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Classification of E-Commerce Products Based on Textual Product 

Descriptions 

Abstract: 

Assigning Harmonized System (HS) codes to products is necessary to comply with cus-

toms regulations, gather statistics, and prevent fraud. Since the HS is a complex system 

with many classes, automatic HS code classification is required to speed up the process 

and ensure correctness. In this thesis, we explore two types of machine learning meth-

ods for HS classification – shallow neural network classifiers and deep neural network 

classifiers that are based on the Transformer architecture. We find that with a large 

dataset, shallow classifiers can be relatively easily improved to outperform Trans-

former-based classifiers, while tuning the latter is a more complex and time-consum-

ing task. We also discover that the training data includes erroneously labeled entries 

and that this has a negative impact on the models. 
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CERCS:  
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E-kaubanduse toodete klassifitseerimine tekstiliste tootekirjel-

duste alusel 

Lühikokkuvõte: 

Harmoneeritud Süsteemi (HS) koodide määramine toodetele on vajalik tollinõuetele 

vastamiseks, statistika kogumiseks ja maksupettuste vältimiseks. Automaatne HS-

koodide klassifitseerimine aitab aega säästa, sest HS on kompleksne ja paljude klas-

sidega süsteem, mistõttu käsitsi õige klassi valimine on keerukas ja aeganõudev. Selles 

magistritöös kasutame HS-koodide klassifitseerimiseks kaht tüüpi masinõppemeeto-

deid: pindmistel tehisnärvivõrkudel põhinevaid klassifitseerijaid ja sügavatel te-

hisnärvivõrkudel, täpsemalt Transformer-arhitektuuril, põhinevaid klassifitseerijaid. 

Selgub, et sellise suurusega andmestiku puhul, nagu meil on võimalik kasutada, saab 

pindmisi klassifitseerijaid võrdlemisi kergesti arendada maani, kus nad annavad pare-

maid tulemusi kui sügavad närvivõrgud, viimaseid on aga oluliselt keerukam ja ae-

ganõudvam edasi arendada. Lisaks leidsime, et kasutatav andmestik sisaldab valesti 

märgendatud kirjeid ning et sellel on negatiivne mõju mudelite kvaliteedile. 

Võtmesõnad: 

Loomuliku keele töötlus, Harmoneeritud Süsteem, mitmeklassiline klassifitseerimine 

CERCS: 

P176 Tehisintellekt 
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1 Introduction 

In the expanding field of international e-commerce, it is important to ensure that the 

movement of goods across borders is as smooth and fast as possible. It is also crucial 

that the goods have correct information attached to collect taxes, gather statistics and 

prevent fraud.  

This necessity for accurate product information is now more topical than ever. As of 

the year 2021, some notable changes in the European Union's customs regulations will 

take effect. When previously, goods with a value of up to 22€ were allowed to be im-

ported to the EU without value-added tax (VAT) and a customs declaration, then now 

this lower bound will be removed, and all goods will need an accompanying customs 

declaration1.  

Among other effects, this means that merchants need to provide customs officials with 

information about all products traveling between EU and non-EU countries. This in-

formation includes sufficiently detailed product descriptions and respective product 

codes from the Harmonized System (HS) nomenclature2. The HS nomenclature is 

meant to provide a common, internationally recognized classification system for prod-

ucts. 

Automatically assigning an HS code or recommending a limited choice of possibly cor-

rect HS codes to a product is necessary to minimize the amount of manual labor, avoid 

human error, speed up the process, and avoid delays or penalties caused by mistakenly 

assigned HS codes. Considering that all imported products will need a customs decla-

ration that includes the HS code and that the number of low-value consignments im-

ported to the EU is high3, the mentioned legislation change is expected to drastically 

increase the need for such automatic classification. 

 

1 https://ec.europa.eu/taxation_customs/business/vat/modernising-vat-cross-border-ecom-
merce_en 

2 https://unstats.un.org/unsd/tradekb/Knowledgebase/50018/Harmonized-Commodity-Descrip-
tion-and-Coding-Systems-HS 

3 https://ec.europa.eu/taxation_customs/news/new-form-customs-declaration-low-value-consign-
ments_en 
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In this thesis, HS code classification is performed using only product descriptions as 

input. In some cases, additional features could be considered, such as origin and des-

tination country, dimensions of the package, etc. Some examples of product descrip-

tions with corresponding HS codes are shown in Table 1. The table also presents ex-

planatory texts, i.e., the texts that describe these classes in the nomenclature. 

 

Table 1. Exemplary product descriptions with corresponding codes and explanatory texts 

from the HS nomenclature. 

Product Description HS Code Explanatory Text 

SPA CEYLON RED SANDAL & 
LEMONGRASS - Massage & Bath 
Oil(ISFTA CERTIFICATE NO: 
CO/ISFTA/2019/12058 DATED: 
14.11.2019) (CD 

330730 Perfumed bath salts and other 
bath and shower preparations 

Bicycle Parts (BICYCLE SPARE 
PARTS) (grip)(1 SET) - 

871499 Parts and accessories, for bicycles, 
n.e.s. 

 

The classification task is difficult due to a large number of classes – there are more 

than 5,300 six-digit HS codes in the nomenclature. In addition to this, the datasets we 

have access to are imbalanced, that is, the distribution of classes is strongly skewed. 

Another complication is that product descriptions can be very short, include spelling 

errors or seemingly non-informative noise. Lastly, differences between classes can be 

minimal, and separating lines are sometimes drawn based on tiny details. 

The task of HS classification has been tackled in previous publications using traditional 

machine learning methods like support vector machines and Naïve Bayes [1], as well 

as deep learning approaches like convolutional neural networks [2]. However, the field 

of Natural Language Processing (NLP) has seen rapid improvements lately with the 

progress of pre-trained language models such as BERT [3], which is based on the 

Transformer architecture [4]. To our knowledge, there are currently no publications 

where such pre-trained language models are applied to HS classification, and there-

fore, we aim to experiment with these methods. 



8 

 

Our objective is to build a classifier using neural networks that is able to predict the 

HS code based on a textual product description among a large number of classes. Based 

on the state-of-the-art results achieved with Transformer-based models on various 

NLP tasks, we apply this architecture as the basis of our classification models. Methods 

for handling class imbalance and taking advantage of the nomenclature's hierarchical 

structure are explored and experimented with. 

Chapter 2 of this thesis introduces the HS nomenclature and gives an overview of pub-

lications on related topics. Chapter 3 describes the technical concepts and architec-

tures used. Chapter 4 presents an overview of the dataset and discusses preprocessing 

of the data. Chapter 5 describes the experiments conducted with different types of 

classifiers.  Chapter 6 presents the results on evaluation splits and a qualitative analy-

sis of these results. Chapter 7 discusses the limitations of this thesis and directions for 

future work. 

This thesis is part of the project “A Digital Infrastructure for Cross Border E-Commerce 

(SaaS) Applied Research,” conducted by STACC OÜ and Tallinn University of Technol-

ogy. The partner company that the contributing parties are developing the digital in-

frastructure for and with is Eurora Solutions OÜ. 
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2 Background 

This chapter describes the nomenclature used for product classification and intro-

duces previous publications on related topics. 

2.1 The Harmonized System Nomenclature 

The Harmonized Commodity Description and Coding System, which we will refer to as 

simply the Harmonized System or HS in this thesis, was created by the World Customs 

Organization [5]. The system is used by most international traders and serves to unify 

product classification, provides a basis for customs duties calculations, helps monitor 

and gather statistics of tradeable goods, and more. 

The HS has a hierarchical structure and is divided into levels. The first level is known 

as the section and is not explicitly represented in the HS code. However, one section 

contains chapters of a similar topic, e.g., under the section Vegetable products, we can 

find a chapter titled Coffee, tea, maté and spices, as well as one titled Cereals.  

The other levels are reflected in the HS code. As illustrated in Table 2, the first two 

digits of a six-digit HS code signify the chapter that a product belongs to. The first four 

digits signify the corresponding heading, and the full six digits signify the correspond-

ing subheading. We will refer to these (sub)parts of the HS code as HS2, HS4, and HS6 

throughout this thesis. 

Table 2. Structure of the HS. 

Section XI – Textiles and textile articles 

Chapter 
(HS2) 

52 Cotton 

Heading 
(HS4) 

5210 Woven fabrics of cotton, containing predominantly, 
but < 85% cotton by weight, mixed principally or 
solely with man-made fibres and weighing <= 200 
g/m² 

Subheading 
(HS6) 

521039 Woven fabrics of cotton, containing predominantly, 
but < 85% cotton by weight, mixed principally or 
solely with man-made fibres and weighing <= 200 
g/m², dyed (excl. those in three-thread or four-
thread twill, incl. cross twill, and plain woven fab-
rics) 
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The levels of the HS are ordered from more general to more specific, meaning that 

chapters are broad classes of quite different types of goods, while headings under a 

given chapter are its more specific subclasses, and subheadings under a given heading 

are still more specific subclasses of that. 

Due to the evolving nature of international trade and new inventions, the HS is updated 

periodically. In this thesis, we focus on the current state of the nomenclature, i.e., its 

2017 edition [6].  In total, this edition includes 97 chapters (of which one is reserved 

for future use), 1222 headings, and 5387 subheadings [7]. However, not all these clas-

ses are present in the datasets that we use since some chapters and their subclasses 

are out of scope for our partner. 

The HS is the first part of a more detailed classification system, the Integrated Tariff of 

the European Union (TARIC)4, consisting of ten digits. The first six correspond to the 

HS code, the first eight correspond to the Combined Nomenclature code, and the full 

ten digits then make up a TARIC code. The scope of this thesis is limited to HS codes, 

that is, the first six digits. 

2.2 Related Work 

HS code classification has not been widely covered in previous publications. The ap-

proaches in the few topical articles are rather varied, though, ranging from back-

ground nets to convolutional neural networks. 

One of the earliest publications on the subject tackles the classification problem with 

background nets [8]. According to the article, background nets are weighted undi-

rected graphs where vertices represent terms and edge weights represent their co-

occurrence counts in the training data. Classification with this approach works by 

learning a background net for each category from the training data. During inference, 

the input text is used to construct its own background net which is then compared to 

the learned nets.  An acceptance criterion is used for choosing the category whose 

 

4 https://ec.europa.eu/taxation_customs/business/calculation-customs-duties/what-is-common-cus-
toms-tariff/taric_en 
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background net’s acceptance to the input’s net is maximal. In this paper, only two chap-

ters and their subclasses were used, and classification was performed separately 

within each of the two chapters. 

In a recent publication, several machine learning models were experimented with and 

compared [1]. Both the dataset used and its number of categories were large, and se-

vere down-sampling was performed due to computational limitations and class imbal-

ance. However, the impact of the sampling was not analyzed. The authors compared 

various models by their performance on only the heading, that is, the first four digits, 

and on the full HS code. The best results were reportedly achieved with linear support 

vector machine (SVM) and random forest models, while the worst performers were 

decision tree and Naïve Bayes models. 

Convolutional neural networks (CNNs) have been used with only textual inputs in the 

form of product descriptions [2] but also with both text and image inputs in a model 

fusion setup [9]. In the former work, part of the focus was on pre-training domain-

specific word embeddings on additional unlabeled product data scraped from the web, 

and part on creating a customized model architecture. In the latter publication, the 

images and product descriptions used for training and testing were scraped from a 

trade website. The authors found that using only images does not provide good per-

formance while using only product descriptions is a much better option, and the com-

bination of the two gives a slight improvement over the text-only model. However, in 

this paper, classification was performed on just four different classes. 

Possibilities for using similarity measures for assessing the correctness of already as-

signed HS codes or predicting/recommending HS codes have also been explored [10]. 

To predict an HS code for a given input description, the proposed method uses a pre-

trained doc2vec [11] model for finding the most similar product descriptions from 

training data according to cosine similarity and then finds the weighted mode from a 

set of most similar descriptions to predict its corresponding HS code. In order to assess 

the correctness of already assigned HS codes, the same cosine similarities from 

doc2vec are used, but additionally, the semantic similarity between the HS codes is 

calculated based on the taxonomy structure.  
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There have also been attempts to model the hierarchy explicitly. An example of this is 

the Deep Hierarchical Classification Network [12], developed for the task of predicting 

the correct category for online shop products. This model includes a flat neural net-

work for creating the root representation of an input sequence, followed by one linear 

layer per hierarchy level. Each layer receives as input the root representation concat-

enated with the representation from the previous level. Additionally, it features a hi-

erarchical loss where the losses from each layer and layer mismatch penalties are 

taken into account. The authors found that both sharing the representations between 

layers and the proposed loss function had a positive impact on performance, with the 

former contributing more than the latter. 
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3 Technical background 

This chapter introduces the most important concepts related to or used in this thesis 

– word representations, neural networks, attention mechanism, and the Transformer 

architecture. 

3.1 Word Representations 

When working with textual data such as product descriptions, we need a way to rep-

resent this data in vectorized form so that it would be usable in a neural network. This 

subsection describes some methods for creating such representations and is based on 

the book Neural Network Methods for Natural Language Processing by Yoav Goldberg 

[13]. 

The most basic concept would be to convert our data into what are called one-hot en-

codings. This means that the vector for each word would be as long as our vocabulary, 

containing a large number of zeros and a single one at the index that corresponds to 

this exact word. However, this approach has two main drawbacks. Firstly, such repre-

sentations do not capture the semantic relatedness between words since each word is 

considered independent in the representation space and distances from a given word 

to all other words are equal. Secondly, the dimensionality of the representations would 

be too high for computationally heavier models. 

Distributed representations are an alternative solution and are commonly used with 

neural networks. Unlike one-hot encodings, they have lower dimensionality and allow 

semantic relatedness to be learned. In the case of distributed representations, the di-

mensions do not correspond to specific words anymore. Rather, the information about 

some aspect of meaning can be distributed across many dimensions; thus, the dimen-

sions are difficult to interpret independently. Such representations can be compared 

using distance measures, e.g., cosine similarity, to identify the semantic similarity be-

tween words. 

Distributed representations can be learned via unsupervised pre-training. Language 

modeling, an NLP task where the goal is to predict the probability of a given sentence 

occurring in a language, is one such task that does not require labeled data and can 

therefore be learned in an unsupervised way. Learning the task of language modeling 
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also creates vector representations for words since the model needs to predict proba-

bilities for all words in the vocabulary. Unsupervised training means that vast amounts 

of unlabeled data can be used with the objective of creating similar representations to 

words that appear in similar contexts, relying on the distributional hypothesis [14].  

While language modeling can be used to create word representations, it is computa-

tionally rather expensive due to its requirement of outputting a probability distribu-

tion over the whole vocabulary. Several algorithms such as Word2Vec [15] or GloVe 

[16] have been developed for obtaining similar distributed representations as lan-

guage modeling allows to obtain but in a more efficient way. However, there are still 

limitations to these approaches – they allow learning one representation per surface 

form of a word. For example, the word party would receive one common representa-

tion, while it would often be necessary to distinguish between its senses.  

Advancements in this regard have been made with the introduction of contextualized 

word representations such as Embeddings from Language Models (ELMo) [17]. ELMo 

creates a representation for a given token as a function of all tokens in the input se-

quence. This means that the representation of a token depends on its current context 

and is not fixed in a learned embedding matrix, allowing to dynamically change the 

representation for different word senses and according to smaller changes in context. 

A further improvement to contextualized representations was made with Bidirec-

tional Encoder Representations from Transformers (BERT) [3]. One of the main differ-

ences compared to ELMo is BERT's deep bidirectionality which means that context 

from both left and right sides can be more effectively incorporated into the represen-

tations. 

3.2 Tokenization 

In the previous subsection, the word token occurred, signifying some unit with mean-

ing in a sequence of text. However, there are multiple ways of breaking a sequence into 

tokens, and the choice of tokenization method is often connected to the choice of pre-

trained embeddings. To map parts of a given input sequence to entries in an existing 

vocabulary with corresponding vector representations, we need to use the same to-

kenization method as was used when the pre-trained representations were first 

learned. 
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An inherent problem when working with natural language texts is the possibly vast 

vocabulary. A single word can take on numerous slightly different forms, words are 

often compounded or abbreviated, and languages evolve in time. Therefore, using a 

simple approach such as separating text into tokens by whitespaces for learning a fixed 

size vocabulary from a given training corpus is problematic in several ways. Firstly, 

the size of the vocabulary can grow very large, leading to computationally expensive 

models. Secondly, models using such a vocabulary are bound to encounter unseen 

word forms in new data. These forms do not have a corresponding representation and 

must be represented by a generic “unknown token” representation. 

Byte Pair Encoding (BPE) [18] is a tokenization method proposed to alleviate this 

problem. Its core idea is to build a fixed-size vocabulary of character sequences that 

may be either full words, subwords, or single characters. The method is based on a 

data compression technique with the same name. It works by iteratively merging fre-

quent character combinations into one vocabulary unit until reaching a predefined vo-

cabulary size limit. As a result, frequent character sequences will be represented as a 

whole in the vocabulary, while rarer sequences are represented by their parts. 

An extension to regular, character-based BPE is byte-level BPE [19]. When the training 

corpora are large and heterogeneous, as is often the case when pre-training large lan-

guage models, all the various single Unicode characters can make up a significant part 

of the vocabulary. This variant makes the base vocabulary much smaller since it con-

siders a byte as a basic unit instead of a character. 

3.3 Neural Networks 

In this thesis, we use model architectures based on neural networks to tackle HS code 

classification. This subsection is based on chapter 6 of the book Deep Learning by Ian 

Goodfellow, Yoshua Bengio, and Aaron Courville [20]. 

Feed-forward neural networks consist of an input layer, one or more hidden layers, 

and an output layer. Such networks are called feed-forward because of how infor-

mation flows through them – from input to output, in one direction only. Hidden layers, 

the basic building blocks of neural networks, usually consist of a determined number 

of hidden units. Each hidden unit has its corresponding vector of weights and a bias 

value, which make up the trainable parameters of the neural network. 
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Since computations in neural networks are performed in batches, the weight vectors 

of all units within a hidden layer can be denoted as a single matrix ὡ and the corre-

sponding biases as a single vector ὦ. For a given input vector ὼ, a hidden layer performs 

a linear transformation followed by a non-linear activation function Ὣ, and outputs a 

hidden representation vector Ὤ: 

Ὤ Ὣὡ ὼ ὦ. 

The objective of a neural network is to approximate a function that maps inputs to 

respective outputs, e.g., text to classes in the case of HS classification. To learn suitable 

values for a neural network's parameters for approximating a function, we need to 

define a loss function and an optimization method. The loss function determines how 

exactly the mismatch between the model’s outputs and actual labels is calculated. This, 

in turn, affects how the parameters are tuned since neural networks use gradient-

based learning where each parameter is tweaked during back-propagation according 

to how it contributes to the total loss, using the chosen optimization method. 

Recurrent neural networks (RNNs) are a type of neural networks that are able to 

model the connections between different positions in the input. Thus, they are suitable 

for sequential inputs such as text or time series data. RNNs treat the input as a se-

quence of timesteps and allow cyclical connections, as opposed to feed-forward net-

works where information flows only in one direction. The hidden representations for 

each position in the input are calculated sequentially, with the output of a given 

timestep contributing to the input of the next timesteps. In applications where context 

from both left and right sides of the input is available, bidirectional RNNs [21] are used, 

meaning that one forward and one backward RNN are applied to an input, and the 

representations from both are combined. 

A drawback of regular RNNs is their inability to capture long dependencies, i.e., con-

nections between input positions far away from each other, due to vanishing or ex-

ploding gradients during back-propagation. This problem has been addressed with ar-

chitectures such as Long Short-Term Memory (LSTM) [22] which consists of memory 

blocks with dedicated non-linear activation gates. The mentioned gates help the model 

to decide when to overwrite the information from previous timesteps with new inputs 

and when to preserve it. 
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3.4 Attention Mechanism 

Although RNNs can capture dependencies between different input positions, which is 

highly beneficial when working with textual data, some limitations remain. Firstly, 

even further developments such as LSTMs still suffer from forgetting very distant yet 

relevant information. Secondly, RNNs are sequential, and therefore one training exam-

ple cannot be processed in parallel, which becomes a computational bottleneck for 

longer sequences.  

The attention mechanism was proposed in 2014 as a novel method for neural machine 

translation [23] to address these limitations. In the introducing paper, attention was 

described as building a context vector by creating a weighted sum of hidden represen-

tations. More weight is assigned to representations of tokens that are more relevant 

or important for the previous hidden state created by the decoder. The scores for each 

token (that are later converted into probabilities for calculating the weighted sum) are 

computed using an alignment model. 

More specifically, the encoder creates a hidden representation Ὤ for each token using 

a bidirectional RNN. Then, the decoder generates an output sequence, at each step us-

ing the hidden state and output from its previous timestep, and a context vector ὧ. The 

attention mechanism allows having a different context vector ὧ for each timestep Ὥ, 

since for each step the weighted sum of the encoder’s representations is computed 

again, considering the last hidden state of the decoder: 

ὧ В ‌Ὤ. 

In this equation, ‌  is the weight applied to the hidden representation Ὤ at the Ὥ-th 

timestep in the decoder, and Ὕ is the last timestep as ὼ represents the length of the 

input sequence. The weight ‌  is computed using the softmax function, which maps 

its inputs to range 0…1 such that the sum of all outputs equals 1: 

‌
 

В  
. 

Here, Ὡ  represents the output of the alignment model, which is based on the previous 

hidden state of the decoder ί  and the hidden representation Ὤ of the token at posi-

tion Ὦ, produced by the encoder: 
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Ὡ ὥί ȟὬ . 

Here, ὥ is the alignment model, for which several options have been proposed. In the 

previously mentioned article by Bahdanau [23], the alignment model was a single-

layer feed-forward network: 

ὥί ȟὬ ὺÔÁÎÈ ὡί ὟὬ , 

where ὺ is a trainable weight vector and ὡ  and Ὗ  are trainable weight matrices. 

The paper demonstrated that not only is the proposed architecture better at translat-

ing long sequences than traditional encoder-decoder models without attention, but it 

also brought a significant improvement in performance for shorter sequences. It was 

emphasized that building a new alignment for each decoder step had a strong positive 

impact. 

In another article on attention-based neural machine translation [24], Luong et al. de-

scribed other types of alignment models. One of the types was the general alignment 

score function: 

ίὧέὶὩίȟὬ  ίὡὬ  

where ὡ  is a trainable weight matrix, ί is the current hidden state of the decoder and 

 Ὤ, as previously, the hidden representation of the token at position Ὦ from the en-

coder.  This variant has also been referred to as bilinear attention [25], which is the 

term we will use in this thesis as well. 

3.5 Transformers 

Based on the idea of attention and parallel processing, a neural network architecture 

named the Transformer was developed [4]. It was originally intended for sequence-to-

sequence problems such as machine translation and comprised of an encoder and a 

decoder. A core component of the architecture is multi-head attention which elimi-

nates the need for using any recurrence in the network, making the training process 

more parallelizable. 

Multi-head attention means that an attention function is applied not only once for a 

given input, but Ὤ times where Ὤ indicates the number of heads in the multi-head at-
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tention block (illustrated in the right part of Figure 1). The dimensionality of each at-

tention head is reduced to ensure that the dimensionality of the input is maintained 

and to limit computational costs. To do so, the inputs are passed through linear layers, 

which project them to lower dimensionality before applying the attention function of 

each head. Finally, the results are concatenated into a single output of the whole multi-

head attention block. This output is passed through another linear layer. 

 

 

Figure 1. Scaled dot-product attention mechanism and multi-head attention as implemented 

in the Transformer architecture. [4] 

 

While there are several types of attention functions, the Transformer uses a variant 

called scaled dot-product attention, illustrated in the left part of Figure 1. The inputs 

to the attention function are called queries, keys, and values. The attention mechanism 

aims to determine the level of compatibility between the queries and the keys and cal-

culate a weighted sum of the values where the weights describe this compatibility. 

After projecting inputs down through linear layers, we have a matrix of queries ὗ, a 

matrix of keys ὑ, and a matrix of values ὠ (a vector for each input, combined into ma-

trices for batch-processing). As shown in the left part of Figure 1, a dot product be-

tween ὗ and ὑ is then calculated. The result is scaled by  where Ὠ  denotes the 

dimensionality of the query and key matrices. This results in a vector of scores for each 
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entry in the batch. These scores are turned into weights using the softmax function, 

and the output of the attention function is a weighted sum of the value vectors in ὠ: 

ὃὸὸὩὲὸὭέὲὗȟὑȟὠ ίέὪὸάὥὼὠ. 

Which elements are used as queries and which as keys and values depends on where 

the attention function is applied. In sequence-to-sequence models for which the Trans-

former was originally proposed, multi-head attention is used between the encoder and 

the decoder. In this case, query inputs are taken from the previous decoder layer, while 

key and value inputs come from the last layer of the encoder. 

Elsewhere in the Transformer, multi-head attention is used in self-attention layers in 

both the encoder and the decoder. The name self-attention comes from the fact that all 

inputs to the attention function come from the same place. More specifically, for self-

attention, both the query and the key-value pairs are taken from the previous layer's 

output. In the self-attention layers of the decoder, each token can only “attend” to to-

kens to the left of it; therefore, the rest are masked out and are not given any weight 

(as denoted by “optional mask” in Figure 1). 

The encoder and the decoder of the Transformer model are both stacks of identical 

layers where the output of one layer is the input to the next. Although the structure of 

the layers is the same, the parameters are not shared. Each layer in the encoder in-

cludes a multi-head attention block and a feed-forward network, both followed by 

layer normalization. The decoder layers additionally contain the previously men-

tioned encoder-decoder attention blocks.  

3.6 Transformer-based Language Models 

The idea of the Transformer has been transferred to language modeling and represen-

tation learning. Unlike the original encoder-decoder structure, language models use 

only the encoder part of the Transformer. Due to the success of such language model-

ing approaches on NLP benchmark tasks, many works have been published to further 

improve these architectures or make them more efficient. 

BERT was presented in a 2019 paper as a language representation model based on 

Transformers [3].  The article described two variants of BERT, base and large, where 

the former consists of 12 and the latter of 24 layers. The dimensionalities of hidden 
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layers and the number of attention heads also differ. To learn general representations, 

BERT models are pre-trained on unlabeled data using two pre-training objectives – 

masked language modeling (MLM) and next sentence prediction (NSP).  

The MLM task means that, given an input sequence of tokens, a randomly chosen frac-

tion of the tokens is masked out, and the model is asked to “fill the gaps” by predicting 

the missing tokens. The NSP task includes presenting the model with two input se-

quences and asking it to predict whether one sentence follows the other in the source 

text or not. 

The authors of BERT argue that using the MLM task instead of traditional forward or 

backward language models allows the model to achieve deep bidirectionality instead 

of a shallow one that results from a concatenation of forward and backward contexts. 

The reason for adding the NSP task to pre-training was that many tasks where word 

representations are used require modeling connections between a pair of sentences. 

Soon after the publication of BERT, an optimized version of it was proposed, named 

RoBERTa, which stands for Robustly Optimized BERT Pre-Training Approach [26]. Its 

authors used the same model architecture but applied several changes to the pre-

training process. The main modifications were as follows: 

1. changing the masking strategy from static to dynamic for the MLM task (instead 

of masking tokens once during preprocessing, a new masking pattern is created 

every time the model sees an input sequence);  

2. removing the NSP task; 

3. increasing the batch size; 

4. using byte-level instead of character-level BPE; 

5. training on more data for a longer time.  

Both BERT and RoBERTa models have been made available to the community, making 

it possible for us to use them as a basis for our classification models. As the authors of 

RoBERTa showed that their design choices improved performance on benchmark 

tasks significantly, the pre-trained RoBERTa model is the base model of choice in this 

thesis, to which we add new, task-specific layers. 
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4 Data 

This chapter describes the dataset used in this thesis and the methods of prepro-

cessing applied. 

4.1 Splits  

The dataset, provided to us by our partner, includes a total of 19,680,566 product de-

scriptions labeled with respective HS codes. We split the dataset into training, devel-

opment, and two test sets with sizes making up 80%, 10%, 5%, and 5% of the total 

dataset. The size of each split is shown in Table 3. We separate two test sets instead of 

one due to the nature of the project, which includes constant development and com-

parisons of models. The second test set is not used for evaluations in this thesis, as it 

will only be used later in the project. 

As the classes are highly imbalanced, we ensure that their distribution in each split is 

similar, using the stratified option in the train_test_split function from the scikit-learn 

library [27]. Since some classes are represented by very few examples in the full da-

taset, not all classes that exist in the training set also exist in the development and/or 

test set. 

 

Table 3. Number of examples in each split of the dataset. 

train dev test1 test2 total 

15,744,451 1,968,057 984,029 984,029 19,680,566 

 

Table 4 presents a selection of statistics about the distribution of classes in each split 

and in total for each level in the HS nomenclature. For the HS2 level, a more detailed 

overview of all chapters and their supports (i.e., number of examples in a given chap-

ter) is provided in appendix II on page 62. 
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Table 4. The number of classes and the mean, minimum, median, and maximum supports in 

each split and in total. 

 

 

train dev test1 test2 total 

HS2 

classes 55 55 55 55 55 

mean 286,263 35,783 17,891 17,891 357,828 

min 1439 178 87 86 1790 

median 104,669 13,084 6539 6541 130,833 

max 2,981,122 372,643 186,329 186,338 3,726,432 

HS4 

classes 752 749 742 742 752 

mean 20,937 2,628 1,326 1,326 26,171 

min 2 1 1 1 2 

median 3874 489 257 257 4843 

max 417,038 52,130 26,068 26,068 521,304 

HS6 

classes 3226 3181 3127 3111 3226 

mean 4880 619 315 316 6101 

min 2 1 1 1 2 

median 839 109 57 58 1048 

max 289,329 36,168 18,083 18,083 361,663 
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On the HS2 level, the dataset contains 55 classes. The largest class is chapter 84 (Nu-

clear reactors, boilers, machinery and mechanical appliances; parts thereof) with 

3,726,432 examples in the dataset, 18.9% of all examples. On the HS4 level, the dataset 

contains 752 classes. The largest class is heading 7318 (Screws, bolts, nuts, coach 

screws, screw hooks, rivets, cotters, cotter pins, washers, incl. spring washers, and similar 

articles, of iron or steel (excl. lag screws, stoppers, plugs and the like, threaded)) with 

521,304 examples making up 2.65% of all examples. On the HS6 level, the dataset con-

tains 3226 classes. The majority class is the subheading 392690 (Articles of plastics 

and articles of other materials of heading 3901 to 3914, n.e.s.) with 361,663 examples, 

1.84% of all examples. 

Table 4 illustrates that the difference between the mean and median support per class 

is large, which indicates that the distribution is skewed – there are many classes with 

rather few examples and few classes with very many examples. It also shows that al-

ready on the HS4 level, there are classes represented by only a few examples. The dis-

tributions are visualized in appendix III on page 65. 

Due to the relatively large size of the development set, we further split it into two non-

overlapping parts. We reduce the sizes of the two resulting datasets by randomly un-

dersampling large classes and name these subsets dev_small and dev_large. Under-

sampling enables us to preserve small classes while reducing the total size to speed up 

the development process. In dev_small, we keep a maximum of 150 examples per HS6 

class, making the total size 230,876 examples. In dev_large, we keep a maximum of 

1000 examples per HS6 class, making the total size 611,262 examples. The sizes and 

class counts for both subsets are presented in Table 5. 

 

Table 5. Number of classes and total size of dev_small and dev_large. 

 

dev_small dev_large 

HS2 55 55 

HS4 740 749 

HS6 3081 3181 

size 230,876 611,262 
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We use dev_small for evaluations during training and hyperparameter tuning, and 

dev_large for first comparisons between trained models and error analyses. 

4.2 Preprocessing 

There are cases in the dataset where the same product description occurs with multi-

ple labels (HS codes). The labels can be completely different or match up to some level 

(e.g., 090111 vs. 090220). We remove all such ambiguous duplicates from the training 

split before training our models, as we do not have the resources to verify which, if 

any, of the multiple assigned labels is correct. This removal policy decreases the size 

of the training split by 491,971 examples. All classes are still preserved, meaning that 

all those with only a few examples had some descriptions unique to a particular class. 

Although several previous works on HS classification perform strict preprocessing on 

product descriptions, such as removing all non-alphabetic characters [1], [8], [10], 

punctuation [1], [2], predefined stop words [1], [8]–[10] or contents within brackets 

[8], we choose a different approach. Our intuition is that numbers might be helpful for 

classification since they can be the primary or only distinguishing element between 

several classes. Some examples are the composition of fibers in textiles, as in Sewing 

thread, containing >= 85% cotton by weight (excl. that put up for retail sale) versus Sew-

ing thread, containing predominantly, but < 85% cotton by weight (excl. that put up for 

retail sale) or measurements of furniture, such as Wooden furniture for offices, of <= 80 

cm in height (excl. desks and seats) versus Wooden furniture for offices, of > 80 cm in 

height (excl. cupboards). In such cases, removing the numbers during preprocessing 

creates more ambiguous duplicates, as the only differing part is removed from the text 

while labels remain the same. Furthermore, sequences of mixed alphanumeric sym-

bols might indicate model names, also possibly useful for classification. 
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5 Experiments 

This chapter describes the setup of experiments, the architecture of proposed and 

baseline models, and the methods used for evaluation. 

5.1 Setup 

The classification models developed in this work are built on pre-trained Transformer 

models from the Hugging Face Transformers library [28]. The library provides tools 

for loading and fine-tuning various pre-trained models that can be extended to add 

custom layers or other functionality. We use the PyTorch library [29] for model cus-

tomization. Additionally, we use the Weights and Biases library [30] to keep track of 

our experiments, create intermediate reports, manage hyperparameter tuning runs, 

and log metadata related to each run. 

Due to the size of our datasets, we need an efficient way to process the data. We use 

the Hugging Face Datasets library5, which provides two significant benefits. Firstly, it 

performs memory mapping, meaning that large datasets do not have to fit into RAM at 

once. Secondly, it performs caching, meaning that the same processing on a certain 

dataset is never done more than once. 

Experiments are carried out in the Rocket Cluster of the High Performance Computing 

Center of the University of Tartu [31]. The more resource-demanding runs are per-

formed on the GPU nodes with NVIDIA Tesla V100 GPUs. Other runs are performed on 

CPU nodes. 

5.2 Transformer-based Classification Models 

We experiment with two types of classification models based on the Transformer ar-

chitecture for HS classification. The first type is a flat model with one classification 

head trained to predict the full HS6 directly. The second type is a hierarchical model 

with three classification heads, one for each HS level. The second type further branches 

into two subtypes with different attention layers. 

 

5 https://huggingface.co/docs/datasets/ 
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5.2.1 Types of Classifiers 

In a survey of hierarchical classification [32], Silla and Freitas have described three 

approaches to classification where the classes form a tree-structured hierarchy. First, 

there are flat classifiers that predict classes in the leaf nodes and ignore the hierar-

chical structure (illustrated in Figure 2). Our flat classifiers, described in the following 

sections, belong to this type. 

 

 

Figure 2. Structure of the flat classifier approach [32]. It must be noted that unlike in this ex-

ample, in our task of HS classification, all leaf nodes are on the same level (i.e., at the same 

distance from the root node). Even if an HS4 class does not branch further into several HS6 

codes, it is represented as HS4 + ‘00’ on the HS6 level. 

 

Second, there are local classifiers where a set of classifiers is used – either one binary 

classifier per node, one multi-class classifier per parent node, or one multi-class clas-

sifier per level (illustrated in Figure 3). Third, there are global classifiers where simi-

larly to the flat approach, a single classifier is trained, but in this case, it learns the 

hierarchical structure and can also predict classes from intermediate levels, not only 

leaf nodes. 
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Figure 3. Structure of the local classifier per level approach [32]. 

 

According to the definitions from Silla and Freitas, our hierarchical approach can be 

considered a fusion of local classifier per level and global classifier methods. It is a local 

classifier in the sense that a classification decision is made on each level. However, we 

do not train three independent models with each their own training datasets; instead, 

we train a single model that includes one decision point on each level and passes 

through the levels in a top-down manner. 

5.2.2 Flat Classifier 

Our flat classification model consists of a pre-trained RoBERTa-base encoder and one 

classification head. The suffix base refers to the size of the encoder, as the authors of 

RoBERTa proposed two variants, base with 12 layers in the encoder and large with 24 

layers in the encoder. Although the large variant was shown to produce better results 

on benchmark tasks, it is also much slower to train due to having more parameters 

(~125 million in base vs. ~355 million in large). Because of this, we use the base vari-

ant in our experiments. 

The authors of BERT have described two approaches for using their proposed models 

for downstream tasks – the fine-tuning approach and the feature-based approach [3]. 

With additional layers on top of the pre-trained encoder, the two differ in how the 

model is trained. In the fine-tuning approach, all parameters, including those of the 

encoder, are jointly trained when training on the labeled dataset of the downstream 

task. The feature-based approach, on the other hand, means that the encoder repre-

sentations are used as fixed features. In this approach, only the parameters in the ad-

ditional layers are trained during supervised training. Since fine-tuning was shown to 
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produce somewhat better results and the feature-based approach requires additional 

experimentation with which encoder layers to use for extracting the features, we de-

cide to use only the fine-tuning approach in this work. 

 

Figure 4. Architecture of the flat Transformer-based classifier. The tokenization of an example 

input description is shown. The outputs are scores for each HS6 class. 

 

We use the RobertaForSequenceClassification class from the Hugging Face Transform-

ers library6, as it has already been implemented as a generic class for sequence classi-

 

6 https://huggingface.co/transformers/v4.3.3/index.html 
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fication. It includes the RoBERTa encoder and a classification head consisting of a lin-

ear layer, a dropout layer, and another linear layer that projects the hidden represen-

tations to vectors with as many elements as classes in the dataset. These vectors are 

passed as input to the loss function, which calculates the cross-entropy loss between 

the predictions and the true labels. The structure of the model is illustrated in Figure 

4. 

The input to the classification head is the hidden representation of the special <s> to-

ken from the last layer of the encoder. The <s> token is prepended to each example 

during tokenization. It has been used as an aggregate representation of the input in 

previous publications, including the original papers introducing BERT and RoBERTa 

[3], [26]. 

5.2.3 Hierarchical Classifiers 

As an alternative to the flat model, which directly predicts the complete HS code, we 

explore possibilities for modeling the hierarchical structure of the nomenclature.  

From the local classifier types described by Silla and Freitas [32], we prefer the classi-

fier per level approach. This approach helps us limit the number of models to be 

trained and avoid the overhead of managing and storing many models. As we have 55 

and 752 classes on HS2 and HS4 levels, respectively, using the classifier per parent 

node approach would mean training 808 models. Instead of this, we build a single 

model that includes three classification heads and passes the predictions from previ-

ous layers to the next. 

The main structure of the hierarchical classifiers is illustrated in Figure 5. As men-

tioned before, the model includes a classification head for each level of the HS. The 

inner architecture of the classification heads is identical to that in the flat model. 
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Figure 5. Architecture of the hierarchical Transformer-based classifier. The dotted lines indi-

cate that in the version using self-attention, the inputs to attention layers are only the encoder 

representations, not the class embeddings. 

 

Additionally, the hierarchical classifiers include attention layers between HS2-HS4 

and HS4-HS6 classification heads. The type of attention function is the discriminative 

part between the two subtypes of our hierarchical classifiers – one subtype has bilin-

ear attention layers while the other includes self-attention layers. The self-attention 

layers are identical with those in the RoBERTa encoder, i.e., the queries, keys, and val-

ues are all computed by multiplying the same input (in this case, the hidden represen-

tations from the last layer of the encoder) with respective weight matrices. 
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The intuition behind extra attention layers is that we expect the most important parts 

of product descriptions to be different depending on the level. For example, making an 

HS2-level prediction does not usually require precise details about a product, and we 

expect that the more general tokens contribute the most on that level. However, on the 

HS6 level, minor details can be critical as the only distinguishing elements between 

neighboring classes. A similar approach has been used by Yang et al. [33] for document 

classification, where separate attention layers were built for the word and sentence 

levels. 

Like in the flat model, the input to the first classification head is the hidden represen-

tation of the <s> token from the last layer of the encoder. Then, if the model is in train-

ing mode, the embedding for the correct HS2 class is retrieved from the respective em-

bedding layer. On the other hand, if the model is performing inference and the true 

label is unknown, then the normalized probability-weighted sum of the embeddings of 

the top three predictions from the HS2 classification head is used instead. 

In the model type using bilinear attention layers, the resulting embedding (or 

weighted sum of embeddings) is passed into the first attention layer.  The embedding 

is used as a query and the hidden representations as keys. In the model using self-

attention layers, the hidden representations are used as queries, keys, and values, and 

the output is the reweighted representation of the <s> token. The purpose of the at-

tention layer is to create a newly weighted aggregation of all hidden representations 

from the encoder’s last layer. 

The output of the attention layer is concatenated with the HS2 embedding, and the 

result is fed into the HS4 classification head. The same process is repeated, except that 

in the bilinear version, the next attention layer uses the HS4 embedding as a query. 

The input to the final classification head is a concatenation of three elements: the 

newly weighted input representation, the embedding from the HS2 level, and the em-

bedding from the HS4 level. 

During training, local losses are computed on each level, using the outputs of the clas-

sification heads and the true labels of the corresponding levels. The total loss is a sum 

of all three local losses, allowing the weights in each classification head to be modified 

both according to their output and how it affects the following layers. 
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5.3 Baseline Models 

To compare the Transformer-based models to other approaches, we use the fastText 

classifier7 as a baseline. Its authors have shown that their classification approach pro-

duces results comparable with deep learning models while being faster to train and 

evaluate [34].  

As shown in Figure 6, fastText classifiers have a shallow architecture, consisting of an 

input layer, one hidden layer, and an output layer. The input text is transformed into a 

bag-of-features representation by taking an average of all features. These features in-

clude the embeddings for all words and optionally for all word n-grams, which help 

capture the local order of words. The embeddings are obtained from a trainable lookup 

matrix, where the key to being fast and efficient lies in hashing. Using the so-called 

hashing trick, the matrix is not required to store embeddings for each possible n-gram 

explicitly. Instead, fastText uses an embedding matrix of size ὦ, a hyperparameter that 

denotes the number of buckets, and each n-gram is assigned to a bucket in the matrix. 

 

 

Figure 6. FastText model architecture. The input sequence includes N features, x1, ..., xN [34]. 

 

Similarly to the proposed models, we train and evaluate fastText in two versions: flat 

and hierarchical. However, in this case, the hierarchical version is structured accord-

ing to the local classifier per parent node approach (illustrated in Figure 7) as the train-

ing speed allows us to do so. In this approach, one model is trained to predict the head-

ings under chapter 90, another to predict those under chapter 91, and so on. 

 

7 https://github.com/facebookresearch/fastText/tree/master/python 
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Figure 7. Structure of the local classifier per parent node approach [32]. 

 

During inference, the prediction from the current level determines which model will 

be used on the next level. The predictions from all levels are collected in a top-down 

manner. 

5.4 Metrics 

We use accuracy as the metric to decide which classification model performs best on 

our held-out evaluation sets. Accuracy is defined as 

ὥὧὧόὶὥὧώώȟώ  
ρ

ὲ
 ρώ ώ  

where ώ is the predicted label of the Ὥ-th example and ώ is the true label of the Ὥ-th 

example8. Accuracy measures the fraction of correctly predicted elements of all ele-

ments. 

Although we base our comparisons and decisions on the accuracy score, we addition-

ally track the macro-averaged f1-scores of the models. The f1-scores help us under-

stand the models’ average performances across all classes, regardless of the support 

of each class in the dataset, as macro-averaging considers all classes equally important. 

The macro-averaged f1-score is calculated by finding the f1-score for each class and 

 

8 https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score 
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taking their unweighted mean. The f1-score is defined as the harmonic mean of preci-

sion and recall9: 

Ὢρ
ᶻ

. 

Precision and recall are themselves indicators of a model’s ability to, firstly, avoid false 

positives (i.e., mistakenly assigning a label to examples from other classes) and sec-

ondly, to avoid false negatives (i.e., mistakenly not assigning a label to examples from 

that class). The f1-score is a metric that considers both as important. 

5.5 Experiments 

This section describes the comparative experiments performed to study the impact of 

preprocessing, dataset sampling, and hyperparameter tuning on HS classification re-

sults. 

5.5.1 Preprocessing 

Section 4.2 discussed possible ways of preprocessing the data. To determine whether 

our intuition about the benefits of less preprocessing is grounded, we run an experi-

ment by training models with three variants of preprocessing. In the first approach, 

we do not apply any preprocessing, i.e., we train and evaluate the model on raw prod-

uct descriptions. In the second approach, we perform only lowercasing. In the third 

approach, we apply lowercasing plus removing a set of stop words, single-character 

tokens, punctuation, and numbers longer than three digits. 

All three models are trained using the flat approach – a pre-trained RoBERTa encoder 

and a classification head with two linear layers. We train the models for ten epochs on 

a reduced training set with a maximum of 200 examples per HS6 class. All models are 

trained using the AdamW optimizer [35] and with the same default hyperparameters, 

listed in appendix IV on page 67. We use dev_small for monitoring progress during 

training and for possible early stopping when the HS6-level accuracy has not improved 

for two epochs. 

 

9 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.met-
rics.f1_score 
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The results from evaluation on dev_large are presented in Table 6. The table illustrates 

that the differences in accuracy are more visible on the more specific levels (HS4 and 

HS6) than on the HS2 level. The first approach with no preprocessing gives the lowest 

scores. This is possibly due to the tokenizer’s case sensitivity as the dataset includes 

many descriptions fully in uppercase. The second approach with only lowercasing 

ranks first. The ranking indicates that although lowercasing helps, stronger cleaning 

can erase important information and negatively affect performance. However, it must 

be noted that the third approach still performs better than no preprocessing, which 

also confirms the case sensitivity of the tokenizer. 

 

Table 6. Accuracy scores on dev_large. Since the trained models predict the entire HS6 directly, 

the accuracy scores for HS2 and HS4 levels are calculated using the respective parts extracted 

from the predicted HS6 code. 

Preprocessing 
method 

HS2 HS4 HS6  

None 0.8409 0.7044 0.4915 

Only lowercasing 0.8491 0.7202 0.5021 

Lowercasing and 
removals 

0.8449 0.7112 0.4923 

 

We acknowledge that the preprocessing performed here is only one option out of 

many. There might very well exist combinations of preprocessing steps that help distill 

the informative parts from the meaningless noise. One of the benefits of that would be 

decreasing the number of tokens to be processed, speeding up training and inference. 

However, we do not aim to go in-depth to such experiments here. As a conclusion of 

this comparison, we use the lowercasing approach in all further experiments.  

5.5.2 Dataset Sampling 

Considering the class imbalance in our dataset, we pose two questions related to man-

aging the total size of the dataset and making the class distributions more balanced. 

Our questions are as follows: 
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1. How does using a subset of the majority classes (and therefore decreasing the 

gap between the supports of minority and majority classes) affect model per-

formance? 

2. Does oversampling the smallest classes while preserving the entirety of the ma-

jority classes have a positive effect on model performance? 

The intuition behind the first question is that, as we have a large number of examples 

from a few classes and a small number of examples from most classes, then perhaps 

reducing the size of the former helps to perform better on the latter, speeding up train-

ing at the same time. An important aspect to consider is whether decreasing the vari-

ance of the majority classes (by ignoring a part of the examples) is worth it. In other 

words, if the largest classes tend to prevail over the smaller ones strongly, then under-

sampling them would be a reasonable approach. However, if this is not a significant 

problem or it turns out that using fewer examples significantly decreases accuracy due 

to performing worse on these large classes, then undersampling should be avoided. 

To answer the first question, we train two flat models on differently sampled data. The 

first model (with sampling method None) is trained on the original training set. The 

second (sampling method Max 800) is trained on a randomly undersampled version of 

the training set. We use the Imbalanced-learn library [36] to perform dataset 

resampling in this and also further experiments. 

The undersampled version includes a maximum of 800 examples per HS6 class, mak-

ing its size ~11% of the full training set. The limit of 800 examples was chosen accord-

ing to the median of HS6 class supports in the training set. The results on dev_large are 

illustrated in Table 7. 

 

Table 7. Accuracy and f1-scores on dev_large for flat models trained on differently sampled 

datasets. 

Sampling method HS6 accuracy HS6 f1-score 

None 0.7518 0.4877 

Max 800 0.677 0.5756 

Min 1000 0.7555 0.6731 
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The results show that although the average performance per class (as indicated by the 

macro f1-score) did significantly improve with the Max 800 method, there was also a 

strong decline in accuracy. We conclude that decreasing the variance of large classes 

to such an extent is harmful. 

This raises the second question, as we are now interested in making the model better 

at predicting the minority classes while not reducing the majority classes. We create 

another version of the training set by randomly oversampling the minority classes 

such that there are at least 1000 examples per class in the training set (sampling 

method Min 1000). The majority classes are kept in their original sizes. This method 

increases the size of the training set by ~8%. 

When comparing the results of None and Min 1000 sampling methods in Table 7, we 

can see that the latter shows a somewhat better accuracy score and a significantly bet-

ter f1-score on the HS6 level. Furthermore, the f1-score is ~10% better than with the 

Max 800 approach, which was already better than None. In conclusion, we will use the 

partly oversampled (Min 1000) training set in further experiments. 

5.5.3 Hyperparameter Tuning 

For both the Transformer-based models and the baseline models, we perform limited 

hyperparameter tuning. The choice of hyperparameters that are experimented with is 

narrow due to time constraints; thus, we select those we expect to be more relevant.  

When running the tuning experiments for Transformer-based models, we use the 

same reduced training set as in the preprocessing experiment to limit training time. 

This set includes a maximum of 200 examples per HS6 class, meaning that classes 

larger than that are undersampled. When running the experiments for the baseline, 

we can use the full training set. For evaluations, we use the dev_small set. 

Table 8 and Table 9 present the hyperparameters and corresponding search spaces 

used in the experiments for flat and hierarchical Transformer-based classifiers. With 

a few exceptions, noted in appendix IV on page 67, the remaining hyperparameters are 

set to default values as described in the Hugging Face documentation10. 

 

10 https://huggingface.co/transformers/v4.3.3/main_classes/trainer.html#transformers.TrainingAr-
guments 
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Table 8. Values used for tuning the hyperparameters of the flat Transformer-based classifier. 

Hyperparameter Values 

Classifier hidden size 256, 512, 768 

Learning rate 1e-5, 2e-5, 3e-5, 5e-5 

Learning rate scheduler Constant with warmup, linear 

 

Table 9. Values used for tuning the hyperparameters of the hierarchical Transformer-based 

classifier. 

Hyperparameter Values 

Classifier hidden size 256, 512, 768 

Learning rate 1e-5, 3e-5, 5e-5 

Embedding size 128, 256 

 

From the experiment with the flat classifier, we conclude that the hidden size of the 

classifier does have an impact on performance, with larger sizes leading to better re-

sults. We also find that it is beneficial to increase the learning rate from the initial value 

1e-5. Lastly, the experiment shows that when the learning rate is higher, it is better to 

use a linear scheduler that includes not only warm-up but also decay after reaching 

the peak. 

The experiment with the hierarchical classifier also confirms the contribution of learn-

ing rate and the hidden size of the classifier, showing that larger values produce better 

results. However, increasing the size of the embeddings of HS2 and HS4 classes did not 

bring significant improvement. A graphical overview of the tuning runs and scores for 

both model types is presented in appendix V on page 69. 

With the fastText baseline models, we can work with more hyperparameters in a 

somewhat broader range as training takes much less time. For the hierarchical version, 
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we first tune only the HS2-level classifier with values presented in Table 10 to deter-

mine a reasonable scale for the learning rate and find out whether using character n-

grams is beneficial. 

 

Table 10. Values used for tuning the fastText HS2-level model. 

Hyperparameter Values 

Learning rate 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5 

Minimum length of character n-grams 0, 3 

Maximum length of character n-grams 0, 3, 5 

 

As a result, we find that using character n-grams brings benefit, and the best perfor-

mance comes from including n-grams that are three to five characters long. We also 

conclude that learning rate values from the higher end of the scale are too high to train 

the models successfully and that the lowest values are not as competitive.  

We use this information to limit the search space when tuning all models in the hier-

archy. We fix character n-grams to length between three and five characters. Addition-

ally, we tune the number of epochs, as this can depend on the amount of available 

training data which is different for each model. The selected hyperparameters and cor-

responding search spaces are presented in Table 11. Other hyperparameters are spec-

ified in appendix IV on page 67 or otherwise set to default values described in the 

fastText documentation11. 

 

Table 11. Values used for tuning the hyperparameters of hierarchical fastText. 

Hyperparameter Values 

Word n-grams 1, 2, 3 

Learning rate 0.05, 0.1, 0.2, 0.5, 0.7 

Epochs 10, 25, 50 

 

11 https://fasttext.cc/docs/en/options.html 



41 

 

 

Since the hierarchical baseline model consists of many models, we cannot draw con-

clusions about which values are generally the best. In the version used for final evalu-

ations, each model has its hyperparameters set to the values that produced the best 

results on dev_small. 

Due to time constraints, we do not perform a comprehensive tuning experiment for 

the flat fastText model. Instead, we apply our insights from previous experiments. 

Based on our findings, we add word n-grams of length up to three, and character n-

grams of length between three and five. The hyperparameter values for all models se-

lected based on the tuning experiments are presented in appendix VI on page 70. 
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6 Results and Error Analysis 

This chapter describes the results on the dev_large and test1 sets, and additionally on 

a gold-labeled test set. The performance of selected models is further qualitatively ana-

lyzed. 

6.1 Results on Development Set 

We first compare all models with both default and tuned hyperparameters on the 

dev_large set for model selection. We also perform error analysis on dev_large as the 

test set might be needed for adding more models into comparison later. 

 

Table 12. Model performances (accuracy scores) on dev_large. The scores of the best baseline 

and the best Transformer-based model are marked in bold. 

Model Group Type Training 
Steps 

HS2 HS4 HS6 

FastText 
(baseline) 

Flat Default - 0.8947 0.8210 0.7281 

With n-
grams 

- 0.9284 0.8749 0.8024 

Hierar-
chical 

Default - 0.8841 0.8156 0.7358 

Tuned - 0.9257 0.8766 0.8107 

Flat Default 1.78M 0.9160 0.8478 0.7471 

Tuned 1.75M 0.9254 0.8650 0.7757 

Hierarchical  Bilinear 
attention 

Default 2.35M 0.9194 0.8500 0.7457 

Tuned 2.31M 0.9082 0.8307 0.7185 

Self-at-
tention12 

Default 1.3M 0.9161 0.8450 0.7286 

 

 

12 The hierarchical self-attention model was trained for 8 days, but the number of training steps is sig-
nificantly smaller than for other hierarchical models. 
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Table 12 illustrates performances on dev_large. All Transformer-based models were 

trained for ~8 days on two GPU-s. Furthermore, within one model subgroup, it was 

ensured that the number of training steps was similar. This is because some computing 

nodes have more powerful GPU-s than others, leading to a significantly different num-

ber of steps with the same training time. An exception is the hierarchical self-attention 

model, which was neither trained until equal steps nor tuned due to time constraints. 

Based on these results, we select the hierarchical tuned fastText model and the flat 

tuned Transformer-based model for further comparisons with error analysis methods. 

We also analyze the predictions of the hierarchical Transformer-based model using 

bilinear attention in an attempt to understand why the hierarchical approach does not 

outperform the flat approach. 

6.2 Error Analysis 

In this section, we look at the models’ predictions on dev_large in more detail to un-

derstand where and why the models make mistakes. We will refer to the selected base-

line model as FAST, the hierarchical bilinear attention model as HIER, and the flat 

Transformer-based model as FLAT. 

6.2.1 Hierarchical Approach 

Regarding HIER with classifier per level structure, we first look at how the predictions 

from previous layers affect the next layers. We hypothesized that although the struc-

ture of the model theoretically requires the classification heads to predict the correct 

class among all classes on a given HS level, then in practice, the information from pre-

vious layers should “mask out” classes that do not correspond to the prediction so far. 

When analyzing predictions with the highest probabilities from each classification 

head, it appears that there are relatively few mismatches (e.g., a mismatch is when the 

HS2 classification head predicts chapter 90 and the HS4 classification head predicts a 

heading from some other chapter, such as 8410). Between the first two layers, only 
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1.02% of examples get inconsistent predictions, and between the last two layers, the 

corresponding figure is 1.53%.13 

This kind of information transfer has two sides: it can help decision-making in further 

layers by pruning the search space, but it can also propagate errors from the first lay-

ers to the next. We find that in ~7.4% of the cases, a wrong prediction from the HS2 

layer persists in the HS4 prediction. In ~13.8% of the cases, a wrong prediction from 

the HS4 layer is propagated to the predicted HS6. However, propagated errors only 

account for roughly half of the incorrect predictions on HS4 and HS6 levels. Knowing 

that the percentage of mismatches is small, most of the other mistakes must come from 

the inability to choose between classes in the correct subtree in the hierarchy (e.g., 

when the HS2 classification head predicts chapter 90 and the HS4 classification head 

predicts heading 9010, while the correct heading is 9020). 

6.2.2 Most Difficult Classes 

When looking at per-class performances, we find that two non-minority HS6 classes 

have a notably low precision score, i.e., many false positives. One of these classes is 

392690 (Articles of plastics and articles of other materials of heading 3901 to 3914, n.e.s) 

with a precision of 0.223 for FAST, 0.16 for HIER, and even less, 0.146 for FLAT. It ap-

pears that among its siblings, that is, other classes under heading 3926, this class is the 

most represented in the training set (around five times more than the second most 

common class under this heading). We also find that a large percentage of its siblings 

(5-11% for FAST, 14–22% for HIER, 11–26% for FLAT) are mistakenly assigned this 

class, and by frequency, the top classes that are mistakenly assigned this class are ei-

ther from the same heading or at least the same chapter.  

The second low-precision HS6 class is 732690 (Articles of iron or steel, n.e.s. (excl. cast 

articles or articles of iron or steel wire)), with a precision score of 0.316 for FAST, 0.29 

for HIER, and 0.278 for FLAT. We again find that the classes with most false positives 

are from the same heading or at least from the same chapter.  

 

13 We used a setup where the top k=3 predictions are passed on to next layers as a weighted sum. We 
also experimented with k=1, which almost completely eliminated mismatches but did not improve 
scores. 
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Such classes are inherently difficult given that, by definition, class 392690 includes 

anything of plastics or a list of other materials not elsewhere specified. Likewise, class 

732690 is similar, only with a different list of materials. This means that a wide variety 

of products can belong to these classes, which might also be the reason for being rela-

tively overrepresented in the dataset. 

Although the training set we used was oversampled to at least 1000 examples per HS6 

class, some of these minority classes still received f1-scores of 0.0, i.e., no true posi-

tives. When analyzing examples from such classes in dev_large, it appears that the de-

scriptions are often not detailed enough to choose between neighboring classes. In 

such cases, if there is a sibling class more represented in the training set, it can be pri-

oritized by the models. It must be noted that when details are missing, even human 

annotators cannot tell which of the options is correct without making additional as-

sumptions. 

However, it is not the case that all minority classes have low f1-scores. When compar-

ing class supports to average f1-scores, we find that for the least represented HS6 clas-

ses (less than 5000 examples in the training set), the average f1-scores are 0.68 for 

FLAT, 0.61 for HIER, and 0.70 for FAST. Since ~81% of HS6 classes fall into this bin 

due to the class imbalance, we look at these small classes in more detail. As expected, 

the average recall is somewhat lower than the average precision for these classes. We 

further divide these classes into bins according to their supports. As a result, we find 

that although the average recall for the smallest classes (1000–1099 examples in the 

training set) is among the lowest, the difference between recall in this bin and the total 

average recall is not very large for FLAT (3.2%,) and HIER (0.7%). For FAST, it is some-

what larger (6.3%). Also, there are small classes the models do notably well on. For 

example, class 950720 (Fish-hooks, whether or not snelled) has 299 unique examples 

in the training set and still receives an f1-score as high as 0.97 from all models.  

6.2.3 Quality of Product Descriptions 

As noted above, our dataset includes product descriptions that are too short and lack-

ing in detail to be assigned an HS6-level code. Having such entries in the training set 

means that the models can learn to extrapolate from insufficient data (either correctly 



46 

 

or incorrectly). Having such examples in the evaluation sets means that we can analyze 

what the models predicted and whether the predictions are reasonable. 

Figure 8 illustrates the distribution of description lengths across all dataset splits, 

counted in tokens (the result of the BPE tokenization as performed for Transformer-

based classifiers). The most common length is between 10 and 25 tokens. It must be 

noted that since this tokenization method works on the level of subwords, ten tokens 

do not necessarily equal ten full words; instead, they can also include single-symbol 

and other short tokens. 

 

Figure 8. Histogram of description lengths of the full dataset. 

 

Some examples of descriptions with very few tokens are presented in Table 13. Alt-

hough many such short descriptions are indeed not informative, some do provide suf-

ficient information for HS6-level classification. For example, while Show pcs does not 

say much about the product, a description as short as Toothbrush would be enough to 

assign the HS6-level code 960321 (Tooth brushes, incl. dental-plate brushes). 
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Table 13. Examples of short product descriptions (less than five tokens long). 

Description HS Code 

BATH TOWEL MAROON 630260 

PVC SHEET 392043 

GOLDSMITH TOOLS Dies 820559 

SHOW PCS 830629 

GRATER RENA 732399 

 

When looking at correctly classified short descriptions from, e.g., class 392690, we no-

tice descriptions such as hanger (25116 pcs) and hanger [1926 pcs]. The models must 

have assumed that, when not specified, the hangers are made of plastic. If they were 

made of wood, they could be assigned the class 442110 (Clothes hangers of wood). The 

training set contains more examples including the word hanger with the code 392690 

than with 442110, which is probably why the models are biased towards plastic hang-

ers. 

The question is whether making such assumptions is desired or not. An alternative 

would be to learn to detect cases when the provided information is insufficient and not 

assign any HS code or assign a code up to some point, e.g., only the chapter. However, 

since we currently have such examples with HS6-level labels in the training set, the 

models can learn to make assumptions with high confidence (assigned probability). 

While short descriptions intuitively seem problematic due to missing information, 

long descriptions do not always mean high quality either. Longer texts can include un-

necessary information such as invoice numbers and dates or repeat the same infor-

mation several times. A large number of tokens might indicate that there are long se-

quences of symbols that do not contain in-vocabulary tokens and must be broken 

down into single-symbol tokens. Table 14 presents a sample of descriptions where the 

number of tokens is large. 
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Table 14. Examples of long product descriptions (more than 55 tokens long). 

Description HS Code 

INSU.FITT OF PLSTIC HEAT SHRIN.PWR/TELE COMM CBLE ACCE. 
EC/014/04/040 (3M CRB 10 -25 67-29-403)(B.NO.200053)P.SAP 
ID700 

854720 

USED AIRCRAFT TYRE FOR REPAIR & RETURN S IZE 30X8.8 R15 S/N-
(96)8360S093(97)8349S 
198(98)8346S119(99)9015S182(100)6221S118 

401213 

E010A0103601, CAPACITOR CAPAL, 
HVM_16V100F60,HF,16V,100UF,105?,2000H,- 55? to 
+105?,F6.3?5.7,JIANGHAI (FOR CAPTIVE CONS 

853224 

TELEVISIONS 55 INCH(55K3A)(ODF NO.AJB144669E)(BIS 
NO.CRS2018-1157/R-41089680/11.07.2019)(ETA NO.ETA-SD-
20190601691/18.06 

852872 

867959-B21 HSTNS-2154 SER,HPE 
360G10_4114X2_32GB_1TBX4_300GBX2 (STORAGE SERVER) (BIS - R-
41000698 DT.04/09/2019) 

847150 

 

When analyzing how the models perform on long descriptions, we notice that accuracy 

drops for very long descriptions, but the models mostly do well on longer-than-aver-

age descriptions. For example, all models correctly classify led tv, ua32n4003ar, 32, in-

dia, uar60/u32nn1 (model no. ua32 - n4003arxxl) (asean cert.no. vn-in 19/02/06816 

dt.15.07.2019) with the HS code 852872. We can hypothesize that in cases where the 

description contains the required information, even if surrounded by unnecessary to-

kens, the models can extract the useful elements. However, to determine which parts 

of such long and noisy descriptions are actually considered more important by the 

models, we would need to apply model explainability methods. 

6.2.4 Correctness of Labels 

Analyzing model confidence and average accuracy scores for various confidence 

ranges, we find that the two correlate well, especially for FLAT. In the case of FLAT, 

~39% of examples have been classified with confidence higher than 97.5%. The aver-

age accuracy in this range is as high as 98.9%. FAST predicts almost 60% of examples 
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with this confidence, with an average accuracy of 95.4%. This leads us to inspect cases 

where the confidence is high but the prediction incorrect. 

For FLAT, the most common confidently misclassified pair is 711719 (true label) vs. 

711790 (predicted label). According to the nomenclature, both classes include imita-

tion jewelry. The difference is in the material – the former class includes jewelry of 

base metal, while the latter anything else but base metal. By looking at examples in the 

training set, both appear to contain, e.g., imitation jewelry made of brass, which is a 

base metal and should therefore belong to class 711719. 

For FAST, the most common confidently misclassified pair is 490199 (true label) vs. 

490110 (predicted label). According to the nomenclature, both classes include printed 

books, brochures, etc., but the difference is whether they are in single sheets or not. 

When looking at the incorrectly predicted cases in dev_large and instances from these 

two classes in the training set, we see that this aspect is very rarely mentioned in prod-

uct descriptions. Thus, it is not possible to distinguish between the two classes based 

on the given information, and the decisions seem to have been mostly arbitrary. 

This problem of inconsistent labels becomes evident when analyzing erroneous but 

confident predictions. Since verifying the correctness of labels is a complicated task, 

we do not attempt to do this ourselves at scale. Instead, we rely on professionals from 

the partner company who verify the labels of a subset of our dataset. We will later use 

this verified data to understand whether the inconsistent labels in the training set neg-

atively affected the models. 

6.3 Results on Test Set 

Table 15 presents the accuracy scores of the selected Transformer-based and fastText 

models on the held-out test1 set. From here on forward, we will distinguish between 

the flat and hierarchical baseline versions by referring to them as FAST_FLAT and 

FAST_HIER. 
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Table 15. Accuracy scores of selected models on test1. 

Model HS2 HS4 HS6 

FLAT 0.9292 0.8759 0.8044 

FAST_HIER 0.9284 0.8837 0.8281 

FAST_FLAT 0.9323 0.8847 0.8255 

 

The results illustrate that Transformer-based models do not outperform the tuned 

baseline models. Considering the complexity of training and tuning Transformer-

based models and the computational resources required, it seems reasonable to rather 

focus further development efforts on fastText models that can be experimented with 

more easily. With some tweaks, fastText classifiers can be improved to produce results 

that exceed those from Transformer-based models.  

6.4 Results on Gold-Labeled Data 

As noted above, we received a dataset with verified labels from our partner company. 

The verification was performed by content analysts who are familiar with the HS no-

menclature and have experience with assigning and correcting HS codes.  

Since the entries chosen for verification might have originated from any split in our 

original dataset, we remove all entries with such product description and HS6 code 

pairs that also existed in our training or development splits before running evalua-

tions. The resulting dataset, which we will refer to as test_gold, is described in Table 

16. The table illustrates that this subset contains a significantly smaller number of clas-

ses than the total dataset. 

Table 16. Number of classes per level and total size of the test_gold set. 

 

test_gold 

HS2 30 

HS4 238 

HS6 747 

size 1,055,785 
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Table 17 presents the performances of the models on test_gold. The results differ sig-

nificantly from those on the test1 set. Accuracy scores on the HS2 level are higher than 

for test1, but the situation is the opposite on HS4 and HS6 levels. On the HS4 level, 

accuracy has decreased by ~10 percentage points for all models, and on the HS6 level, 

the decrease is larger than 30 percentage points. 

 

Table 17. Accuracy scores on test_gold. 

Model HS2 HS4 HS6 

FLAT 0.9616 0.7806 0.4832 

FAST_HIER 0.9643 0.7725 0.4587 

FAST_FLAT 0.9656 0.7772 0.4681 

 

When comparing test_gold with the training split, we find a large amount of partial 

overlap between the two. With partial overlap, we refer to cases when the models have 

seen the same product description during training with one HS code, but in test_gold, 

the same product description appears with an either partly or entirely different HS 

code. Such situations result from label corrections, and the performance drop on lower 

levels indicates that the mislabeled descriptions were more often mislabeled on HS4 

and HS6 levels. 

More specifically, ~17.7% of test_gold is made up of descriptions seen during training 

with an HS code that matches up to HS4 but does not match on the HS6 level. Approx-

imately 29.3% of the dataset has been seen during training with an HS code that 

matches up to HS2 or up to HS4. However, only ~2.2% of test_gold consists of product 

descriptions seen during training with completely different (not matching to any ex-

tent) labels, which partly explains the high HS2 scores. Another factor is that there are 

fewer HS2 classes in test_gold, and those not present were mostly also less repre-

sented in the training set and thus not as well learned. 

Interestingly, although all three models are strongly affected by the erroneous labels 

in the training set, the performance of FLAT has decreased the least. While it was out-

performed by both baseline models on test1, it performs best among the three on 
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test_gold. Since we find that the training accuracy of FLAT is lower than FAST_FLAT 

and FAST_HIER, we can speculate that FLAT did not learn the patterns in the training 

data as strongly, i.e., overfitted less to the erroneously labeled training data. 



53 

 

7 Discussion 

This chapter brings attention to some limitations related to the methods used in this 

thesis and presents directions for future work on the topic. 

7.1 Limitations 

In terms of computational complexity, some of the models developed in this thesis 

have downsides that must be considered. For example, FLAT requires a long training 

cycle on GPUs and is therefore expensive to train; it also performs inference much 

slower when run on a CPU than when run on a GPU. 

Furthermore, in our experiments, we limited the training time of Transformer-based 

models to eight days (although, as mentioned, in some cases, training was resumed to 

reach a similar number of training steps as other models in the comparison). We found 

that the models do not converge within this time when using the full training set, as 

training always continued until the time limit, and the early stopping mechanism did 

not run out of patience. Therefore, this type of models could possibly achieve better 

results when trained for longer. 

Another limitation regarding Transformer-based models is that we did not manage to 

improve HIER with hyperparameter tuning, again partly due to the slow training pro-

cess. Since we used a subset of the training data for the tuning runs, the conclusions 

drawn from the limited-size and limited-time runs were not transferable to a longer 

training process with full data. FLAT, on the other hand, achieved notably better scores 

with tuned hyperparameter values. The difference might have come from the learning 

rate schedulers used. For FLAT, we increased the learning rate and changed the sched-

uler from constant to linear, while for HIER, we increased the learning rate but did not 

change the scheduler type. For HIER, this entailed a constantly high learning rate after 

the initial warm-up phase, which we presume negatively affected the learning process. 

Among the two baseline models, FAST_HIER takes less time to train than FAST_FLAT 

(~1.5h vs. ~8h), but due to using word- and character-level n-grams in many models 

in the hierarchy, the total size grows very large (> 600 GB), making it less feasible for 

use in the industry. We compressed the models using the quantize method from the 

fastText library. The compression brought the space requirement down to ~80 GB 
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which can still be restrictive. In addition to this, quantization takes time – for models 

with less training data, even more time than the training itself – making the process 

much slower (~2 days and 10 hours to train and quantize all models). 

FAST_FLAT stands in the middle ground in terms of time and space requirements. It is 

slower to train than FAST_HIER but is still significantly faster than FLAT and faster 

than FAST_HIER with quantization. It consists of only one model and does not require 

much space even when word- and character-level n-grams are used. The sizes of FLAT 

and FAST_FLAT are similar, between 1 and 2 GB. 

7.2 Future Work 

In our experiments, we found that the dataset used for training the models contained 

many low-quality entries. This entailed low accuracy scores of all models on a dataset 

with verified labels, as the mismatch between the labels in the training set and the 

evaluation set was remarkable. Based on this finding, a direction for future work with 

HS classification is to focus on collecting data with verified quality. 

A source of information that was not utilized in this thesis but could prove beneficial 

for classification is the body of explanatory texts in the HS nomenclature. Furthermore, 

the nomenclature is supplemented by explanatory notes that are more detailed and 

often list examples of products for each class. Although the structure of these explan-

atory notes is different from product descriptions, they contain useful examples and 

keywords which could be used, e.g., for building a knowledge base to be used as an 

external source for aiding models with classification decisions. 

Another possibility would be to use additional features that often complement product 

descriptions as input to classification models. Such features might include the dimen-

sions or weight of a package, which could help infer the correct class when these de-

tails are relevant, even if this information is not stated explicitly in the product de-

scription. 

Looking at examples of product descriptions, we have seen that they often include 

grammatical errors, misplaced whitespaces, and other typing errors (e.g., plstic instead 

of plastic; s ize instead of size). Since our models use subwords, we can expect the effect 

of such errors to be somewhat less pronounced than for methods that assume whole 

words to be in vocabulary in the exact same form. Nevertheless, correcting errors 
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could be beneficial, as according to a recent publication [37] on the sensitivity of the 

Transformer-based BERT to misspellings, mistakes in informative words can signifi-

cantly affect performance. We did not analyze the effect of spelling errors on different 

models in this thesis. 

Possible directions for continued work with Transformer-based models would be to 

either resume pre-training or pre-train the encoder from scratch on in-domain data 

instead of directly fine-tuning an encoder pre-trained on large general corpora. As the 

pre-training process is unsupervised, only product descriptions are needed, and 

whether they also have correct labels or any labels at all would not matter for this 

purpose. Resumed pre-training is an alternative option, and it has been shown that 

using in-domain data for this purpose is beneficial [38]. 

Regarding product classification for customs declarations more generally, a logical 

next step is to move forward from the six-digit HS codes and explore possibilities for 

ten-digit TARIC code classification. When importing goods into the EU, the HS code is 

sufficient only for low-value consignments. For other cases, the ten-digit code is re-

quired, which also entails an increase in the number of classes and an even more fine-

grained nomenclature. Consequently, it is expected that collecting high-quality data 

for each of the classes is more difficult. 
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8 Conclusion 

In this thesis, we explored HS classification with different model architectures. As a 

baseline, we used fastText, a shallow classifier with one hidden layer. For comparison, 

we employed publicly available pre-trained language models to develop custom clas-

sifiers with flat and hierarchical structures. 

In the default configuration where fastText did not use subwords or word n-grams as 

features, Transformer-based models performed better. However, after some modifica-

tions, both flat and hierarchical fastText classifiers outperformed Transformer-based 

classifiers. These results suggest that fastText models can be improved more easily 

while tuning Transformer-based models is more time-consuming and complicated. 

Comparing the various flat and hierarchical approaches, we found that hierarchical 

fastText achieved better HS6-level accuracy than flat fastText but did so at the cost of 

a much larger model, which requires more time for training and compressing. The clas-

sifier per level approach used in the hierarchical Transformer-based classifier did not 

perform better than the flat Transformer-based classifier. When analyzing the possible 

reasons, we concluded that the main complexity lies in choosing between classes in 

the same subtree of the nomenclature, not selecting the correct subtree, which should 

be easier with the hierarchical model. 

For our task and dataset, using an encoder pre-trained on large corpora did not pro-

duce better results than the baseline that did not use pre-trained embeddings. This 

might indicate that with a dataset of this size, the benefit gained from knowledge trans-

ferred from the general to the task-specific domain was not large enough to compen-

sate for other disadvantages of Transformer-based models, such as the necessity of 

more training steps to reach convergence. 

From a qualitative analysis of the performances of selected models, we found that our 

dataset includes mislabeled entries and insufficiently detailed product descriptions. 

When evaluating the same models on a verified dataset, we discovered that the misla-

beled training examples had strongly affected the models, and their performance on 

the gold-labeled set was significantly lower. This finding emphasizes the importance 

of having access to high-quality training data. 
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Appendix 

I. Code 

The source code is available at: https://github.com/karmenkk/hs_prediction (acces-

sible upon request) 

https://github.com/karmenkk/hs_prediction
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II. Supports of HS2 Classes 

The following table includes the number of examples under each chapter in each split 

and in the total dataset. 

HS2 class train dev test1 test2 total 

84 2981122 372643 186329 186338 3726432 

85 2448888 306098 153059 153053 3061098 

73 1301439 162682 81351 81355 1626827 

90 913043 114141 57069 57068 1141321 

39 880543 110085 55039 55033 1100700 

62 777858 97229 48625 48627 972339 

61 539111 67388 33695 33698 673892 

40 533917 66741 33373 33368 667399 

82 468780 58599 29303 29304 585986 

94 456901 57114 28558 28555 571128 

42 343140 42896 21445 21443 428924 

83 315844 39481 19743 19743 394811 

95 289663 36205 18108 18107 362083 

33 285972 35749 17868 17869 357458 

48 246137 30768 15384 15382 307671 

63 241507 30187 15095 15091 301880 

70 196107 24513 12253 12257 245130 

32 195047 24382 12189 12193 243811 

96 179108 22388 11195 11195 223886 
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64 176008 22003 11002 11005 220018 

76 171733 21463 10734 10733 214663 

57 169334 21169 10584 10584 211671 

74 162567 20324 10161 10159 203211 

71 155763 19467 9734 9735 194699 

49 138143 17268 8634 8633 172678 

54 119796 14979 7476 7481 149732 

91 115940 14493 7247 7245 144925 

68 104669 13084 6539 6541 130833 

69 95397 11925 5963 5963 119248 

58 95319 11917 5956 5955 119147 

44 87964 10993 5489 5489 109935 

34 80536 10064 5034 5033 100667 

52 64634 8071 4028 4029 80762 

09 53762 6726 3356 3357 67201 

59 51854 6477 3240 3238 64809 

55 42709 5334 2665 2665 53373 

08 42444 5300 2659 2656 53059 

56 31022 3877 1942 1940 38781 

22 28207 3527 1762 1764 35260 

60 26824 3352 1677 1677 33530 

65 26530 3318 1659 1660 33167 

92 15726 1968 981 981 19656 
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41 15598 1948 979 979 19504 

97 13693 1711 856 857 17117 

67 10338 1293 645 645 12921 

75 9560 1193 597 596 11946 

37 7595 947 472 472 9486 

51 7567 944 465 465 9441 

50 6154 768 383 384 7689 

53 5774 721 362 361 7218 

66 5081 636 317 319 6353 

47 4690 584 294 294 5862 

24 3658 460 225 226 4569 

43 2296 286 144 143 2869 

05 1439 178 87 86 1790 
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III. Label Distribution Histograms 

The following figures illustrate the distribution of labels on each HS level in the full 

original dataset. 

0 1M 2M 3M
0

5

10

15

20

25

30

Support

N
u

m
b

e
r 
o

f 
c
la

s
s
e

s

 

Figure 9. Histogram with a complementary rug plot of HS2 class supports.  
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Figure 10. Histogram with a complementary rug plot of HS4 class supports. 

 

Figure 11. Histogram with a complementary rug plot of HS6 class supports. 
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IV. Default Hyperparameter Values 

Table 18 includes the default hyperparameter values used for training Transformer-

based models in all experiments where not stated otherwise. The learning rate sched-

uler value “constant with warm-up” means that initially (during a percentage of all 

training steps as defined by warm-up ratio), the learning rate increases from 0 to the 

defined value and then remains constant. These fixed values are inspired by the values 

used for fine-tuning on classification tasks in the paper introducing RoBERTa [26]. 

 

Table 18. Default hyperparameter values for Transformer-based models. 

Hyperparameter Value 

Learning rate 1e-5 

Learning rate scheduler Constant with warm-up 

Warm-up ratio 6% 

Batch size 32 

Dropout 0.1 

Weight decay 0.1 

Epochs 10 

Classifier hidden size 256 

Embedding size14 128 

 

Table 19 presents the default hyperparameters of the flat fastText model. MinCount 

refers to the minimal number of word occurrences required in the training set to use 

a word as a feature. Both minimum and maximum lengths of character n-grams being 

set to 0 means that character n-grams are not used. 

  

 

14 Not applicable to flat models. 
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Table 19. Default hyperparameter values for flat fastText classifier. 

Hyperparameter Value 

Learning rate 0.1 

MinCount 5 

Epochs 20 

Min length of character n-grams 0 

Max length of character n-grams 0 

Max length of word n-grams 1 

 

Table 20 presents the default hyperparameter values for the hierarchical version of 

fastText. In cases where the values differ depending on the level, the difference is 

shown. Otherwise, all models use the same values, regardless of their position in the 

hierarchy. 

 

Table 20. Default hyperparameters for hierarchical fastText classifier. 

Hyperparameter HS2 level HS4 level HS6 level 

Learning rate 0.1 

MinCount 5 2 1 

Epochs 50 25 10 

Min length of character n-grams 0 

Max length of character n-grams 0 

Max length of word n-grams 1 
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V. Comparisons of Hyperparameter Tuning Runs 

 

Figure 12. HS6 accuracy scores on dev_small during the hyperparameter tuning runs with flat 

Transformer-based classifier. The legend shows the learning rate (lr) values, classifier hidden 

size (hidden) values, and learning rate scheduler type (scheduler). 

 

 

Figure 13. HS6 accuracy scores on dev_small during the hyperparameter tuning runs with hi-

erarchical Transformer-based classifier. The legend shows the learning rate (lr) values, classi-

fier hidden size (hidden) values, and embedding size (emb) values. 
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VI. Hyperparameter Values After Tuning 

The following tables present the hyperparameter values used for training the final 

models. The values were either selected according to results from hyperparameter 

tuning runs or fixed as such from the beginning. 

 

Table 21. Hyperparameter values for the flat Transformer-based classifier.  

Hyperparameter Value 

Learning rate 5e-5 

Learning rate scheduler Linear 

Warm-up ratio 6% 

Batch size 32 

Dropout 0.1 

Weight decay 0.1 

Classifier hidden size 768 

 

Table 22. Hyperparameter values for the hierarchical Transformer-based classifier. 

Hyperparameter Value 

Learning rate 3e-5 

Learning rate scheduler Constant with warm-up 

Warm-up ratio 6% 

Batch size 32 

Dropout 0.1 

Weight decay 0.1 

Classifier hidden size 768 

Embedding size 128 
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Table 23. Hyperparameter values for the flat fastText classifier. 

Hyperparameter Value 

Learning rate 0.1 

MinCount 5 

Epochs 20 

Min length of character n-grams 3 

Max length of character n-grams 5 

Max length of word n-grams 3 

 

 

Figure 14. Number of models in the fastText hierarchical structure that selected each “number 

of epochs” value as the best. 
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Figure 15. Number of models in the fastText hierarchical structure that selected each “word n-

gram” value as the best. 

 

Figure 16. Number of models in the fastText hierarchical structure that selected each “learning 

rate” value as the best. 
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