

time of arrival (when it reaches the receiver) 

Transfer 

learning 

The ability of a system to recognize and apply knowledge and skills gained in 

previous tasks to new tasks [44] 

VGGish  A deep convolutional neural network developed by Google, specifically designed 

for audio feature extraction. It is based on the VGG architecture, which is well-

known for its effectiveness in image recognition tasks. 

XGBoost  An optimized distributed gradient boosting library designed to be highly efficient, 

flexible and portable. It implements machine learning algorithms under the 

Gradient Boosting framework. 

YouTube 

Scraping 

 The process of extracting data or content from YouTube videos. In this context, it 

refers to collecting specific audio data from YouTube content. 
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2 Background 

In an active war zone, a lot is going on in the air. Planes, missiles, drones are flying both 

from enemy positions and towards them. A lot of noise is produced by explosions, vehicle 

engines on the ground and in the air. In this chapter, we will explain which are the main aerial 

targets in Russo-Ukrainian war that are likely to be detected in the air, and how they are 

usually detected.   

The main way to detect objects in the air in modern warfare is radar. Radar detection uses 

electromagnetic waves to identify and track objects. An active radar emits radio waves that 

reflect off objects and return to the receiver, providing information about the object's 

distance, location, and speed [68]. Passive radar, on the other hand, relies on ambient radio 

signals to detect reflections from objects, making it distinct from active radar systems that 

emit their own signals [68]. Active radar offers more precise information and is particularly 

useful for long-range object detection. Active radar is widely used for aircraft detection due 

to its ability to provide precise information about an aircraft's location and movement. By 

emitting radio waves that reflect off the aircraft and return to the radar receiver, it provides 

data on the distance, speed, and trajectory of the aircraft [68]. This makes this type of radar 

detection a powerful tool for tracking aerial vehicles over long and middle ranges. 

 

Sound waves can also be used for detection purposes, particularly for aerial objects like drones. 

Sound waves are longitudinal waves that travel by compressing and decompressing a medium. 

They require a medium for propagation, such as air, water, or a solid, making them distinct 

from electromagnetic waves that can travel through a vacuum. The speed of sound depends on 

the medium through which it travels, with sound traveling at approximately 343 meters per 

second in air at 20°C. This speed can vary with temperature, pressure, or the specific medium 

being traversed [78]. 

 

The range at which a drone can be detected by sound depends on factors such as its volume 

and frequency output, environmental noise levels, and the sensitivity of the detection 

equipment [68]. Sound detection can also offer unique insights, including information on a 

drone's operational status or specific model based on its acoustic signature [41]. 

 

Radar provides more reliable long-range detection capabilities compared to sound detection, 

which is limited by attenuation over distance. However, sound detection can operate passively, 

not emitting signals that might alert targets or interfere with other systems. Which makes sound 

detection a useful complement to radar detection, providing additional information on a drone's 

presence and status [63]. 

 

After we have understood the crucial differences between the sound and radar operation, now 

we need to understand the definition and classification of the drones. 

The drone is an uncrewed aerial vehicle, also known as unmanned aerial vehicle (UAV) [76]. 

They were first developed in the 1990s to be used in operations where the crew could be 

severely affected and the operations were too dangerous for them. There are various 

classifications of drones used in the military, one of them is US Department of Defense (DoD) 

classification [75], given in Table 1.  
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Category Size Maximum Gross 
Takeoff Weight 
(MGTW) (lbs.) 

Normal Operating 
Altitude (ft) 

Airspeed 
(knots) 

Group 1 Small 0-20 <1,200 AGL* <100 

Group 2 Medium 21-55 <3,500 <250 

Group 3 Large <1320 <18,000 MSL** <250 

Group 4 Larger >1320 <18,000 MSL Any 
airspeed 

Group 5 Largest >1320 >18,000 Any 
airspeed 

*AGL = Above Ground Level 
**MSL = Mean Sea Level 
Note: If the UAS has even one characteristic of the next level, it is classified in that 
level. 

Table 1: UAVs Classification according to the US Department of Defense (DoD) [75] 

Based on the US classification we can state that Shaheed-136 drones fall into the Group 3 under 

that classification. In Ukrainian classification drones are classified by the operational capacity, 

range of the operation and altitude. Let's consider them by functionality and type [79]: 

1) Microdrones (“DJI Mavic”): These are small drones that can fit in your hand or pocket. 

They have a flight range of 1.5 to 10 km. 

2) Medium-range drones (“Leleka-100” and “Fury”): These drones have a longer flight 

range and are used for reconnaissance. Their range of operation varies from 10-50. 

3) Operational-tactical drones (PD-2 and Raybird-3): These drones are designed for 

reconnaissance and operational tasks. The flight range is 50- 600 km. 

4) Strategic UAVs: These drones can spend up to 24 hours in the air and fly over 1000 km 

distances. For instance, “Bober” drone, that weights around 150 kg and can carry a 

warhead of 20 kg.  

Some of the drones that Ukrainian military themselves employ, are classified because of the 

state of war in the country. Therefore, the information in open sources is very limited about the 

types of the drones Ukraine produces. But most of the drones that are not classified are 

operating in the first 3 classes.   
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Figure 1. Comparison between Ukrainian and Russian drones in 2022. The Ukrainian long-range 

drone Bober is not shown in this picture (wingspan of 2.5 m). [72] 

Shahed-136, and its smaller Ukrainian counterpart “Bober” are both operating in over 1000 km 

range and can develop a speed of ~200 km/h [81]. These drones are classified as strategic UAV 

and are used for in-depth attacks on the enemy’s rear positions [76]. At the beginning of this 

research in 2022 there were no Ukrainian UAVs that are analogue to the Shaheed-136, 

therefore we were working on spotting only Shaheed-136/Geran-2 and we didn’t compare the 

sounds of Ukrainian drones and Russian ones. Moreover, with a very high possibility we would 

not be allowed to get access to that information in Ukraine as the creation and the models of 

these drones is top secret information that cannot be shared with anyone. Therefore, this 

research is out of scope of this thesis. Now, after we understand the classification of our drones, 

we have to understand the characteristics and the appearance of the drone itself.  

The HESA Shahed-136 (Persian: ۱۳۶ شاهد, literally "Witness 136"), also known by its Russian 

designation Geran-2 (Russian: Герань-2, literally "Geranium-2"), is an Iranian-designed 
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loitering munition, also referred to as a kamikaze drone or suicide drone, in the form of an 

autonomous pusher-propeller drone. [73] 

Shaheed-136 characteristics [73]:  

1) Mass: 200 kg 

2) Length: 3.5 m 

3) Wingspan: 2.5 m 

4) Maximum warhead weight: 50kg [26] 

5) Engine: MD-550 piston engine 

6) Operational Range: 2500 km [26] 

7) Maximum speed: around 185 km/h 

(115 mph) 

8) Guidance system: GNSS, INS [13] 

9) Launch platform: rocket-assisted take-

off 

 

 

 

 

 

 

Figure 2. Hesa Shahed-136/Geran 2 [73] 

As you can see the size of this drone is rather big, reaching 200 kg of weight in complete 

assembly. The MD-550 piston engine is a petrol engine that, when operating, produces the 

special sound of revving that is close to the sound of a motorcycle. Based on that characteristic 

we were trying to track and classify the sound of the moving drone.  

Currently, there are several solutions that are tracking and classifying drone attacks, using both 

active radar system and acoustic sensors. The Over-The-Horizon radar system is currently 

widely used to capture strategic types of drones approaching Ukraine, within a range of 

hundreds to thousands of kilometers [36]. Those are used to just monitor any threats in the air 

space of the country, as the position of the target is shown very inaccurately at a large distance.  

Due to their inaccuracy, these systems cannot be used for directing fire, because the speed of 

the drone is 185 km/h which converts to around 30 m/s and in one minute the drone will move 

up to 1800 meters away from the place he was before. The smaller range radars are efficient 

with smaller targets or even the middle-range ones, for example MIM-104 Patriot [88], can 

track down drones and send missiles to destroy them. However, to cover the whole area of 

Ukraine the need for those very expensive and deficit systems is enormous [36]. As for acoustic 

sensors, Ukraine dispatched them in 2024 to help traditional solutions track drones and notify 

the air defense systems in advance [74]. Those sensors are just microphones that are connected 

to a GPS tracker and possibly have some simple algorithms for anomaly detection or, perhaps, 

machine learning models, to help track the drone movement. We cannot know more about those 

devices as their construction and location are classified, but we can confidently say that these 

solutions are already used. Next, we will review related literature. 
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2.1 Related work 

The pursuit of advancements in miltech (military technology) has led to increased interest in 

audio classification systems. These systems are essential for detecting and interpreting sounds 

of warfare, including gunshots and missile launches. Our research expands upon traditional 

methodologies, incorporating state-of-the-art deep learning techniques to track down a specific 

drone.  

Signal processing  

Before the widespread use of machine learning (ML) and deep learning (DL), sound analysis 

relied on various signal processing techniques for extracting hand-crafted audio features from 

the spectrum for interpreting information from audio signals. These traditional methods, 

grounded in signal processing and statistical analysis, provided foundational approaches for 

understanding sound in a variety of applications, ranging from speech recognition to 

environmental sound analysis. This chapter discusses key traditional sound analysis 

approaches, exploring their principles, applications, and limitations. 

 

A key technique in signal processing is Fourier Transform, and, for processing digital audio, 

particularly its DFT (Discrete Fourier Transform) algorithm and its FFT (Fast Fourier 

Transform) implementation. FFT converts time-domain signals into frequency components in 

a computationally efficient way, enabling the analysis of a sound's spectral content. This 

transformation is essential for identifying frequency bands with significant energy, which is 

crucial for tasks like speech recognition and soundscape analysis [56]. 

Short-Time Fourier Transform (STFT) enables to pinpoint the exact time when certain 

frequencies are heard in a non-stationary signal. A signal is divided into short, overlapping 

segments and FFT is applied to each segment after amplitude windowing, which reduces 

artifacts. This provides a spectrogram, a time-frequency representation of the signal, essential 

for detecting temporal variations in sound [2]. 

Feature extraction is another critical step in traditional sound analysis, where descriptive 

attributes of audio signals are identified for further analysis. Common methods include Mel-

Frequency Cepstral Coefficients (MFCCs) and Linear Predictive Coding (LPC). MFCCs 

are particularly effective in speech and speaker recognition tasks, as their computation mimics 

the human ear's response to varying frequencies, providing a compact sound representation 

[14]. 

After extracting spectrum, and optionally dividing spectrum into spectral bands, statistical 

techniques are applied, such as computing statistical moments, performing Principal 

Component Analysis (PCA) to reduce dimensionality [10], or Independent Component 

Analysis (ICA) to separate mixed signals. These techniques are crucial for tasks like noise 

reduction, echo cancellation, and source separation, where extracting meaningful information 

from complex audio signals is essential [25]. 

While these techniques have advanced the field of sound analysis, they face inherent 

limitations. The primary challenge is the need for hand-crafted features, which require 

extensive domain knowledge and can lead to suboptimal performance in complex audio 

environments. Additionally, these approaches struggle to generalize to new or unseen sound 

patterns, limiting their flexibility and scalability compared to ML-based approaches [10]. 

In conclusion, traditional sound analysis techniques have laid the groundwork for 

understanding and interpreting audio signals. Despite their limitations, they remain relevant, 

particularly in applications where computational simplicity and interpretability are paramount. 
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However, the advent of ML and DL has shifted the paradigm toward more flexible and robust 

approaches to sound analysis, paving the way for new innovations and applications in the field. 

Machine Learning techniques 

Machine learning (ML) has revolutionized the field of sound recognition by enabling the 

analysis of complex audio data to identify and classify a wide range of sound patterns. These 

range from environmental noises to the distinct sounds of military equipment. ML models can 

process and interpret large volumes of data, discerning patterns and anomalies that are often 

key indicators of specific events or threats. This capability is especially crucial in military 

settings where distinguishing between different types of sounds, even amidst noisy or chaotic 

environments, is essential for effective surveillance and reconnaissance [48]. 

In recent studies, researchers from the Hellenic Army Academy and Bolton University have 

conducted research to classify using a neural network 4 different models of the aircraft based 

on their spectral centroid and signal bandwidth [5]. To achieve that they studied 4 different 

types of military aircraft and recorded the sound of their movement. They have achieved 90% 

accuracy when classifying these 4 types of aircraft. Another study highlights the use of 

convolutional neural networks in enhancing the accuracy of UAV detection. They have also 

achieved 96.7% accuracy in identifying drones’ sounds [4]. 

Besides that, there were very promising studies that have focused on developing ML models 

for sound scene classification, audio tagging, and event detection, employing sophisticated 

algorithms to process and analyze audio data efficiently. These models can handle a wide range 

of sound analysis tasks, from environmental sound detection to speech recognition, offering 

enhanced capabilities for military applications such as surveillance, threat detection, and 

situational awareness [55,22]. 

In this thesis, we are using boosted trees, which are a staple algorithm used in many scenarios. 

XGBoost was used for radar target recognition, which is a task of identifying individual targets 

by analyzing echo signals received by radar [30]. As concerning application to audio, musical 

instrument classification is amenable to XGBoost [65]. It is a versatile algorithm that can work 

well on almost any tasks: early detection of Parkinson's disease [16], phishing URL recognition 

[28].  

Furthermore, distributed analytics for audio sensing applications illustrate how ML can be 

leveraged at the network's edge, allowing for real-time processing of audio data on devices 

with limited computational resources. This approach is particularly relevant for military 

operations, where speed and efficiency in data processing are critical, and connectivity to 

central servers may be constrained or undesirable for security reasons [64]. 

Deep Learning 

Deep learning models have significantly enhanced the capability to analyze audio signals. 

These models process audio data represented as sequences of frames, vectors, or tensors, 

allowing for comprehensive analysis across various dimensions [48]. 

CNNs have become a mainstay in audio classification due to their ability to work with images, 

considering that any audio can be represented as an image using a spectrogram. Depending on 

the nature of the input (spectral features or raw waveform), CNNs use either 1-d temporal or 

2-d time-frequency convolutions. Their architecture, consisting of convolutional layers 
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followed by pooling layers, is adept at extracting and down sampling feature maps from audio 

signals. The optimal architecture for a CNN in audio processing is determined experimentally, 

with considerations for the task's requirements and data availability [31]. 

Recurrent Neural Networks (RNNs), particularly effective in modeling sequences, compute 

outputs by considering both the current input and the previous hidden state. This attribute 

makes them ideal for capturing temporal dependencies in audio data. Variations like Long 

Short-Term Memory (LSTM) networks have addressed issues of vanishing and exploding 

gradients commonly encountered in traditional RNNs. LSTMs utilize gating mechanisms to 

control the flow of information, making them particularly suitable for audio signal processing 

where temporal context is crucial [58]. 

Sequence-to-Sequence Models: In audio processing tasks, sequence-to-sequence models 

transduce input sequences into output sequences directly. This approach is increasingly being 

adopted in complex audio processing tasks like automatic speech recognition, where traditional 

systems involve multiple, separately trained components. Deep learning-based sequence-to-

sequence models simplify this by training a single system to map input audio signals to target 

sequences directly [59]. 

Audio Analysis in Miltech 

Audio analysis in military technology, particularly for threat detection and situational 

awareness, has significantly evolved from traditional warfare methods, emphasizing the 

acoustic battlespace. This shift underlines sound's role not only in detection but also as a 

strategic tool in warfare. The development and advancement of acoustic technology, such as 

sonar and Long-Range Acoustic Devices (LRADs), reflects this change, offering broad 

applications across various military branches. 

Initially centered on basic detection, sound analysis in military technology now involves 

complex signal processing techniques capable of deciphering nuanced acoustic signatures in 

challenging environments. For instance, the U.S. Navy's application of sound technology has 

transitioned from primarily focusing on submarine detection to exploring its potential as a non-

lethal weapon and a strategic tool in warfare [32]. 

The concept of acoustic warfare has gained traction, viewing sound as more than a means of 

detection. Technologies like sonar and LRADs are employed for various military applications, 

from anti-submarine warfare to crowd control, offering non-lethal confrontation means. These 

technologies have been adapted for different military branches, finding unique operational 

applications [70]. 

This includes employing sound for intelligence gathering and direct confrontation in modern 

warfare scenarios. Additionally, advancements in passive acoustic localization methods 

emphasize sound's importance in detecting, tracking, and characterizing aircraft and their wake. 

These methods leverage aircraft acoustic emissions, offering an alternative to conventional 

RADAR and LIDAR systems [60].  
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3 Data 

In this thesis, our task is to detect a specific model of drone. The presence of other aircraft, 

missiles, and smaller drones is possible during model inference. We needed a dataset that would 

contain Shahed-136 drone sound, and other similar sounds, in a battlefield soundscape. We 

decided to assemble our own dataset.  

3.1 Data collection in the field 

Together with our partners from Ukrainian military, we have recorded sounds of field 

explosions and gunshots. The resulting dataset consisted of 10 audios, each 3-5 minutes long. 

The number of files is very small, but when training it is split into 10 second fragments, which 

results in ~1500 chunks of audio. We have also conducted some real-life audio recording 

sessions of Shaheed-136 sound. Sounds were extracted from the videos of flying drones, or 

just simply recorded in the field during the night shift of the air defense unit. We could only do 

3 such collections, because of the danger of the data collection in the field. The Shaheed sound 

is not audible from the beginning to the end of the recording. The recordings were labeled with 

Audino, to mark the beginning and end of the sound of Shaheed. We separated the recordings 

into those that are without any background sound and those that are mixed with other sounds, 

like gunshots or explosions.  

3.2 AudioSet 

As the dataset collected in the field was very small, we used publicly available data to 

increase the size of training data. The best dataset that we found was Google AudioSet [83]. 

It contains more than 528 classes of different sounds. It is a pivotal resource in audio 

classification, also for miltech applications. In total, AudioSet has over 2 million 10-second 

audio clips, categorically diverse, ranging from environmental sounds to human activities. 

This variety is crucial for training deep learning models to recognize a wide range of audio 

signatures. In the context of miltech, AudioSet provides specific categories pertinent to aerial 

military activities. The sound samples of various aircraft types can help models to distinguish 

between Shahed-136 sound and other aerial vehicles.  

From the AudioSet, we took the data from these 3 classes:  

1. Aircraft 

2. Helicopter 

3. Explosion  

For the aircraft class, we used data from other similar classes as well, such as airplane, fixed-

wing aircraft, etc. This data is used as examples of negative class, that Shahed is easy to 

confuse with.  

3.3 YouTube Scraping 

There were no sounds of Shahed drone in Audioset, and we only managed to collect a few in 

the field. We used YouTube scraping to gather some more data. Scraping is a process of 

extracting data from the internet, in our case, audio from YouTube videos. The extracted 

audio is then manually annotated and curated to ensure accurate categorization. To label the 

data we have used Audino software to collaboratively and quickly label the data. YouTube 
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scraping is essential for enhancing the dataset's diversity, enabling the training of more robust 

models that can recognize a broad spectrum of sounds in various operational environments. 

We found 12 publicly available videos with the sound of Shaheed-136 on them. Then after 

labeling we extracted the chunks and filtered the ones that had a clean sound of the drone, 

and the ones that had other sounds on top of it. We have done that to make sure our model 

catches the actual sound of the drone because often the sounds are interrupted with 

explosions and gunshots.    

3.4 Data Preprocessing and Augmentation 

 

After collection we have created a pipeline that extracts features from the audio data. The 

features were specific to each approach we tried, and we will describe them in later sections. 

In each approach, we used data augmentation for Shaheed-136 sounds, because despite our 

best efforts we still had so little recordings of this sound. For the augmentation, we used 

“audiomentations” [84] library and have used random transforms for each of the data chunks. 

Figure 3 shows 4 augmentations that we used: 

• Reversing audio sound 

• Masking a random segment of the audio completely (making it silent) 

• Adding Gaussian noise with a very small loudness (amplitude) 

• Making an audio longer or shorter (time stretch). It is important to note that this was 

done without changing the pitch (the height of the sound).  

 

 
 

Figure 3: Transformations that were used on the audio using audiomentations library to increase the 

database size 

 

3.5 Data Distribution 

Combining all the sources, we obtained 856 audio files. The last addition was a Null class 

containing various other sounds that might occur in a soundscape in war area, like, motor 

revving, birds singing, gunshots, explosions, etc. The distribution of the data over classes is 

shown in Table 2.  

 

Class name Audio count 

Explosion 125 

Aircraft 225 

Fixed-wing aircraft, airplane 115 
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Propeller, airscrew  105 

Helicopter 100 

Shaheed 81 

Null 105 

 
Table 2. Data distribution 

 
Classes aircraft, fixed-wing aircraft, airplane, propeller, airscrew are all the sounds close 

to the aircraft, therefore they were included in the data to understand which one will work the 

best and how the model will work with classifying various similar sounds. Later, we reduced 

the classes only to Aircraft, Helicopter, Explosion and Shaheed, as those are the most 

difficult to distinguish between. The explosions were added to help remove those sounds 

from the detection and also to notify about the explosion nearby the device.  
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4 Sound anomaly detection and localization using XGBoost  

In our first experiment, we decided to create a simple machine learning and signal processing-based 

system, which could handle very short time windows, to be able to both detect and localize guns and 

explosions. We’ve chosen explosions for the first prototype, because these sounds have clear and 

abrupt peaks in magnitude, and therefore would be much easier to localize. In this chapter, we will 

first describe the data that was used in this experiment, then feature extraction process from this data, 

then we will describe model training and evaluation, localization implementation and evaluation of 

the system.  

4.1 Data 

 

We used a dataset of gunshots and explosions (10 audio files) and added audio files with 

ambient sounds (5 files). In this experiment, we teach a system to distinguish between 

explosions/gunshots and silence/ambient sounds (birds sing, wind blow and a distant silent 

motor revving) as null.  

The 15 files in the dataset are 3-5 minutes long. When training, we cut them into segments of 

various durations, under 1 second. They were distributed in the training and validation sets in 

such a way that 80% of the files were put into training and 20% in the validation set (there 

was 1 file from the null set and 2 files with guns and explosions in the validation set).  

Here is an RMS distribution for our 3 minutes 52 seconds validation set mix that shows the 

distribution of the sound.  
 

4.2 Feature extraction 

We divided audio signal samples into short audio frames and calculated various statistics on 

these frames. We used Python's librosa [39], numpy [71], and scipy [62] libraries. In addition 

to computing statistics directly on the audio samples, we computed FFT and then computed 

some more spectral features. 

Here is a list of features that we computed on the raw amplitude sample array:   

1. Standard deviation 

2. Variance 

3. Mean 

4. Maximum 

5. Difference (the difference between the maximum value and the mean) 

6. Skewness (measures the asymmetry of the data distribution) 

7. Kurtosis (measures the tailedness of the data distribution) 

8. Maximum Deviation (the largest absolute deviation from the average value, computed 

with a custom function using numpy). 

9. Median Absolute Deviation (A robust measure of variability, computed with 

scipy.stats.median_abs_deviation) 

10. Absolute Mean (the mean of the absolute values of the data array) 

11. Root Mean Square (RMS) (a measure of the magnitude of a varying quantity) 

12. Peak-to-Peak Value (the difference between the maximum and minimum values in the 

array) 

13. Crest Factor (the ratio of the peak value to the RMS value) 

14. Energy (The sum of squares of the values, normalized by the number of observations) 

15. Four Strongest Frequencies (fft_1, fft_2, fft_3, fft_4) (The frequencies corresponding 

to the four largest magnitudes in the FFT spectrum) 
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16. Spectral Centroid Measures (statistical measures of the center of mass of the spectral 

power distribution) 

17. On spectral centroids found within a window, we computed the following statistics: 

peak-to-peak, mean, standard deviation, kurtosis, skewness 

18. Spectral Bandwidth Measures (statistical measures relating to the width of the spectral 

power distribution) 

19. On spectral bandwidths values within a window, we also computed the same statistics 

that were computer on spectral centroids.  

This extensive list of audio features is not extensive, and many more audio features could be 

computed, but we limited our choice with these ones.   

 
Figure 4. RMS feature distribution of the validation set 

Figure 4 shows RMS feature distribution over class 1 (explosions and gunshots) and class 0 

(ambient sound). In class 1, RMS values are spread across a wider range, with a 

concentration towards lower values, tapering off towards higher values. In class 0 (null), 

RMS values occupy a narrower range. While there is some overlap in the mid-range (20-35), 

there is a clear separation where Class 1 tends to occupy higher RMS values, and Class 0 

dominates the lower and mid-range values. RMS shows promise as a distinguishing feature 

between the two classes. However, the observed overlap suggests a need for refinement or 

combination with additional features for improved accuracy. 

 

 

4.3 XGBoost model  

 

We trained XGBoost for 10 epochs, over 12 various hyperparameter sets, and also over 2 

different window lengths.  

Table 3 shows the two best models for 740 millisecond window and 2.9 millisecond window. 

We needed to train on very short window durations, because the sound localization system 

relies on accurate sound event timestamps and we obtained timestamps as a beginning of the 

audio frame. More about this will be explained later in the Acoustic localization section.  
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Table 3. Results of the different training sessions performances in validation set 

 

Overall, XGboost has proven to be effective at successfully solving the problem of early alert 

systems. 

 

4.4 SHAP 

 

We used SHAP framework to analyze which audio features worked the best [35]. 

With each training cycle our system chooses what feature will suit the best for classification. 

Then those parameters are saved and used during evaluation and prediction. To do that we 

used the Optuna [1] framework that is an open-source search engine for the best 

hyperparameters for machine learning models. Since we were using scikit-learn framework’s 

[45] XGBoost implementation, it was directly compatible with Optuna optimization and, 

therefore, allowed us to use them together for feature extraction.  

During evaluation, we calculate the precision, recall and F1 scores, to calculate the accuracy 

of our predictions. Based on that we are choosing the best features and models to use.  

 

4.5 Acoustic localization 

We used (TDOA) triangulation technique to calculate the position of an object based on the 

sound it emits. This method involves a network of microphones, placed at different locations 

within a designated area, interconnected to form a system capable of synchronized sound wave 

detection. Each microphone records sound and sends it to the binary classification system 

described above. The system records the precise time at which each microphone captured the 

sound wave, thereby capturing a series of timestamps that correspond to the sound wave's 

arrival times at the various microphones. To deduce the position of the sound source, the system 

first calculates the time differences between the arrivals of the sound wave at each microphone 

pair. These time differences, or time deltas, are crucial for the triangulation process. Given the 

speed of sound in air (approximately 343 meters per second at room temperature), the distance 

between the sound source and each microphone can be inferred from the time deltas using the 

formula D=T×V, where D is the distance, T is the time difference, and V is the speed of sound 

[41]. The triangulation technique then employs these distances in conjunction with the known 

positions of the microphones to calculate the approximate coordinates of the sound source. This 

is achieved through a set of simultaneous equations that model the geometry of the situation. 

The intersection points of the hyperbolas, which represent the loci of possible source locations 

relative to each microphone pair, provides the estimated position of the sound-emitting object 

[41]. 

Here are the formulae for our current implementation. First, we calculate distance between 

bases like so: 
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a. baselen =√(𝑥𝑎 − 𝑥𝑏)2 + (𝑦
𝑎 

− 𝑦
𝑏
)2

⬚⬚

, 

where (𝑥𝑎, 𝑦𝑎) are the coordinates of base 𝑎 and (𝑥𝑏 , 𝑦𝑏) are coordinates of 

base 𝑏. 

This is done for each pair of microphone coordinates to get base_len_1, base_len_2, and 

base_len_3. 

2. Calculate the center coordinates of the bases: 

a. 𝑏𝑎𝑠𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 =  (
𝑥𝑎 + 𝑥𝑏

2
,

𝑦𝑎+ 𝑦𝑏

2
) 

b. This gives base_center_coordinates_1, base_center_coordinates_2, and 

base_center_coordinates_3 for each of the three pairs of sound meters. 
3. Calculate normal Cartesian coordinates [87]: 

 

a. 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 =  (
𝑦𝑏 − 𝑦𝑎

𝑏𝑎𝑠𝑒𝑙𝑒𝑛
,

𝑥𝑏− 𝑥𝑎

𝑏𝑎𝑠𝑒𝑙𝑒𝑛
) 

b. Obtain normal_coordinates_1, normal_coordinates_2, and 

normal_coordinates_3. 
4. Calculate the time differences between the arrivals of the sound at each meter pair. 

5. Calculate the angle β using the formula: 

a. 𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑡𝑖𝑚𝑒𝑑𝑖𝑓𝑓  ×  𝑠𝑜𝑢𝑛𝑑𝑆𝑝𝑒𝑒𝑑

𝑏𝑎𝑠𝑒𝑙𝑒𝑛
) 

6. Calculate the vector H for each base using: 

a. 𝑣𝑒𝑐𝑡𝑜𝑟𝐻 =  (𝑛𝑜𝑟𝑚𝑎𝑙𝑥𝑐𝑜𝑠(𝛽) − 𝑛𝑜𝑟𝑚𝑎𝑙𝑦𝑠𝑖𝑛(𝛽), 𝑛𝑜𝑟𝑚𝑎𝑙𝑦𝑐𝑜𝑠(𝛽) +

𝑛𝑜𝑟𝑚𝑎𝑙𝑥𝑠𝑖𝑛(𝛽)) 

7. Calculate delta for each pair of vectors H using: 
a. 𝛥 =  𝑣𝑒𝑐𝑡𝑜𝑟𝑥1 × 𝑣𝑒𝑐𝑡𝑜𝑟𝑦2 − 𝑣𝑒𝑐𝑡𝑜𝑟𝑦1 × 𝑣𝑒𝑐𝑡𝑜𝑟𝑥2 

8. Calculate delta for the X and Y axis for each pair of vectors and base centers. 

9. Calculate the coordinates on the X and Y axes: 

a. 𝑥⬚ =  
𝛥𝑥

𝛥
, 𝑦⬚  =  

𝛥𝑦

𝛥
 

 

10. Finally, the coordinates of the object are the average of the x_axis_H and y_axis_H 

values calculated for the three pairs of sound meters: 

a. 𝑥𝑟𝑒𝑠𝑢𝑙𝑡 =  
𝑥1+ 𝑥2+𝑥3

3
 

b. 𝑦
𝑟𝑒𝑠𝑢𝑙𝑡 =  

𝑦1+ 𝑦2+ 𝑦3
3

  

The calculations assume perfect conditions without accounting for potential real-world 

complexities like echo, sound speed variation with temperature and humidity, or sound 

obstruction. 

4.6 Software implementation 

 

To implement this system, we have created software that consisted of several components 

and was dedicated to synchronizing three audio streams from different microphones and 

make them work together. We implemented everything in Python [61], because it is easy to 

use and it has tremendous open-source support, especially in science related projects. 

The main principle was to launch 3 streams of data from the microphones in 3 different 

threads and receive updates on each audio chunk. Then we collect the time difference 
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between the data received and calculate the coordinates with the approach described in 

section 4.5.  

 

] 

 Figure 5. Software implementation flowchart.  

 

Data pipeline  

 

The StatCalc class is designed for feature extraction from audio data in the XGboost 

application. It is designed to extract features from audio data for use in XGBoost 

applications. This class is initialized with a timing parameter, representing the length of each 

audio chunk in seconds, a sample rate, indicating the number of audio samples per second, 

and a timing flag, which determines whether timing information should be included in the 

extracted features. The main function of this class computes various statistical measures from 

the audio array passed to it. This array represents a monophonic (single channel) signal 

chunk. 

 

If our timing flag is true, the class adds approximate timing information to the stats, derived 

from the chunk index and timing parameter, to provide a temporal context for each feature 

set. 

So, to sum up, the StatCalc class transforms raw audio data into a set of features that can 

be used as an input to machine learning model.  

 

Model inference 

 

The AnalyzerImplementation class, designed to receive these features, uses a pre-

trained ML model to predict the likelihood of events such as gunshots or explosions. The 

analyze method converts the features into a pandas DataFrame, ensuring correct data types 

before passing them to the model. The model then calculates the probability that these 

features correspond to an event of interest, outputting a probability score indicating how 

likely the audio contains a sound such as an explosion. 
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Orchestration 

 

The EndpointsManagerImplementation class acts as a coordinator, managing audio 

streams and invoking the feature extraction and ML components. The objects of stream 

handling class are initialized for each configured endpoint, representing different locations 

for audio capture. The class manages threads for each endpoint, ensuring synchronous 

processing of audio streams. After handling each thread, it then uses the stream callback as an 

intermediary, receiving audio data chunks and their features for machine learning analysis, 

and maintains a list of detected events. If a sufficient number of events are detected from 

different endpoints, CoordinatesCalculatorAbstraction calculates the sound 

source location based on the time differences of arrival (TDOA). This class also 

synchronizes data across streams, capturing timestamps in nanoseconds as audio chunks 

become available, ensuring accurate TDOA calculations and event localization. Handling 

discrepancies between streams includes matching audio chunks via timestamps and ensuring 

events are identified across all streams within a reasonable time window. Then it filters and 

manages explosion events, retaining relevant data for localization, while outdated information 

is removed. This class serves as the orchestrator, ensuring streams are analyzed coherently to 

produce actionable results such as sound source localization. 

 

Stream handling 

 

The StreamInputterImplementation class reads audio data from a given stream 

URL, file or stream initializing with configurations including the stream source, statistical 

utilities, sample rate, packet size, and then sends it into the callback method to process each 

audio chunk. There is also a method that reads the stream using librosa.stream, reading 

audio in monophonic chunks for simpler TDOA calculations. The callback invokes 

StatCalc for feature extraction, passing the data to the analyzer for event detection. In the 

end we close the callback and signal the program to provide cleanup options when streaming 

concludes, signaling stream termination. This class ensures consistent audio data streaming, 

handling variations to provide continuous data flow for analysis. 

 

Localization 

 

The CoordinatesCalculatorImplementation class determines the geographical 

coordinates of an event, such as a sound source, using time differences in sound arrival across 

sensors. The algorithm handles input points containing coordinates and time data when 

sounds are detected. Triangulation calculates coordinates by processing sets of three points, 

utilizing triangle properties for accurate location. Afterwards we determine distances between 

pairs of points using the Euclidean formula, and midpoint calculation yields base centers. 

Normal vector coordinates help establish sound propagation directions. Time differences in 

sound arrival between sensors lead to angle calculation, crucial for vector rotation 

calculations. Vector H rotates normal vectors by the angle, aligning them with the sound 

source. The delta calculation computes the vector cross product, contributing to the area 

triangulation. Delta for Axis decomposes vectors for X and Y coordinates. Finally, it 

compiles and averages results from various triangles, yielding precise sound source 

coordinates as a two-item list. This implementation integrates mathematical principles to 

provide robust triangulation for distributed sensor networks. 

 

 

 



 

23 

Model training 

In addition to that, we have added a custom code for training and evaluating our models. 

The ModelTrainerImplementation class provides a structured approach to model 

training.  

The class is initialized with specific paths for labels, model storage, column storage, and 

training results, while an empty list is set up to store features. The Stats Callback function 

gathers feature statistics from streaming inputs, appending them to an array, which are 

subsequently converted into a DataFrame with indices aligned to timing information and data 

types corrected. For robustness, a random column is added to the dataset. Labels are loaded 

and generated from the specified path using helper functions, and the data is split into training 

and testing sets, ensuring no leakage and maintaining a gap between them. The XGBoost 

classifier is then trained on the training set, and its performance is evaluated using metrics 

such as accuracy, precision, recall, and AUC. To refine the model further, feature importance 

is assessed using SHAP [35] or similar metrics, and Optuna [1] is used for hyperparameter 

tuning, storing the best parameters and model. Predictions are written out to a DataFrame, 

stored alongside actual labels for further inspection. Auxiliary methods include splitting the 

dataset into training and testing sets to avoid data leakage, training the model on specified 

data, scoring the model by calculating and logging performance metrics, and using SHAP for 

logging feature importance, selecting significant features, and retraining the model. Finally, 

the WriteResultingDF method outputs predictions and actual labels to a CSV file for 

further analysis. 

 

Model Evaluation Implementation 

 

The ModelEvalImplementation class provides a framework for evaluating a pre-

trained model. It initializes paths for necessary data and results, similar to the trainer. The 

StatsCallback function collects evaluation statistics for processing, which are then used 

to prepare the dataset and load both the model and features used during training. The pre-

trained XGBoost model is loaded from storage and evaluated on the dataset using the 

specified feature set, computing metrics such as accuracy, precision, recall, and others. The 

evaluation results and predictions are then written out to a CSV file for further analysis. 

4.7 Hardware setup 

 
To capture and analyze the data on the field we have used the following hardware setup:  

 

1. Raspberry Pi 5 [43] - as our processing unit   

2. 3 field microphones - with sound suppression covers to get fewer sound artifacts  

3. 3 Usb connectors  

4. 12V power supply for at least 7Ah (can be smaller but the battery has to be enough to 

sustain for several hours 

 

All the microphones had to be placed at a distance from each other so that the time difference 

we get from a sound trigger will be enough to estimate the approximate distance to the sound 

source. It was best to put them at least 50 meters away from each other and in a triangular 

shape. [29] This way the distance between each microphone is equal and measurements can 

be as accurate as possible. However, in military usage this wasn’t a viable solution, due to the 

time restrictions for starting operation, so we tried to locate all the microphones 1–2-meter 

distance from each other nearby or on top of the truck also in a triangular shape. In the end, 
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the localization system could not work with these constraints. The XGBoost system was 

never adapted to drone recognition. In the next chapter, we will describe a system for drone 

sound classification.  

4.8 Evaluation of localization 

 

After a series of experiments, we have found out that the system struggles to calculate the 

coordinates of our object in the distance because our microphones were located too close to 

each other to be able to calculate the distance properly.  

In order to get a correct or at least close to correct coordinates from our system we needed to 

have timestamps collected at the scale of nanoseconds, which could be achievable with system 

clocks in Linux, but since we were using the threading in Cython we could get only a 

microsecond resolution and on top of that all of our processes didn’t execute in parallel, but 

were executed consecutively on one core. This led to the timeout between reads to be in 

milliseconds, specifically around 10 milliseconds. And since our hardware had to be mobile 

and the microphones had to be really close to each other and couldn’t be located in a distance 

of about 10-20 meters apart, we could not have enough resolution to calculate the coordinates 

of the object even with the resolution we have in the standard Linux operating system. 

Here are some calculations that prove that:  

If the microphones are only one meter apart, the maximum time for sound to travel between 

them at the speed of sound (343 m/s at standard conditions) would be: 

 

Time=Distance / Speed of Sound 

Time=1 m/343 m/s 

Time≈0.0029 seconds 

This is 2.9 milliseconds.  

 

To triangulate the position of the sound source accurately with microphones that are only one 

meter apart, we would need a timing system with a resolution significantly finer than 2.9 

milliseconds to discern the differences in time of arrival. 

 

For a precision of 1 microsecond (0.000001 seconds), the distance that sound would travel is: 

343 m/s×0.000001 s=0.000343 m 

 

The best option in that matter would be to have a microsecond resolution during our system 

data collection. 

 

If we could have microphones spaced 20 meters apart: 

Time=Distance / Speed of Sound 

Time=20 m / 343 m/s 

Time≈0.0583 seconds 

This is equal to 58.3 milliseconds. For a 20-meter distance, to optimally calculate the 

coordinates, our timing system should be able to comfortably resolve differences smaller than 

this value. 

Our main design flaw was the definition that we need to get the real time data from our device 

to track down the drones and help the ground forces with taking them down. But our system 

has to collect samples and process them at the same time, which leaves space for the timeouts 

that were too long to actually make a reasonable measurement and response.  
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5 Drone sound recognition 

 

In the previous chapter, we describe a prototype that could detect gunshots and explosions. 

Our end goal was to distinguish between Shaheed-136 drone sound and other similar sounds: 

helicopter, aircraft, aircrew, fixed-winged airplane. In this chapter, we will describe two deep 

learning based multi-class classification models we tried for this scenario.  

5.1 CNN + LSTM approach 

The motivation behind this approach was that the sound of a drone might be similar to a lot of 

other sounds (motorcycle, airplane, explosion in a distance), but it has a very different dynamic. 

A motorcycle moves on the ground and the sound is likely to fade much faster than a drone, 

that approaches and leaves on a much larger time scale. Therefore, combining CNN for feature 

extraction and LSTM for long range patterns might be a good idea.  

 

Using deep learning for audio classification is a challenging task, typically requiring a large 

amount of labeled data and a powerful deep learning model to achieve good performance. The 

most challenging part about it is the data preprocessing and feature extraction, because the 

audio samples need to be preprocessed to ensure that they are in a format that can be fed into a 

deep learning model. This may include resampling the audio to a specific sampling rate, and 

converting the audio to some representation that can be used as input to the model [23]. 

 

The most popular way of computing such representation is calculating a spectrogram of the 

audio. A spectrogram encodes the frequency spectrum of an audio signal. It is a 2-dimensional 

image where the x-axis represents time, the y-axis represents frequency, and the color or 

intensity of each point represents the amplitude of the frequency component at that point in 

time. In other words, a spectrum describes “how much” of a sound we have at a particular 

moment in the audio [23]. 

 

 
 

Figure 5: Example of spectrogram computed for our classes. 

 

Dealing with raw spectrograms would imply building an extremely deep neural network to 

account for different patterns in such high dimensional data. Instead, it is more practical to use 

a pretrained model which would extract embeddings from this data and build your 

architecture from these lower dimensional inputs. Here is the high-level diagram of the model 

architecture we employ: 
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Figure 5: Architecture of the model 

 

To extract embeddings, we use a pre-trained model called VGGish [85], which is a CNN 

architecture from Google. VGGish is trained on the entire Audioset dataset and is able to extract 

rich embeddings that represent the audio in a more compact and meaningful way given the 

respective melspectrogram [56]. Essentially, VGGish is not trained to handle temporal 

information in the data it processes. Instead, for the N-seconds audio, it outputs a 128-

dimensional vector for each 1-second fragment in an audio, so the output dimensions are (N, 

128). In order to train our model we are taking 8-10 second audio chunks, with a sampling rate 

of 16000, hop length of 160 and window size 10. We have used these classes from our dataset: 

“Aircraft” - 225 audio chunks, “Fixed-wing aircraft, airplane” - 115, “Propeller, airscrew” - 

105, “Shaheed” - 81. We have trained our model for around 30 epochs. 

 

To introduce the sequential nature of the data, we stack a 2-layered LSTM with three fully 

connected layers on top of the VGGish [85]. The recurrent layer processes the sequence of 

embeddings one by one and passes the final hidden output to the fully connected layers to 

perform the classification. The classification logits are activated using the softmax function 

to determine a relative probability for each of the 4 classes.  

 

Evaluation  

 

The CNN+LSTM is trained for 30 epochs with cross entropy loss. We use PyTorch as the 

main deep learning framework for conducting training experiments. During training, we 

augment the audio samples with transformations from the audiomentations library, as 

mentioned before. 

Following modern research papers that work on the Audioset, we use the same evaluation 

metric called Mean Average Precision (mAP) [86]. The model achieves mAP = 55.6% on 

the validation set. Here is our confusion matrix and precision with recall for the Shaheed and 

other objects: 
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Figure 6:   Shaheed labeled as 2, 0 - is an aircraft (and other airplane related classes combined), 1 

fixed-wing aircraft and 3 airscrew. 

 

   

Metric Value 

Average precision 0.55538726 

f1score 0.43501076 

precision 0.42967033 

recall 0.51304948 

 

Table 4. Average precision, F1 score, precision of the model and recall 
 

Because we are mostly interested in classifying Shaheed from all the rest of the classes, please 

note that 13 out of 14 instances of Shaheed are classified correctly.  

5.2 CNN approach 

 

VGGish CNN model takes a very short 1-second time window as input, also, the segments that we 

feed into the model are not that long anyway, as we mostly have recordings with Shaheed already 

flying overhead in our dataset, and not the ones where it would approach from far away.  

We decided to try a state-of-the-art sound recognition CNN model EfficientAT that accepts 

10-second-long audio segments.  

EfficientAT is an open-source model developed by Google. The process is overall very 

similar to the one described for CNN+LSTM approach, the dataset is the same and 

augmentation is applied to the data.   
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Principles Behind EfficientAT  

The core innovation of EfficientAT lies in its ability to distill complex patterns learned by 

transformer models into CNNs, resulting in a significant reduction in model complexity 

without sacrificing performance. This process involves training CNNs using the softened 

outputs (logits) of an ensemble of transformer models as labels, thereby transferring the 

"knowledge" from the teachers (transformers) to the student (CNN). The ensemble approach, 

aggregating outputs from multiple transformer models, ensures a rich and diverse set of 

patterns for CNN to learn from. The choice of MobileNetV3 as the student model aligns with 

the objectives of achieving high efficiency and performance, given its design to be lightweight 

yet powerful. [24] 

Also, it opens a possibility to do transfer learning on the pretrained models that have already 

been trained on similar classes of audio. 

 

 

Model Name Config Params 

(Millions) 

MACs 

(Billions) 

Performance 

(mAP) 

dymn04_as width_mult=0.4 1.97 0.12 45.0 

dymn10_as width_mult=1.0 10.57 0.58 47.7 

dymn20_as width_mult=2.0 40.02 2.2 49.1 

mn04_as width_mult=0.4 0.983 0.11 43.2 

mn05_as width_mult=0.5 1.43 0.16 44.3 

mn10_as width_mult=1.0 4.88 0.54 47.1 

mn20_as width_mult=2.0 17.91 2.06 47.8 

mn30_as width_mult=3.0 39.09 4.55 48.2 

mn40_as width_mult=4.0 68.43 8.03 48.4 

mn40_as_ext width_mult=4.0

,extended 

training (300 

epochs) 

68.43 8.03 48.7 

mn40_as_no_im

_pre 

width_mult=4.0

, no ImageNet 

pre-training 

68.43 8.03 48.3 

mn10_as_hop_1

5 

width_mult=1.0 4.88 0.36 46.3 

mn10_as_hop_2

0 

width_mult=1.0 4.88 0.27 45.6 

mn10_as_hop_2 width_mult=1.0 4.88 0.22 44.7 
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5 

mn10_as_mels_

40 

width_mult=1.0 4.88 0.21 45.3 

mn10_as_mels_

64 

width_mult=1.0 4.88 0.27 46.1 

mn10_as_mels_

256 

width_mult=1.0 4.88 1.08 47.4 

MN Ensemble width_mult=4.0

, 9 Models 

615.87 72.27 49.8 

 

 
Table 5. Pretrained models and their parameters [82] 

 
MobileNetV3 is a highly efficient architecture for convolutional neural networks, optimized 

for performance on mobile and embedded devices. It represents the culmination of automated 

architecture search techniques and traditional network design principles. The architecture 

introduces two significant innovations: a modified version of the squeeze-and-excitation block 

and the use of the h-swish activation function, which are both designed to improve efficiency 

without compromising accuracy. The squeeze-and-excitation block recalibrates channel-wise 

feature responses by explicitly modeling interdependencies between channels, thereby 

allowing the network to focus on more informative features. The h-swish activation function, 

on the other hand, is a piecewise linear approximation of the swish function that reduces 

computational complexity while maintaining non-linearity essential for deep learning models 

[54]. Table 5 shows various model variations available from efficientAT GitHub.  

 

Training and evaluation setup  

To adapt EfficientAT models to custom dataset, the process is straightforward and resembles 

a probing protocol. Pre-trained models offer a solid foundation for transfer learning, allowing 

for fine-tuning on specific audio tagging tasks. 

Model Selection: We have chosen a pre-trained EfficientAT model that best matches our 

resource constraints and performance needs. The models vary in complexity, providing options 

for deployment from edge devices to more capable computing environments. In our case we 

chose “mn10_as”, “mn20_as” and “mn30_as” that have the following parameters as presented 

in table 5. We have used that architecture because it’s efficient enough and does not occupy a 

lot of space on the hard drive, which is beneficial for use on embedded devices. 

Data Preparation: Our audio data is processed into a compatible format (Mel spectrograms 

stored in .hdf format) ensuring consistency with the pre-training conditions of the selected 

mode. The data distribution is mostly the same as a previous approach, but we have added the 

helicopter and explosion class and also separated aircraft as a separate 1st class in our dataset. 

All the sounds from the LSTM + CNN approach, as well as those sounds that might be heard 

during the operation of the model, were assembled in the “Background” class. 
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Fine-Tuning: Only the final layer of the model was retrained, including modifying the output 

layer to match the number of target classes in the dataset. The fine-tuning process involves 

launching the trained model retraining on the new dataset.  

We have tried 2 approaches, one with freezing some of the model layers, and the second one 

to simply run the model with all the layers employed. The previous model was trained on the 

FSDK50 dataset that consisted of over 200 various classes from Audioset. For the transfer 

learning we have frozen 8 first layers and run training on the 3 chosen models for 100 epochs. 

We did the same thing with the models with all the layers except the last frozen, and again ran 

them for 100 epochs. After doing that we have also reduced Explosion class in training and 

validation sets to be at 100 and 40 audios respectively to match the overall distribution of other 

classes. Then, we removed the “Background” class completely from the training loop as it was 

having too many sounds that are related to the main 5 classes and repeatedly confused our 

model.  

Evaluation 

Here we will present our results with EfficienceAT models pretrained on FSDK50 (mn10, 

mn20 and mn30) for 100 epochs with 8 frozen layers and same learning rate 5e-5. The weight 

decay was applied during the training and the model was validated on the separate chunks of 

the data.  

We achieved 82% of AUC for all classes. The mAP reached is about 60% from all 5 classes, 

meaning there is a lot of misclassification, and we need to analyze where it happens.  

 

 

 
Figure 7: AUC for dataset for all 3 model sizes 
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Figure 8: Validation loss for all 3 models.  

 

 
 
Figure 9: mAP for 3 models. All 3 models in 30 epochs have reached approximately the same mAP. 

But mn10_as generalize slightly better on all 5 classes 

 



 

32 

As an additional experiment, we have tried training a model for 30 epochs without freezing 

the layers.  

 
Figure 10: AUC for 3 models with fully activated layers 

 

 
Figure 11: mAP for 3 models with fully activated layers 
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Figure 12: Validation loss for 3 models with fully activated layers 

Figure 13 shows a confusion matrix for the mn10_with the same dataset of 5 classes:  

 
Figure 13: confusion matrix on mn10_as fine-tuned on all 5 classes 

 

Unfortunately, the drone class is not detected correctly, and all the classes are predicted as 

background. Probably, we need to clean the “Background” class that probably has some of the 

classes related to our main ones, which confuses the model. For the next attempt, we have 

removed the “Background” class and trained our model with 8 frozen layers and 4 classes. 
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Also, we have balanced the dataset more by removing some of the explosion audios, since this 

class was overrepresented.  

As a result, our model were able to converge better and give meaningful outputs: 

 

 
 

Figure 15: confusion matrix on mn10_as fine-tuned on new data  

 
Figure 16: mAP on mn10_as fine-tuned on new data   
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F

 
Figure 17: AUC on mn10_as fine-tuned on new data 

 

Therefore, we were able to achieve a mAP of around 0.7 on the validation set with the AUC 

at 0.82. Also, our confusion matrix clearly shows that the model is able to differentiate 

between the drone and other types of main classes that can appear during device operation. 
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6 Future work 

1) Classification of 5 classes with the architecture we have used here wasn’t as efficient 

as it might be. We have got only 56% mAP for detecting 4 classes. To effectively 

increase precision, we need to use a more robust approach than the one we have 

implemented and also change the data as 3 classes were related and may sound similar.  

2) During our development we had various problems with data augmentation and the 

dataset itself. Since our dataset is scarce, we have to use augmentations to generate a 

bigger dataset for our approach. However, our data augmentations have sometimes led 

to overfitting of our model.  

3) We have also understood that the sound devices have to be located in a far distance 

from each other to be able to localize the object better and in a reasonable timeframe. 

4) Shaheed-136 sound is not as similar to the airscrews and the aircraft motor sounds 

which makes the model able to differentiate between those classes. However, there is 

still more to improve, since there are cases where models will confuse those classes. 

5) The “Background” class had too many samples, which led to the model overtraining on 

background noise. The one solution here is to remove the similarly-sounding data from 

the dataset and fill it with other classes that could be heard in the device usage area but 

are not related to each other. 

6) The scarcity of data might lead to the overall decrease of the model performance 

therefore there is a huge need in collecting as many samples as possible, which is 

complicated due to the war in Ukraine right now.  

7) We were able to fine tune our EfficientAT CNN model to work with our custom data 

and achieve 71% of mAP with 82% of AUC. Meaning we can differentiate between the 

drones and other airborne targets, but we still have to do more work to make the 

production ready model.  
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Conclusion 

In this thesis we tried to provide a solution for drone attack detection and localization, as fast 

as possible to help our fellow citizens and protect Ukraine. First, we tried to create a 

prototype system that would be able to detect gunshots and explosions. This system was 

implemented using signal processing and XGBoost. There were unfortunately limitations that 

we met when deploying the system. In the battlefield, it was not possible to place 

microphones far enough from each other, making acoustic localization impossible. This 

approach can be mostly used for anomaly detection, classifying the shifts in the audio data 

statistics and, therefore, activating a system.  

Next, we tried implementing a system that would be able to detect a specific drone sound 

(Shahed-136). We assembled a dataset of Shahed sound and other airplane sounds and 

implemented two systems, one CNN+LSTM based one and another based on transfer 

learning on CNN system.  

  



 

38 

References 
 

[1]  Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the 25th ACM 

SIGKDD International Conference on Knowledge Discovery & Data Mining. 

[2] Allen, J. B. (1977). "Short Time Spectral Analysis, Synthesis, and Modification by 

Discrete Fourier Transform." IEEE Transactions on Acoustics, Speech, and Signal 

Processing. doi:10.1109/TASSP.1977.1162950. 

[3] Altayeva, A., Omarov, N., Tileubay, S., Zhaksylyk, A., Bazhikov, K., & Kambarov, 

D. (2023). Convolutional LSTM Network for Real-Time Impulsive Sound Detection 

and Classification in Urban Environments. International Journal of Advanced 

Computer Science and Applications. 

[4] Anwar, M. Z., Kaleem, Z., & Jamalipour, A. (2019). Machine Learning Inspired 

Sound-Based Amateur Drone Detection for Public Safety Applications. IEEE Journals 

& Magazine 

[5] Barbarosou, M., Paraskevas, I., & Ahmed, A. (2016). "Military aircrafts’ 

classification based on their sound signature." Aircraft Engineering and Aerospace 

Technology, 88, 66-72. doi:10.1108/AEAT-04-2014-0040. 

[6] Bianco, M. J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M., Gannot, S., & Deledalle, 

C. (2019). Machine learning in acoustics: Theory and applications. The Journal of the 

Acoustical Society of America, 146(5), 3590.  

[7] Brandstein, M., & Ward, D. (1997). Microphone Arrays: Signal Processing 

Techniques and Applications. Springer. 

[8] Camastra, F., Vinciarelli, A., & Yu, J. (2009). Machine Learning for Audio, Image 

and Video Analysis. J. Electronic Imaging.  

[9] Carter, G. C., Knapp, C. H., & Nuttall, A. H. (1973). Estimation of the Magnitude-

Squared Coherence Function Via Overlapped Fast Fourier Transform Processing. 

IEEE Transactions on Audio and Electroacoustics, AU-21(4), 337-344. 

[10] Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree Boosting 

System." Proceedings of the 22nd ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining. doi:10.1145/2939672.2939785. 

[11] Conner, M., Gral, L., Adams, K., Hunger, D., Strelow, R., & Neuwirth, A. 

(2022). Music Generation Using an LSTM. ArXiv, abs/2203.12105. 

[12] "CS231n Convolutional Neural Networks for Visual Recognition". 

cs231n.github.io. Retrieved 9 March 2023. 

[13] Dangwal, Ashish (19 October 2022). "Russia Has 'Upgraded' Iranian Shahed-

136 Kamikaze Drones to Boost Its Lethality & Accuracy -- Military Experts". 

eurasiantimes.com. Retrieved 13 September 2023. 

[14] Davis, S., & Mermelstein, P. (1980). "Comparison of Parametric 

Representations for Monosyllabic Word Recognition in Continuously Spoken 

Sentences." IEEE Transactions on Acoustics, Speech, and Signal Processing. 

doi:10.1109/TASSP.1980.1163420.  

[15] Deep Convolution Neural Network sharing for the multi-label images 

classification, Machine Learning with Applications, Volume 10, 2022, 100422,ISSN 

2666-8270,https://doi.org/10.1016/j.mlwa.2022.100422. 

[16] Francisco, D. (2023). Parkinson's Disease Detection using XGBoost and 

Machine Learning. 

[17] Ge, R. (2023). XGBoost-Based Human Activity Recognition Algorithm using 

Wearable Smart Devices. Applied and Computational Engineering. 



 

39 

[18] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT 

Press. 

[19] Guo, G., & Li, S. (2003). "Content-based audio classification and retrieval by 

support vector machines." IEEE transactions on neural networks. 

doi:10.1109/TNN.2002.806626.   

[20] Gupta, K. D., Nigam, R., Sharma, D., & Dhurandher, S. K. (2022). LSTM-

Based Energy-Efficient Wireless Communication With Reconfigurable Intelligent 

Surfaces. IEEE Transactions on Green Communications and Networking, 6, 704-712. 

[21] Hakkani-Tür, D. Z., et al. (2016). "Multi-Domain Joint Semantic Frame 

Parsing Using Bi-Directional RNN-LSTM."  

[22] Heittola, T., Çakir, E., & Virtanen, T. (2018). The Machine Learning 

Approach for Analysis of Sound Scenes and Events.  

[23] Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R. 

C., ... & Zhang, Z. (2017). CNN architectures for large-scale audio classification. In 

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP). 

[24] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., 

Zhu, Y., Pang, R., Vasudevan, V., Le, Q.V., & Adam, H. (2019). Searching for 

MobileNetV3. In Proceedings of the IEEE International Conference on Computer 

Vision (ICCV). 

[25] Hyvärinen, A., & Oja, E. (2000). "Independent Component Analysis: 

Algorithms and Applications." Neural Networks. doi:10.1016/S0893-6080(00)00026-

5. 

[26] "IRGC confirms specs for Shahed-136 attack UAV". Janes Information 

Services. 17 May 2023. Archived from the original on 28 May 2023. 

[27] J. Pan, J. Li, P. Hu and Q. Bao, "Experimental Results of Passive Bistatic 

Radar Using Phased Array Radar as Illuminator," 2019 IEEE 8th Joint International 

Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, 

China, 2019, pp. 1725-1728, doi: 10.1109/ITAIC.2019.8785843. 

[28] Jia, Q., Guo, X., Zhang, M., Liu, M., Tian, X., Jin, X., & Ma, D. (2023). 

Phishing URL recognition based on ON-LSTM attention mechanism and XGBoost 

model. 2023 5th International Conference on Electronics and Communication, 

Network and Computer Technology (ECNCT), 159-163. 

https://doi.org/10.1109/ECNCT59757.2023.10280927. Liu, Y., Yihods, 17(3), 261-

272. 

[29] Jiang, W., Cai, Z., Luo, M., & Yu, Z. (2011). A simple microphone array for 

source direction and distance estimation. 2011 6th IEEE Conference on Industrial 

Electronics and Applications, 1002-1005. 

https://doi.org/10.1109/ICIEA.2011.5975733. 

[30] Jiang, Y., Cheng, D., Qi, W., Song, R., Yu, C., & Liu, S. (2023). Radar Target 

Recognition of Individuals Based on XGBoost. 2023 IEEE 3rd International 

Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), 

3, 1110-1113. https://doi.org/10.1109/ICIBA56860.2023.10165343. 

[31] Kong, Q., et al. (2019). "PANNs: Large-Scale Pretrained Audio Neural 

Networks for Audio Pattern Recognition." IEEE/ACM Transactions on Audio, 

Speech, and Language Processing. doi:10.1109/TASLP.2020.3030497. 

[32] Koza, John R.; Bennett, Forrest H.; Andre, David; Keane, Martin A. (1996). 

"Automated Design of Both the Topology and Sizing of Analog Electrical Circuits 

Using Genetic Programming". Artificial Intelligence in Design '96. Artificial 



 

40 

Intelligence in Design '96. Springer, Dordrecht. pp. 151f–170. doi:10.1007/978-94-

009-0279-4_9. ISBN 978-94-010-6610-5. 

[33] L. M. Encarnacao, R. J. Barton and D. Zeltzer, "Interactive exploration of the 

underwater sonar space," MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference 

Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 2001, pp. 1945-1952 

vol.3, doi: 10.1109/OCEANS.2001.968144. 

[34] LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). "Deep Learning". 

Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. 

doi:10.1038/nature14539. PMID 26017442. S2CID 3074096. 

[35] Lundberg, S. M., & Lee, S. (2017b). A unified approach to interpreting model 

predictions. 

https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67

767-Abstract.html 

[36] Malyasov, Dylan (2020). "Ukrainian Army receives new radar system that can 

spot combat drones." Defence Blog. Retrieved April 9, 2024. 

[37] Markel, J. D., & Gray, A. H. Jr. (1976). "Linear Prediction of Speech." 

Springer-Verlag.  

[38] Marouani, H., & Dagenais, M. (2005). Comparing high resolution timestamps 

in computer clusters. Canadian Conference on Electrical and Computer Engineering, 

2005., 400-403. https://doi.org/10.1109/CCECE.2005.1556956. 

[39] McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., 

& Nieto, O. (2015). librosa: Audio and music signal analysis in Python. In 

Proceedings of the 14th Python in Science Conference. 

[40] Mekruksavanich, S., Jantawong, P., & Jitpattanakul, A. (2022). LSTM-XGB: 

A New Deep Learning Model for Human Activity Recognition based on LSTM and 

XGBoost. 2022 Joint International Conference on Digital Arts, Media and 

Technology with ECTI Northern Section Conference on Electrical, Electronics, 

Computer and Telecommunications Engineering (ECTI DAMT & NCON). 

[41] O. Ennasr and X. Tan, "Time-Difference-of-Arrival (TDOA)-Based 

Distributed Target Localization by A Robotic Network," in IEEE Transactions on 

Control of Network Systems, vol. 7, no. 3, pp. 1416-1427, Sept. 2020, doi: 

10.1109/TCNS.2020.2979864 

[42] Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-Time Signal 

Processing. Pearson. 

[43] Pasquali, V., D'Alessandro, G., Gualtieri, R., & Leccese, F. (2017). A new 

data logger based on Raspberry-Pi for Arctic Notostraca locomotion investigations. 

Measurement, 110, 249-256.  

[44] Pan S. J.  and Yang, Q.  "A Survey on Transfer Learning," in IEEE 

Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 

Oct. 2010, doi: 10.1109/TKDE.2009.191. 

[45] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, 

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 

Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: 

Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830. 

[46] Pham-Quoc, C. (2023). Using LSTM Network for Predicting Radio Mobile 

Networks’ Behaviors. 

[47] Punuri, S. B., Kuanar, S. K., Kolhar, M. S., Mishra, T. K., Alameen, A., 

Mohapatra, H., & Mishra, S. (2023). Efficient Net-XGBoost: An Implementation for 

Facial Emotion Recognition Using Transfer Learning. Mathematics. 



 

41 

[48] Purwins, H., et al. (2019). "Deep Learning for Audio Signal Processing." IEEE 

Journal of Selected Topics in Signal Processing. doi:10.1109/JSTSP.2019.2908700., 

“Applications” 

[49] Quinn, Joanne (2020). Dive into deep learning: tools for engagement. 

Thousand Oaks, California. p. 551. ISBN 978-1-5443-6137-6. Archived from the 

original on January 10, 2023. Retrieved January 10, 2023. 

[50] Remigius Meier, Armin Rigo, and Thomas R. Gross. 2016. Parallel virtual 

machines with RPython. In Proceedings of the 12th Symposium on Dynamic 

Languages (DLS 2016). Association for Computing Machinery, New York, NY, 

USA, 48–59. https://doi.org/10.1145/2989225.2989233n 

[51] Rong, F. (2016). "Audio Classification Method Based on Machine Learning." 

2016 International Conference on Intelligent Transportation, Big Data & Smart City 

(ICITBS), 81-84. doi:10.1109/ICITBS.2016.98 

[52] Ruitenberg, Rudy (2023). "Germany to supply Ukraine with IRIS-T systems 

in a $1.4 billion package." C4ISRNET. Retrieved November 24, 2023. 

[53] Schmid, F., Koutini, K., & Widmer, G. (2023). Efficient Large-Scale Audio 

Tagging Via Transformer-To-CNN Knowledge Distillation. arXiv:2211.04772v3 

[cs.SD]. 

[54] Schmid, F., Koutini, K., & Widmer, G. (2023). Efficient Large-Scale Audio 

Tagging Via Transformer-To-CNN Knowledge Distillation. arXiv:2211.04772v3 

[cs.SD]. 

[55] Sharma, G., Umapathy, K., & Krishnan, S. (2020). Trends in audio signal 

feature extraction methods. Applied Acoustics, 158, 107020.  

[56] Smith, J. O. (2007). "Spectral Audio Signal Processing. 

[57] Solemane Coulibaly, Bernard Kamsu-Foguem, Dantouma Kamissoko, Daouda 

Traore, 

[58] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). "Sequence to Sequence 

Learning with Neural Networks." ArXiv.  

[59] Tang, Y., et al. (2016). "Sequence-to-Sequence Model with Attention for Time 

Series Classification." 2016 IEEE 16th International Conference on Data Mining 

Workshops (ICDMW). doi:10.1109/ICDMW.2016.0078.  

[60] Tenney, S.M., Mays, B., Hillis, D.B., Tran‐Luu, D., Houser, J., & Reiff, C.G. 

(2004). Acoustic Mortar Localization System - Results from OIF. 

[61] Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts 

Valley, CA: CreateSpace. 

[62] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., 

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, 

S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., 

Kern, R., Larson, E., Carey, C., ... & van Mulbregt, P. (2020). SciPy 1.0: fundamental 

algorithms for scientific computing in Python. Nature Met 

[63] W. Feng, F. Lu, T. Pu, X. Chen, Y. Guo and Q. Zhang, "Intelligent Target 

Detection for Airborne STAP Radar Based on Space-Time Image Feature and 

YOLO," 2023 IEEE International Conference on Signal Processing, Communications 

and Computing (ICSPCC), ZHENGZHOU, China, 2023, pp. 1-6, doi: 

10.1109/ICSPCC59353.2023.10400319. 

[64] Wood, D., Wang, S., Salonidis, T., Conway-Jones, D., Ko, B., & White, G. 

(2018). Distributed analytics for audio sensing applications. , 10635. 

https://doi.org/10.1117/12.2306096. 

[65] Y., Zhu, Q., & Cui, W. (2022). Musical Instrument Recognition by XGBoost 

Combining Feature Fusion. ArXiv, abs/2206.00901. 



 

42 

[66] Yang, C., Gan, X., Peng, A., & Yuan, X. (2023). ResNet Based on Multi-

Feature Attention Mechanism for Sound Classification in Noisy Environments. 

Sustainability. 

[67] Zaman, K., et al. (2023). "A Survey of Audio Classification Using Deep 

Learning." IEEE Access. doi:10.1109/ACCESS.2023.3318015. 

[68] Zhu, Q., Bao, Q., Hu, P., & Chen, Z. (2018). Experimental Study of Aircraft 

Detection by PBR Exploiting Uncooperative Radar as Illuminator. DEStech 

Transactions on Computer Science and Engineering. 

[69] https://en.wikipedia.org/wiki/Spectrogram, Spectrogram - Wikipedia 

[70] https://apac.genasys.com/wp-content/uploads/LRAD-Product-Guide-Final-

PRINT.pdf 

[71] https://numpy.org/ 

[72] https://en.defence-

ua.com/weapon_and_tech/how_to_distinguish_between_russian_and_ukrainian_uavs

_in_the_sky_photo_comparison-3180.html 

[73] https://en.wikipedia.org/wiki/HESA_Shahed_136 

[74] https://www.twz.com/land/thousands-of-networked-microphones-are-tracking-

drones-in-ukraine 

[75] https://www.e-education.psu.edu/geog892/node/5 

[76] https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle 

[77] https://developers.google.com/machine-learning/crash-

course/classification/roc-and-auc 

[78] https://en.wikipedia.org/wiki/Speed_of_sound 

[79] https://24tv.ua/yaki-droni-vikoristovuye-ukrayini-viyni-yaki-buvayut-

bezpilotniki_n2359466 

[80] https://en.wikipedia.org/wiki/Time_of_arrival#:~:text=Time%20difference%2

0of%20arrival%20%28TDOA%29%20is%20the%20difference,TOA%20as%20signa

ls%20travel%20with%20a%20known%20velocity. 

[81] https://en.wikipedia.org/wiki/Bober_(drone) 

[82] https://github.com/fschmid56/EfficientAT/tree/main 

[83] https://research.google.com/audioset/, Google Dataset  

[84] https://github.com/iver56/audiomentations 

[85] https://github.com/tensorflow/models/blob/master/research/audioset/vggish/R

EADME.md 

[86] https://blog.paperspace.com/mean-average-precision/ 

[87] https://en.wikipedia.org/wiki/Cartesian_coordinate_system 

[88] https://en.wikipedia.org/wiki/MIM-104_Patriot 
  

https://en.wikipedia.org/wiki/MIM-104_Patriot


 

43 

 

Non-exclusive licence to reproduce the thesis and make the thesis public 

 

 

 

 

 

I, __________Roman Karpenko_____________________________________, 

 (author’s name) 

 

 

1. grant the University of Tartu a free permit (non-exclusive licence) to 

 

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives 

until the expiry of the term of copyright, my thesis 

 

Drone sound recognition and tracking system using machine learning and 

acoustic localization 

____________________________________________________________________

, 

 (title of thesis) 

 

supervised by ____________Anna Aljanaki _______________________________. 

 (supervisor’s name) 

 

 

2.    I grant the University of Tartu a permit to make the thesis specified in point 1 available to 

the public via the web environment of the University of Tartu, including via the DSpace 

digital archives, under the Creative Commons licence CC BY NC ND 4.0, which allows, 

by giving appropriate credit to the author, to reproduce, distribute the work and 

communicate it to the public, and prohibits the creation of derivative works and any 

commercial use of the work until the expiry of the term of copyright. 

 

3.  I am aware of the fact that the author retains the rights specified in points 1 and 2. 

 

4.  I confirm that granting the non-exclusive licence does not infringe other persons’ 

intellectual property rights or rights arising from the personal data protection legislation.  

 

 

 

 

 

Roman Karpenko 

16/05/2024 

 


