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Alighting Estimation in Entry-Only AFC Systems; a Case Study of
Tartu City

Abstract:
For planning an efficient and ecological public transport network accurate understand-

ing of citizens’ mobility patterns is essential. A deep understanding of these mobility
patterns can only be achieved through the analysis of both boarding and alighting trip
information. Automatic fare collection (AFC) systems have become a popular data
source for public transportation research, but entry-only AFC systems, including the one
used in Tartu, do not capture critical data such as alighting stations or alighting times.
This limits the creation of origin-destination matrices and gaining insights such as bus
occupancy rate and peak hours. Probabilistic estimation methods are one approach that
could be used to tackle this limitation. The contribution of this thesis is the exploration,
development and comparison of different methods for estimating alighting information
from entry-only AFC systems. These methods can be used to fill the gaps in data and
provide more comprehensive insights into the usage patterns of public transportation,
informing better decision-making processes related to route and schedule planning.
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Probabilistic estimation methods.
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Väljumise hindamine ainult sisenemisega AFC-süsteemides; Tartu
juhtumiuuring
Lühikokkuvõte:

Tõhusa ja ökoloogilise ühistranspordivõrgu kavandamiseks on oluline kodanike
liikumismustrite täpne mõistmine. Nende ühistranspordi liikumisharjumuste põhjalik
mõistmine on võimalik ainult sisenemise ja väljumise andmete analüüsi abil. Auto-
maatsed piletihindade kogumise süsteemid on muutunud populaarseks andmeallikaks
ühistranspordi uurimisel, kuid ainult sisenemisega seotud automaatsed piletihindade
kogumise süsteemid, nagu näiteks Tartus kasutatav süsteem, ei hõlma selliseid kriitilisi
andmeid nagu reisijate sihtkohad või ühistranspordist väljumiste ajad. See piirab lähte-
ja sihtkohtade maatriksite koostamist ja selliste andmete saamist nagu busside täituvus ja
tipptunnid. Üks võimalus selle piirangu kõrvaldamiseks on kasutada tõenäosuslikke hin-
damismeetodeid. Käesoleva lõputöö eesmärk on uurida, arendada ja võrrelda erinevaid
meetodeid, mille abil saab hinnata ainult sisenemisega seotud AFC-süsteemidest pärit
väljumise andmeid. Neid meetodeid saab kasutada andmete puudujääkide täitmiseks ja
ulatuslikuma ülevaate andmiseks ühistranspordi kasutusmustritest, mis aitab paremini
otsustada marsruutide ja sõiduplaanide planeerimise üle.

Võtmesõnad:
Sihtkoha hindamise mudel, Algpunkt-sihtpunkt Maatriks, Automaatne piletihindade
kogumine, liikuvuse modelleerimine, Tõenäosusliku hindamise meetodid.

CERCS: P170: Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction
Urban transportation mobility is a critical aspect of modern and sustainable cities. It
plays a significant role in shaping the quality of life of citizens by providing them with
access to different services, employment, and social activities. Therefore, understanding
where and how citizens use the public transportation system while performing their
daily activities could lead to a more efficient and integrated bus network. To this end,
researchers have been utilizing a variety of methods, ranging from user surveys to making
use of digital data while trying to model behavioral patterns for different cities. The
results could be used for better route and schedule planning or bus transport reform
validation.

While user surveys have been a traditional method for collecting data on public
transportation usage, they often take several years to complete, and the data collected may
not be comprehensive or representative of the entire population. As a result, researchers
have been exploring the use of different data sources, such as automatic fare collection
(AFC) systems, to gain insights into the usage patterns of public transportation.

The aim of this master’s thesis is to explore the different data available for the city of
Tartu and use it to gain insights into how the bus network is being used by the citizens.
By leveraging the available data, it is possible to develop a better understanding of the
mobility patterns of citizens, which could inform decision-making processes related to
route and schedule planning, and ultimately contribute to a more efficient and reliable
bus network.

1.1 Problem statement
The use of AFC systems is becoming increasingly popular in public transportation, with
most cities adopting entry-only AFC systems. The city of Tartu is no exception, as it
relies solely on entry-only AFC systems where passengers validate their tickets while
boarding the bus. However, these type of systems do not capture critical information
such as alighting station or alighting time, which limits the creation of origin-destination
matrices at the stop or district level and gaining insights such as bus occupancy rate
at any point in time. An origin-destination (OD) matrix is a data representation used
in transportation analysis, showing the flow of passengers or vehicles between various
origins and destinations within a specified area.

Furthermore, not all AFC entry systems collect the same data, and the agencies that
own this data can be reluctant to share sensitive information with researchers, such as user
identifiers or user bus card identifiers. As a result, there is a need to explore alternative
data sources or develop methods to fill the gaps in data, which could potentially provide
more comprehensive insights into the usage patterns of public transportation and inform
better decision-making processes related to route and schedule planning.

Therefore, the main problem addressed in this master’s thesis is how to leverage
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the available data and develop methods to overcome the limitations of entry-only AFC
systems in the city of Tartu.

1.2 Contribution
The main contribution of this master’s thesis is the exploration, development and imple-
mentation of methods for estimating alighting information from entry-only AFC systems,
using the data collected from the AFC system installed in Tartu city buses. The general
limitations of entry-only AFC systems, which do not capture important data such as
alighting station or alighting time, are tackled by implementing several methods for
estimating this missing information. The validation of the accuracy of the implemented
methods is a challenge in itself with the lack of abundant real-world alighting infromation.
To address this challenge, two custom validation methods based on counter data and
boarding data are developed, which enables the comparison of different methods. Further
one of the top performing methods is selected to estimate alighting information for the
available dataset and is used to construct the origin-destination (OD) matrix at the district
level. The results are presented in a public web-based dashboard.

1.3 Roadmap
The rest of this thesis is organized as follows:

Chapter 2 (Background): This chapter describes the research done for selecting
the alighting information for different public transportation systems. It explains how the
AFC systems used can impact the solution and why the solution is highly influenced by
the available data.

Chapter 3 (Data): This chapter describes the AFC data pertaining to the city of
Tartu and showcases the outcomes of the exploratory data analysis, which served as a
guide in formulating the presented solution.

Chapter 4 (Methodology): This chapter begins by describing the assumptions
which underpin the proposed solution. Further it explains in detail the probability-
based methods used for predicting alighting information and discusses the limitations
of this methodology and the reasons it was selected for this work. Next, the process for
validating the probability-based methods is presented. Lastly, the inner workings of the
pipeline is explained.

Chapter 5 (Experiments): This chapter begins with providing some experiment-
based evidence that support the assumptions made in the methodology chapter. Sub-
sequently, the results obtained from both synthetic and real-world validation of the
four distinct probability-based algorithms utilized for alighting station estimation are
presented. A comprehensive comparison among these methods is conducted, followed
by a thorough interpretation of the findings.
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Chapter 5: (Discussions) In this chapter, the outcomes of the experiments and the
main derived lessons are discussed. Based on these discussions, a roadmap for future
work is provided.
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2 Background
This chapter will provide the necessary information for understanding the scope and the
terminologies of this project.

The first section will describe what AFC systems are, how they work and which data
they typically collect. The second section describes the bus transportation system of
Tartu and the AFC system it uses. The third section gives an overview of the current
research regarding entry-only AFC data.

2.1 Tracking boarding and alighting in public transport
For better planning and understanding of bus system passenger mobility, boarding and
alighting information are crucial. Throughout the years, several different methods have
been used to obtain this information. Some of these methods include labour-intensive
checks, where a human operator would manually count passengers getting on and off
at each stop. More modern methods include the use of Automatic Passenger Counters
(APC). These are electronic devices installed on public transport vehicles such as buses,
trains, and trams to accurately count the number of passengers boarding and alighting at
each stop.These devices use various technologies such as infrared sensors, video cameras,
or weight sensors to count the number of passengers who enter or exit the vehicle. This
data is then transmitted wirelessly to a central database, where it can be analyzed to
gain insights into passenger demand, service performance, and revenue management.
However, APCs are still far from widespread use [12]. Due to their cost, they typically
get installed at a sample of the buses, or only for a limited period of time as it is pretty
expensive to install them in the entire bus fleet.

AFC systems are another way that can be used to retrieve passenger location data.
Although their primary goal is automating and simplifying the fare processes for pas-
sengers and operators, due to the data they collect AFC systems have been heavily used
by researchers to obtain information about boarding and alighting behaviour. Gener-
ally, AFC systems are able to produce transaction level information for each passenger
validation, including the time validation took place and also the location, stop or trip
information.

Based on the implementation of AFC systems they can be split into two main groups:

1. Entry-exit AFC systems. These systems require passengers to validate their entry
and exit. This functionality is commonly employed in subway settings, resembling
the turnstile mechanisms that necessitate scanning upon entering or leaving a
station.

2. Entry-only AFC systems. Generally due to passenger experience and ease of
use most bus transportation systems in the world are using entry-only automatic
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fare collection systems. These types of systems only require passengers to val-
idate while boarding the bus, meaning that they are unable to collect additional
information about alighting stations.

2.2 Tartu’s bus transportation system
Tartu, a city in Estonia with a population of 97,435 relies on buses as its only method of
public transportation. In September 2015, Tartu implemented a modern AFC system in
its bus network [2], which enables passengers to use a contactless plastic chip card (Fig
1) or a similar-looking sticker to pay for their fares.

When passengers board the bus, they must validate their card by tapping it on one of
the validators (Fig 2) located inside the bus. The fare is automatically deducted from the
card balance at the moment of validation. The ticket is valid for a one-hour journey, and
if a passenger validates their ticket again within the one-hour window, no further funds
will be deducted from the card balance. The AFC system also allows debit or credit cards
with contactless capabilities, as well as student cards, to be used as payment methods.
This system also requires that passengers with the right to travel for free should use their
cards to validate their journeys.

Failure to validate the ticket when boarding the bus, even if the card has an active
purchased ticket, may result in a fine for the passenger.

The city also offers more payment opportunities besides contactless payments. One
example is the purchase of an 1 hour QR ticket sent to passenger’s email [3]. In such
cases it is not possible to validate these tickets and they will not be part of the AFC
system’s data.

Figure 1. Tartu bus card [2]. Figure 2. Tartu bus validator [2].

2.3 A literature review for entry-only AFC destination estimation
Many researchers have tried to tackle the problem of missing destination information
on entry only AFC systems. Several methods have been used depending on the data
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available and main goal of the research.These methods can be grouped in 3 main groups
[11] :

2.3.1 Trip chaining models

Trip chaining model is a method used to recreate the route that passengers have followed
throughout the day [5], [16], [4]. If a passenger boarded the first bus at Stop A and
then boarded a second bus at Stop C, it can be said under specific assumptions that the
passenger exited the first bus at a stop near Stop C. To make this model work, it is crucial
for the AFC system data to include the identifier of each passenger’s card. This allows
multiple trips of the same passenger to be chained together within a day.

As briefly mentioned the trip chaining model is used under several important assump-
tions:

1. There is no other mode of transportation that the passenger uses between his trips
[16].

2. Travellers will not walk a long distance from one stop to another [16].

3. Passengers’ last trip of the day ends at the same station where its first trip started
[5].

2.3.2 Probability based models

Probability based methods use several data such as travel distance, passenger number,
land use or transfer capacity to estimate the alighting station [11]. Several examples of
these methodologies include [6], [17], [15] and [14]. These types of methods are good
for estimating high level picture of mobility, but not accurate enough on single validation
level.

2.3.3 Deep learning model

Destination estimation through the use of deep learning models has also been explored
from researchers. For these methods it is important to mention that although the models
itself work for entry-only AFC systems, for the training dataset it is necessary to also
have alighting information. Yu Jie applied a modified BP artificial neural network to
estimate the bus OD matrix in China. The model used the boarding number as input
and alighting number as output, and was trained using six groups of investigated bus
OD data [8]. Meanwhile, Jaeyoung Jung et al. [9] estimated the alighting number using
smart-card and land data, with the help of a deep learning model.
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2.3.4 Comparison between different models

As summarized in [11], the trip chaining model has the advantage of requiring only
smart card data and has a relatively simple algorithm compared to the other 2 methods.
It can also forecast the alighting of each passenger, however the algorithm requires
having access to a passenger identifier across trips, which is not always possible to obtain
due to privacy concerns. In addition the model validation is usually a difficult process.
The probability models take into account more comprehensive factors, but it can only
estimate the total on-off number of passengers. The deep learning models have very
comprehensive considerations and can infer the alight station on an individual passenger
basis. However, it requires access to alighting information for training the model and
requires abundant data, which can be difficult to obtain [11].
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3 Data
First, the data used in this work in presented and explained. Next, an exploratory data
analysis (EDA) is performed with the goal of detecting the type and quality of the data,
as well as any limitations or biases that may affect the study. The EDA is focused on the
most important aspects of the data which affected the proposed solutions and validation
methods.

3.1 Available data
Most of the input data comes directly from the company which provides AFC capabilities
for Tartu’s bus transportation system. Through the use of a public Authenticated API
based on HTTP protocol, five different endpoints are used to retrieve JSON data for a
specific day provided as parameter. In the following sections the different models present
in the dataset are described.

3.1.1 Ticket Validations

The ticket validation data contains information about each ticket validation event that
happened throughout the day on each bus. Inspecting a row in the validation file, the
most important information present are: timestamp of the validation, the number of
the bus line, the ID of the trip, the passengers count and the stop sequence. The stop
sequence numbers begin with 1 for the first stop of the trip and increment by 1 for each
stop until the last stop of the trip. The validation row also contains fields about card
identifiers and document number. However, these fields are empty due to the sensitivity
of the values they contain. Below is a sample of a validation row:

Timestamp: 2022-01-04 04:31:42
Line: 21
Trip ID: 847273
Passenger count: 1
Stop sequence: 2
Location: 437TNS
Product ID: 6276
Card ID: NaN
Document number: NaN

3.1.2 Trips

Each row of the trips data represents an actual trip by a bus which has followed a specific
route in a specific direction for a start and end time. The same route and direction can
have multiple trips throughout the day. So for a route A, there may exist three different
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directions: A->B, B->A and B->C->A. In this case, as it will become important later
the A->B and both B->A and B->C->A are considered opposite directions. Below is a
sample of a trip row:

Trip ID: 6359441
Route ID: 369737
Trip short name: Ööliin (P)
Direction ID: A > C
Departure time: 2023-04-30 05:30:00
Arrival time: 2023-04-30 06:35:00
Tour number: 1172329

3.1.3 Route

The route data contains all the bus routes in the city for each day. It is important to note
that a route does not contain directional information, instead directional information is
included in the trip level as mentioned above. Below is a sample of a route row:

Route ID: 369737
Route long name: Ööliin (P)
Route short name (Line number): 9

3.1.4 Stops

Stops data, contains all the bus stop stations of the city. Each row contains a unique
identifier of a stop, its code and the stop name.Below is a sample of a stop row:

Stop ID: 4345145
Stop code: 7820249-1
Stop name: Raeplats

3.1.5 Punctuality

The purpose of the punctuality data is to give very detailed information about how
punctual the bus was in reaching each stop in its planned time. For every trip and
every stop in the trip, it contains the time the bus reached that stop. Besides the time
information it also shows whether the bus had to stop in each stop; either for passengers
to come in or to go out. This piece of information proved to be very useful for the
upcoming modeling pipeline. Occasionally the punctuality row may also have values
for counter in and counter out fields. The frequency of this information is explored in
section 3.2.2. This information will be of important use while performing real world
evaluation. Below is a sample of a punctuality row:
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Route short name: 21
Trip direction: A>B
Stop sequence: 37
Stop name: Annemõisa
Stop code: 7820017-1
Planned stop arrival: 2022-01-04 05:20:00
Actual arrival: 2022-01-04 05:19:50
Bus stopped lat: 58.372286
Bus stopped lon: 26.780043
Trip ID: 6359461
Counter in: 20
Counter out: 30
Validations count: 16

3.1.6 Tartu districts shape data

This static data contains the geographic shape and location of Tartu city districts. Below
is a sample row for Annelinna district:

Object ID: 21
District name: Annelinna
Population: 24551
Shape.STAr: 5474557.366
Shape.STLe: 10626.34457
Geometry: POLYGON ((26.69126249187359
... 58.40717651396527))

The district shape data is necessary for the validation. As shown in Section 4.2.3 the
mapping between the bus stops to its corresponding district can only be done if the
geographical shape and location of the district is known.

3.1.7 Tartu stops from peatus.ee

As obvious from the example in 3.1.4, the information about stops coming from AFC
system does not contain the latitude and longitude for each stop. Knowing the latitude
and longitude allows to map each station to the district where it is located. The fetching
of the location for each stop is achieved with the use of the website [1], which allows the
possibility to download a daily General Transit Feed Specification (GTFS) file for the
country of Estonia. A row from this dataset contains the below information:
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Stop Id: 154135
Stop Code: 7820378-1
Stop Name: Kvartsi
Stop Lat: 59.406376
Stop Lon: 28.164083
Stop Area: Tartu linn,
Authority: Tartu LV

3.2 Exploratory data analysis
The exploratory data analysis begins with obervations regarding the input data quality.
Further a paragraph is dedicated to the APC data.

3.2.1 Data quality issues

In this study, data obtained from the AFC system was utilized. These data have proven to
be of high quality. No major gap was noticed in the dataset; however, there were 2 types
of discrepancies which are attributed primarily to user behavior rather than technical or
data issues.

• The AFC system boarding station is the stop with the highest proximity to the bus
at the time of validation. However, there are some instances where the punctuality
data for a particular trip indicates that the bus did not stop at a specific station
despite ticket validations occurring at that location during the trip. This can be
attributed to users forgetting to validate their ticket upon boarding and doing so
later in the journey. While such occurrences constitute a small fraction of the data,
this issue was addressed by assuming that the user boarded at the first previous
stop where the bus had stopped, rather than discarding the data entirely. It is worth
noting that the exact boarding station of the passenger is not of utmost importance,
as the subsequent methods comparisons and OD matrices are generated on a district
level.

• As observed in the exploration of punctuality data, counter in and counter out
data are available for all stops for some of the trips during the day, indicating
the real number of passengers who boarded or exited the bus at each specific
station. The availability of this information highlighted the issue of passengers
who do not validate their tickets, as in many cases, the counter in value was found
to be significantly higher than the number of validations at that particular stop.
This discrepancy was also evident at the trip level, indicating that these are not
instances of late validation issue, as discussed earlier, but rather passengers possibly
forgetting to validate the tickets during the trip or passengers using another method
of payment such as the purchase of a 1-hour QR ticket.
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The second data quality issue is not directly addressed in this thesis because both the
solution and the validation methods use either the ticket validation information or the
counter information in isolation from each other, bypassing the effect of the disrepancy
between the two sources towards the end result.

3.2.2 APC data

As noted in the Punctuality section 3.1.5 the dataset contains APC information regarding
real counter in and counter out for some trips during most days. Given the importance
of this counter information in the real-world validation method a focused data analysis
was done to understand the potential weaknesses. Analysis was performed for the data
of entire 2022 year and statistical results to better understand these data are presented
below.

Table 1. Distribution of APC data for days of 2022 (38 days with 0 data are filtered out)

Results
Mean Std deviation Min Max Median

No. of Unique Trips with APC data 18.45 5.67 1 32 20
Percent of APC trips/number of total trips 1.75% 0.65% 0.08% 4.01% 1.74%
APC counter out 561.73 246.37 11 1361 557
APC counter out > 300 629.48 202.15 300 1361 601

Out of the 365 days of the 2022 year, 38 days had no counter data. The rest of the
days had counters information only for a small subset of trips according to the distribution
presented in table 1. As visible on the table, after filtering the days which do not have
APC data, on average 1.75% of trips are covered with APC data per day. The number of
counter out registered as leaving the bus in these trips ranges from 11 to 1361 per day
with mean of 561.73 passengers. The last row shows the distribution of the counter out
values per day if the days where the counter out value is smaller than 300 are filtered out.
The year 2022 contains 49 such days. After these days are filtered out, as expected both
mean and median are increased. Upon filtering both 0 counter days and days with less
than 300 counts recorded by the APC there are 279 days remaining.
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4 Methodology
This section describes the methodology used for alighting station estimation based on
the available data.

First, the model group used for alighting station estimation and the assumptions
made for this analysis are outlined. Then four different probability algorithms used for
alighting station estimation are described, including their strengths and weaknesses.

Finally, the validation methods used to validate the performance of the probability
methods are presented. The validation methods will allow to determine the effectiveness
of each of the estimation methods in estimating alighting stations on the district level
based on the AFC system data, and to compare its performance to other methods.

The last section is dedicated to the pipeline which stands at the core of this thesis by
enabling a fully automated processing; starting from the retrieval of input data up until
the OD matrices generation.

4.1 Alighting estimation methods
As seen in the data section, due to lack of the passenger identifier data for chaining
sequential trips of the same passenger, it was not possible to explore the trip chaining
method. Instead, four different probability-based algorithms are explored and compared.

Despite the inability to use trip chaining algorithms directly, the assumptions of
these group of models make are used to inform the algorithm development and in the
construction of validation methods.

4.1.1 Assumptions

Many studies have found that human mobility patterns are highly regular with individuals
frequently returning to the same few locations such as work place and home [13] [7].
These patterns typically follow the daily circadian rhythm in 24 hour cycles. Further [13]
by studying the time that individuals in Paris and Chicago spent in specific locations,
reported a relatively flat distribution with peaks around 14h of individuals staying at
home and two peaks of 3.5h and 8.6h spent at work. The rest of the activities show a
lower occurrence with the increase in their duration and are broadly distributed. The
studied regularity and understanding of human mobility patterns have been the basis
for different assumptions used in alighting station estimation methods. Some of these
assumptions are presented below:

1. Passengers’ last trip of the day ends at the same station where its first trip started
[5].
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2. Symmetry assumption; over the course of one day, pattern of daily passenger
boardings in one direction mirrors the daily alighting pattern in the opposite
direction [12].

3. Midday symmetry assumption refers to the assumption that the pattern of passenger
boarding in one direction during the pre-cutoff time is mirrored by the pattern of
passenger alighting during the evening. Specifically, if a passenger begins their
daily commute in the morning from Stop A, it is assumed that the same passenger
will stop at Stop A during their afternoon trip. This assumption was based on [13],
where it was implied that people usually have regular round trips starting from the
place of residence.

Later, an investigation is conducted with the aim of providing evidence about the
Assumptions 2 and 3 in the city of Tartu.

4.1.2 Alighting candidate stops selection

The process of estimating the alighting stop begins by first creating a shortlist of candidate
stops denoted as candidateStops. The data exploration step has revealed that the exact
stations each bus followed for each trip are known, which eliminates the need to consider
temporary route changes if static routes were used. Additionally there is information
about the station where passengers have boarded the bus, allowing the exclusion of all
stops before (including) the boarding stop. After applying these filters, a list of remaining
stops is obtained. To further shorten this list, information from the punctuality file is
utilized, which indicates whether a bus has stopped at a particular station during its trip.
It was observed that on average 15% of the total visited stops fall under this category,
and by removing them, a shorter list of candidate stops is obtained, contributing to more
accurate estimations.

As an example Figure 3 illustrates a bus trip and all of its stop stations, where the
black dots represent stop stations in the route where bus did not stop while the white dots
represent stop stations where bus did stop. Given that a validation occurred when the bus
was at stop station number 3, a candidate stops list will be created, where it is possible
that the passenger associated with the validation might have alighted.

First, all stops before and including the stop where the validation happened are filtered
out. As a result the possible list of stations where the passenger might have alighted is
candidateStops = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Lastly, all the stop stations where the bus did not stop are also filtered out leaving a
shorter candidate stop list of

candidateStops = [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22].

After creating a shortlist of candidate stops each one of the algorithms is applied to
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Figure 3. Illustration of candidate stops selection

pick one of the candidates as the destination stop. As shown below the algorithms differ
on their assumptions and on their level of complexity.

4.1.3 Uniform distribution

In order to establish a baseline for comparison, the Uniform Distribution probability
model is chosen. It assumes that all candidate stops have equal likelihood of being se-
lected as the alighting station. Simply, a random station from the list of candidate stations
is selected as the alighting station. This model provides a simple and straightforward
approach for comparison with more complex models.

Let n be the number of candidate stops. The probability to pick a stop using uniform
distribution is:
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P (stopi) =
1

n
and

∑
1≤i≤n

P (stopi) = 1.

4.1.4 Normal distribution

This method is based on the assumption of passengers being less likely to choose the bus
for very short trip times, which can be easily done on foot, or for very long ones where
the car might be preferred. To reflect this assumption, a normal probability distribution
is used to assign probabilities to the candidate stops. Specifically, the probability of
stopping at each candidate stop follows a normal distribution curve as illustrated in
Figure 4, where the mean is the center of the candidateStops list and standard deviation
is 3. This results in candidate stops in the middle having higher probabilities of being
destination stops compared to those at the edges.

Figure 4. Normal distribution probability curve

4.1.5 Symmetric alighting station estimation

Symmetric alighting station estimation algorithm directly relies on the assumption that
starting and ending stops of the day are the same for each passenger (Assumption 1) and
indirectly on the symmetry assumption (Assumption 2).
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Because passengers are expected to end their day in the same station as they started
it can be deduced that the more people boarded at a specific station, the higher the
probability that station should be picked as an alighting station throughout the entire day.
Also because of symmetry assumption, the alighting patterns and the boarding patterns
should match, making the algorithm ensure that across enough validations, the same
number of people are alighting at a specific stop station as many people started from it.
Given that the origin-destination matrix as well as the validation methods are built on
the district level, individual inaccuracies will be flattened, and an accurate result to a
reasonable level can be obtained.

As explained in the Algorithm 1 as a first step the number of passengers validations
for each stop is counted. Next, in Algorithm 2 each candidate in candidateStops is
mapped to the stop’s respective popularity count calculated in Algorithm 1. The counts
are normalized and the normalized values serve as probabilities of each candidate stop
to be picked as an alighting station. Algorithm 2 is executed for each validation in the
dataset.

Algorithm 1: Boarding station counts
Input: All validations for one day
Result: Count of validations for each station

1 stopCount← emptyMap;
2 for validation in validations do
3 validationBoardingStop← validation[‘stopcode’];
4 stopCount[validationBoardingStop]= stopCount[validationBoardingStop]++

5 return stopCount

Algorithm 2: Pick candidate stop based on candidate stop counts
Input: All validations for one day

1 stopCounts← callAlgorithm1();
2 for validation in validations do
3 candidateStops← validation[‘candidateStops’];
4 candidateStopsRespectiveWeights← getCounts(candidateStops,

stopCounts);
5 normalizedWeights← normalizeCounts(candidateStopsRespectiveWeights);
6 pickedStop← choiceWithWeights(candidateStops, normalizedWeights);
7 validation[‘alightingStop’] = pickedStop;

22



4.1.6 Midday Symmetric alighting station estimation

In order to further refine the symmetric alighting station estimation method, symmetry
assumption within a midday cutoff point (Assumption 3) is indirectly used. Later in
section 5.1, some evidence that trips tend to be symmetrical with respect to morning and
afternoon periods is provided. This means that if people take the bus in the morning from
location X to Y, they are likely to take a bus in the afternoon from Y to X. As such, it
is expected that the number of boardings in the morning for one route direction and the
number of alightings in the evening for the opposite direction to be similar. The same
can be said for the alighting stations in the morning compared to the boarding stations in
the evening.

To account for this, a more granular popularity count based on morning and evening
validations is created after the validation file is split into two parts: the morning valida-
tions and the evening validations. After some experimentation the cutoff time was picked
as 14:00:00 local time.

The counting of the popularity of stop stations for each half of the day outputs two
different counts maps. The morning counts map tracks all the boarding stops counts
for the morning validations, while the evening counts map tracks all the boarding stops
counts for the evening validations.

When selecting the exit station from the candidate stops, the counts are cross-
referenced; for the afternoon validations, the relative probabilities for each candidate
stop is based on the morning counts map, while for the morning validations they are
based on the evening counts.

4.2 Validation
To validate the accuracy of the alighting estimation algorithms, it is essential to have
ground truth data for boarding and alighting stations. Such data was not abundantly
available, and manual collection would have required significant resources. Section
3.2.2 showed that there are APC data for a small subset of trips within the day. When
formulating the validation methods, the objective was to leverage a substantial portion of
the available data, thus increasing the accuracy of the validation process. For this reason
two validation methods were constructed; a synthetic validation method which validates
the alighting estimation algorithms based on boarding information only and a counter
based validation which uses only the APC real world data.

It is important to note here that although the alighting estimation algorithms operate
on the stop level, both validation methods validate them in the district level. There are 2
main reasons this approach was followed.

• As explained in the literature review probabilistic methods are mostly used to
gather an high level view of the mobility patterns and they are not expected to be
accurate on a fine-grained level.
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• OD matrices, which will be the main output of the thesis are typically generated at
the district level.

4.2.1 Evaluation metrics

In the thesis several metrics are employed to evaluate the accuracy and performance of
the proposed estimation. These metrics include the relative error between two vectors,
the weighted relative error between two vectors, the root mean square error (RMSE), and
the normalized RMSE.

Vector relative error

The relative error measures the disparity between two vectors by calculating L2 norm
of their difference and dividing it by the L2 norm of one of the vectors. It is given by the
formula:

RE =

√∑n
i=1(Ai −Bi)2√∑n

i=1A
2
i

(1)

where:

• n is the number of data points,

• Ai is the actual value at index i,

• Bi is the predicted value at index i.

Weighted vector relative error

The weighted relative error, on the other hand, incorporates varying weights for
different elements of the vectors to account for their relative importance. It can be
computed using the formula:

Weighted Relative Error =

√∑n
i=1 wi · (Ai −Bi)2√∑n

i=1 wi · A2
i

(2)

where:

• n is the number of data points,

• Ai is the actual value at index i,

• Bi is the predicted value at index i,

• wi is the weight assigned to data point i.
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RMSE

The RMSE measures the average magnitude of the differences between corresponding
elements of the vectors and is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Ai −Bi)2 (3)

where:

• n is the number of data points,

• Ai is the actual value at index i,

• Bi is the predicted value at index i.

Normalized RMSE

The normalized RMSE provides a standardized measure of the RMSE by dividing it
by the range of the target variable. It can be expressed using the formula:

NRMSE =
RMSE

max(A)−min(A)
(4)

where:

• RMSE is the Root Mean Square Error,

• A is the actual data set,

• max(A) is the maximum value in the data set A,

• min(A) is the minimum value in the data set A.

4.2.2 Synthetic validation method

This validation method is synthetic because the validation is not performed against
ground truth alighting information but rather against assumptions which allow to get a
close enough approximation of the ground truth data.

The base premise of this validation method is assumption 1, which states that passen-
gers end their day in the same station where they started it. Logically this assumption
also holds true in the district level; passengers end their day in the same district where
they started it. So according to this assumption the number of boardings per each district
should be exactly the same as the number of alightings for each district. Hence this
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validation method is focused on finding the relative error between the boardings per
district vector and (estimated) alightings per district vector.

The dataset contains complete information regarding all boardings at the station
level for a given day. By mapping each station to the corresponding district, and further
aggregating them a vector which shows all boardings per district per day is obtained. As
per the above deduction, the vector of real alighting information per district per day is
expected to be the same as the vector of boardings per district per day. Let’s call this
vector AReal.

Once one of the probability methods is applied to the candidate stops extracted in
section 4.1.2, the alighting stop for each validation in a day is derived. In a manner
similar to the real alighting vector, the estimated alighting stop is associated with its
corresponding district. After the districts are aggregated, the result is the vector of
estimated alighting counts per district per day AEstimated.

The synthetic evaluation method per one day E is defined as the relative error between
the two vectors AReal and AEstimated. For calculating the error the formula 4.2.1 is used.

To evaluate the accuracy of the probability methods over a longer time frame, the
evaluation metric E is calculated for multiple days and the average is taken.

Let Ei denote the evaluation metric for day i, where i = 1, 2, . . . , k is the total
number of days. The average evaluation metric can then be calculated for the k days as
follows:

Eavg = (E1 + E2 + ...+ Ek)/k

This gives a measure of the overall accuracy of the algorithm over the entire time
period. The standard deviation of the evaluation metric over the k days can also be
calculated to get an idea of the variability of the algorithm’s performance over time.

4.2.3 Counter based real world validation

To provide real world validation, the counter information present in the punctuality data
is utilized. By using the counter out information, the exact number of passengers who
exited the bus at each stop can be determined. After estimating the alighting stop for
each validation, it is possible to calculate the estimated count out for each stop. The
relative error between the estimated count out and the actual count out could be used as
the evaluation metric.

However, as outlined in the data quality section 3.2.1, the counter representing the
number of passengers boarding the bus at a specific stop (counter in) was significantly
larger than the number of validations recorded at the respective stop. Because the
estimated count out numbers would be based on the ticket validation numbers, the
inherent error from unvalidated tickets would always negatively affect the evaluation
metric, despite the estimation efforts.
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Because of the discrepancies between the APC and the validation dataset, the real
world validation method solely relies on the APC counter data, thus completely ignoring
the validations dataset. This means that, if the APC has counted 10 passengers entering
a bus in a particular stop, it is assumed that there were 10 validations, even though the
validations dataset may contain fewer entries, due to non-validating passengers. The
downside is that due to the fact that only a subset of trips have APC data the data available
for the real world validation is limited.

For the APC based validation data, each of the algorithms is used to predict an
alighting station. Next, each estimated alighting stop is mapped to the district. After
grouping the data on the district level, for each district of the city (where the bus with APC
data passed for that day) the total number of passengers estimated to have exited a bus
is calculated. This number is denoted as estimated_count_out. The actual_count_out
for each district is also extracted by aggregating the count_out field on the district level.
The output of these steps is a compact dataset as shown below for each day and for each
estimation algorithm:

district,counter_out,estimated_count_out
Annelinna,106,156
Ihaste,45,20
Karlova,210,199
Kesklinna,290,380
Supilinna,80,20
Tähtvere,77,55
Veeriku,103,81

From the above the relative error between the real and estimated count vectors can be
calculated by applying the vector relative error formula described in 4.2.1.

However, as visible in the sample data above, relying purely on this relative error
does not reflect the fact that there are varying number of counter_out by district. 290
passengers exited the bus in Kesklinna, while only 45 in Ihaste. A single misestimation of
the district in Ihaste increases the relative error much more than the same misestimation
in Annelinna. To tackle this a weighted relative error, which gives more weights to
districts with more actual counter out is introduced.

Assuming the presence of APC count out information for k districts for the entire day,
the counter out value can be denoted as Di for district i, where i ≤ k. The respective
weights per each district would be wi =

Di∑
D

, where
∑

D represents the sum of all Di

values. These weights wi provide a relative measure of the contribution of each district
to the total counter out values.

The weighted relative error is then calculated by using the formula described in
equation 4.2.1 by using the same real and estimated vectors per district and the above
weights w.
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In addition to the calculation of the errors mentioned so far, a linear regression analy-
sis was also performed. Given the expectation of equivalence between the estimated_count_out
and actual_count_out values for each district, a linear regression was conducted to ex-
amine the relationship between these two variables across an extended time frame. The
objective was to observe whether the regression line would tend towards the identity line,
y=x, signifying a strong alignment between the estimated and actual counts.

For the linear regression analysis, actual count out and estimated count out for each
district for 279 days of the year 2022 were obtained. These two extensive sets of data
were then used to conduct the regression analysis.

4.3 Pipeline
This section provides a brief overview of the developed system architecture. The system
consists of two main modules, namely the daily pipeline and the aggregator module as
can be seen in Figure 5.

Figure 5. Modelling pipeline

The daily pipeline is responsible for downloading the AFC system data and generating
the outputs for a single day. Outputs include district level OD matrix and district level
errors for the day. On the other hand, the aggregator module takes the outputs generated
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by the daily pipeline for a certain number of days, denoted by n, and aggregates them to
perform different analysis and error evaluation across multiple days.

Decoupling the main daily pipeline and the aggregator is important because it allows
for the automatic scheduling of the main pipeline to run every day and store the output
data, which can then be aggregated at a later time. The scheduling ability becomes
important when the pipeline serves as a real-time data feed for the dashboard which is
explained in 9.1. The separation between the two modules also ensures that the daily
pipeline can run independently without being affected by the aggregation process, and
that the aggregator can process data from multiple days at once which is useful for
validation and charting.

The daily pipeline was entirely build using Python language. All the experiments
were performed using a machine with below parameters:

CPU: AMD® Ryzen 7 4700u
OS: $Pop!_OS 20.04 LTS$
Ram: 16GB
Machine: Hp Envy x360
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5 Experiments
This chapter presents the experiment-based evidence for the assumptions made by the
algorithms and the experiments conducted to evaluate the performance of the alighting
estimation algorithms. The results are reported using tables, figures, or graphs.

Firstly, some evidence about Assumption 2 which assumes the symmetry of pas-
senger traffic on opposing routes is provided. It is followed by similar evidence about
Assumption 3 which assumes the symmetry of passenger traffic on opposing routes and
in relation to a midday cutoff time.

Next, the alighting estimation algorithms are validated using both synthetic and
real-world validation methods.

Lastly, a comparison between the algorithms follows in the results interpretation
section.

5.1 Evidence for assumptions of symmetry
This section aims to provide evidence to support two of the assumptions made in the
methodology section, specifically in the context of the city of Tartu.

5.1.1 Bus trips symmetry in route level

To validate the assumption of symmetry, the daily validation dataset is utilized. As seen
in section 3.1.1 this dataset includes information on the route, direction, timestamp,
and validation location. By identifying opposing routes within the city, it is possible to
compare the number of passengers traveling in each direction. This provides evidence
that bus passengers in Tartu use the bus in a symmetrical way, meaning that a passenger
traveling from stop A to stop B is likely to also travel from stop B to stop A. It is
important to note that the validation of symmetry is subject to a certain degree of error
and cannot be generalized to all cities and routes.

More concretely the below dataset presents 2 different trips following the same route
but in different directions:

Trip Id RouteId Route Direction
123, 2, A>B
134 2, B>A

As a first step opposing trips for each route are identified. Then, the number of
validations in each direction, i.e., towards the final destination and towards the opposite
direction is counted.

This is an example of the result of the calculations for one route:
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route_id: 371592
directions_start: ['A>B']
directions_opposite: ['B1>A', 'B>A']
route_long_name: FI - Nõlvaku
Route_Start_Count_Trips: 938
Route_Opposite_Count_Trips: 938
Route_Start_Count_validations: 12222
Route_Opposite_Count_validations: 12324

For the route FI-Nõlvaku, for one specific date, there have been exactly the same
number of trips in one and the opposite direction. Across these trips there have been
12222 boardings in the first direction and 12324 boardings in the second direction.

By analyzing the number of boardings in each direction, it can be observed a certain
level of symmetry between the route directions, for this specific example. This supposed
symmetry can be quantified by calculating calculate the relative error between the number
of boardings in each direction, expressed as a percentage of the total number of boardings
on that route.

The relative error between boarding counts on opposing directions was computed for
all routes in the year 2022, using daily validation data. Figure 6 shows the heatmap of
relative distances for one week from September 19 to 25, 2022.

As can be seen from the heatmap in Figure 6, the relative error between boardings in
opposing directions for all routes is below 5% during the selected week. This level of
symmetry is consistent throughout the calendar week, including weekends, and is also
observed throughout the year, indicating the general symmetry of bus usage in Tartu on
route level.

5.1.2 Bus trips symmetry in route level from a cutoff time

Similarly to the above, some evidence for assumption of symmetry across a midday time
is provided in this section (Assumption 3). The base around this assumption was that
passengers generally take the bus from stop A to stop B in the morning and then take the
bus again from B to A in the afternoon.

To test this hypothesis, the midday time of 14:00 in local time is selected as the
midday point. After analyzing the boarding data for all routes, the directions of the same
route are grouped into two groups, first and opposing directions. As in the previous
section the number of boardings per each direction in the morning and afternoon is
counted. A sample row of data for one route looks like below:

Route ID: 371604
Start directions: ['A>C>B', 'A>B1']
Opposite directions: ['B>C>A', 'B>A']
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Figure 6. Heatmap showing the relative error between boardings in opposing directions
as a percentage for each route for one week

Route long name: Lõunakeskus - Roheline park
Route start trip counts: 770
Route opposite trip counts: 756
Morning Route start count validations: 3058
Afternoon route start count validations: 3323
Morning route opposite count_validations: 2340
Afternoon route opposite count validations: 3546

After calculating the number of boardings in the morning or afternoon in the start or
opposing direction, the relative error is calculated.

It is expected that the counts of Morning Route Start Count validations and Afternoon
Route Opposite Count validations to match, and vice versa. The heatmaps in Figure 7
and Figure 8 show the results across one calendar week from March 21, 2022, to March
27, 2022.
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Figure 7. Heatmap illustrating the relative error between morning boardings count in
first direction and evening boardings count in the opposing direction as a percentage for
each route for one calendar week.

The relative error tends to remain consistently below 10% for most routes, with some
outliers present. It is worth noting that the error may be slightly higher due to cutting
the dataset in half for each count, making the relative error more sensitive. Moreover,
it is observed that the error does not show significant variation between weekdays and
weekends and is consistent throughout the year.

33



Figure 8. Heatmap illustrating the relative error between evening boardings count in first
direction and morning boardings count in the opposing direction as a percentage for each
route for one calendar week.

5.2 Alighting estimation methods evaluation and comparison
This section of the experiments aims to show the results of the synthetic and real world
validation, after applying the four alighting estimation methods for a number of days in
the year 2022.

5.2.1 Synthetic validation method

For the synthetic validation method the district level relative error was calculated for all
365 days of the year to evaluate the performance of each of the methods.

Table 2 shows the comparison between the 4 different alighting methods by using the
synthetic validation method as explained in section 4.2.2. The table displays the mean,
standard deviation, minimum, maximum, and median values of the calculated relative
error as explained in the methodology section. To provide a visual representation of the
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Table 2. Comparison of the synthetic evaluation metric statistics across 365 days for the
4 methods.

Results
Mean Std deviation Min Max Median

Uniform distribution 36.6% 27.5% 24.7% 47.7% 36.5%
Normal distribution 26.28% 25.8% 14.6% 36.2% 26.2%
Symmetric estimation 14.95% 16.67% 10.76% 21.36% 14.72%
Midday Symmetric estimation 14.54% 18.00% 10.51% 24.54% 14.24%

distribution of the evaluation metric, Figure 9 displays the same information as a box
plot.

The results show that the normal distribution method had a relative error of 26.28%
while the uniform distribution displays the highest error of 36.6%. The symmetric
estimation and midday symmetric estimation methods show improvements by having
similar mean values, both below 15%. Additionally, the standard deviation is the highest
for the uniform distribution method (27.5%) and lowest for the symmetric estimation
method (16.67%).

Figure 9. Boxplot showing variance of the synthetic evaluation metric across 365 days.
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In the boxplot in Figure 9 it is noticeable that the uniform distribution and normal
distribution method have a larger spread and higher range of outliers on both directions.
The spread becomes much lower in Symmetric estimation method and presents itself
with outliers only in one direction.

The bar chart depicted in Figure 10 illustrates the mean values of the output of the
synthetic validation method across 365 days of the year, as computed for each method.
This visualization provides a clear indication of the relative performance of the methods
in terms of their average accuracy.

Figure 10. Bar chart displaying the mean of the evaluation metric across 365 days

For additional insights, Figure 11 shows a line chart for all the calculated data points
across 365 dates. The x axis represents each date and the y axis the calculated evaluation
metric for each method.
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Figure 11. Line chart illustrating the values of the sythentic validation metric across 365
days for all the methods.

5.2.2 Counter based validation method

After executing the steps described in the methodology section 4.2.3 results are presented
below both when using the relative error and weighted relative error in district level.Table
3 shows statistics of the district level non-weighted relative error for each day of the 2022
year which has more than 300 counts from APC data per day. Similarly, table 4 shows
the weighted error.

RMSE and normalized RMSE metrics are displayed on table 5.
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Table 3. Comparison of the district level relative error across 279 days for 4 methods

Results
Mean Std deviation Min Max Median

Uniform distribution 41.51% 8.6% 18.21% 63.87% 42.05%
Normal distribution 41.22% 11.32% 12.78% 79.19% 40.83%

Symmetric estimation 32.63% 11.48% 10.49% 71.78% 31.56%
Midday Symmetric est. 38.14% 17.18% 11.93% 130.03% 35.46%

Table 4. Comparison of the district level weighted relative error across 279 days for 4
methods

Results
Mean Std deviation Min Max Median

Uniform distribution 40.46% 9.96% 12.06% 68.25% 40.75%
Normal distribution 37.48% 13.33% 7.00% 79.66% 37.13%

Symmetric estimation 28.45% 11.44% 5.52% 68.73% 28.03%
Midday Symmetric est. 33.10% 17.34% 7.77% 134.14% 30.14%

Table 5. Comparison of the RMSE and Normalized RMSE for 4 methods

Results
RMSE Normalized RMSE

Uniform distribution 31.62 0.68
Normal distribution 32.30 0.67

Symmetric estimation 24.49 0.53
Midday Symmetric est. 28.46 0.61

Figures 12 and 13 illustrate the same as a box plots while Figure 14 shows a bar chart
of the mean of the calculated errors for each method.
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Figure 12. Boxplot showing variance of the district level relative error across 279 days
of the year 2022.

Figure 13. Boxplot showing variance of the district level weighted relative error across
279 days of the year 2022.

Lastly the linear regression approximation between count out and estimated count
out per district per 279 days are displayed in figure 15.
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Figure 14. Bar chart showing means of district level weighted relative error across 279
days of the year 2022 for the four methods.

5.3 Interpreting the results
Observing the outputs of the experiments, some conclusions about the performance
of various methods can be drawn. As it was anticipated due to the simplicity of the
method, the uniform distribution selector was the worst performer. Randomly picking
the end station resulted in a high error and both the synthetic and real world validation
methods picture the same story. On the other hand, the normal distribution method
showed a significant improvement as per the evaluation metrics, despite being based on a
simple assumption and having a simple implementation. According to the analysis, the
normal distribution ranks better than uniform distribution in all the error calculations
besides the RMSE where the error is slightly higher. It is to be noted the quite big
improvement in this method when checking in the weighted real world relative error
versus the non-weighted one. Linear regression line also paints similar picture where the
regression line for the estimated counts per district tends to be closer to the y=x line than
uniform distribution.

According to every measurement, the symmetric and midday symmetric estimation
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(a) Uniform distribution (b) Normal distribution

(c) Symmetric estimation (d) Midday Symmetric estimation

Figure 15. Linear regression approximation

methods showed significant improvement compared to the two simpler methods discussed
above. Deciding the most accurate between the two, however, needs discussion as the
synthetic validation method and real world validation method do not paint the same
picture. Synthetic validation method metric, shows the midday symmetric estimation
method to have a slightly lower error of 14.54% against the 14.95% of the symmetric
estimation method. However, the symmetric estimation showed less volatility in the
error values by having a smaller standard deviation. On the other side, the real world
validation method based on APC data shows the symmetric estimation method to have
the lowest error by a considerable margin; 5.51% and 4.65 % respectively between the
non-weighted version of the district level relative error. Results retrieved from RMSE
and NRMSE show the same view. The linear regression line for both of the methods is
very close to the y=x line, displaying encouraging results.

One particularly interesting thing to note from the results of the real world validation
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method is the comparison between the weighted and non-weighted versions of the
district relative error metric. Every method displayed a lower error in the weighted
version. The midday symmetric method had a weighted error of 5.04% lower, followed
by the symmetric estimation with 4.15%, normal distribution with 3.74% and uniform
distribution with 1.05% lower. Firstly, this affirms the previous statement that midday
symmetric and symmetric estimation methods perform better overall, shown by the
highest gain when taking into account the big difference of counts between districts.
Secondly this shows that the relative error is smaller and the estimation’s accuracy is
higher when there are more APC data. Considering that according to the EDA performed
in section 3.2.2, for the 2022 year only 1.75% of trips per day were covered with APC
data, the calculated relative errors could have shown improvement had more APC data
been available. This same is also shown in Figure 16, which proves that there is a
negative correlation between the number of count out per day and the weighted relative
error.

(a) Symmetric estimation (b) Midday Symmetric estimation

Figure 16. Scatter plot displaying negative correlation between number of count out and
calculated relative district level error.
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6 Discussion
This thesis addressed the issue of missing alighting information in Tartu’s bus AFC
system data by proposing four different probability based alighting estimation methods.
The methods were verified using synthetic and real-world validation methods. Results
showed that two of the proposed algorithms outperformed the rest in terms of accuracy
and error. The thesis also demonstrated the value of having complete passenger data,
providing examples of insights that can be derived from analyzing both boarding and
alighting information, such as origin-destination matrices.

Both the proposed methods can be used for day to day monitoring of origin destination
matrices. Furthermore the validation methods and evaluation metrics can be used in
future work of the city of Tartu as a baseline metric in lack of abundant real world
information about alighting stations.

6.1 Limitations
This study is accompanied by several limitations that should be acknowledged in order
to comprehend the scope and potential impact of the findings accurately:

• The real-world validation method relies on data from APC, which often only
capture a minor fraction of the overall passenger trips. While efforts were made
to mitigate this limitation through the application of relative error and weighted
relative error metrics, it remains crucial to remain aware of this constraint.

• The validation level estimation in individual trip level, because of the probabilistic
methods used, can be inaccurate, making it unsuitable for determining station-to-
station origin-destination matrices.

• The probabilistic methods used in the study are underpinned by several assumptions
that may not universally hold true across all scenarios in the real world.

• While efforts were made to establish evidence of symmetry in boardings in the
route level, it is important to acknowledge that further insights are required to
conclusively affirm this assumption.

• Due to the four probabilistic methods being only applied in the context of the city
of Tartu, drawing conclusions about the degree of their generalizability to diverse
urban settings and countries with distinct infrastructures and passenger behaviors
is unfeasible.

These limitations highlight the areas in which the study may have inherent constraints
or uncertainties. While they influence the extent to which the presented findings can be
generalized, they also suggest avenues for future research to refine and expand upon the
current methodology and insights.
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6.2 Future work
In terms of future work, there are several avenues that can be explored.

Firstly, if possible, it would be beneficial to include masked passenger identifier
information in the data source. This could potentially enable the implementation of a
trip chaining model algorithm, which could improve the accuracy of trip-level alighting
information and aid in the creation of an origin-destination matrix at the station level.
The evaluation metrics in the district-level calculated in this study would serve as a
benchmark.

Secondly, an avenue for future exploration involves the utilization of more advanced
probabilistic techniques. While the methods outlined in this study constitute an initial
endeavor in estimating alighting stations for Tartu city by incorporating passenger
boarding data, there exists the opportunity to incorporate additional information for
enhancing station prediction accuracy. For instance, integrating data such as population
density records or even land-use patterns could potentially yield more comprehensive
and refined outcomes. This extension could contribute to a more nuanced understanding
of station dynamics and passenger behaviors.

Thirdly, while this thesis focused on probabilistic methods for destination estimation,
there is an opportunity to explore the use of more sophisticated deep learning approaches.
With recent developments in artificial intelligence and the growing availability of data,
it may be possible to improve the accuracy of destination estimation for the city of
Tartu using deep learning models. This could involve exploring various neural network
architectures and training methods, and may require a larger and more diverse dataset
than the one used in this work. Additionally, it may be possible to integrate deep learning
methods with the trip chaining model algorithm suggested in the previous point, further
improving the accuracy of origin-destination matrix estimation.

Next, another promising avenue for exploration revolves around delving into the
generalizability of the probability methods used in this study, extending their application
beyond the current context. The investigation of how these methods perform in diverse
countries and cities holds significant potential for uncovering valuable insights not only
about the broader applicability of the methods, but also on the differences, if any, of
passenger behaviour in different cities.

Lastly, while the assumption made about the symmetry are reasonable, additional
insights into passenger behavioral patterns would be valuable. This could provide a
better understanding of public transport passengers’ behavior, not just in Tartu but more
generally, and could be used as a starting point for future work.
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7 Summary
Entry-only AFC systems, such as the one implemented in Tartu bus transportation system
are a common source of trying to understand human mobility patterns. These systems
contain accurate passenger-level data regarding boarding station and time, however due
to their working, they fall short on obtaining information about alighting station and
time. To allow extraction of OD-matrices which enable good understanding of passenger
mobility flows, these data are necessary. A considerable amount of work has been done
by researchers to address this limitation of entry-only AFC systems through the use of
different alighting station estimation methods, which can be grouped into three groups of
models; the trip chaining models, probability models and deep learning models.

The primary objective of the thesis was to estimate the alighting information for the
city of Tartu while building on top of existing research. Through the utilization of four
distinct probabilistic methods, varying in complexity, this study was able to accomplish
this estimation task. The methodologies underwent two validation methods, involving
both synthetic and real-world validation processes encompassing a year’s worth of data.
These approaches were then subjected to a comprehensive comparative analysis.

Of the employed methods, the symmetric destination estimation and midday sym-
metric destination estimation techniques drew upon the established concept that human
mobility patterns often demonstrate regularity and symmetry. Consequently, evidence
supporting the presence of such patterns within the confines of Tartu city was gathered
and presented.

Within the suite of four methods employed, two methodologies emerged as partic-
ularly adept: the symmetric destination estimation method and the midday symmetric
destination estimation method. Notably, these approaches exhibited higher accuracy
in alighting station estimation at the district level, surpassing the performance of their
simpler counterparts—the uniform distribution and the normal distribution models.

In essence, this thesis contributes by bridging the gap between entry-only AFC data
and alighting information in the context of the city of Tartu, hence enhancing the grasp
of urban mobility patterns. The combination of probabilistic estimation techniques,
validation procedures, and the real world application of these methods advance the
field, thereby presenting a good foundation for future research and practical applica-
tions. Simultaneously, the outcomes stand to offer valuable advantages to Tartu’s bus
transportation planners, enhancing their decision-making processes.
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8 Conclusion
This thesis aimed to extract alighting information for entry-only AFC system in the city
of Tartu. The task was achieved through the use of four probabilistic models. All the
models were validated using a synthetic validation method, which relied only on boarding
information from AFC data during validation and a real-world validation method which
relied on the data from APC present on a subset of the trips for each day. The two
proposed symmetric estimation methods achieved the lowest weighted relative error on
the district level for the real-world validation: 28.45% for the symmetric estimation
method and 33.10% for the Midday symmetric estimation method. From the other two
simpler methods, the same error was 40.46% for the uniform distribution and 37.48%
for the normal distribution. The small APC data available could impact the validation.
According to the gathered evidence, the error tends to grow smaller with the increase in
APC data. Overall, this work provides a foundation for future research in developing
more accurate and effective methods for estimating alighting information in public
transport systems.
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9 Publications
A paper based on the work presented in this thesis was published in Sensors journal [10].
In this paper, we designed a real-time system which used IoT devices installed in the city
as a source of passenger, bike, bus and vehicle data. The built platform through different
optimizations was able to calculate the split between usage of the mentioned modes of
transportation on a daily time frame. Furthermore, the daily and hourly district-level
OD matrixes for each transportation were built. These OD matrixes can be viewed and
downloaded in the live dashboard.

The paper, in its bus related work, uses several aspects of the work presented in this
master’s thesis. More specifically it uses the main daily pipepine and aggregator modules
mentioned in Section 5 for processing of the bus data from the moment input files are
retrieved up until the hourly and daily OD matrix generation. The alighting estimation
method selected in the scope of the paper is the Midday Symmetric Estimation method
described in Section 4.1.6.

Furthermore, I also contributed in co-building the referenced dashboard in displaying
the output of the system. Some insights about the dashboard and the nature of my
contribution are presented in the next section.

9.1 Dashboard
The dashboard was co-created as a website using various technologies, such as NodeJS,
PostgreSQL, Javascript, and LeafletJs, to display the hourly district-level origin-destination
matrix, among other things. In the context of this thesis, the dashboard serves as a real
world example of some of the insights that can be enabled by having alighting infor-
mation. The dashboard shows processed bus AFC system data for each day. The
information presented on the dashboard includes the total number of bus passengers,
the daily district-level OD matrix in the map section (see Figure 17), and the hourly
district-level origin-destination matrix in the OD matrices menu (see Figure 18).

Both daily and hourly origin-destination matrices use the symmetric destination
station estimation algorithm to determine the destination district. The dashboard is
accessible using the link: https://its.cs.ut.ee/modsplit/. Each day the dashboard
displays the OD matrices information for the previous day.
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Figure 17. Dashboard home page

Figure 18. Dashboard bus hourly origin-destination matrix
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