
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Karmen Kink

Classification of E-Commerce Products

Based on Textual Product Descriptions

Master’s Thesis (30 ECTS)

Supervisors: Kairit Sirts, Karl-Oskar Masing

Tartu 2021

2

Classification of E-Commerce Products Based on Textual Product

Descriptions

Abstract:

Assigning Harmonized System (HS) codes to products is necessary to comply with cus-

toms regulations, gather statistics, and prevent fraud. Since the HS is a complex system

with many classes, automatic HS code classification is required to speed up the process

and ensure correctness. In this thesis, we explore two types of machine learning meth-

ods for HS classification – shallow neural network classifiers and deep neural network

classifiers that are based on the Transformer architecture. We find that with a large

dataset, shallow classifiers can be relatively easily improved to outperform Trans-

former-based classifiers, while tuning the latter is a more complex and time-consum-

ing task. We also discover that the training data includes erroneously labeled entries

and that this has a negative impact on the models.

Keywords:

Natural language processing, Harmonized System, multi-class classification

CERCS:

P176 Artificial Intelligence

3

E-kaubanduse toodete klassifitseerimine tekstiliste tootekirjel-

duste alusel

Lühikokkuvõte:

Harmoneeritud Süsteemi (HS) koodide määramine toodetele on vajalik tollinõuetele

vastamiseks, statistika kogumiseks ja maksupettuste vältimiseks. Automaatne HS-

koodide klassifitseerimine aitab aega säästa, sest HS on kompleksne ja paljude klas-

sidega süsteem, mistõttu käsitsi õige klassi valimine on keerukas ja aeganõudev. Selles

magistritöös kasutame HS-koodide klassifitseerimiseks kaht tüüpi masinõppemeeto-

deid: pindmistel tehisnärvivõrkudel põhinevaid klassifitseerijaid ja sügavatel te-

hisnärvivõrkudel, täpsemalt Transformer-arhitektuuril, põhinevaid klassifitseerijaid.

Selgub, et sellise suurusega andmestiku puhul, nagu meil on võimalik kasutada, saab

pindmisi klassifitseerijaid võrdlemisi kergesti arendada maani, kus nad annavad pare-

maid tulemusi kui sügavad närvivõrgud, viimaseid on aga oluliselt keerukam ja ae-

ganõudvam edasi arendada. Lisaks leidsime, et kasutatav andmestik sisaldab valesti

märgendatud kirjeid ning et sellel on negatiivne mõju mudelite kvaliteedile.

Võtmesõnad:

Loomuliku keele töötlus, Harmoneeritud Süsteem, mitmeklassiline klassifitseerimine

CERCS:

P176 Tehisintellekt

4

Table of Contents

1 Introduction .. 6

2 Background ... 9

2.1 The Harmonized System Nomenclature .. 9

2.2 Related Work .. 10

3 Technical background ... 13

3.1 Word Representations .. 13

3.2 Tokenization ... 14

3.3 Neural Networks ... 15

3.4 Attention Mechanism ... 17

3.5 Transformers .. 18

3.6 Transformer-based Language Models .. 20

4 Data .. 22

4.1 Splits ... 22

4.2 Preprocessing ... 25

5 Experiments .. 26

5.1 Setup ... 26

5.2 Transformer-based Classification Models ... 26

5.2.1 Types of Classifiers .. 27

5.2.2 Flat Classifier ... 28

5.2.3 Hierarchical Classifiers .. 30

5.3 Baseline Models ... 33

5.4 Metrics ... 34

5.5 Experiments .. 35

5.5.1 Preprocessing .. 35

5.5.2 Dataset Sampling .. 36

5

5.5.3 Hyperparameter Tuning.. 38

6 Results and Error Analysis .. 42

6.1 Results on Development Set ... 42

6.2 Error Analysis ... 43

6.2.1 Hierarchical Approach ... 43

6.2.2 Most Difficult Classes .. 44

6.2.3 Quality of Product Descriptions ... 45

6.2.4 Correctness of Labels .. 48

6.3 Results on Test Set .. 49

6.4 Results on Gold-Labeled Data .. 50

7 Discussion .. 53

7.1 Limitations ... 53

7.2 Future Work .. 54

8 Conclusion ... 56

References ... 57

Appendix .. 61

I. Code .. 61

II. Supports of HS2 Classes .. 62

III. Label Distribution Histograms ... 65

IV. Default Hyperparameter Values .. 67

V. Comparisons of Hyperparameter Tuning Runs .. 69

VI. Hyperparameter Values After Tuning ... 70

VII. License ... 73

6

1 Introduction

In the expanding field of international e-commerce, it is important to ensure that the

movement of goods across borders is as smooth and fast as possible. It is also crucial

that the goods have correct information attached to collect taxes, gather statistics and

prevent fraud.

This necessity for accurate product information is now more topical than ever. As of

the year 2021, some notable changes in the European Union's customs regulations will

take effect. When previously, goods with a value of up to 22€ were allowed to be im-

ported to the EU without value-added tax (VAT) and a customs declaration, then now

this lower bound will be removed, and all goods will need an accompanying customs

declaration1.

Among other effects, this means that merchants need to provide customs officials with

information about all products traveling between EU and non-EU countries. This in-

formation includes sufficiently detailed product descriptions and respective product

codes from the Harmonized System (HS) nomenclature2. The HS nomenclature is

meant to provide a common, internationally recognized classification system for prod-

ucts.

Automatically assigning an HS code or recommending a limited choice of possibly cor-

rect HS codes to a product is necessary to minimize the amount of manual labor, avoid

human error, speed up the process, and avoid delays or penalties caused by mistakenly

assigned HS codes. Considering that all imported products will need a customs decla-

ration that includes the HS code and that the number of low-value consignments im-

ported to the EU is high3, the mentioned legislation change is expected to drastically

increase the need for such automatic classification.

1 https://ec.europa.eu/taxation_customs/business/vat/modernising-vat-cross-border-ecom-
merce_en

2 https://unstats.un.org/unsd/tradekb/Knowledgebase/50018/Harmonized-Commodity-Descrip-
tion-and-Coding-Systems-HS

3 https://ec.europa.eu/taxation_customs/news/new-form-customs-declaration-low-value-consign-
ments_en

7

In this thesis, HS code classification is performed using only product descriptions as

input. In some cases, additional features could be considered, such as origin and des-

tination country, dimensions of the package, etc. Some examples of product descrip-

tions with corresponding HS codes are shown in Table 1. The table also presents ex-

planatory texts, i.e., the texts that describe these classes in the nomenclature.

Table 1. Exemplary product descriptions with corresponding codes and explanatory texts

from the HS nomenclature.

Product Description HS Code Explanatory Text

SPA CEYLON RED SANDAL &
LEMONGRASS - Massage & Bath
Oil(ISFTA CERTIFICATE NO:
CO/ISFTA/2019/12058 DATED:
14.11.2019) (CD

330730 Perfumed bath salts and other
bath and shower preparations

Bicycle Parts (BICYCLE SPARE
PARTS) (grip)(1 SET) -

871499 Parts and accessories, for bicycles,
n.e.s.

The classification task is difficult due to a large number of classes – there are more

than 5,300 six-digit HS codes in the nomenclature. In addition to this, the datasets we

have access to are imbalanced, that is, the distribution of classes is strongly skewed.

Another complication is that product descriptions can be very short, include spelling

errors or seemingly non-informative noise. Lastly, differences between classes can be

minimal, and separating lines are sometimes drawn based on tiny details.

The task of HS classification has been tackled in previous publications using traditional

machine learning methods like support vector machines and Naïve Bayes [1], as well

as deep learning approaches like convolutional neural networks [2]. However, the field

of Natural Language Processing (NLP) has seen rapid improvements lately with the

progress of pre-trained language models such as BERT [3], which is based on the

Transformer architecture [4]. To our knowledge, there are currently no publications

where such pre-trained language models are applied to HS classification, and there-

fore, we aim to experiment with these methods.

8

Our objective is to build a classifier using neural networks that is able to predict the

HS code based on a textual product description among a large number of classes. Based

on the state-of-the-art results achieved with Transformer-based models on various

NLP tasks, we apply this architecture as the basis of our classification models. Methods

for handling class imbalance and taking advantage of the nomenclature's hierarchical

structure are explored and experimented with.

Chapter 2 of this thesis introduces the HS nomenclature and gives an overview of pub-

lications on related topics. Chapter 3 describes the technical concepts and architec-

tures used. Chapter 4 presents an overview of the dataset and discusses preprocessing

of the data. Chapter 5 describes the experiments conducted with different types of

classifiers. Chapter 6 presents the results on evaluation splits and a qualitative analy-

sis of these results. Chapter 7 discusses the limitations of this thesis and directions for

future work.

This thesis is part of the project “A Digital Infrastructure for Cross Border E-Commerce

(SaaS) Applied Research,” conducted by STACC OÜ and Tallinn University of Technol-

ogy. The partner company that the contributing parties are developing the digital in-

frastructure for and with is Eurora Solutions OÜ.

9

2 Background

This chapter describes the nomenclature used for product classification and intro-

duces previous publications on related topics.

2.1 The Harmonized System Nomenclature

The Harmonized Commodity Description and Coding System, which we will refer to as

simply the Harmonized System or HS in this thesis, was created by the World Customs

Organization [5]. The system is used by most international traders and serves to unify

product classification, provides a basis for customs duties calculations, helps monitor

and gather statistics of tradeable goods, and more.

The HS has a hierarchical structure and is divided into levels. The first level is known

as the section and is not explicitly represented in the HS code. However, one section

contains chapters of a similar topic, e.g., under the section Vegetable products, we can

find a chapter titled Coffee, tea, maté and spices, as well as one titled Cereals.

The other levels are reflected in the HS code. As illustrated in Table 2, the first two

digits of a six-digit HS code signify the chapter that a product belongs to. The first four

digits signify the corresponding heading, and the full six digits signify the correspond-

ing subheading. We will refer to these (sub)parts of the HS code as HS2, HS4, and HS6

throughout this thesis.

Table 2. Structure of the HS.

Section XI – Textiles and textile articles

Chapter
(HS2)

52 Cotton

Heading
(HS4)

5210 Woven fabrics of cotton, containing predominantly,
but < 85% cotton by weight, mixed principally or
solely with man-made fibres and weighing <= 200
g/m²

Subheading
(HS6)

521039 Woven fabrics of cotton, containing predominantly,
but < 85% cotton by weight, mixed principally or
solely with man-made fibres and weighing <= 200
g/m², dyed (excl. those in three-thread or four-
thread twill, incl. cross twill, and plain woven fab-
rics)

10

The levels of the HS are ordered from more general to more specific, meaning that

chapters are broad classes of quite different types of goods, while headings under a

given chapter are its more specific subclasses, and subheadings under a given heading

are still more specific subclasses of that.

Due to the evolving nature of international trade and new inventions, the HS is updated

periodically. In this thesis, we focus on the current state of the nomenclature, i.e., its

2017 edition [6]. In total, this edition includes 97 chapters (of which one is reserved

for future use), 1222 headings, and 5387 subheadings [7]. However, not all these clas-

ses are present in the datasets that we use since some chapters and their subclasses

are out of scope for our partner.

The HS is the first part of a more detailed classification system, the Integrated Tariff of

the European Union (TARIC)4, consisting of ten digits. The first six correspond to the

HS code, the first eight correspond to the Combined Nomenclature code, and the full

ten digits then make up a TARIC code. The scope of this thesis is limited to HS codes,

that is, the first six digits.

2.2 Related Work

HS code classification has not been widely covered in previous publications. The ap-

proaches in the few topical articles are rather varied, though, ranging from back-

ground nets to convolutional neural networks.

One of the earliest publications on the subject tackles the classification problem with

background nets [8]. According to the article, background nets are weighted undi-

rected graphs where vertices represent terms and edge weights represent their co-

occurrence counts in the training data. Classification with this approach works by

learning a background net for each category from the training data. During inference,

the input text is used to construct its own background net which is then compared to

the learned nets. An acceptance criterion is used for choosing the category whose

4 https://ec.europa.eu/taxation_customs/business/calculation-customs-duties/what-is-common-cus-
toms-tariff/taric_en

11

background net’s acceptance to the input’s net is maximal. In this paper, only two chap-

ters and their subclasses were used, and classification was performed separately

within each of the two chapters.

In a recent publication, several machine learning models were experimented with and

compared [1]. Both the dataset used and its number of categories were large, and se-

vere down-sampling was performed due to computational limitations and class imbal-

ance. However, the impact of the sampling was not analyzed. The authors compared

various models by their performance on only the heading, that is, the first four digits,

and on the full HS code. The best results were reportedly achieved with linear support

vector machine (SVM) and random forest models, while the worst performers were

decision tree and Naïve Bayes models.

Convolutional neural networks (CNNs) have been used with only textual inputs in the

form of product descriptions [2] but also with both text and image inputs in a model

fusion setup [9]. In the former work, part of the focus was on pre-training domain-

specific word embeddings on additional unlabeled product data scraped from the web,

and part on creating a customized model architecture. In the latter publication, the

images and product descriptions used for training and testing were scraped from a

trade website. The authors found that using only images does not provide good per-

formance while using only product descriptions is a much better option, and the com-

bination of the two gives a slight improvement over the text-only model. However, in

this paper, classification was performed on just four different classes.

Possibilities for using similarity measures for assessing the correctness of already as-

signed HS codes or predicting/recommending HS codes have also been explored [10].

To predict an HS code for a given input description, the proposed method uses a pre-

trained doc2vec [11] model for finding the most similar product descriptions from

training data according to cosine similarity and then finds the weighted mode from a

set of most similar descriptions to predict its corresponding HS code. In order to assess

the correctness of already assigned HS codes, the same cosine similarities from

doc2vec are used, but additionally, the semantic similarity between the HS codes is

calculated based on the taxonomy structure.

12

There have also been attempts to model the hierarchy explicitly. An example of this is

the Deep Hierarchical Classification Network [12], developed for the task of predicting

the correct category for online shop products. This model includes a flat neural net-

work for creating the root representation of an input sequence, followed by one linear

layer per hierarchy level. Each layer receives as input the root representation concat-

enated with the representation from the previous level. Additionally, it features a hi-

erarchical loss where the losses from each layer and layer mismatch penalties are

taken into account. The authors found that both sharing the representations between

layers and the proposed loss function had a positive impact on performance, with the

former contributing more than the latter.

13

3 Technical background

This chapter introduces the most important concepts related to or used in this thesis

– word representations, neural networks, attention mechanism, and the Transformer

architecture.

3.1 Word Representations

When working with textual data such as product descriptions, we need a way to rep-

resent this data in vectorized form so that it would be usable in a neural network. This

subsection describes some methods for creating such representations and is based on

the book Neural Network Methods for Natural Language Processing by Yoav Goldberg

[13].

The most basic concept would be to convert our data into what are called one-hot en-

codings. This means that the vector for each word would be as long as our vocabulary,

containing a large number of zeros and a single one at the index that corresponds to

this exact word. However, this approach has two main drawbacks. Firstly, such repre-

sentations do not capture the semantic relatedness between words since each word is

considered independent in the representation space and distances from a given word

to all other words are equal. Secondly, the dimensionality of the representations would

be too high for computationally heavier models.

Distributed representations are an alternative solution and are commonly used with

neural networks. Unlike one-hot encodings, they have lower dimensionality and allow

semantic relatedness to be learned. In the case of distributed representations, the di-

mensions do not correspond to specific words anymore. Rather, the information about

some aspect of meaning can be distributed across many dimensions; thus, the dimen-

sions are difficult to interpret independently. Such representations can be compared

using distance measures, e.g., cosine similarity, to identify the semantic similarity be-

tween words.

Distributed representations can be learned via unsupervised pre-training. Language

modeling, an NLP task where the goal is to predict the probability of a given sentence

occurring in a language, is one such task that does not require labeled data and can

therefore be learned in an unsupervised way. Learning the task of language modeling

14

also creates vector representations for words since the model needs to predict proba-

bilities for all words in the vocabulary. Unsupervised training means that vast amounts

of unlabeled data can be used with the objective of creating similar representations to

words that appear in similar contexts, relying on the distributional hypothesis [14].

While language modeling can be used to create word representations, it is computa-

tionally rather expensive due to its requirement of outputting a probability distribu-

tion over the whole vocabulary. Several algorithms such as Word2Vec [15] or GloVe

[16] have been developed for obtaining similar distributed representations as lan-

guage modeling allows to obtain but in a more efficient way. However, there are still

limitations to these approaches – they allow learning one representation per surface

form of a word. For example, the word party would receive one common representa-

tion, while it would often be necessary to distinguish between its senses.

Advancements in this regard have been made with the introduction of contextualized

word representations such as Embeddings from Language Models (ELMo) [17]. ELMo

creates a representation for a given token as a function of all tokens in the input se-

quence. This means that the representation of a token depends on its current context

and is not fixed in a learned embedding matrix, allowing to dynamically change the

representation for different word senses and according to smaller changes in context.

A further improvement to contextualized representations was made with Bidirec-

tional Encoder Representations from Transformers (BERT) [3]. One of the main differ-

ences compared to ELMo is BERT's deep bidirectionality which means that context

from both left and right sides can be more effectively incorporated into the represen-

tations.

3.2 Tokenization

In the previous subsection, the word token occurred, signifying some unit with mean-

ing in a sequence of text. However, there are multiple ways of breaking a sequence into

tokens, and the choice of tokenization method is often connected to the choice of pre-

trained embeddings. To map parts of a given input sequence to entries in an existing

vocabulary with corresponding vector representations, we need to use the same to-

kenization method as was used when the pre-trained representations were first

learned.

15

An inherent problem when working with natural language texts is the possibly vast

vocabulary. A single word can take on numerous slightly different forms, words are

often compounded or abbreviated, and languages evolve in time. Therefore, using a

simple approach such as separating text into tokens by whitespaces for learning a fixed

size vocabulary from a given training corpus is problematic in several ways. Firstly,

the size of the vocabulary can grow very large, leading to computationally expensive

models. Secondly, models using such a vocabulary are bound to encounter unseen

word forms in new data. These forms do not have a corresponding representation and

must be represented by a generic “unknown token” representation.

Byte Pair Encoding (BPE) [18] is a tokenization method proposed to alleviate this

problem. Its core idea is to build a fixed-size vocabulary of character sequences that

may be either full words, subwords, or single characters. The method is based on a

data compression technique with the same name. It works by iteratively merging fre-

quent character combinations into one vocabulary unit until reaching a predefined vo-

cabulary size limit. As a result, frequent character sequences will be represented as a

whole in the vocabulary, while rarer sequences are represented by their parts.

An extension to regular, character-based BPE is byte-level BPE [19]. When the training

corpora are large and heterogeneous, as is often the case when pre-training large lan-

guage models, all the various single Unicode characters can make up a significant part

of the vocabulary. This variant makes the base vocabulary much smaller since it con-

siders a byte as a basic unit instead of a character.

3.3 Neural Networks

In this thesis, we use model architectures based on neural networks to tackle HS code

classification. This subsection is based on chapter 6 of the book Deep Learning by Ian

Goodfellow, Yoshua Bengio, and Aaron Courville [20].

Feed-forward neural networks consist of an input layer, one or more hidden layers,

and an output layer. Such networks are called feed-forward because of how infor-

mation flows through them – from input to output, in one direction only. Hidden layers,

the basic building blocks of neural networks, usually consist of a determined number

of hidden units. Each hidden unit has its corresponding vector of weights and a bias

value, which make up the trainable parameters of the neural network.

16

Since computations in neural networks are performed in batches, the weight vectors

of all units within a hidden layer can be denoted as a single matrix ὡ and the corre-

sponding biases as a single vector ὦ. For a given input vector ὼ, a hidden layer performs

a linear transformation followed by a non-linear activation function Ὣ, and outputs a

hidden representation vector Ὤ:

Ὤ Ὣὡ ὼ ὦ.

The objective of a neural network is to approximate a function that maps inputs to

respective outputs, e.g., text to classes in the case of HS classification. To learn suitable

values for a neural network's parameters for approximating a function, we need to

define a loss function and an optimization method. The loss function determines how

exactly the mismatch between the model’s outputs and actual labels is calculated. This,

in turn, affects how the parameters are tuned since neural networks use gradient-

based learning where each parameter is tweaked during back-propagation according

to how it contributes to the total loss, using the chosen optimization method.

Recurrent neural networks (RNNs) are a type of neural networks that are able to

model the connections between different positions in the input. Thus, they are suitable

for sequential inputs such as text or time series data. RNNs treat the input as a se-

quence of timesteps and allow cyclical connections, as opposed to feed-forward net-

works where information flows only in one direction. The hidden representations for

each position in the input are calculated sequentially, with the output of a given

timestep contributing to the input of the next timesteps. In applications where context

from both left and right sides of the input is available, bidirectional RNNs [21] are used,

meaning that one forward and one backward RNN are applied to an input, and the

representations from both are combined.

A drawback of regular RNNs is their inability to capture long dependencies, i.e., con-

nections between input positions far away from each other, due to vanishing or ex-

ploding gradients during back-propagation. This problem has been addressed with ar-

chitectures such as Long Short-Term Memory (LSTM) [22] which consists of memory

blocks with dedicated non-linear activation gates. The mentioned gates help the model

to decide when to overwrite the information from previous timesteps with new inputs

and when to preserve it.

17

3.4 Attention Mechanism

Although RNNs can capture dependencies between different input positions, which is

highly beneficial when working with textual data, some limitations remain. Firstly,

even further developments such as LSTMs still suffer from forgetting very distant yet

relevant information. Secondly, RNNs are sequential, and therefore one training exam-

ple cannot be processed in parallel, which becomes a computational bottleneck for

longer sequences.

The attention mechanism was proposed in 2014 as a novel method for neural machine

translation [23] to address these limitations. In the introducing paper, attention was

described as building a context vector by creating a weighted sum of hidden represen-

tations. More weight is assigned to representations of tokens that are more relevant

or important for the previous hidden state created by the decoder. The scores for each

token (that are later converted into probabilities for calculating the weighted sum) are

computed using an alignment model.

More specifically, the encoder creates a hidden representation Ὤ for each token using

a bidirectional RNN. Then, the decoder generates an output sequence, at each step us-

ing the hidden state and output from its previous timestep, and a context vector ὧ. The

attention mechanism allows having a different context vector ὧ for each timestep Ὥ,

since for each step the weighted sum of the encoder’s representations is computed

again, considering the last hidden state of the decoder:

ὧ В Ὤ.

In this equation, is the weight applied to the hidden representation Ὤ at the Ὥ-th

timestep in the decoder, and Ὕ is the last timestep as ὼ represents the length of the

input sequence. The weight is computed using the softmax function, which maps

its inputs to range 0…1 such that the sum of all outputs equals 1:

В
.

Here, Ὡ represents the output of the alignment model, which is based on the previous

hidden state of the decoder ί and the hidden representation Ὤ of the token at posi-

tion Ὦ, produced by the encoder:

18

Ὡ ὥί ȟὬ .

Here, ὥ is the alignment model, for which several options have been proposed. In the

previously mentioned article by Bahdanau [23], the alignment model was a single-

layer feed-forward network:

ὥί ȟὬ ὺÔÁÎÈ ὡί ὟὬ ,

where ὺ is a trainable weight vector and ὡ and Ὗ are trainable weight matrices.

The paper demonstrated that not only is the proposed architecture better at translat-

ing long sequences than traditional encoder-decoder models without attention, but it

also brought a significant improvement in performance for shorter sequences. It was

emphasized that building a new alignment for each decoder step had a strong positive

impact.

In another article on attention-based neural machine translation [24], Luong et al. de-

scribed other types of alignment models. One of the types was the general alignment

score function:

ίὧέὶὩίȟὬ ίὡὬ

where ὡ is a trainable weight matrix, ί is the current hidden state of the decoder and

 Ὤ, as previously, the hidden representation of the token at position Ὦ from the en-

coder. This variant has also been referred to as bilinear attention [25], which is the

term we will use in this thesis as well.

3.5 Transformers

Based on the idea of attention and parallel processing, a neural network architecture

named the Transformer was developed [4]. It was originally intended for sequence-to-

sequence problems such as machine translation and comprised of an encoder and a

decoder. A core component of the architecture is multi-head attention which elimi-

nates the need for using any recurrence in the network, making the training process

more parallelizable.

Multi-head attention means that an attention function is applied not only once for a

given input, but Ὤ times where Ὤ indicates the number of heads in the multi-head at-

19

tention block (illustrated in the right part of Figure 1). The dimensionality of each at-

tention head is reduced to ensure that the dimensionality of the input is maintained

and to limit computational costs. To do so, the inputs are passed through linear layers,

which project them to lower dimensionality before applying the attention function of

each head. Finally, the results are concatenated into a single output of the whole multi-

head attention block. This output is passed through another linear layer.

Figure 1. Scaled dot-product attention mechanism and multi-head attention as implemented

in the Transformer architecture. [4]

While there are several types of attention functions, the Transformer uses a variant

called scaled dot-product attention, illustrated in the left part of Figure 1. The inputs

to the attention function are called queries, keys, and values. The attention mechanism

aims to determine the level of compatibility between the queries and the keys and cal-

culate a weighted sum of the values where the weights describe this compatibility.

After projecting inputs down through linear layers, we have a matrix of queries ὗ, a

matrix of keys ὑ, and a matrix of values ὠ (a vector for each input, combined into ma-

trices for batch-processing). As shown in the left part of Figure 1, a dot product be-

tween ὗ and ὑ is then calculated. The result is scaled by where Ὠ denotes the

dimensionality of the query and key matrices. This results in a vector of scores for each

20

entry in the batch. These scores are turned into weights using the softmax function,

and the output of the attention function is a weighted sum of the value vectors in ὠ:

ὃὸὸὩὲὸὭέὲὗȟὑȟὠ ίέὪὸάὥὼὠ.

Which elements are used as queries and which as keys and values depends on where

the attention function is applied. In sequence-to-sequence models for which the Trans-

former was originally proposed, multi-head attention is used between the encoder and

the decoder. In this case, query inputs are taken from the previous decoder layer, while

key and value inputs come from the last layer of the encoder.

Elsewhere in the Transformer, multi-head attention is used in self-attention layers in

both the encoder and the decoder. The name self-attention comes from the fact that all

inputs to the attention function come from the same place. More specifically, for self-

attention, both the query and the key-value pairs are taken from the previous layer's

output. In the self-attention layers of the decoder, each token can only “attend” to to-

kens to the left of it; therefore, the rest are masked out and are not given any weight

(as denoted by “optional mask” in Figure 1).

The encoder and the decoder of the Transformer model are both stacks of identical

layers where the output of one layer is the input to the next. Although the structure of

the layers is the same, the parameters are not shared. Each layer in the encoder in-

cludes a multi-head attention block and a feed-forward network, both followed by

layer normalization. The decoder layers additionally contain the previously men-

tioned encoder-decoder attention blocks.

3.6 Transformer-based Language Models

The idea of the Transformer has been transferred to language modeling and represen-

tation learning. Unlike the original encoder-decoder structure, language models use

only the encoder part of the Transformer. Due to the success of such language model-

ing approaches on NLP benchmark tasks, many works have been published to further

improve these architectures or make them more efficient.

BERT was presented in a 2019 paper as a language representation model based on

Transformers [3]. The article described two variants of BERT, base and large, where

the former consists of 12 and the latter of 24 layers. The dimensionalities of hidden

21

layers and the number of attention heads also differ. To learn general representations,

BERT models are pre-trained on unlabeled data using two pre-training objectives –

masked language modeling (MLM) and next sentence prediction (NSP).

The MLM task means that, given an input sequence of tokens, a randomly chosen frac-

tion of the tokens is masked out, and the model is asked to “fill the gaps” by predicting

the missing tokens. The NSP task includes presenting the model with two input se-

quences and asking it to predict whether one sentence follows the other in the source

text or not.

The authors of BERT argue that using the MLM task instead of traditional forward or

backward language models allows the model to achieve deep bidirectionality instead

of a shallow one that results from a concatenation of forward and backward contexts.

The reason for adding the NSP task to pre-training was that many tasks where word

representations are used require modeling connections between a pair of sentences.

Soon after the publication of BERT, an optimized version of it was proposed, named

RoBERTa, which stands for Robustly Optimized BERT Pre-Training Approach [26]. Its

authors used the same model architecture but applied several changes to the pre-

training process. The main modifications were as follows:

1. changing the masking strategy from static to dynamic for the MLM task (instead

of masking tokens once during preprocessing, a new masking pattern is created

every time the model sees an input sequence);

2. removing the NSP task;

3. increasing the batch size;

4. using byte-level instead of character-level BPE;

5. training on more data for a longer time.

Both BERT and RoBERTa models have been made available to the community, making

it possible for us to use them as a basis for our classification models. As the authors of

RoBERTa showed that their design choices improved performance on benchmark

tasks significantly, the pre-trained RoBERTa model is the base model of choice in this

thesis, to which we add new, task-specific layers.

22

4 Data

This chapter describes the dataset used in this thesis and the methods of prepro-

cessing applied.

4.1 Splits

The dataset, provided to us by our partner, includes a total of 19,680,566 product de-

scriptions labeled with respective HS codes. We split the dataset into training, devel-

opment, and two test sets with sizes making up 80%, 10%, 5%, and 5% of the total

dataset. The size of each split is shown in Table 3. We separate two test sets instead of

one due to the nature of the project, which includes constant development and com-

parisons of models. The second test set is not used for evaluations in this thesis, as it

will only be used later in the project.

As the classes are highly imbalanced, we ensure that their distribution in each split is

similar, using the stratified option in the train_test_split function from the scikit-learn

library [27]. Since some classes are represented by very few examples in the full da-

taset, not all classes that exist in the training set also exist in the development and/or

test set.

Table 3. Number of examples in each split of the dataset.

train dev test1 test2 total

15,744,451 1,968,057 984,029 984,029 19,680,566

Table 4 presents a selection of statistics about the distribution of classes in each split

and in total for each level in the HS nomenclature. For the HS2 level, a more detailed

overview of all chapters and their supports (i.e., number of examples in a given chap-

ter) is provided in appendix II on page 62.

23

Table 4. The number of classes and the mean, minimum, median, and maximum supports in

each split and in total.

train dev test1 test2 total

HS2

classes 55 55 55 55 55

mean 286,263 35,783 17,891 17,891 357,828

min 1439 178 87 86 1790

median 104,669 13,084 6539 6541 130,833

max 2,981,122 372,643 186,329 186,338 3,726,432

HS4

classes 752 749 742 742 752

mean 20,937 2,628 1,326 1,326 26,171

min 2 1 1 1 2

median 3874 489 257 257 4843

max 417,038 52,130 26,068 26,068 521,304

HS6

classes 3226 3181 3127 3111 3226

mean 4880 619 315 316 6101

min 2 1 1 1 2

median 839 109 57 58 1048

max 289,329 36,168 18,083 18,083 361,663

24

On the HS2 level, the dataset contains 55 classes. The largest class is chapter 84 (Nu-

clear reactors, boilers, machinery and mechanical appliances; parts thereof) with

3,726,432 examples in the dataset, 18.9% of all examples. On the HS4 level, the dataset

contains 752 classes. The largest class is heading 7318 (Screws, bolts, nuts, coach

screws, screw hooks, rivets, cotters, cotter pins, washers, incl. spring washers, and similar

articles, of iron or steel (excl. lag screws, stoppers, plugs and the like, threaded)) with

521,304 examples making up 2.65% of all examples. On the HS6 level, the dataset con-

tains 3226 classes. The majority class is the subheading 392690 (Articles of plastics

and articles of other materials of heading 3901 to 3914, n.e.s.) with 361,663 examples,

1.84% of all examples.

Table 4 illustrates that the difference between the mean and median support per class

is large, which indicates that the distribution is skewed – there are many classes with

rather few examples and few classes with very many examples. It also shows that al-

ready on the HS4 level, there are classes represented by only a few examples. The dis-

tributions are visualized in appendix III on page 65.

Due to the relatively large size of the development set, we further split it into two non-

overlapping parts. We reduce the sizes of the two resulting datasets by randomly un-

dersampling large classes and name these subsets dev_small and dev_large. Under-

sampling enables us to preserve small classes while reducing the total size to speed up

the development process. In dev_small, we keep a maximum of 150 examples per HS6

class, making the total size 230,876 examples. In dev_large, we keep a maximum of

1000 examples per HS6 class, making the total size 611,262 examples. The sizes and

class counts for both subsets are presented in Table 5.

Table 5. Number of classes and total size of dev_small and dev_large.

dev_small dev_large

HS2 55 55

HS4 740 749

HS6 3081 3181

size 230,876 611,262

25

We use dev_small for evaluations during training and hyperparameter tuning, and

dev_large for first comparisons between trained models and error analyses.

4.2 Preprocessing

There are cases in the dataset where the same product description occurs with multi-

ple labels (HS codes). The labels can be completely different or match up to some level

(e.g., 090111 vs. 090220). We remove all such ambiguous duplicates from the training

split before training our models, as we do not have the resources to verify which, if

any, of the multiple assigned labels is correct. This removal policy decreases the size

of the training split by 491,971 examples. All classes are still preserved, meaning that

all those with only a few examples had some descriptions unique to a particular class.

Although several previous works on HS classification perform strict preprocessing on

product descriptions, such as removing all non-alphabetic characters [1], [8], [10],

punctuation [1], [2], predefined stop words [1], [8]–[10] or contents within brackets

[8], we choose a different approach. Our intuition is that numbers might be helpful for

classification since they can be the primary or only distinguishing element between

several classes. Some examples are the composition of fibers in textiles, as in Sewing

thread, containing >= 85% cotton by weight (excl. that put up for retail sale) versus Sew-

ing thread, containing predominantly, but < 85% cotton by weight (excl. that put up for

retail sale) or measurements of furniture, such as Wooden furniture for offices, of <= 80

cm in height (excl. desks and seats) versus Wooden furniture for offices, of > 80 cm in

height (excl. cupboards). In such cases, removing the numbers during preprocessing

creates more ambiguous duplicates, as the only differing part is removed from the text

while labels remain the same. Furthermore, sequences of mixed alphanumeric sym-

bols might indicate model names, also possibly useful for classification.

26

5 Experiments

This chapter describes the setup of experiments, the architecture of proposed and

baseline models, and the methods used for evaluation.

5.1 Setup

The classification models developed in this work are built on pre-trained Transformer

models from the Hugging Face Transformers library [28]. The library provides tools

for loading and fine-tuning various pre-trained models that can be extended to add

custom layers or other functionality. We use the PyTorch library [29] for model cus-

tomization. Additionally, we use the Weights and Biases library [30] to keep track of

our experiments, create intermediate reports, manage hyperparameter tuning runs,

and log metadata related to each run.

Due to the size of our datasets, we need an efficient way to process the data. We use

the Hugging Face Datasets library5, which provides two significant benefits. Firstly, it

performs memory mapping, meaning that large datasets do not have to fit into RAM at

once. Secondly, it performs caching, meaning that the same processing on a certain

dataset is never done more than once.

Experiments are carried out in the Rocket Cluster of the High Performance Computing

Center of the University of Tartu [31]. The more resource-demanding runs are per-

formed on the GPU nodes with NVIDIA Tesla V100 GPUs. Other runs are performed on

CPU nodes.

5.2 Transformer-based Classification Models

We experiment with two types of classification models based on the Transformer ar-

chitecture for HS classification. The first type is a flat model with one classification

head trained to predict the full HS6 directly. The second type is a hierarchical model

with three classification heads, one for each HS level. The second type further branches

into two subtypes with different attention layers.

5 https://huggingface.co/docs/datasets/

27

5.2.1 Types of Classifiers

In a survey of hierarchical classification [32], Silla and Freitas have described three

approaches to classification where the classes form a tree-structured hierarchy. First,

there are flat classifiers that predict classes in the leaf nodes and ignore the hierar-

chical structure (illustrated in Figure 2). Our flat classifiers, described in the following

sections, belong to this type.

Figure 2. Structure of the flat classifier approach [32]. It must be noted that unlike in this ex-

ample, in our task of HS classification, all leaf nodes are on the same level (i.e., at the same

distance from the root node). Even if an HS4 class does not branch further into several HS6

codes, it is represented as HS4 + ‘00’ on the HS6 level.

Second, there are local classifiers where a set of classifiers is used – either one binary

classifier per node, one multi-class classifier per parent node, or one multi-class clas-

sifier per level (illustrated in Figure 3). Third, there are global classifiers where simi-

larly to the flat approach, a single classifier is trained, but in this case, it learns the

hierarchical structure and can also predict classes from intermediate levels, not only

leaf nodes.

28

Figure 3. Structure of the local classifier per level approach [32].

According to the definitions from Silla and Freitas, our hierarchical approach can be

considered a fusion of local classifier per level and global classifier methods. It is a local

classifier in the sense that a classification decision is made on each level. However, we

do not train three independent models with each their own training datasets; instead,

we train a single model that includes one decision point on each level and passes

through the levels in a top-down manner.

5.2.2 Flat Classifier

Our flat classification model consists of a pre-trained RoBERTa-base encoder and one

classification head. The suffix base refers to the size of the encoder, as the authors of

RoBERTa proposed two variants, base with 12 layers in the encoder and large with 24

layers in the encoder. Although the large variant was shown to produce better results

on benchmark tasks, it is also much slower to train due to having more parameters

(~125 million in base vs. ~355 million in large). Because of this, we use the base vari-

ant in our experiments.

The authors of BERT have described two approaches for using their proposed models

for downstream tasks – the fine-tuning approach and the feature-based approach [3].

With additional layers on top of the pre-trained encoder, the two differ in how the

model is trained. In the fine-tuning approach, all parameters, including those of the

encoder, are jointly trained when training on the labeled dataset of the downstream

task. The feature-based approach, on the other hand, means that the encoder repre-

sentations are used as fixed features. In this approach, only the parameters in the ad-

ditional layers are trained during supervised training. Since fine-tuning was shown to

29

produce somewhat better results and the feature-based approach requires additional

experimentation with which encoder layers to use for extracting the features, we de-

cide to use only the fine-tuning approach in this work.

Figure 4. Architecture of the flat Transformer-based classifier. The tokenization of an example

input description is shown. The outputs are scores for each HS6 class.

We use the RobertaForSequenceClassification class from the Hugging Face Transform-

ers library6, as it has already been implemented as a generic class for sequence classi-

6 https://huggingface.co/transformers/v4.3.3/index.html

30

fication. It includes the RoBERTa encoder and a classification head consisting of a lin-

ear layer, a dropout layer, and another linear layer that projects the hidden represen-

tations to vectors with as many elements as classes in the dataset. These vectors are

passed as input to the loss function, which calculates the cross-entropy loss between

the predictions and the true labels. The structure of the model is illustrated in Figure

4.

The input to the classification head is the hidden representation of the special <s> to-

ken from the last layer of the encoder. The <s> token is prepended to each example

during tokenization. It has been used as an aggregate representation of the input in

previous publications, including the original papers introducing BERT and RoBERTa

[3], [26].

5.2.3 Hierarchical Classifiers

As an alternative to the flat model, which directly predicts the complete HS code, we

explore possibilities for modeling the hierarchical structure of the nomenclature.

From the local classifier types described by Silla and Freitas [32], we prefer the classi-

fier per level approach. This approach helps us limit the number of models to be

trained and avoid the overhead of managing and storing many models. As we have 55

and 752 classes on HS2 and HS4 levels, respectively, using the classifier per parent

node approach would mean training 808 models. Instead of this, we build a single

model that includes three classification heads and passes the predictions from previ-

ous layers to the next.

The main structure of the hierarchical classifiers is illustrated in Figure 5. As men-

tioned before, the model includes a classification head for each level of the HS. The

inner architecture of the classification heads is identical to that in the flat model.

31

Figure 5. Architecture of the hierarchical Transformer-based classifier. The dotted lines indi-

cate that in the version using self-attention, the inputs to attention layers are only the encoder

representations, not the class embeddings.

Additionally, the hierarchical classifiers include attention layers between HS2-HS4

and HS4-HS6 classification heads. The type of attention function is the discriminative

part between the two subtypes of our hierarchical classifiers – one subtype has bilin-

ear attention layers while the other includes self-attention layers. The self-attention

layers are identical with those in the RoBERTa encoder, i.e., the queries, keys, and val-

ues are all computed by multiplying the same input (in this case, the hidden represen-

tations from the last layer of the encoder) with respective weight matrices.

32

The intuition behind extra attention layers is that we expect the most important parts

of product descriptions to be different depending on the level. For example, making an

HS2-level prediction does not usually require precise details about a product, and we

expect that the more general tokens contribute the most on that level. However, on the

HS6 level, minor details can be critical as the only distinguishing elements between

neighboring classes. A similar approach has been used by Yang et al. [33] for document

classification, where separate attention layers were built for the word and sentence

levels.

Like in the flat model, the input to the first classification head is the hidden represen-

tation of the <s> token from the last layer of the encoder. Then, if the model is in train-

ing mode, the embedding for the correct HS2 class is retrieved from the respective em-

bedding layer. On the other hand, if the model is performing inference and the true

label is unknown, then the normalized probability-weighted sum of the embeddings of

the top three predictions from the HS2 classification head is used instead.

In the model type using bilinear attention layers, the resulting embedding (or

weighted sum of embeddings) is passed into the first attention layer. The embedding

is used as a query and the hidden representations as keys. In the model using self-

attention layers, the hidden representations are used as queries, keys, and values, and

the output is the reweighted representation of the <s> token. The purpose of the at-

tention layer is to create a newly weighted aggregation of all hidden representations

from the encoder’s last layer.

The output of the attention layer is concatenated with the HS2 embedding, and the

result is fed into the HS4 classification head. The same process is repeated, except that

in the bilinear version, the next attention layer uses the HS4 embedding as a query.

The input to the final classification head is a concatenation of three elements: the

newly weighted input representation, the embedding from the HS2 level, and the em-

bedding from the HS4 level.

During training, local losses are computed on each level, using the outputs of the clas-

sification heads and the true labels of the corresponding levels. The total loss is a sum

of all three local losses, allowing the weights in each classification head to be modified

both according to their output and how it affects the following layers.

33

5.3 Baseline Models

To compare the Transformer-based models to other approaches, we use the fastText

classifier7 as a baseline. Its authors have shown that their classification approach pro-

duces results comparable with deep learning models while being faster to train and

evaluate [34].

As shown in Figure 6, fastText classifiers have a shallow architecture, consisting of an

input layer, one hidden layer, and an output layer. The input text is transformed into a

bag-of-features representation by taking an average of all features. These features in-

clude the embeddings for all words and optionally for all word n-grams, which help

capture the local order of words. The embeddings are obtained from a trainable lookup

matrix, where the key to being fast and efficient lies in hashing. Using the so-called

hashing trick, the matrix is not required to store embeddings for each possible n-gram

explicitly. Instead, fastText uses an embedding matrix of size ὦ, a hyperparameter that

denotes the number of buckets, and each n-gram is assigned to a bucket in the matrix.

Figure 6. FastText model architecture. The input sequence includes N features, x1, ..., xN [34].

Similarly to the proposed models, we train and evaluate fastText in two versions: flat

and hierarchical. However, in this case, the hierarchical version is structured accord-

ing to the local classifier per parent node approach (illustrated in Figure 7) as the train-

ing speed allows us to do so. In this approach, one model is trained to predict the head-

ings under chapter 90, another to predict those under chapter 91, and so on.

7 https://github.com/facebookresearch/fastText/tree/master/python

34

Figure 7. Structure of the local classifier per parent node approach [32].

During inference, the prediction from the current level determines which model will

be used on the next level. The predictions from all levels are collected in a top-down

manner.

5.4 Metrics

We use accuracy as the metric to decide which classification model performs best on

our held-out evaluation sets. Accuracy is defined as

ὥὧὧόὶὥὧώώȟώ
ρ

ὲ
 ρώ ώ

where ώ is the predicted label of the Ὥ-th example and ώ is the true label of the Ὥ-th

example8. Accuracy measures the fraction of correctly predicted elements of all ele-

ments.

Although we base our comparisons and decisions on the accuracy score, we addition-

ally track the macro-averaged f1-scores of the models. The f1-scores help us under-

stand the models’ average performances across all classes, regardless of the support

of each class in the dataset, as macro-averaging considers all classes equally important.

The macro-averaged f1-score is calculated by finding the f1-score for each class and

8 https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score

35

taking their unweighted mean. The f1-score is defined as the harmonic mean of preci-

sion and recall9:

Ὢρ
ᶻ

.

Precision and recall are themselves indicators of a model’s ability to, firstly, avoid false

positives (i.e., mistakenly assigning a label to examples from other classes) and sec-

ondly, to avoid false negatives (i.e., mistakenly not assigning a label to examples from

that class). The f1-score is a metric that considers both as important.

5.5 Experiments

This section describes the comparative experiments performed to study the impact of

preprocessing, dataset sampling, and hyperparameter tuning on HS classification re-

sults.

5.5.1 Preprocessing

Section 4.2 discussed possible ways of preprocessing the data. To determine whether

our intuition about the benefits of less preprocessing is grounded, we run an experi-

ment by training models with three variants of preprocessing. In the first approach,

we do not apply any preprocessing, i.e., we train and evaluate the model on raw prod-

uct descriptions. In the second approach, we perform only lowercasing. In the third

approach, we apply lowercasing plus removing a set of stop words, single-character

tokens, punctuation, and numbers longer than three digits.

All three models are trained using the flat approach – a pre-trained RoBERTa encoder

and a classification head with two linear layers. We train the models for ten epochs on

a reduced training set with a maximum of 200 examples per HS6 class. All models are

trained using the AdamW optimizer [35] and with the same default hyperparameters,

listed in appendix IV on page 67. We use dev_small for monitoring progress during

training and for possible early stopping when the HS6-level accuracy has not improved

for two epochs.

9 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.met-
rics.f1_score

36

The results from evaluation on dev_large are presented in Table 6. The table illustrates

that the differences in accuracy are more visible on the more specific levels (HS4 and

HS6) than on the HS2 level. The first approach with no preprocessing gives the lowest

scores. This is possibly due to the tokenizer’s case sensitivity as the dataset includes

many descriptions fully in uppercase. The second approach with only lowercasing

ranks first. The ranking indicates that although lowercasing helps, stronger cleaning

can erase important information and negatively affect performance. However, it must

be noted that the third approach still performs better than no preprocessing, which

also confirms the case sensitivity of the tokenizer.

Table 6. Accuracy scores on dev_large. Since the trained models predict the entire HS6 directly,

the accuracy scores for HS2 and HS4 levels are calculated using the respective parts extracted

from the predicted HS6 code.

Preprocessing
method

HS2 HS4 HS6

None 0.8409 0.7044 0.4915

Only lowercasing 0.8491 0.7202 0.5021

Lowercasing and
removals

0.8449 0.7112 0.4923

We acknowledge that the preprocessing performed here is only one option out of

many. There might very well exist combinations of preprocessing steps that help distill

the informative parts from the meaningless noise. One of the benefits of that would be

decreasing the number of tokens to be processed, speeding up training and inference.

However, we do not aim to go in-depth to such experiments here. As a conclusion of

this comparison, we use the lowercasing approach in all further experiments.

5.5.2 Dataset Sampling

Considering the class imbalance in our dataset, we pose two questions related to man-

aging the total size of the dataset and making the class distributions more balanced.

Our questions are as follows:

37

1. How does using a subset of the majority classes (and therefore decreasing the

gap between the supports of minority and majority classes) affect model per-

formance?

2. Does oversampling the smallest classes while preserving the entirety of the ma-

jority classes have a positive effect on model performance?

The intuition behind the first question is that, as we have a large number of examples

from a few classes and a small number of examples from most classes, then perhaps

reducing the size of the former helps to perform better on the latter, speeding up train-

ing at the same time. An important aspect to consider is whether decreasing the vari-

ance of the majority classes (by ignoring a part of the examples) is worth it. In other

words, if the largest classes tend to prevail over the smaller ones strongly, then under-

sampling them would be a reasonable approach. However, if this is not a significant

problem or it turns out that using fewer examples significantly decreases accuracy due

to performing worse on these large classes, then undersampling should be avoided.

To answer the first question, we train two flat models on differently sampled data. The

first model (with sampling method None) is trained on the original training set. The

second (sampling method Max 800) is trained on a randomly undersampled version of

the training set. We use the Imbalanced-learn library [36] to perform dataset

resampling in this and also further experiments.

The undersampled version includes a maximum of 800 examples per HS6 class, mak-

ing its size ~11% of the full training set. The limit of 800 examples was chosen accord-

ing to the median of HS6 class supports in the training set. The results on dev_large are

illustrated in Table 7.

Table 7. Accuracy and f1-scores on dev_large for flat models trained on differently sampled

datasets.

Sampling method HS6 accuracy HS6 f1-score

None 0.7518 0.4877

Max 800 0.677 0.5756

Min 1000 0.7555 0.6731

38

The results show that although the average performance per class (as indicated by the

macro f1-score) did significantly improve with the Max 800 method, there was also a

strong decline in accuracy. We conclude that decreasing the variance of large classes

to such an extent is harmful.

This raises the second question, as we are now interested in making the model better

at predicting the minority classes while not reducing the majority classes. We create

another version of the training set by randomly oversampling the minority classes

such that there are at least 1000 examples per class in the training set (sampling

method Min 1000). The majority classes are kept in their original sizes. This method

increases the size of the training set by ~8%.

When comparing the results of None and Min 1000 sampling methods in Table 7, we

can see that the latter shows a somewhat better accuracy score and a significantly bet-

ter f1-score on the HS6 level. Furthermore, the f1-score is ~10% better than with the

Max 800 approach, which was already better than None. In conclusion, we will use the

partly oversampled (Min 1000) training set in further experiments.

5.5.3 Hyperparameter Tuning

For both the Transformer-based models and the baseline models, we perform limited

hyperparameter tuning. The choice of hyperparameters that are experimented with is

narrow due to time constraints; thus, we select those we expect to be more relevant.

When running the tuning experiments for Transformer-based models, we use the

same reduced training set as in the preprocessing experiment to limit training time.

This set includes a maximum of 200 examples per HS6 class, meaning that classes

larger than that are undersampled. When running the experiments for the baseline,

we can use the full training set. For evaluations, we use the dev_small set.

Table 8 and Table 9 present the hyperparameters and corresponding search spaces

used in the experiments for flat and hierarchical Transformer-based classifiers. With

a few exceptions, noted in appendix IV on page 67, the remaining hyperparameters are

set to default values as described in the Hugging Face documentation10.

10 https://huggingface.co/transformers/v4.3.3/main_classes/trainer.html#transformers.TrainingAr-
guments

39

Table 8. Values used for tuning the hyperparameters of the flat Transformer-based classifier.

Hyperparameter Values

Classifier hidden size 256, 512, 768

Learning rate 1e-5, 2e-5, 3e-5, 5e-5

Learning rate scheduler Constant with warmup, linear

Table 9. Values used for tuning the hyperparameters of the hierarchical Transformer-based

classifier.

Hyperparameter Values

Classifier hidden size 256, 512, 768

Learning rate 1e-5, 3e-5, 5e-5

Embedding size 128, 256

From the experiment with the flat classifier, we conclude that the hidden size of the

classifier does have an impact on performance, with larger sizes leading to better re-

sults. We also find that it is beneficial to increase the learning rate from the initial value

1e-5. Lastly, the experiment shows that when the learning rate is higher, it is better to

use a linear scheduler that includes not only warm-up but also decay after reaching

the peak.

The experiment with the hierarchical classifier also confirms the contribution of learn-

ing rate and the hidden size of the classifier, showing that larger values produce better

results. However, increasing the size of the embeddings of HS2 and HS4 classes did not

bring significant improvement. A graphical overview of the tuning runs and scores for

both model types is presented in appendix V on page 69.

With the fastText baseline models, we can work with more hyperparameters in a

somewhat broader range as training takes much less time. For the hierarchical version,

40

we first tune only the HS2-level classifier with values presented in Table 10 to deter-

mine a reasonable scale for the learning rate and find out whether using character n-

grams is beneficial.

Table 10. Values used for tuning the fastText HS2-level model.

Hyperparameter Values

Learning rate 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5

Minimum length of character n-grams 0, 3

Maximum length of character n-grams 0, 3, 5

As a result, we find that using character n-grams brings benefit, and the best perfor-

mance comes from including n-grams that are three to five characters long. We also

conclude that learning rate values from the higher end of the scale are too high to train

the models successfully and that the lowest values are not as competitive.

We use this information to limit the search space when tuning all models in the hier-

archy. We fix character n-grams to length between three and five characters. Addition-

ally, we tune the number of epochs, as this can depend on the amount of available

training data which is different for each model. The selected hyperparameters and cor-

responding search spaces are presented in Table 11. Other hyperparameters are spec-

ified in appendix IV on page 67 or otherwise set to default values described in the

fastText documentation11.

Table 11. Values used for tuning the hyperparameters of hierarchical fastText.

Hyperparameter Values

Word n-grams 1, 2, 3

Learning rate 0.05, 0.1, 0.2, 0.5, 0.7

Epochs 10, 25, 50

11 https://fasttext.cc/docs/en/options.html

41

Since the hierarchical baseline model consists of many models, we cannot draw con-

clusions about which values are generally the best. In the version used for final evalu-

ations, each model has its hyperparameters set to the values that produced the best

results on dev_small.

Due to time constraints, we do not perform a comprehensive tuning experiment for

the flat fastText model. Instead, we apply our insights from previous experiments.

Based on our findings, we add word n-grams of length up to three, and character n-

grams of length between three and five. The hyperparameter values for all models se-

lected based on the tuning experiments are presented in appendix VI on page 70.

42

6 Results and Error Analysis

This chapter describes the results on the dev_large and test1 sets, and additionally on

a gold-labeled test set. The performance of selected models is further qualitatively ana-

lyzed.

6.1 Results on Development Set

We first compare all models with both default and tuned hyperparameters on the

dev_large set for model selection. We also perform error analysis on dev_large as the

test set might be needed for adding more models into comparison later.

Table 12. Model performances (accuracy scores) on dev_large. The scores of the best baseline

and the best Transformer-based model are marked in bold.

Model Group Type Training
Steps

HS2 HS4 HS6

FastText
(baseline)

Flat Default - 0.8947 0.8210 0.7281

With n-
grams

- 0.9284 0.8749 0.8024

Hierar-
chical

Default - 0.8841 0.8156 0.7358

Tuned - 0.9257 0.8766 0.8107

Flat Default 1.78M 0.9160 0.8478 0.7471

Tuned 1.75M 0.9254 0.8650 0.7757

Hierarchical Bilinear
attention

Default 2.35M 0.9194 0.8500 0.7457

Tuned 2.31M 0.9082 0.8307 0.7185

Self-at-
tention12

Default 1.3M 0.9161 0.8450 0.7286

12 The hierarchical self-attention model was trained for 8 days, but the number of training steps is sig-
nificantly smaller than for other hierarchical models.

43

Table 12 illustrates performances on dev_large. All Transformer-based models were

trained for ~8 days on two GPU-s. Furthermore, within one model subgroup, it was

ensured that the number of training steps was similar. This is because some computing

nodes have more powerful GPU-s than others, leading to a significantly different num-

ber of steps with the same training time. An exception is the hierarchical self-attention

model, which was neither trained until equal steps nor tuned due to time constraints.

Based on these results, we select the hierarchical tuned fastText model and the flat

tuned Transformer-based model for further comparisons with error analysis methods.

We also analyze the predictions of the hierarchical Transformer-based model using

bilinear attention in an attempt to understand why the hierarchical approach does not

outperform the flat approach.

6.2 Error Analysis

In this section, we look at the models’ predictions on dev_large in more detail to un-

derstand where and why the models make mistakes. We will refer to the selected base-

line model as FAST, the hierarchical bilinear attention model as HIER, and the flat

Transformer-based model as FLAT.

6.2.1 Hierarchical Approach

Regarding HIER with classifier per level structure, we first look at how the predictions

from previous layers affect the next layers. We hypothesized that although the struc-

ture of the model theoretically requires the classification heads to predict the correct

class among all classes on a given HS level, then in practice, the information from pre-

vious layers should “mask out” classes that do not correspond to the prediction so far.

When analyzing predictions with the highest probabilities from each classification

head, it appears that there are relatively few mismatches (e.g., a mismatch is when the

HS2 classification head predicts chapter 90 and the HS4 classification head predicts a

heading from some other chapter, such as 8410). Between the first two layers, only

44

1.02% of examples get inconsistent predictions, and between the last two layers, the

corresponding figure is 1.53%.13

This kind of information transfer has two sides: it can help decision-making in further

layers by pruning the search space, but it can also propagate errors from the first lay-

ers to the next. We find that in ~7.4% of the cases, a wrong prediction from the HS2

layer persists in the HS4 prediction. In ~13.8% of the cases, a wrong prediction from

the HS4 layer is propagated to the predicted HS6. However, propagated errors only

account for roughly half of the incorrect predictions on HS4 and HS6 levels. Knowing

that the percentage of mismatches is small, most of the other mistakes must come from

the inability to choose between classes in the correct subtree in the hierarchy (e.g.,

when the HS2 classification head predicts chapter 90 and the HS4 classification head

predicts heading 9010, while the correct heading is 9020).

6.2.2 Most Difficult Classes

When looking at per-class performances, we find that two non-minority HS6 classes

have a notably low precision score, i.e., many false positives. One of these classes is

392690 (Articles of plastics and articles of other materials of heading 3901 to 3914, n.e.s)

with a precision of 0.223 for FAST, 0.16 for HIER, and even less, 0.146 for FLAT. It ap-

pears that among its siblings, that is, other classes under heading 3926, this class is the

most represented in the training set (around five times more than the second most

common class under this heading). We also find that a large percentage of its siblings

(5-11% for FAST, 14–22% for HIER, 11–26% for FLAT) are mistakenly assigned this

class, and by frequency, the top classes that are mistakenly assigned this class are ei-

ther from the same heading or at least the same chapter.

The second low-precision HS6 class is 732690 (Articles of iron or steel, n.e.s. (excl. cast

articles or articles of iron or steel wire)), with a precision score of 0.316 for FAST, 0.29

for HIER, and 0.278 for FLAT. We again find that the classes with most false positives

are from the same heading or at least from the same chapter.

13 We used a setup where the top k=3 predictions are passed on to next layers as a weighted sum. We
also experimented with k=1, which almost completely eliminated mismatches but did not improve
scores.

45

Such classes are inherently difficult given that, by definition, class 392690 includes

anything of plastics or a list of other materials not elsewhere specified. Likewise, class

732690 is similar, only with a different list of materials. This means that a wide variety

of products can belong to these classes, which might also be the reason for being rela-

tively overrepresented in the dataset.

Although the training set we used was oversampled to at least 1000 examples per HS6

class, some of these minority classes still received f1-scores of 0.0, i.e., no true posi-

tives. When analyzing examples from such classes in dev_large, it appears that the de-

scriptions are often not detailed enough to choose between neighboring classes. In

such cases, if there is a sibling class more represented in the training set, it can be pri-

oritized by the models. It must be noted that when details are missing, even human

annotators cannot tell which of the options is correct without making additional as-

sumptions.

However, it is not the case that all minority classes have low f1-scores. When compar-

ing class supports to average f1-scores, we find that for the least represented HS6 clas-

ses (less than 5000 examples in the training set), the average f1-scores are 0.68 for

FLAT, 0.61 for HIER, and 0.70 for FAST. Since ~81% of HS6 classes fall into this bin

due to the class imbalance, we look at these small classes in more detail. As expected,

the average recall is somewhat lower than the average precision for these classes. We

further divide these classes into bins according to their supports. As a result, we find

that although the average recall for the smallest classes (1000–1099 examples in the

training set) is among the lowest, the difference between recall in this bin and the total

average recall is not very large for FLAT (3.2%,) and HIER (0.7%). For FAST, it is some-

what larger (6.3%). Also, there are small classes the models do notably well on. For

example, class 950720 (Fish-hooks, whether or not snelled) has 299 unique examples

in the training set and still receives an f1-score as high as 0.97 from all models.

6.2.3 Quality of Product Descriptions

As noted above, our dataset includes product descriptions that are too short and lack-

ing in detail to be assigned an HS6-level code. Having such entries in the training set

means that the models can learn to extrapolate from insufficient data (either correctly

46

or incorrectly). Having such examples in the evaluation sets means that we can analyze

what the models predicted and whether the predictions are reasonable.

Figure 8 illustrates the distribution of description lengths across all dataset splits,

counted in tokens (the result of the BPE tokenization as performed for Transformer-

based classifiers). The most common length is between 10 and 25 tokens. It must be

noted that since this tokenization method works on the level of subwords, ten tokens

do not necessarily equal ten full words; instead, they can also include single-symbol

and other short tokens.

Figure 8. Histogram of description lengths of the full dataset.

Some examples of descriptions with very few tokens are presented in Table 13. Alt-

hough many such short descriptions are indeed not informative, some do provide suf-

ficient information for HS6-level classification. For example, while Show pcs does not

say much about the product, a description as short as Toothbrush would be enough to

assign the HS6-level code 960321 (Tooth brushes, incl. dental-plate brushes).

47

Table 13. Examples of short product descriptions (less than five tokens long).

Description HS Code

BATH TOWEL MAROON 630260

PVC SHEET 392043

GOLDSMITH TOOLS Dies 820559

SHOW PCS 830629

GRATER RENA 732399

When looking at correctly classified short descriptions from, e.g., class 392690, we no-

tice descriptions such as hanger (25116 pcs) and hanger [1926 pcs]. The models must

have assumed that, when not specified, the hangers are made of plastic. If they were

made of wood, they could be assigned the class 442110 (Clothes hangers of wood). The

training set contains more examples including the word hanger with the code 392690

than with 442110, which is probably why the models are biased towards plastic hang-

ers.

The question is whether making such assumptions is desired or not. An alternative

would be to learn to detect cases when the provided information is insufficient and not

assign any HS code or assign a code up to some point, e.g., only the chapter. However,

since we currently have such examples with HS6-level labels in the training set, the

models can learn to make assumptions with high confidence (assigned probability).

While short descriptions intuitively seem problematic due to missing information,

long descriptions do not always mean high quality either. Longer texts can include un-

necessary information such as invoice numbers and dates or repeat the same infor-

mation several times. A large number of tokens might indicate that there are long se-

quences of symbols that do not contain in-vocabulary tokens and must be broken

down into single-symbol tokens. Table 14 presents a sample of descriptions where the

number of tokens is large.

48

Table 14. Examples of long product descriptions (more than 55 tokens long).

Description HS Code

INSU.FITT OF PLSTIC HEAT SHRIN.PWR/TELE COMM CBLE ACCE.
EC/014/04/040 (3M CRB 10 -25 67-29-403)(B.NO.200053)P.SAP
ID700

854720

USED AIRCRAFT TYRE FOR REPAIR & RETURN S IZE 30X8.8 R15 S/N-
(96)8360S093(97)8349S
198(98)8346S119(99)9015S182(100)6221S118

401213

E010A0103601, CAPACITOR CAPAL,
HVM_16V100F60,HF,16V,100UF,105?,2000H,- 55? to
+105?,F6.3?5.7,JIANGHAI (FOR CAPTIVE CONS

853224

TELEVISIONS 55 INCH(55K3A)(ODF NO.AJB144669E)(BIS
NO.CRS2018-1157/R-41089680/11.07.2019)(ETA NO.ETA-SD-
20190601691/18.06

852872

867959-B21 HSTNS-2154 SER,HPE
360G10_4114X2_32GB_1TBX4_300GBX2 (STORAGE SERVER) (BIS - R-
41000698 DT.04/09/2019)

847150

When analyzing how the models perform on long descriptions, we notice that accuracy

drops for very long descriptions, but the models mostly do well on longer-than-aver-

age descriptions. For example, all models correctly classify led tv, ua32n4003ar, 32, in-

dia, uar60/u32nn1 (model no. ua32 - n4003arxxl) (asean cert.no. vn-in 19/02/06816

dt.15.07.2019) with the HS code 852872. We can hypothesize that in cases where the

description contains the required information, even if surrounded by unnecessary to-

kens, the models can extract the useful elements. However, to determine which parts

of such long and noisy descriptions are actually considered more important by the

models, we would need to apply model explainability methods.

6.2.4 Correctness of Labels

Analyzing model confidence and average accuracy scores for various confidence

ranges, we find that the two correlate well, especially for FLAT. In the case of FLAT,

~39% of examples have been classified with confidence higher than 97.5%. The aver-

age accuracy in this range is as high as 98.9%. FAST predicts almost 60% of examples

49

with this confidence, with an average accuracy of 95.4%. This leads us to inspect cases

where the confidence is high but the prediction incorrect.

For FLAT, the most common confidently misclassified pair is 711719 (true label) vs.

711790 (predicted label). According to the nomenclature, both classes include imita-

tion jewelry. The difference is in the material – the former class includes jewelry of

base metal, while the latter anything else but base metal. By looking at examples in the

training set, both appear to contain, e.g., imitation jewelry made of brass, which is a

base metal and should therefore belong to class 711719.

For FAST, the most common confidently misclassified pair is 490199 (true label) vs.

490110 (predicted label). According to the nomenclature, both classes include printed

books, brochures, etc., but the difference is whether they are in single sheets or not.

When looking at the incorrectly predicted cases in dev_large and instances from these

two classes in the training set, we see that this aspect is very rarely mentioned in prod-

uct descriptions. Thus, it is not possible to distinguish between the two classes based

on the given information, and the decisions seem to have been mostly arbitrary.

This problem of inconsistent labels becomes evident when analyzing erroneous but

confident predictions. Since verifying the correctness of labels is a complicated task,

we do not attempt to do this ourselves at scale. Instead, we rely on professionals from

the partner company who verify the labels of a subset of our dataset. We will later use

this verified data to understand whether the inconsistent labels in the training set neg-

atively affected the models.

6.3 Results on Test Set

Table 15 presents the accuracy scores of the selected Transformer-based and fastText

models on the held-out test1 set. From here on forward, we will distinguish between

the flat and hierarchical baseline versions by referring to them as FAST_FLAT and

FAST_HIER.

50

Table 15. Accuracy scores of selected models on test1.

Model HS2 HS4 HS6

FLAT 0.9292 0.8759 0.8044

FAST_HIER 0.9284 0.8837 0.8281

FAST_FLAT 0.9323 0.8847 0.8255

The results illustrate that Transformer-based models do not outperform the tuned

baseline models. Considering the complexity of training and tuning Transformer-

based models and the computational resources required, it seems reasonable to rather

focus further development efforts on fastText models that can be experimented with

more easily. With some tweaks, fastText classifiers can be improved to produce results

that exceed those from Transformer-based models.

6.4 Results on Gold-Labeled Data

As noted above, we received a dataset with verified labels from our partner company.

The verification was performed by content analysts who are familiar with the HS no-

menclature and have experience with assigning and correcting HS codes.

Since the entries chosen for verification might have originated from any split in our

original dataset, we remove all entries with such product description and HS6 code

pairs that also existed in our training or development splits before running evalua-

tions. The resulting dataset, which we will refer to as test_gold, is described in Table

16. The table illustrates that this subset contains a significantly smaller number of clas-

ses than the total dataset.

Table 16. Number of classes per level and total size of the test_gold set.

test_gold

HS2 30

HS4 238

HS6 747

size 1,055,785

51

Table 17 presents the performances of the models on test_gold. The results differ sig-

nificantly from those on the test1 set. Accuracy scores on the HS2 level are higher than

for test1, but the situation is the opposite on HS4 and HS6 levels. On the HS4 level,

accuracy has decreased by ~10 percentage points for all models, and on the HS6 level,

the decrease is larger than 30 percentage points.

Table 17. Accuracy scores on test_gold.

Model HS2 HS4 HS6

FLAT 0.9616 0.7806 0.4832

FAST_HIER 0.9643 0.7725 0.4587

FAST_FLAT 0.9656 0.7772 0.4681

When comparing test_gold with the training split, we find a large amount of partial

overlap between the two. With partial overlap, we refer to cases when the models have

seen the same product description during training with one HS code, but in test_gold,

the same product description appears with an either partly or entirely different HS

code. Such situations result from label corrections, and the performance drop on lower

levels indicates that the mislabeled descriptions were more often mislabeled on HS4

and HS6 levels.

More specifically, ~17.7% of test_gold is made up of descriptions seen during training

with an HS code that matches up to HS4 but does not match on the HS6 level. Approx-

imately 29.3% of the dataset has been seen during training with an HS code that

matches up to HS2 or up to HS4. However, only ~2.2% of test_gold consists of product

descriptions seen during training with completely different (not matching to any ex-

tent) labels, which partly explains the high HS2 scores. Another factor is that there are

fewer HS2 classes in test_gold, and those not present were mostly also less repre-

sented in the training set and thus not as well learned.

Interestingly, although all three models are strongly affected by the erroneous labels

in the training set, the performance of FLAT has decreased the least. While it was out-

performed by both baseline models on test1, it performs best among the three on

52

test_gold. Since we find that the training accuracy of FLAT is lower than FAST_FLAT

and FAST_HIER, we can speculate that FLAT did not learn the patterns in the training

data as strongly, i.e., overfitted less to the erroneously labeled training data.

53

7 Discussion

This chapter brings attention to some limitations related to the methods used in this

thesis and presents directions for future work on the topic.

7.1 Limitations

In terms of computational complexity, some of the models developed in this thesis

have downsides that must be considered. For example, FLAT requires a long training

cycle on GPUs and is therefore expensive to train; it also performs inference much

slower when run on a CPU than when run on a GPU.

Furthermore, in our experiments, we limited the training time of Transformer-based

models to eight days (although, as mentioned, in some cases, training was resumed to

reach a similar number of training steps as other models in the comparison). We found

that the models do not converge within this time when using the full training set, as

training always continued until the time limit, and the early stopping mechanism did

not run out of patience. Therefore, this type of models could possibly achieve better

results when trained for longer.

Another limitation regarding Transformer-based models is that we did not manage to

improve HIER with hyperparameter tuning, again partly due to the slow training pro-

cess. Since we used a subset of the training data for the tuning runs, the conclusions

drawn from the limited-size and limited-time runs were not transferable to a longer

training process with full data. FLAT, on the other hand, achieved notably better scores

with tuned hyperparameter values. The difference might have come from the learning

rate schedulers used. For FLAT, we increased the learning rate and changed the sched-

uler from constant to linear, while for HIER, we increased the learning rate but did not

change the scheduler type. For HIER, this entailed a constantly high learning rate after

the initial warm-up phase, which we presume negatively affected the learning process.

Among the two baseline models, FAST_HIER takes less time to train than FAST_FLAT

(~1.5h vs. ~8h), but due to using word- and character-level n-grams in many models

in the hierarchy, the total size grows very large (> 600 GB), making it less feasible for

use in the industry. We compressed the models using the quantize method from the

fastText library. The compression brought the space requirement down to ~80 GB

54

which can still be restrictive. In addition to this, quantization takes time – for models

with less training data, even more time than the training itself – making the process

much slower (~2 days and 10 hours to train and quantize all models).

FAST_FLAT stands in the middle ground in terms of time and space requirements. It is

slower to train than FAST_HIER but is still significantly faster than FLAT and faster

than FAST_HIER with quantization. It consists of only one model and does not require

much space even when word- and character-level n-grams are used. The sizes of FLAT

and FAST_FLAT are similar, between 1 and 2 GB.

7.2 Future Work

In our experiments, we found that the dataset used for training the models contained

many low-quality entries. This entailed low accuracy scores of all models on a dataset

with verified labels, as the mismatch between the labels in the training set and the

evaluation set was remarkable. Based on this finding, a direction for future work with

HS classification is to focus on collecting data with verified quality.

A source of information that was not utilized in this thesis but could prove beneficial

for classification is the body of explanatory texts in the HS nomenclature. Furthermore,

the nomenclature is supplemented by explanatory notes that are more detailed and

often list examples of products for each class. Although the structure of these explan-

atory notes is different from product descriptions, they contain useful examples and

keywords which could be used, e.g., for building a knowledge base to be used as an

external source for aiding models with classification decisions.

Another possibility would be to use additional features that often complement product

descriptions as input to classification models. Such features might include the dimen-

sions or weight of a package, which could help infer the correct class when these de-

tails are relevant, even if this information is not stated explicitly in the product de-

scription.

Looking at examples of product descriptions, we have seen that they often include

grammatical errors, misplaced whitespaces, and other typing errors (e.g., plstic instead

of plastic; s ize instead of size). Since our models use subwords, we can expect the effect

of such errors to be somewhat less pronounced than for methods that assume whole

words to be in vocabulary in the exact same form. Nevertheless, correcting errors

55

could be beneficial, as according to a recent publication [37] on the sensitivity of the

Transformer-based BERT to misspellings, mistakes in informative words can signifi-

cantly affect performance. We did not analyze the effect of spelling errors on different

models in this thesis.

Possible directions for continued work with Transformer-based models would be to

either resume pre-training or pre-train the encoder from scratch on in-domain data

instead of directly fine-tuning an encoder pre-trained on large general corpora. As the

pre-training process is unsupervised, only product descriptions are needed, and

whether they also have correct labels or any labels at all would not matter for this

purpose. Resumed pre-training is an alternative option, and it has been shown that

using in-domain data for this purpose is beneficial [38].

Regarding product classification for customs declarations more generally, a logical

next step is to move forward from the six-digit HS codes and explore possibilities for

ten-digit TARIC code classification. When importing goods into the EU, the HS code is

sufficient only for low-value consignments. For other cases, the ten-digit code is re-

quired, which also entails an increase in the number of classes and an even more fine-

grained nomenclature. Consequently, it is expected that collecting high-quality data

for each of the classes is more difficult.

56

8 Conclusion

In this thesis, we explored HS classification with different model architectures. As a

baseline, we used fastText, a shallow classifier with one hidden layer. For comparison,

we employed publicly available pre-trained language models to develop custom clas-

sifiers with flat and hierarchical structures.

In the default configuration where fastText did not use subwords or word n-grams as

features, Transformer-based models performed better. However, after some modifica-

tions, both flat and hierarchical fastText classifiers outperformed Transformer-based

classifiers. These results suggest that fastText models can be improved more easily

while tuning Transformer-based models is more time-consuming and complicated.

Comparing the various flat and hierarchical approaches, we found that hierarchical

fastText achieved better HS6-level accuracy than flat fastText but did so at the cost of

a much larger model, which requires more time for training and compressing. The clas-

sifier per level approach used in the hierarchical Transformer-based classifier did not

perform better than the flat Transformer-based classifier. When analyzing the possible

reasons, we concluded that the main complexity lies in choosing between classes in

the same subtree of the nomenclature, not selecting the correct subtree, which should

be easier with the hierarchical model.

For our task and dataset, using an encoder pre-trained on large corpora did not pro-

duce better results than the baseline that did not use pre-trained embeddings. This

might indicate that with a dataset of this size, the benefit gained from knowledge trans-

ferred from the general to the task-specific domain was not large enough to compen-

sate for other disadvantages of Transformer-based models, such as the necessity of

more training steps to reach convergence.

From a qualitative analysis of the performances of selected models, we found that our

dataset includes mislabeled entries and insufficiently detailed product descriptions.

When evaluating the same models on a verified dataset, we discovered that the misla-

beled training examples had strongly affected the models, and their performance on

the gold-labeled set was significantly lower. This finding emphasizes the importance

of having access to high-quality training data.

57

References

[1] F. Altaheri and K. Shaalan, “Exploring Machine Learning Models to Predict Har-

monized System Code,” in Information Systems, vol. 381, M. Themistocleous and M. Pa-

padaki, Eds. Cham: Springer International Publishing, 2020, pp. 291–303. doi:

10.1007/978-3-030-44322-1_22.

[2] J. Luppes, “Classifying Short Text for the Harmonized System with Convolu-

tional Neural Networks,” Masters Thesis, p. 58, Aug. 2019.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,” ArXiv181004805 Cs, May

2019, [Online]. Available: http://arxiv.org/abs/1810.04805

[4] A. Vaswani et al., “Attention Is All You Need,” ArXiv170603762 Cs, Dec. 2017,

[Online]. Available: http://arxiv.org/abs/1706.03762

[5] “World Customs Organization.” http://www.wcoomd.org/en/topics/nomen-

clature/overview/what-is-the-harmonized-system.aspx

[6] “World Customs Organization.” http://www.wcoomd.org/en/topics/nomen-

clature/instrument-and-tools/hs-nomenclature-2017-edition/hs-nomenclature-

2017-edition.aspx

[7] C. Weerth, “HS 2002–HS 2017: Notes of the tariff nomenclature and the addi-

tional notes of the EU revisited,” vol. 11, no. 1, p. 20.

[8] L. Ding, Z. Fan, and D. Chen, “Auto-Categorization of HS Code Using Background

Net Approach,” Procedia Comput. Sci., vol. 60, pp. 1462–1471, 2015, doi:

10.1016/j.procs.2015.08.224.

[9] G. Li and N. Li, “Customs classification for cross-border e-commerce based on

text-image adaptive convolutional neural network,” Electron. Commer. Res., vol. 19, no.

4, pp. 779–800, Dec. 2019, doi: 10.1007/s10660-019-09334-x.

[10] M. Spichakova and H.-M. Haav, “Using Machine Learning for Automated Assess-

ment of Misclassification of Goods for Fraud Detection,” in Databases and Information

Systems, vol. 1243, T. Robal, H.-M. Haav, J. Penjam, and R. Matulevičius, Eds. Cham:

Springer International Publishing, 2020, pp. 144–158. doi: 10.1007/978-3-030-

57672-1_12.

58

[11] Q. Le and T. Mikolov, “Distributed Representations of Sentences and Docu-

ments,” in International Conference on Machine Learning, Jun. 2014, pp. 1188–1196.

[Online]. Available: http://proceedings.mlr.press/v32/le14.html

[12] D. Gao, W. Yang, H. Zhou, Y. Wei, Y. Hu, and H. Wang, “Deep Hierarchical Classi-

fication for Category Prediction in E-commerce System,” ArXiv200506692 Cs, May

2020, [Online]. Available: http://arxiv.org/abs/2005.06692

[13] Y. Goldberg, “Neural Network Methods for Natural Language Processing,”

Synth. Lect. Hum. Lang. Technol., vol. 10, no. 1, pp. 1–309, Apr. 2017, doi:

10.2200/S00762ED1V01Y201703HLT037.

[14] Z. S. Harris, “Distributional Structure,” WORD, vol. 10, no. 2–3, pp. 146–162,

Aug. 1954, doi: 10.1080/00437956.1954.11659520.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Rep-

resentations in Vector Space,” ArXiv13013781 Cs, Sep. 2013, [Online]. Available:

http://arxiv.org/abs/1301.3781

[16] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word Rep-

resentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Doha, Qatar, Oct. 2014, pp. 1532–1543. doi:

10.3115/v1/D14-1162.

[17] M. E. Peters et al., “Deep contextualized word representations,”

ArXiv180205365 Cs, Mar. 2018, [Online]. Available: http://arxiv.org/abs/1802.05365

[18] R. Sennrich, B. Haddow, and A. Birch, “Neural Machine Translation of Rare

Words with Subword Units,” ArXiv150807909 Cs, Jun. 2016, [Online]. Available:

http://arxiv.org/abs/1508.07909

[19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Mod-

els are Unsupervised Multitask Learners,” OpenAI Blog 18 9, p. 24, 2019.

[20] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” 2016.

https://www.deeplearningbook.org/

[21] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE

Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997, doi:

10.1109/78.650093.

59

[22] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput.,

vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

[23] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate,” ArXiv14090473 Cs Stat, May 2016, [Online]. Availa-

ble: http://arxiv.org/abs/1409.0473

[24] T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based

Neural Machine Translation,” in Proceedings of the 2015 Conference on Empirical Meth-

ods in Natural Language Processing, Lisbon, Portugal, 2015, pp. 1412–1421. doi:

10.18653/v1/D15-1166.

[25] S. Brarda, P. Yeres, and S. Bowman, “Sequential Attention: A Context-Aware

Alignment Function for Machine Reading,” in Proceedings of the 2nd Workshop on Rep-

resentation Learning for NLP, Vancouver, Canada, 2017, pp. 75–80. doi:

10.18653/v1/W17-2610.

[26] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,”

ArXiv190711692 Cs, Jul. 2019, [Online]. Available: http://arxiv.org/abs/1907.11692

[27] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn.

Res., vol. 12, no. 85, pp. 2825–2830, 2011.

[28] T. Wolf et al., “Transformers: State-of-the-Art Natural Language Processing,” in

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-

cessing: System Demonstrations, Online, Oct. 2020, pp. 38–45. doi:

10.18653/v1/2020.emnlp-demos.6.

[29] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library,” ArXiv191201703 Cs Stat, Dec. 2019, [Online]. Available:

http://arxiv.org/abs/1912.01703

[30] L. Biewald, Experiment Tracking with Weights and Biases. 2020. [Online]. Avail-

able: https://www.wandb.com/

[31] University of Tartu, “UT Rocket”, doi: 10.23673/PH6N-0144.

[32] C. N. Silla and A. A. Freitas, “A survey of hierarchical classification across differ-

ent application domains,” Data Min. Knowl. Discov., vol. 22, no. 1–2, pp. 31–72, Jan.

2011, doi: 10.1007/s10618-010-0175-9.

60

[33] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical Attention

Networks for Document Classification,” in Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, San Diego, California, 2016, pp. 1480–1489. doi:

10.18653/v1/N16-1174.

[34] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient

Text Classification,” ArXiv160701759 Cs, Aug. 2016, [Online]. Available:

http://arxiv.org/abs/1607.01759

[35] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”

ArXiv171105101 Cs Math, Jan. 2019, [Online]. Available:

http://arxiv.org/abs/1711.05101

[36] G. Lemaıtre and F. Nogueira, “Imbalanced-learn: A Python Toolbox to Tackle the

Curse of Imbalanced Datasets in Machine Learning,” p. 5.

[37] L. Sun et al., “Adv-BERT: BERT is not robust on misspellings! Generating nature

adversarial samples on BERT,” ArXiv200304985 Cs, Feb. 2020, [Online]. Available:

http://arxiv.org/abs/2003.04985

[38] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to Fine-Tune BERT for Text Classifica-

tion?,” in Chinese Computational Linguistics, vol. 11856, M. Sun, X. Huang, H. Ji, Z. Liu,

and Y. Liu, Eds. Cham: Springer International Publishing, 2019, pp. 194–206. doi:

10.1007/978-3-030-32381-3_16.

61

Appendix

I. Code

The source code is available at: https://github.com/karmenkk/hs_prediction (acces-

sible upon request)

https://github.com/karmenkk/hs_prediction

62

II. Supports of HS2 Classes

The following table includes the number of examples under each chapter in each split

and in the total dataset.

HS2 class train dev test1 test2 total

84 2981122 372643 186329 186338 3726432

85 2448888 306098 153059 153053 3061098

73 1301439 162682 81351 81355 1626827

90 913043 114141 57069 57068 1141321

39 880543 110085 55039 55033 1100700

62 777858 97229 48625 48627 972339

61 539111 67388 33695 33698 673892

40 533917 66741 33373 33368 667399

82 468780 58599 29303 29304 585986

94 456901 57114 28558 28555 571128

42 343140 42896 21445 21443 428924

83 315844 39481 19743 19743 394811

95 289663 36205 18108 18107 362083

33 285972 35749 17868 17869 357458

48 246137 30768 15384 15382 307671

63 241507 30187 15095 15091 301880

70 196107 24513 12253 12257 245130

32 195047 24382 12189 12193 243811

96 179108 22388 11195 11195 223886

63

64 176008 22003 11002 11005 220018

76 171733 21463 10734 10733 214663

57 169334 21169 10584 10584 211671

74 162567 20324 10161 10159 203211

71 155763 19467 9734 9735 194699

49 138143 17268 8634 8633 172678

54 119796 14979 7476 7481 149732

91 115940 14493 7247 7245 144925

68 104669 13084 6539 6541 130833

69 95397 11925 5963 5963 119248

58 95319 11917 5956 5955 119147

44 87964 10993 5489 5489 109935

34 80536 10064 5034 5033 100667

52 64634 8071 4028 4029 80762

09 53762 6726 3356 3357 67201

59 51854 6477 3240 3238 64809

55 42709 5334 2665 2665 53373

08 42444 5300 2659 2656 53059

56 31022 3877 1942 1940 38781

22 28207 3527 1762 1764 35260

60 26824 3352 1677 1677 33530

65 26530 3318 1659 1660 33167

92 15726 1968 981 981 19656

64

41 15598 1948 979 979 19504

97 13693 1711 856 857 17117

67 10338 1293 645 645 12921

75 9560 1193 597 596 11946

37 7595 947 472 472 9486

51 7567 944 465 465 9441

50 6154 768 383 384 7689

53 5774 721 362 361 7218

66 5081 636 317 319 6353

47 4690 584 294 294 5862

24 3658 460 225 226 4569

43 2296 286 144 143 2869

05 1439 178 87 86 1790

65

III. Label Distribution Histograms

The following figures illustrate the distribution of labels on each HS level in the full

original dataset.

0 1M 2M 3M
0

5

10

15

20

25

30

Support

N
u

m
b

e
r
o

f
c
la

s
s
e

s

Figure 9. Histogram with a complementary rug plot of HS2 class supports.

66

0 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k 550k
0

100

200

300

400

Support

N
u

m
b

e
r
o

f
c
la

s
s
e

s

Figure 10. Histogram with a complementary rug plot of HS4 class supports.

Figure 11. Histogram with a complementary rug plot of HS6 class supports.

0 50k 100k 150k 200k 250k 300k 350k
0

500

1000

1500

2000

Support

N
u
m

b
e
r

o
f

c
la

s
s
e
s

67

IV. Default Hyperparameter Values

Table 18 includes the default hyperparameter values used for training Transformer-

based models in all experiments where not stated otherwise. The learning rate sched-

uler value “constant with warm-up” means that initially (during a percentage of all

training steps as defined by warm-up ratio), the learning rate increases from 0 to the

defined value and then remains constant. These fixed values are inspired by the values

used for fine-tuning on classification tasks in the paper introducing RoBERTa [26].

Table 18. Default hyperparameter values for Transformer-based models.

Hyperparameter Value

Learning rate 1e-5

Learning rate scheduler Constant with warm-up

Warm-up ratio 6%

Batch size 32

Dropout 0.1

Weight decay 0.1

Epochs 10

Classifier hidden size 256

Embedding size14 128

Table 19 presents the default hyperparameters of the flat fastText model. MinCount

refers to the minimal number of word occurrences required in the training set to use

a word as a feature. Both minimum and maximum lengths of character n-grams being

set to 0 means that character n-grams are not used.

14 Not applicable to flat models.

68

Table 19. Default hyperparameter values for flat fastText classifier.

Hyperparameter Value

Learning rate 0.1

MinCount 5

Epochs 20

Min length of character n-grams 0

Max length of character n-grams 0

Max length of word n-grams 1

Table 20 presents the default hyperparameter values for the hierarchical version of

fastText. In cases where the values differ depending on the level, the difference is

shown. Otherwise, all models use the same values, regardless of their position in the

hierarchy.

Table 20. Default hyperparameters for hierarchical fastText classifier.

Hyperparameter HS2 level HS4 level HS6 level

Learning rate 0.1

MinCount 5 2 1

Epochs 50 25 10

Min length of character n-grams 0

Max length of character n-grams 0

Max length of word n-grams 1

69

V. Comparisons of Hyperparameter Tuning Runs

Figure 12. HS6 accuracy scores on dev_small during the hyperparameter tuning runs with flat

Transformer-based classifier. The legend shows the learning rate (lr) values, classifier hidden

size (hidden) values, and learning rate scheduler type (scheduler).

Figure 13. HS6 accuracy scores on dev_small during the hyperparameter tuning runs with hi-

erarchical Transformer-based classifier. The legend shows the learning rate (lr) values, classi-

fier hidden size (hidden) values, and embedding size (emb) values.

70

VI. Hyperparameter Values After Tuning

The following tables present the hyperparameter values used for training the final

models. The values were either selected according to results from hyperparameter

tuning runs or fixed as such from the beginning.

Table 21. Hyperparameter values for the flat Transformer-based classifier.

Hyperparameter Value

Learning rate 5e-5

Learning rate scheduler Linear

Warm-up ratio 6%

Batch size 32

Dropout 0.1

Weight decay 0.1

Classifier hidden size 768

Table 22. Hyperparameter values for the hierarchical Transformer-based classifier.

Hyperparameter Value

Learning rate 3e-5

Learning rate scheduler Constant with warm-up

Warm-up ratio 6%

Batch size 32

Dropout 0.1

Weight decay 0.1

Classifier hidden size 768

Embedding size 128

71

Table 23. Hyperparameter values for the flat fastText classifier.

Hyperparameter Value

Learning rate 0.1

MinCount 5

Epochs 20

Min length of character n-grams 3

Max length of character n-grams 5

Max length of word n-grams 3

Figure 14. Number of models in the fastText hierarchical structure that selected each “number

of epochs” value as the best.

72

Figure 15. Number of models in the fastText hierarchical structure that selected each “word n-

gram” value as the best.

Figure 16. Number of models in the fastText hierarchical structure that selected each “learning

rate” value as the best.

73

VII. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Karmen Kink,

herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation, including for adding to the DSpace dig-

ital archives until the expiry of the term of copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives, under the Creative Commons licence CC BY

NC ND 3.0, which allows, by giving appropriate credit to the author, to reproduce, dis-

tribute the work and communicate it to the public, and prohibits the creation of deriv-

ative works and any commercial use of the work from 14/ 05/ 2022 until the expiry of

the term of copyright,

Classification of E-Commerce Products Based on Textual Product Descriptions,

supervised by Kairit Sirts and Karl-Oskar Masing,

2. I am aware of the fact that the author retains the rights specified in p. 1.

3. I certify that granting the non-exclusive licence does not infringe other persons’ in-

tellectual property rights or rights arising from the personal data protection legisla-

tion.

Karmen Kink

14/05/2021

