
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Computer Science

Computer Science Curriculum

Martin Hans Keskküla

Developing an E-commerce Platform for

the Estonian Market

Bachelor’s Thesis (9 ECTS)

Supervisor: Mohamad Gharib, Phd

Tartu 2024

Developing an E-commerce Platform for the Estonian Market

Abstract:

In response to the shortage of e-commerce platforms catering to Estonia, this thesis

presents the development of a proof-of-concept solution aimed at providing comprehen-

sive support to users. Prior to platform development, an investigation into the primary

competitors in the market was conducted, elucidating the essential features desired by

users. The resultant platform encompasses all necessary functionalities, striving to offer

a holistic solution. A similar competitor, ShopRoller, was identified within the Estonian

market, showcasing similarities in appearance yet lacking certain features present in

the developed platform. While the developed application boasts greater feature com-

pleteness, it is noted to be less mature in terms of user experience (UX). User testing

revealed a preference for enhanced user-friendliness, indicating potential adoption if

such improvements were implemented.

Keywords:

Web Application, Ruby, Rails, PostgreSQL, e-commerce

CERCS: P175 Informatics, systems theory

E-poe platvormi arendamine Eesti turule

Lühikokkuvõte:

Vastusena Eestile suunatud e-kaubanduse platvormide vähesusele esitatakse käesolevas

lõputöös proovilahenduse väljatöötamine, mille eesmärk on pakkuda kasutajatele iga-

külgset tuge. Enne platvormi arendamist uuriti esmaseid konkurente turul, selgitades

välja kasutajate poolt soovitud olulised funktsioonid. Saadud platvorm hõlmab kõiki

vajalikke funktsioone, püüdes pakkuda terviklikku lahendust. Eesti turul tuvastati pea-

2

mine konkurent ShopRoller, mis oli välimuselt sarnane, kuid millel puudusid teatud

funktsioonid, mis on olemas väljatöötatud platvormil. Kuigi väljatöötatud rakendus on

funktsioonide poolest täiuslikum, on see kasutajakogemuse (UX) poolest vähem välja

arendatud. Kasutajate testimine näitas, et eelistatakse suuremat kasutajasõbralikkust, mis

viitab potentsiaalsele kasutuselevõtule, kui sellised parandused rakendatakse.

Võtmesõnad:

Veebirakendus, Ruby, Rails, PostgreSQL, e-kommerts

CERCS: P175 Informaatika, süsteemiteooria

3

Contents

1 Introduction 6

2 Analysis of competing platforms 8

2.1 Shopify . 8

2.2 WooCommerce . 9

2.3 ShopRoller . 10

2.4 Comparison with planned application 11

3 Application requirements 13

3.1 Functional requirements (FR) . 13

3.2 Non-functional requirements (NFR) 15

4 Tooling used 16

4.1 Ruby on Rails with server-side rendering 16

4.1.1 Why server-side rendering over a single page application 16

4.2 Postgres . 17

5 MVP of the platform 18

5.1 Architecture of the platform . 18

5.2 Security . 19

5.3 Application overview . 19

6 Validation 26

6.1 Methodology of testing . 26

6.2 Results of testing . 26

6.3 Changes made . 27

6.4 Further developments . 27

4

7 Conclusion 29

References 30

Appendix 31

I. Tasks . 31

II. Licence . 32

5

1 Introduction

More and more stores are creating online shopfronts for their businesses. However,

having an entirely custom-built solution is often feasible only for the biggest chains.

For this reason, many smaller stores as well as solo entrepreneurs decide to build their

storefront on an e-commerce platform. These platforms abstract away some parts of

the process, such as handling payments, creating products, translations and security.

Such examples include Shopify [Shoa], WooCommerce [Woob], ShopRoller [Shoc],

BigCommerce [Big] and many more.

Building a storefront on an existing platform comes with caveats as each of the more

popular platforms has various shortcomings. These range from being difficult to set up

and hard to maintain to having bad localization and outrageous pricing. As such, there is

a niche to fill by having a platform that prioritizes the functionality and being feature-rich

while still being user-friendly and affordable to smaller clients.

The goal of this thesis is to document the building of the minimum viable product of a

new e-commerce platform, which aims to provide a good user experience by supporting

local languages and being both abstract enough to appeal to less tech-savvy users as well

as having the option to customize as much as possible. Due to the time and resource

constraints of the thesis, the end product is intended as a market study to see if the

predicted niche exists before building an application ready for production environments.

Chapter 2 analyses and describes the pros and cons of popular competing platforms while

chapter 3 uses the info to provide a list of functional and non-functional requirements

that the planned application must support. Some of these are left as future work due to

being out of scope of the thesis and are clearly marked as such.

Chapters 4 describes the tech stack used to create the platform. It also explains the

decisions made and the reasons for avoiding a single page application.

6

Chapter 5 provides an in-depth overview of the final product along with screenshots and

a description. It also provides a short overview of the architectural choices made during

the development process.

Chapter 6 describes the validation process. This includes the methodology of testing, the

results of the testing process as well as the changes made to the final application as a

result of the testing.

7

2 Analysis of competing platforms

The prerequisite for building a high-quality platform is to know what the customer

needs and wants. Therefore, it is useful to know the advantages and disadvantages of

competitors. This work compares the application being created with the most popular

platforms on the market: Shopify, WooCommerce and ShopRoller. In the comparison,

the "standard" package or its closest equivalent is generally considered. Such a choice

was made so that it would also be possible to compare the prices of services.

2.1 Shopify

Shopify [Shoa] is one of the biggest e-commerce platforms out there. Their platform

allows setting up the entire e-commerce flow: they provide tools to do everything from

creating a web page and marketing all the way to handling payments and analytics. On

the website of the platform, the main limitations of the standard package are the creation

of accounts for page administrators and the calculation of taxes. The cost of the standard

package is C32 per month. [Shob]

The biggest advantage of Shopify is the easy setup of the platform, because a lot of basic

functionality is available, and you can often find help in their add-ons store (see Figure 1)

[REF]. This is also one of their disadvantages. Adding additional features is painless, but

using them comes with additional fees that can make the initial monthly fee much higher.

Figure 1 shows that almost all the most popular applications are free to install or free

plan available, i.e. generally their commercial use is paid. It is not within the scope of

this work to provide a Shopify-like app store, as this requires third parties to build apps

for it.

8

Figure 1. Screenshot of the Shopify App Store.

2.2 WooCommerce

WooCommerce or Woo [Woob] is an e-commerce platform based on WordPress. 27% of

the million largest e-stores have been built with it [4]. Unlike Shopify, Woo’s standard

package allows you to create unlimited user accounts and also offers shipment tracking

and shipping price calculation. They lack some important functions from the standard

package, such as setting minimum and maximum products for orders and email-based

marketing. The standard package costs $39 or 36C per month. Woo’s website also offers

the option to exchange currency, but this option did not work correctly for the author of

the work.

It is important to note that WooCommerce also offers a free solution [Wooa] that needs

to be set up by the customer. Since therefore all security, software updates and other

system management that are not directly related to e-commerce are done by the customer,

this possibility is not discussed in this work.

9

2.3 ShopRoller

Shoproller [Shod] is an e-shop platform from Estonia. Unlike other platforms, they do

not offer the ability to add unlimited products or add unlimited languages. A package

with a price comparable to other platforms, which costs 42C (35C without VAT), allows

you to add only 2 languages, which is, for example, too few in the context of Estonia. In

Estonia, as a rule, there are 3 languages to choose from: Estonian, English and Russian.

ShopRoller also offers services to help set up an e-shop or do marketing [Shoe]. On

other platforms, setting up an e-shop is made easy enough that a separate service is not

needed. However, offering marketing is a typical additional service that exists on all

other platforms as well.

Unlike other platforms, ShopRoller does not charge service fees [Shod]. ShopRoller only

charges a monthly fee for using their platform and fees for additional services ordered.

10

2.4 Comparison with planned application

In general, all competing platforms offer several different options. It is important to

consider that it is not possible to include all of them within the scope of this work.

Therefore, you have to choose those options that are more important for the customer.

Ho and Chuang [HC23] found online payment capabilities, return capability, product

add feature, product management feature, product description feature, order management

feature, and ease of use to be the most important. Table 1 shows a comparison between

different platforms along with the proposed platform.

On the platform created as part of the work, the creation of an add-on store has been

omitted, because there is no initial need for it. The main priorities are creating basic func-

tionality for the platform - managing products and orders, making payments, designing

the appearance.

The proposed application does not intend to compete with Shopify or Woo, as they have

a very strong ecosystem that cannot be built within the scope of work. While the base

functionality can be built almost identically, both have a wide variety of add-on modules

that offer enough variety to make competition impossible. A realistic competitor is

ShopRoller, whose target group is smaller businesses within Estonia.

11

Table 1. Feature comparison with the planned application.

Shopify Woo ShopRoller Planned platform

Online payments X X X Future work

Adding products X X Limited amount X

Product management X X X X

Order management X X X X

Manual orders X X X

Cart restoration X X

User accounts X X X X

Blog posts X Additional module X

User groups X Additional module X

Add-on store X X

Custom translations X X Limited amount X

12

3 Application requirements

3.1 Functional requirements (FR)

FR1: The system must support an account system for admins.

A store needs to be managed by an authenticated person, which requires an account to

ensure privacy. It must not be possible to edit a store without the correct permissions.

FR2: The system should allow purchases to be fully completed online.

A big part of the convenience of e-commerce is that orders can be placed online. For that,

a way to pay should be included. As this means implementing support for a third party

payment processor, this is considered out of scope for this thesis and left as future work.

FR3: It must be possible to create, edit and remove products.

The store owner must be able to create, edit and remove products. These products should

be clearly marked and should also include an option to be hidden from the user.

FR4: The system must give an overview of placed orders.

It is important to have a clear overview of all placed orders in order to know which orders

have been handled, completed or failed.

FR5: The system must support restoring a shopping cart.

The store must allow users to be able to create a shopping cart, leave the website and

later restore their shopping cart. It should also provide an option to remind registered

users with a filled cart to complete their purchases.

13

FR6: The system must support an account system per store.

The platform should allow users to register at stores in order to take advantage of special

deals.

FR7: The system must allow to create blog posts.

A big part of search engine optimisation is creating blog posts to draw more visitors to

the site. For this, it must be simple to create and show blog posts.

FR8: The system must allow adding discounts and prices based on

the user type.

It’s important to allow some users to have better prices than others, such as first time

shoppers having a small discount or customers with a contract getting a special price.

FR9: The system must support custom translations for content.

As a big portion of Estonias population speaks primarily Russian, it must be possible to

set a locale for the store. For this, it’s necessary that product descriptions and names can

also be translated to the users language.

FR10: The system must support custom pages and designs.

The admin should be able to create their own custom pages with their own designs. It’s

important that they can use any scripts or styling they wish without interference from the

platform.

14

3.2 Non-functional requirements (NFR)

NFR1: The system must look modern and clean.

This makes the application easier to view as modern design principles are pleasant to

look at.

NFR2: The system must be easy to use and intuitive.

Usability is important in a space as competitive as e-commerce. If the system is not

intuitive and easy to use, users will have no reason to migrate from other platforms.

15

4 Tooling used

It’s important to know what sort of tech stack the application will be built with. This

chapter aims to introduce the tools used and provide insight on why these selections

where made.

4.1 Ruby on Rails with server-side rendering

The website will be built using Ruby on Rails with server-side rendering. This choice

was made primarily due to the authors familiarity with the framework as well as the

speed that it allows prototyping. Similar applications have also been made using Ruby

on Rails before, such as Shopify.

One of the most common myths around Rails is that it’s extremely slow, especially

compared to more modern languages and frameworks. In reality, this isn’t an issue as

modern computers are extremely fast and there are plenty of services that are used by

millions of people, such as GitHub [Hes], Gitlab [Git] and Shopify [Mü].

4.1.1 Why server-side rendering over a single page application

One of the most popular front-end development methodologies is creating an API-based

SPA or single page application. This is intentionally avoided for this application as

SPAs tend to have very bad search engine performance due to them being generated

dynamically with JavaScript on the users side. This is because search engine crawlers

often only run minimal JavaScript and might not be able to parse the complete website.

[Car21] By using server-side rendering, this problem is avoided entirely as the HTML

document is generated on the server before being sent to the user.

The main downside of server-side rendering is that the load on the server is typically

heavier than having a separate single page application. This however is unnoticeable

16

unless the amount of requests made gets very big, which as mentioned before is out of

scope for this thesis.

4.2 Postgres

The database system chosen for this project is Postgres. The choice was made because

it’s open-source and battle-tested in many other real-world applications. Thanks to these

facts, it’s expected to have little to no problems with the database and whatever problems

arise should be solvable with the massive wealth of documentation available.

Other choices considered briefly were SQLite and Cassandra. SQLite was not chosen as

it is not as feature-complete as Postgres. Cassandra was not chosen as Postgres has more

support and the author has worked with it more in the past.

Another reason for the adoption of Postgres is that the project uses a database-backed

worker handling system instead of something like Redis. With the tools offered by

Postgres, it should be just as capable as its Redis-backed counterparts while offering

better stability.

17

5 MVP of the platform

This section provides an overview of the completed MVP of the application that was used

for the initial validation and testing phase. The application’s source code is available at

https://github.com/gCoreByte/starry-skies.

5.1 Architecture of the platform

The application is built around the idea of stores - everything besides the admin accounts

are owned by a single store. Figure 2 shows how every record besides the admin account

is owned by the store in one way or another. This enables the admin to easily own

multiple stores and also has the advantage of being able to get every record associated

with a singular store easily.

Figure 2. Generalised architecture of the store.

This choice also makes it simpler to delete user data. By having a cascade delete start

from the store, it’s guaranteed that all user data will be removed. In the event that a

18

soft-delete is preferred in the future, it’s trivial to change the cascade delete to a nullify.

5.2 Security

As e-commerce involves handling card numbers and other various transactions, security is

extremely important. For the scope of this proof-of-concept application, no real financial

data is entered and thus the risk is minimal. For future works when real financial data is

handled, it’s important to first verify the security of all admin actions.

5.3 Application overview

In this section, the various views of the application are described. This includes explaining

the various choices made.

Landing page

This is the first page the user will interact with. It is extremely minimal and only serves

as a warning that the platform is not production-ready. For future work, it’s one of the

highest priorities to fix.

Figure 3. Landing page

19

Authentication

In order to create a store, the user must first create an account and then log in. The

registration form is shown in figure 4. The password is stored securely in the database

and the user is allowed to log in using the form in figure 5.

Figure 4. Sign up form

Figure 5. Sign in form

As authentication is not the primary focus of the application, email verification, changing

and password resets were not implemented.

20

Dashboard

After logging in, the user is shown a list of all of their stores. This dashboard is shown in

figure 6. From this view, the user can see the stores sales and revenue. They can also

create new stores or open up a store to edit it.

Figure 6. Dashboard

21

Store view

Upon opening a store, the user is presented with the stores data, a URL to take them to

their currently available store and buttons that allow the user to edit various aspects of

their store such as the products, pages and blog posts. As this is quite complex, there

is also a guide page to introduce the user to the platform and the possibility to create a

example store to show various possibilities.

Figure 7. Store view

Product view

Products are the center of the store - without products, there is no store. Products consist

of 2 parts: the base product and then a product version. The product only contains the

key, a unique identifier used to keep the products distinct. The product version contains

all of the products unique attributes and translations.

The product view can be seen in figure 8 and the corresponding product view in figure 9.

On the right side of the product version view are the products categories and prices.

These do not have their own special views.

22

Figure 8. Product view

Figure 9. Product version view

23

Pages

The second most important part of the store are its pages. The page system consists of

2 separate parts, similarly to products. First is the page, which contains the URL that

is used to identify the page, key and status. These can be siin in figure 10. The second

part of the pages logic are the page templates. These have a based on value, which tells

the platform what record to use. They also have translations, which are used to display

different languages to users depending on their locale. The page template view can be

seen in figure 11.

Figure 10. Page view

Figure 11. Page template view

The page translations contain all the actual content for the pages. They are written in

HTML and allow using scripts and custom CSS. In addition to HTML, it is also possible

24

to reference the based on record from the page itself. This allows the user to create a

single template for a record and then dynamically fill the content.

25

6 Validation

This section describes the validation and testing of the created platform. This is necessary

to determine whether the platform satisfies the requirements, is comparable to existing

platforms and meets the users expectations.

6.1 Methodology of testing

The validation of the platform is conducted by having users attempt to solve some sort

of problem or achieve some kind of goal by using the platform. Their progress will be

tracked in the system itself by tracking their mouse movements and navigation log. This

ensures that there is as little bias as possible and the data is more objective than with user

interviews. Users will also be asked to fill out an exit survey in order to get a better idea

of possible user experience issues. The tasks are based on real-world issues that might be

encountered. They can contain multiple steps and should not take longer than 5 minutes.

The data is examined to see if there are any problematic areas for the user, e.g the user

cannot find the correct button on a page.

6.2 Results of testing

Most users managed to complete 6/8 of the tasks given. The very first testers discovered

various bugs in the system. These included the store subdomain saving with capital

letters, which meant that the store was inaccessible and store orders not loading. These

were fixed hours after being reported to get accurate results about the platform.

Of the 8 tasks given, the biggest challenges were tasks 7 and 8. For task 7, only 1

tester managed to complete it unassisted using only the guide. For task 8, only 2 testers

managed to complete it. The other tasks did not pose a challenge to a majority of the

users.

26

For task 7, the biggest complaint was the inability to understand how page translations

work and how to access them in the store. To solve this, the guide should be improved.

One user also suggested creating a video guide or a step-by-step tutorial. Both of these

would help solve the problem, but would not address the base issue of the system being

unintuitive. Solving this is left as future work as it would require a new design.

For task 8, the main complaint was the inability to understand the task. When the task

was explained to them, most users managed to complete the task unassisted. As such,

this task is counted as completed.

As feedback was optional, not all users gave some. Of the users that did give feedback,

around 70% disliked the design of the page, but were happy with the features offered.

This was echoed from their test results, where users were able to solve the tasks but often

had to refer to the guide or search the page. This echoes the sentiment given for task 7

and solving this is left as future work.

6.3 Changes made

As a result of the validation, not many changes were made. Some translations were

improved and bugs were fixed, but improving the design would be a refactor that goes

beyond the scope of this thesis. Once the design is improved, it has the potential to be a

competitive entity in the Estonian e-commerce market.

6.4 Further developments

The main priority for further development is improving the front-end design. The design

is not optimal and users do not enjoy using the software purely because of it. It’s likely

that this would require a dedicated web designer to avoid common pitfalls and follow

modern principles.

27

The second priority for future developments would be implementing a proper payment

solution. The most likely choice would be Stripe or a similar solution, which offer a

payment solution for platforms.

For other developments, the author would prioritise a what-you-see-is-what-you-get

editor for websites. This would drastically lower the skill floor for people, who are not

familiar with HTML.

28

7 Conclusion

As there is a shortage of e-commerce platforms that support Estonia, this thesis aimed

to create a proof-of-concept solution that would support everything a user needs. It

succeeded in developing a proof-of-concept platform, which allows users to build their

own online store.

Before the development of the platform, research was done into the main competitors on

the market. This research showed which features users mostly want and need based on

their presence in other platforms. The final application was built to fill the users needs

based on this research and incorporates many features that competitors on the Estonian

market lack such as blog posts and user groups.

The main competitor of the finished platform in Estonia would be ShopRoller. While

developed platform has more features, it is significantly less mature on the user experience

front. During testing and validation of the platform, many users noted that they are

impressed with the feature-richness of the developed platform, but complained that the

initial learning curve is steep, even with the provided guides. They also reported that they

would likely use the platform over its Estonian competitors if it was more user-friendly.

For future work, the highest priority should be improving the general appearance of

the platform and making navigation easier. This would make the platform significantly

more appealing to new users and solve the biggest issues. Secondly, a proper payment

processor should be introduced to make the platform production-ready.

29

References

[Big] BigCommerce. Bigcommerce homepage.

[Car21] Daniel Cartland. Common single page application (spa) crawling issues & how

to fix them. 4 2021.

[Git] Gitlab. https://about.gitlab.com/blog/2018/10/29/why-we-use-rails-to-build-

gitlab/.

[HC23] Shu-Chun Ho and Wei-Li Chuang. Identifying and prioritizing the critical

quality attributes for business-to-business cross-border electronic commerce

platforms. Electronic Commerce Research and Applications, 58:101239, 3

2023.

[Hes] Adam Hess. Building github with ruby and rails.

[Mü] Philip Müller. Under deconstruction: The state of shopify’s monolith.

[Shoa] Shopify. Shopify homepage.

[Shob] Shopify. Shopify pricing.

[Shoc] ShopRoller. Shoproller homepage.

[Shod] ShopRoller. Shoproller pricing.

[Shoe] ShopRoller. Shoproller services.

[Wooa] WooCommerce. Open source ecommerce platform for wordpress.

[Woob] WooCommerce. Woocommerce homepage.

30

Appendix

I. Tasks

Testing

Welcome to the test group for my thesis. Below is a list of tasks that you should

accomplish. Please do your best to complete them all if possible. Any issues, impossible

or difficult tasks etc should be reported to me at martinhans.keskkula@gmail.com.

Participation is voluntary and no identifiable information is collected. Please note that

adblockers MUST be turned off while participating in the tests in order to allow the

necessary data to be collected. Thank you!

To begin, please continue to https://corebyte.ee.

Tasks

1. Create an account. You can choose the attributes freely.

2. Log in to the account you just created.

3. Create a store with a subdomain and name of your choosing. For simplicity, keep

the example store checkbox ticked.

4. Create a product of your choosing. It should be activated.

5. Create a blog post.

6. Add prices to a product that differ based on the users attributes.

7. Create a page that has different content based on the users language.

8. Add some products to your cart and restart your browser. Your items should still

be in the cart.

31

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Martin Hans Keskküla,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace

digital archives until the expiry of the term of copyright,

Developing an E-commerce Platform for the Estonian Market,

supervised by Mohamad Gharib.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available

to the public via the web environment of the University of Tartu, including via

the DSpace digital archives, under the Creative Commons licence CC BY NC

ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,

distribute the work and communicate it to the public, and prohibits the creation of

derivative works and any commercial use of the work until the expiry of the term

of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Martin Hans Keskküla

dd/mm/yyyy

32

	Introduction
	Analysis of competing platforms
	Shopify
	WooCommerce
	ShopRoller
	Comparison with planned application

	Application requirements
	Functional requirements (FR)
	Non-functional requirements (NFR)

	Tooling used
	Ruby on Rails with server-side rendering
	Why server-side rendering over a single page application

	Postgres

	MVP of the platform
	Architecture of the platform
	Security
	Application overview

	Validation
	Methodology of testing
	Results of testing
	Changes made
	Further developments

	Conclusion
	References
	Appendix
	I. Tasks
	II. Licence

