

UNIVERSITY OF TARTU
Institute of Computer Science

Software Engineering Curriculum

Levani Kokhreidze

Service Discovery from Uniform Resource
Locators of Monitored Web Applications

Master’s Thesis (30 EAP)

Supervisor(s): Marlon Dumas, PhD
Vladimir Šor, PhD

Tartu 2016

Service Discovery from Uniform Resource Locators of Monitored Web Applications
Abstract

This thesis addresses the problem of analyzing Uniform Resource Locators (URLs) of
incoming Hypertext Transfer Protocol (HTTP) requests in a Web application server in
order to discover the services provided by the applications hosted by the application
server, and to group these applications according to the services they provide. The thesis
investigates this problem in the context of the Plumbr Java performance monitoring tool.
When the hosted applications are implemented using a known web framework (e.g.
Spring), the service name and associated data, such as URL parameters, can be extracted
directly from the controller. However, this controller-based service discovery approach,
which is currently implemented in Plumbr, is not applicable when the hosted applications
use unknown framework. This research addresses the problem in this latter more general
setting.
The thesis proposes a pure URL-based approach, where the observed URLs are parsed,
leading to sequences of tokens, which are then analyzed using natural language
processing techniques and graph transformations. The proposed service discovery
technique has been implemented in Groovy and Java, integrated into the Plumbr tool and
evaluated on data extracted from production server covering over 400K URLs.

Keywords: service discovery, JVM, REST, natural language processing, text mining.
CERCS Classification: P170 - Computer science, numerical analysis, systems, control

Teenuste tuvastamine seiratavates veebirakendustes üldiste ressursilokaatorite abil
Kokkuvõte

Käesolev magistritöö käsitleb veebiserveri sissetulevate HTTP päringute URL-ide
analüüsimist veebiteenuste tuvastamise eesmärgiga.

Probleem on aktuaalne veebirakenduste monitooringutööriistade seisukohalt, kuna
sissetulevad HTTP päringud on vaja omavahel loogiliselt grupeerida selleks et edasi
hinnata ning jälgida teenuse vasteaega.
Uurimistöö keskendub Java veebirakendustele ning analüüsib URLide andmehulka, mis
on saadudud monitoorimistarkvarast Plumbr.
Kui monitooritav veebirakendus on realiseeritud mõne Plumbri jaoks tuntud
veebiraamistiku abil (näiteks Spring), siis on võimalik seda rakendust instrumenteerida
selliselt, et teenuse nimi on üheselt määratletav. Kui aga tegemist on Plumbri jaoks
tundmatu veebiraamistikuga, siis ainuke sissetuleva päringu kirjeldus on selle päringu
URL.

Kui URLis sisalduvad dünaamilised parameetrid, siis sama teenust kasutavad päringud
on erinevad ja neid ei ole võimalik ainult URLi põhiselt grupeerida.

Käesolev magistritöö pakub välja URLi analüüsil baseeruva grupeerimise lahenduse.
Lahendus tükeldab URLi, eraldab sealt sõnede ahelad, mida seejärel analüüsib kasutades
loomuliku keele töötlemise ning graafitransformeerimise tehnikaid.
Pakutav teenuste tuvastuse lahendus on teostatud kasutades Java ja Groovy
programmeerimiskeeli, hinnatud andmehulgal mis koosneb üle 400 000 URList ning on
integreeritud Plumbr monitooringutarkvarasse.

Võtmesõnad: teenuste avastamine, JVM, REST, naturaalse keele protsessimine, teksti
kaevandamine

CERCS Classification: P170 - Computer science, numerical analysis, systems, control

Acknowledgements

I wish to express my genuine gratitude to my supervisors, Marlon Dumas and Vladimir
Šor, for helping me out with this research. I would like to thank whole amazing collective
of Plumbr OÜ for proposing this research topic and sharing their expertise and
knowledge with me. I would like to thank my family and friends for their support. Lastly,
I want to say thank you to the whole academic staff of Software Engineering mater’s
program for their dedication and professionalism over the past two years; it was an
incredible journey.

List of Abbreviations .. 4	
1. Introduction .. 5	
1.1	Problem	statement	..	5	
1.2	Contribution	...	5	

2. Background ... 6	
2.1	Introduction	to	URL	..	6	
2.2	Introduction	to	HTTP	and	REST	..	8	
2.3	State	of	the	Art	...	8	

3. Contribution ... 14	
3.1	Data	structure	...	14	
3.2	Modifying	existing	knowledge	for	URL-based	service	discovery	...	15	
3.2.1	Initial	dataset	review	...	15	
3.2.2	Data	processing	..	16	

3.3	Tool	Development	...	32	
3.3.1	Overall	Architecture	..	32	
3.3.2	Discovery	Process	...	34	

4. Evaluation ... 42	
4.1	Experimental	setup	..	42	
4.2	Summary	of	Results	...	44	
4.3	Discussion	...	51	

5. Conclusion & Future Work ... 52	
6. Bibliography ... 54	

 4

List of Abbreviations
Table below describes the meaning of the various abbreviations and acronyms used
throughout the thesis.

Abbreviation Meaning

API Application Programming Interface
DSL Domain Specific Language
EJB Enterprise Java Beans
HTTP HyperText Transfer Protocol
JVM Java Virtual Machine
MVC Model–view–controller architecture
REST Representational State Transfer
RMI Remote Method Invocation
RPC Remote procedure call
SQL Structured Query Language
SVG Scalable Vector Graphics
UML The Unified Modeling Language
URI Uniform Resource Identifier
URL Unified Resource Locator
W3C World Wide Web Consortium
WSDL Web Service Definition Language

 5

1. Introduction
Service Discovery is a relatively new area of research and in the context of Java-based
web applications. We can think about it as a mechanism or methodology to find
application endpoints, which provide direct value to the end user. With increased
popularity of REST over the past decade, it is no surprise that Service Discovery is
closely related to REST architecture and in the most of the cases, those endpoints are
represented as RESTful web services. On the other hand, services can be RMI-related
APIs, which is the case for the EJB development architecture. In general, the structure of
the service is implementation specific, but in most of the cases, while adopting specific
architectural style or framework, certain rules will always be followed with respect to
service design.

1.1	Problem	statement	

As of today, Plumbr supports a limited number of JVM-based frameworks to discover
services automatically. In those cases, it instruments framework specific classes to extract
class with the corresponding method as the service name. For example:
Given URL: http://www.example.com/invoices/411121/pay

Implemented in: Spring MVC
Will yield service name as: InvoiceController.pay()

Since there are a vast number of web frameworks in the JVM ecosystem, Plumbr cannot
implement support for each of them separately. When Plumbr is used to monitor web
application implemented in the unsupported framework, raw URL value is stored as a
service name.

At the moment, Plumbr fails to identify parameters or dynamic parts in raw URL. Thus,
same service with different values is registered multiple times. This results in poor user
experience, increased database size and various other problems related to Plumbr
automatic root cause detection.

Existing research in the area of Service Discovery is mainly concentrating on identifying
services from a different kind of documentation such as: UML class diagrams, API
documentation or WSDL documents. Therefore most algorithms and tools that were
developed for automatic service discovery rely on the idea that at least one of the
documentation mentioned above would be provided as input. For this day, we have a
situation that there is no way to identify meaningful services from raw URL data.

1.2	Contribution	

The thesis aims are:

• Study existing methods of discovering services described in the literature.

 6

• Identify applicability of natural language processing techniques on Plumbr
dataset, consisting of approximately 400K captured raw URLs from 2 Java web-
applications

• Implement Java based application that will analyze URLs and give tree-like graph
representation of the URLs as an output.

• Analyze application output and describe the results.

2. Background
The purpose of this chapter is to give a brief overview of the URL structure and to
summarize existing knowledge in the context of Service Discovery. Currently, service
discovery is mainly used in the situations where legacy style APIs need to be migrated to
modern RESTful style web services. Most of the existing research discussed in section
2.3 focuses on analyzing RPC interface documents to identify important services and
transform them into REST [11] style web interfaces. Tools and algorithms developed for
discovery require different types of application documentation as input. Research showed
two most popular documentation choices:

• UML class/interface diagrams
• API documentation (WSDL documents, interface description, etc.)

Research presented in this master’s thesis focuses on possibility to provide raw URL data
as an input and give normalized service names as an output. Static placeholders will
replace dynamic parts in the URL, so that same URL with different parameters or path
variables will be registered under the same service name.

In the following chapter, we will discuss in more detail what are current approaches and
challenges in this field of research and how can existing techniques and algorithms be
used to identify and normalize important services in the URL dataset.

2.1	Introduction	to	URL	

This section introduces the concept of URL, syntax and associated terminology required
to proceed with the research presented herein. In general, URLs [9] consist of multiple
components, such as: scheme, scheme-data, username, password, host, port, path, query
and fragment. Value for each component is either present or not depending on the used
URL type.

Railroad diagram that illustrated basic structure of the URL. Taken from the resource [8].

 7

As far as this master’s thesis is concerned we won’t cover file-url and non-relative-url in
details, but rather provide examples to have the basic understanding of their structure.

file-url – consists of file:// prefix and the absolute path of the file in the file system. It can
be used to locate files from the local computer or the host filesystem. For example:
file:/var/logs/application.log can retrieve log file content associated with the path on the
local filesystem, where the file is the schema and /var/logs/application.log is the path.
Same result can be achieved by specifying host and retrieving content from remote
filesystem:

file://example.com/var/logs/application.log – Where example.com is the host.
non-relative-url – consists of schema prefix and schema-data. It evaluates schema-data
for the defined schema. For example, we can understand following non-relative URL:
javascript:alert("Hello, world!") as the URL with the schema value is javascript and
schema-data – alert("Hello, world!"). Schema-data is specific for non-relative URLs, and
its value for the file-url and relative-url is set as NULL.

In this research we will be mainly dealing with the relative-url. Thus, it is important to
understand its structure in more details. As we can see in figure 1, there are different
ways of constructing relative-url and each way has its own components.

Figure 1: Railroad diagram for the relative URL. Taken from the resource [8].

• Non-file-relative-schema – schema with one of the following values: ftp, gopher,
https, http, wss or ws.

• Authority – is constructed using the following components: user, password, host
and port. In case if we specify authority component – only host component is
mandatory. Figure 2 gives syntax overview of the authority components.

• Path – path to the resource.
URL-based services registered by Plumbr are stored with no schema nor authority blocks,
thus in this research we will be focusing on the relative-url type, where only path
component is presented.

URL-path consists of different parts separated by the path delimiter. According to the
RFC-1738 [9] URL-path delimiter does not have any predefined structure and its design
is implementation/schema specific.
Hereafter we will refer to each part of the URL-path tokenized by the path delimiter as
URL part.

 8

Figure 2: Railroad diagram for the authority block presented in the figure 1. Taken from the resource [8].

	

2.2	Introduction	to	HTTP	and	REST	

The aim of this section is to give a general overview of the REST architecture and HTTP
protocol. Both of them are quite broad topics. Therefore, we will cover only those aspects
that are important for this master’s thesis.

According to the RFC-2616 [10] documentation, HTTP (The Hypertext Transfer
Protocol) is the foundation for the data transmission across the world wide web. It is
implemented as a request-response protocol between a client and a server, where in the
modern world a client is usually a browser and a server – a machine hosting the
corresponding web application. HTTP provides Request Methods (HTTP verbs) to
express the intention on the particular resource. Most common HTTP verbs include:
GET, POST, PUT and DELETE.
REST is the architectural paradigm proposed by Roy Fielding [11]. In short terms, we
can think about the REST as the way of describing resources (services), their current state
and available actions using standard HTTP components. RESTful web services consists
of 3 main building blocks:
Hypermedia – Links that identify current application state and available actions.

• HTTP – Interaction protocol, with corresponding HTTP verb and HTTP response.
• URI – Resource identifier.

As we already mentioned, HTTP request methods are used to define the intention on the
resource. Regarding RESTful web services, it is utilized for the very same reason. For
instance, when someone wants to query the resource, HTTP verb GET is used, for
creation – POST, modification – PUT and so on. The server will respond with
corresponding HTTP status code: for the successful operations, the status code is from
200 till 300 and for the unsuccessful ones – 400-500.
In the upcoming chapters, we will see how different components of the REST
architecture can be used to generate RESTful web services from RPC interface
documentation as well as discover important services from the raw URL data.

2.3	State	of	the	Art	

Finding relevant literature for selected topic is one of the most important parts of any
research. Related reference list was selected using principles of systematic literature
review presented by Barbara Kitchenham [1]. Searching for relevant literature was split
in two phases. At first we need to find source of scientific papers, secondly we have to
find bibliography associated with Service Discovery.

 9

Google Scholar database was selected to find related articles. Considering the fact that
Service Discovery is more abstract term and in the context of this research it is strongly
related to terms such as: reverse engineering, REST and API primary search was
conducted using following phrases:

Ø "Service Discovery" OR "Reverse Engineering" AND "REST" OR "Software
reengineering" and "REST"

Above-mentioned query produced approximately 14,500 results. After initial overview
more detailed analysis was performed on result set using following criteria definitions:

• Is the paper about “Service Discovery” or “REST” and “Reverse Engineering” or
“REST” and “Software reengineering”?

• Does the paper include real life examples?
• Does the paper have algorithm or pseudocode examples?

In case the paper satisfied above-mentioned criteria, it would be considered as relevant
to this research. Based on existing methodology potential answers could be: “Yes” or
“No”
Before trying to implement the application for Plumbr case study, it was important to
understand what is the most common trend in terms of web services. For this purpose
research paper [2] by M. Maleshkova, C. Pedrinaci, J. Domingue was selected as an
example. Research presented in this paper was conducted in year of 2010 analyzing
approximately 222 Web APIs from the ProgrammableWeb1 directory. Based on the
paper mentioned above we can conclude that RPC and REST style Web APIs were most
popular ones. Study also suggested that apart from REST and RPC type web services,
there could in fact be combination of these two, called hybrid style services.
Information extracted from above mentioned paper was useful in a sense that during
implementation of natural language processing algorithms, it was clear that those 3 types
of Web APIs would be most popular ones and first of all algorithm should be able to
handle those cases. As research presented herein concentrates on Java technologies, in
JVM world analogue of RPC style Web APIs would be services based on Remote
Method Invocation (RMI).
After analyzing most popular types of web services logical step forward would be to
investigate what is current approach to actually discover services in those types of
applications. For this purpose various papers were selected and below are conclusions
based on them.
Research papers [3] and [6] aim to accomplish same goal but with different approaches.
The idea behind those studies is to generate RESTful style web services from legacy
style APIs.

In the research presented in paper [6] authors choose to adapt existing, legacy services as
a RESTful interfaces by adding additional application layer, which is implemented in
application specific DSL. New application layer is basically a code generator that can
map RESTful web services to existing legacy API.

1 http://www.programmableweb.com/

 10

In paper [3] authors focus on analyzing software documentation to get RESTful web
services. In more details purpose of research paper [3] is to design a specific tool that can
generate RESTful style web services from UML class/interface diagrams. Paper
suggested that, given the structure on how modern frameworks are organized, URLs
should be presented in a tree like hierarchy structure as it gives possibility to configure
and implement the skeleton of a Web application. As far as this paper is concerned taking
into account research [3] final output of the algorithm that we will discuss in following
chapters will be acyclic connected graph that will expose hierarchy of URLs giving
possibility to its consumer to observe application resource architecture.
Research presented in article [5] also focused their research on two dominant types of
web API documentation: REST and RPC-style.

RPC-style Web APIs
Algorithm designed for information extraction from the RPC documentation in paper [5]
relies on two main characteristics:

• Operation names follows CamelCase2 notation, where first part is verb and
remaining part is typically a noun.

• Documentation in most of the cases follows some patterns. For example:
operation name in most of the cases is in <h3> tag, description in <p> and so on.

Figure 3 shows example of RPC-style web API documentation.

Figure 3: RPC-style web API documentation example. Taken from the paper [5]

Given those characteristics paper presented extraction algorithm to automatically
discover technical information (method names, parameters, types, etc.) for RPC-style
services.
RESTful Web APIs

Opposed to the previous case, naming conventions here are almost useless because
usually RESTful services do not necessarily follow any predefined naming conventions.
Instead algorithm presented in the paper uses HTTP methods and URI templates to
represent resource model of the application.

2 https://en.wikipedia.org/wiki/CamelCase

 11

Figure 4 shows example of RESTful style web API documentation

Figure 4: RESTful web API documentation example. Taken from the paper [5]

Although article [4] is mainly focused around RPC style service discovery, main ideas
still can be used for URL-based services. The goal of the research is to discover services
from WSDL documentation and build hierarchy between them. This is achieved by
performing multi-step process, which takes WSDL document as input and produces a
potential resource models. Those resource models, combined with HTTP verbs can be
interpolated as RESTful service interaction points.
Figure 5 illustrates high-level overview of resource extraction process presented in the
paper.

Figure 5: High-level overview of resource extraction process. Taken from the paper [4]

Signature Model Generation
The aim of Signature Models is to present service description in more normalized way.
We can think about it as a document structure designed particularly for this paper. This
kind of abstraction helps to avoid any specific syntax or structure details presented in
original interface description document. Although in the research, authors used WSDL as
input, thanks to this abstraction any machine-readable interface description document can
be served as an input.

Generated signature model 𝑠! has following properties:

𝑠! .𝑛𝑎𝑚𝑒 – Operation name

𝑠! . 𝑖𝑛𝑝𝑢𝑡 – A set of input parameters

 12

𝑠! . 𝑜𝑢𝑡𝑝𝑢𝑡 – A set of output parameters

Each parameter has its own characteristics. For example parameter 𝑝! has following
attributes:

𝑝! .𝑛𝑎𝑚𝑒 – Parameter name

𝑝! . 𝑡𝑦𝑝𝑒 – Parameter type

𝑝! .𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 – Parameter multiplicity

𝑝! . 𝑐𝑙𝑎𝑠𝑠 – Parameter tag designed to distinguish between application data and metadata

Let’s look at 𝑝! . 𝑐𝑙𝑎𝑠𝑠 tag in more details. First of all we need to understand what’s the
reason for introducing this parameter tag at all. In the most cases API consumers require
to provide some authentication token as parameter. Those kinds of parameters aren’t
directly used to deliver functionality provided by the operation, as a result they are as
metadata parameters. On the other hand parameters like orderId are tagged as
application data since they are used directly by the service to extract necessary
information. For this purpose TF-IDF categorization algorithm can be used, where
parameters play the role of terms and operation name with corresponding signature play
role of documents. Categorization score discussed in paper [5] is computed as follows:

𝐶!"!!"! 𝑝, 𝑠! , 𝑆 = 𝑝𝑓 𝑝, 𝑠! ∗ 𝑖𝑠𝑓 𝑝, 𝑠! , 𝑆

S – Number of all operation signatures

𝑠! – Each operation signature

p – Each parameter given in operation signature 𝑠!

𝑝𝑓 𝑝, 𝑠! is defined as follows:

2 – if (p ∈ 𝑠! . 𝑖𝑛𝑝𝑢𝑡 ∪𝑠! . 𝑜𝑢𝑡𝑝𝑢𝑡) ∧ (substring(p.𝑛𝑎𝑚𝑒, 𝑠! .𝑛𝑎𝑚𝑒))

1 – if (p ∈ 𝑠! . 𝑖𝑛𝑝𝑢𝑡 ∪𝑠! . 𝑜𝑢𝑡𝑝𝑢𝑡) ∧ (¬substring(p.𝑛𝑎𝑚𝑒, 𝑠! .𝑛𝑎𝑚𝑒))

0 – otherwise

𝑖𝑠𝑓 𝑝, 𝑠! , 𝑆 is computed by:

𝑙𝑜𝑔!
|𝑆|

|{𝑆! 𝜖 𝑆 ∶ 𝑝𝑓 𝑝, 𝑠! > 0}|

Using predefined threshold T parameter can be tagged using following formula:

 13

𝑖𝑓 𝐶!"!!"# 𝑝, 𝑠! , 𝑆 > 𝑇 𝑡ℎ𝑒𝑛 𝒂𝒑𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝒅𝒂𝒕𝒂

𝑖𝑓 𝐶!"!!"# 𝑝, 𝑠! , 𝑆 ≦ 𝑇 𝑡ℎ𝑒𝑛 𝒎𝒆𝒕𝒂𝒅𝒂𝒕𝒂

In the upcoming chapters we will discuss in details how this formula can be modified to
discover parameter parts in the URL dataset.

Operation Terms Model and Service Terms Models

In general service names incorporate valuable information, therefore natural language
processing techniques can be used to extract service description directly from service
names. Often service name follow CamelCase semantics, thus simple tokenization
algorithm can be used to discover words in service name. For example:

tokenize(addOrderItem) -> [add, order, item]
Where tokenize function is simple string parsing algorithm, which splits input on capital
letters. After extracting each word from the service name operation terms can be
generated using natural language processing techniques. Each word is marked with one
of the following term: Intent, Concept, Qualifier or Selector.
Intent – In most of the cases Intent is the verbal part of the service name. Describes the
intention of the action. For example: getOrderItem, payInvoice, addPurchase
Concept – We can see it Concept is the element on which operation is performed. For
example: getSubmittedOrder
Qualifier – In most cases we will see Qualifier as adjective, which describe semantic
qualities of the Concept
Selector – Filtering, selecting, etc. For example: getSubmittedOrdersByDate

After successfully generating operation terms for each operation name, dependency
graph can be constructed that will basically give us high-level overview of services that
modifies the data or queries the data.
Reducing the graph with the least outgoing or incoming paths will lead us to Service
Terms Models generation.

Core Conceptual Entities Extraction and Operation Intention Normalization

Core Conceptual Entities Extraction and Operation Intention Normalization are two last
steps before getting final output of the process. Input for this step is graph data structure
with nodes labeled accordingly (Intent, Concept, Qualifier, Selector). Each node has a
property containing all other nodes, which it affects. Core Conceptual Entities Extraction
takes nodes, which are labeled as Concept, and gives possible version of the Resource
Model. Nodes, which have no incoming or outgoing paths, are omitted and the reason for
it is that if Concept is not modified nor queried it cannot be used for generating REST
services.

 14

Operation intention normalization tries to determine what is the purpose of invoking
corresponding operation. Below is the list of possible categories:

• Constructor – corresponds to HTTP verb POST (create, add, etc.)
• Destructor – corresponds to HTTP verb DELETE (delete, remove, etc.)
• Accessor – corresponds to HTTP verb GET (get, fetch, etc.)
• Mutator – corresponds to HTTP verb UPDATE (update, modify, etc.)
• Query – corresponds to HTTP verb GET (query with some additional parameters)
• Investigator – corresponds to HTTP verb GET (find, collect, etc.)
• Process – when service name is not categorized in any above mentioned

categories

Categorization is achieved by analyzing graph names and their incoming and outgoing
paths. For example when node is categorized as Constructor usually node name is verb
(add, create, etc.) and its outgoing paths – child nodes, generally are represented as
Intent.

Research paper [7] describes thirteen different approaches for service discovery. Most of
the techniques were not applicable for this research as they were mainly addressing more
specific issues like indexing, networks service discovery, etc. There was one exception
though, described as Keyword Clustering. Using this technique similarity matrix was
calculated between different URLs using Pareto principle [12	1	Data	structure

]. In the following chapters I will describe how approach similar to this can be used
populate reduced number of URL-based services after discovering parameter and
dynamic parts in the URL.

3. Contribution
In this chapter, we will discuss how existing knowledge can be modified for URL-based
Service Discovery. Also we will review in detail development process of software
prototype, which will implement the modified knowledge of existing Service Discovery
techniques using Groovy and Java programming languages.

3.1	Data	structure	

As it was already stated, for this master thesis data was obtained from Plumbr’s database.
For the sake of confidentiality we will skip exploring the internal data structure of
Plumbr. Instead, we will describe what kind of structure is required to perform the
analysis. Since the URL format and style is application specific, first and foremost, we
need some kind of an identifier to perform research separately for each application. For
this purpose, we will introduce a separate column for each URL entry, called ‘appId’.
This will give us possibility to perform bulk data analysis, for multiple applications or
accounts at the same time. Figure 6 illustrates a data structure example, which will be
served as an input.

 15

appId serviceUrl

appId023230123123 /api/rest/invoices

appId023230123123 /api/rest/invoices/2323

appId023230123123 /api/rest/pos

appId023230123123 /api/rest/pos/123232

appId023230123123 /api/rest/invoices/pay

appId4646452346t6 /api/v1/tasks

appId4646452346t6 /api/v1/tasks/23554

appId4646452346t6 /api/v1/tasks/12345/contributors

Figure 6: Example data structure of CSV file that can be served as an input to the application.

3.2	Modifying	existing	knowledge	for	URL-based	service	discovery	

In chapter 2 we discussed and summarized existing approaches related to Service
Discovery and as we found out the goal of the most research papers was to replace legacy
RPC style APIs with modern RESTful architecture. Since majority of designed
algorithms and tools require RPC-style interface documents or UML class/interface
diagrams as an input, we need to perform some modifications in order to adapt existing
knowledge to our needs. To do that, first and foremost we need to understand from
existing theories what can be used for URL-based discovery and what kind of
adjustments do they need. In the upcoming sections we will try to draw parallels and
identify common characteristics between RPC and URL based services.

3.2.1	Initial	dataset	review	

Purpose of this section is to analyze what we need to do on dataset in the first place. As
we already mentioned, that data represents raw URLs captured at the JVM boundaries,
therefore potentially it contains a lot of noise. At this point size of dataset does not play
important role. For now we are mainly interested in the URL structure and potential noise
candidates. We will talk about dataset characteristics in more details during chapter 4.
For research purposes following MySql3 queries were developed, in order to understand
how to filter out nonessential URLs.

		SELECT	count(t.*)		
		FROM	`table_*****`	t		

3 https://en.wikipedia.org/wiki/MySQL

 16

		WHERE	t.rawUrl	LIKE	'%.html'		
								AND	t.appId='appId********'	
	
		SELECT	count(t.*)		
		FROM	`table_*****`	t		
		WHERE	t.rawUrl	LIKE	'%.js'		
								AND	t.appId='appId********'	
	
		SELECT	count(t.*)		
		FROM	`table_*****`	t		
		WHERE	t.rawUrl	LIKE	'%.css'		
								AND	t.appId='appId********'	

Different Plumbr accounts were selected using above mentioned queries and in all of the
cases they returned considerable amount of results, thus URLs containing commonly
used static contents such as: '.html', '$', '.php', '.js', '.txt', '.css', '.jpg', '.ico', '.gif' will be
excluded in order to reduce noise in the dataset. We can define them as the set of rules for
noise reduction.

Based on the initial research results, data parsing algorithm can be developed based on
above-mentioned rules. Noise reduction is not application specific, thus it can be done as
a very first step, before actual URL-based service discovery.

3.2.2	Data	processing	

Most of the existing discovery approaches perform their groundwork based on software
documentation. On the contrary, URLs do not have any predefined style guideline and
fairly in all of the cases they are implementation specific; therefore we cannot have
defined or strict understanding about the structure. Furthermore, initial review of the
Plumbr dataset showed that it contains not only URLs, but also RMI style services
extracted from the frameworks supported by Plumbr. To address all this issues, we need
to transform list of raw URL data into data structure eligible for analysis. In order to
achieve this, five consecutive steps will be developed. Those steps are:

1. Initialization phase
a. Constructs required data structures for succeeding steps.
b. Removed domain from the URL if applicable.
c. Discovers URL part delimiter per application and saves it in the

corresponding data structure.
d. Performs additional data maintenance based on the delimiter.

2. Grouping phase
a. Splits URLs using discovered delimiters per application.
b. Builds application URL groups using application identifier and tokenized

URLs.
3. Analysis phase

a. Performs main analysis in order to identify dynamic and static parts in
URLs using TF-IDF and MapReduce algorithm.

4. URL reduction phase
a. Joins similar URLs as one and assigns new service name.
b. Alters original URL by replacing identified dynamic parts with predefined

 17

static string.
5. Graph building

a. Builds graph representation from reduced URLs.
b. Joins similar nodes, if applicable.

In the upcoming sections we will discuss each step in more details and will try to find a
correlation between URL and RPC/UML based service discovery.

Initialization	phase		

The idea behind initialization step is to build groundwork for forthcoming URL-based
service discovery. This includes building initial data structure, containing original URLs
with application and URL identifiers. Each of the populated data structures during
initialization phase will be used during different steps of the discovery lifecycle. For
example during grouping phase application identifier will be used to group tokenized
services per application separately. This will allow us to distinguish URL style among
different software systems; therefore we can simultaneously analyze multiple Plumbr
accounts at once. On the other hand during analysis step we should have a possibility to
mutate original services, meaning that if we will successfully identify dynamic parts in
the URL we should have a fast mechanism to find one specific URL and change dynamic
part by predefined static content. For this case we introduced URL identifier, which will
be used to quickly find specific record in the dataset. This will allow us to group similar
services as one and generate new service name for group of URLs during reduction
phase.
Java code snippet presented below represents basic data structure example constructed
during initialization step.

		class	RawUrlData	{							
						public	String	appId						
						public	int	urlId						
						public	String	rawUrl			
		}	

We already discussed procedure and regulations on how to reduce noise in the dataset by
excluding URLs containing commonly used static content. As initial dataset overview
showed beside such pollution, approximately 1% of all services take parameters. SQL
query presented below extracts such cases:

		SELECT	t.rawUrl	
		FROM	`table_*****`	t		
		WHERE	(t.rawUrl	LIKE	'%&%'	OR	t.	rawUrl	LIKE	'%?%')	

Even though it is not significant amount of URLs, without proper string parsing, most
likely those kinds of records will introduce problems during service reduction phase. In
order to have proper service grouping we need remove parameters from the URL but

 18

keep the actual URL intact. For example suppose we have implemented function with the
following signature:

		String	parse(String	url)	

If we will have a following URL:
https://example.com/service/123/invoke?start=2016-04-17T00:00&end=2016-04-18T23:59

Then the result should be:
https://example.com/service/123/invoke
Although requirement is rather straight forward, before implementing this functionality
we need to keep in mind one essential detail, which is that we have no any guarantee that
URL delimiter will be same for every software system.

For example, as we found out during literature review, in the research paper [2], ‘/’ is the
most commonly used across the RESTful web services, so lets examine query given
below:

		SELECT	count(t.*)		
		FROM	`table_*****`	t		
		WHERE	SUBSTR(t.rawUrl,	2)	NOT	LIKE	'%/%'	

This query returns total count of records where ‘rawUrl’ column does not contain slash. It
excludes first character; because in case of Plumbr URL-based service discovery first
character is always slash.
Surprisingly we discovered approximately 30% of all URL-based services, which spread
across 3 different JVM based applications fall into above-mentioned category.
So before rushing into parameter filtering, above all we need to find out what is the URL
delimiter for a given application. To do so we can introduce a delimiter analyzer
algorithm that will search for known delimiters in the application URLs. For the sake of
brevity of this master’s thesis we introduced three known URL delimiters, which are:
slash (‘/’), dot (‘.’) and minus (‘-’). Figure 7 gives brief overview of the algorithm.

 19

Figure 7: Delimiter analyzer algorithm flowchart diagram

The core concept of delimiter analyzer is to count occurrence of each expected delimiters
in the collection of application URLs and select the one with 90% confidence. In the
upcoming application development chapter we will discuss in more details how this
algorithm can be implemented with functional programming using Groovy-programming
language. Since application specific delimiter will be used multiple times from different
phases of URL service discovery lifecycle it would make sense to save it into memory
with the following map structure:

Key: appId

Value: identified delimiter
Upon successful identification of the delimiters for individual applications, we can
perform parameter trimming in the URLs. One may ask why we need URL delimiter for
parameter removal at all. We will see precise answer to this question in the upcoming
chapter regarding Tool development and Plumbr case study; there we will be able to see
difference between software systems with respect to URL design. As for now we can
describe basic rules of parameter trimming.
According to World Wide Web URL documentation [14] – traditionally, URL parameter
indicator is question mark symbol (?) and in case of multiple parameters followed by ‘&’
symbol. Based on this statement the most logical way would be to remove everything
after ‘?’ symbol, but again this w3 documentation does not guarantee that every
application in the world follows same style guideline. For example it is usual use case
around the web that some of the web sites include page title in the URLs. This is common
case for news, hotels or flights related web sites. So basically there can be the case when
URL contains & and it is not actually a parameter indicator. And it is not mandatory to
include ‘?’ in case of parameter usage. All things considered, we can say that URL
presented below can be considered as valid:
https://www.example.com/sport-&-
entertainment/h1di39dg/details&newsId=1234&from=google.com

 20

As we can see URL presented above does not contain ‘?’ but instead parameters start
straight with ‘&’ symbol. Considering this fact if we will implement parameter trimming
algorithm based on ‘?’ symbol, it would fail since there is no ‘?’ at all and in case of ‘&’
symbol we would get incorrect result since first appearance of ‘&’ does not indicate
parameter. All things considered and based on multiple research parameters in the URL
should be removed based on this rules given that we have two parameter indicators (‘?’,
‘&’) :

1. We must have URL delimiter.
2. If URL contains more than 1 part, parameters must be in the last part.
3. Parameter indicator can be identified as last occurrence in the given part.

Based on this rules let’s have step by step explanation for the URL presented above:
1. During initialization phase domain name is removed as a result we have relative

URL:

/sport-&-entertainment/h1di39dg/details&newsId=1234&from=google.com

2. Delimiter analyzer identified slash as URL delimiter.
3. URL tokenization is performed giving the following results:

[sport-&-entertainment,
h1di39dg,
details&newsId=1234&from=google.com]

4. Based on rules 2 and 3 we will search for parameter indicators (‘?’ or ‘&’) only in
the last part.

5. In the last part of the URL we will remove everything starting from the last index
of parameter indicator:

details&newsId=1234&from=google.com ≫ details

Code snippet given below illustrates how the last step can be achieved

		String	url	=	'details&newsId=1234&from=google.com'										
		int	i	=	url.lastIndexOf('&')										
		if	(i	!=	-1)	{														
						return	url.substring(0,	i)										
		}	

After all this steps new URL can be constructed with removed parameters using Groovy
join function:

		['sport-&-entertainment',	'h1di39dg',	'details'].join('/')	

Parameter removal from the original URLs is important step, because it will allow us to
avoid pollution related to the similar service grouping.

 21

Grouping	phase		

The objective of grouping phase is to tokenize URLs using discovered URL delimiter
during initialization phase and group them using identified URL style. For instance
URLs, which start with ‘api’ will be gathered in the same group. This approach was
introduced in order to split original dataset into smaller chunks. We will discuss TF-IDF
[13] algorithm, which will be used for URL parts classification (dynamic, static) in more
details shortly, but at this point we need to mention that algorithm is based on the
assumption that it will have multiple documents as an input and actual number of
documents is used to calculate the final score. In our case we have only one dataset per
application, thus we need to have a mechanism to build different groups out of it and
present them as separate documents. Chosen approach has its drawbacks, which we will
discuss, in the section 4.3. In the very same section we will also present possible solution
for it.

In the research [4] conducted by M. Athanasopoulos and K. Kontogiannis we saw service
name tokenization using upper case as delimiter. The article also suggested that for the
future work more intelligent ways of tokenization could be achieved, meaning that it
shouldn’t be dependent on specific delimiter only. In this master’s thesis we achieved this
goal for URL-based services by introducing delimiter analyzer algorithm. Delimiter
analyzer gives us possibility to have more generic way of discovering URL-based
services; meaning that its scope isn’t restricted by one specific ground rule. Tokenized
URLs can be saved in the following map structure:

Key: appId;URLPart
Value: Rest of urlParts as an array of Strings

Analysis	phase	

Analysis phase can be described as core step for discovery lifecycle. The main goal of the
previous two steps was to prepare and populate data structure for this step to successfully
perform analysis. Forthcoming URL reduction and graph building phases are totally
dependent on the results returned by this step. URL-based service analysis implements
MapReduce and TF-IDF, two widely used information retrieval algorithms.

Usage of TF-IDF was discussed in the research paper [4] as the technique to identify
relevant parameters for specific service. In the context of our research we will use TF-
IDF as procedure to identify dynamic parts in the URL. For instance suppose we have list
of following relative URLs:
/api/v2/invoice/inv123
/api/v2/invoice/inv424
/api/v2/invoice/inv948
/api/v2/invoice/inv000
/api/v2/invoice/inv782
/api/v2/invoice/inv545

 22

Given this data, developer can easily spot that api/v2/invoice	 is the static part in the
URL followed by invoice identifier as a result this 6 URLs can be combined as:
/api/v2/invoice/PARAM

TF-IDF gives us opportunity to accomplish this goal by computing relevance score,
which can tell us how important specific part is for the given URL in the context of a
whole application. In the upcoming section we will explore TF-IDF in more details.

TF-IDF	

TF-IDF [13] is combination of two statistical techniques, TF – Term Frequency and IDF
– Inverse Document Frequency. Main benefit of TF-IDF score is that its value increases
with the corresponding number of times a word appears in the document, but is offset by
the occurrence of the word in the collection of documents, which helps to confirm the
fact that some words in our case URL parts appear more frequently. There are numerous
variations for TF and IDF, with a different score calculation techniques. Figure 8 and 9
illustrates several adaptations for TF and IDF score calculation, respectively.

Name Value

Binary (0, 1)

Raw Frequency 𝑓!,!

Log Normalization 1+ log(𝑓!,!)

Double Normalization by 0.5
0.5+ 0.5 ×

𝑓!,!
max 𝑡! ∈ 𝑑 𝑓!!,!

Double Normalization by K
𝐾 + (1− 𝐾)

𝑓!,!
max 𝑡! ∈ 𝑑 𝑓!!,!

Figure 8: Different versions of Term Frequency calculation

Name Value

Unari 1

Inverse Document Frequency log
N
𝑛!

Inverse Document Frequency Smooth log(1+
N
𝑛!
)

 23

Inverse Document Frequency Max
log(1+

max 𝑡! ∈ 𝑑 𝑛!
𝑛!

)

Probabilistic Inverse Document
Frequency log

N− 𝑛!
𝑛!

Figure 9: Different versions of Term Frequency calculation

Exploring each of the variations of TF-IDF is outside the scope of this master’s thesis,
but interestingly enough during the literature review in the research [4] we have already
seen combination of Binary version of the Term Frequency and Inverse Document
Frequency. Authors were interested to categorize between application data and metadata
thus their choice of Binary version of the Term Frequency seems obvious. Up to this
point we mentioned several times that in terms of URL-based services we want to
categorize URL parts as static or dynamic, therefore one may ask why we cannot use
Binary form of the Term Frequency? Reason is that for the research [4] authors had clear
structure of services, meaning that they could easily distinguish between service name
and parameter, part of their research question was that how relevant was given parameter
for whole dataset. During the literature review in chapter 2, we have already seen how
they assigned 0 or 1 depending on simple string parsing algorithm. As far as this master’s
thesis is concerned we should treat URLs as text document, without any predefined
structure. For better illustration let’s discuss text-mining case for books. Suppose we
want to search find list of most important words across 10 books, each of them with
different sizes. For this case we want to exclude commonly used words such as: “and”,
“or”, “with”, etc. We can accomplish this task by computing Term Frequency using Raw
Frequency formula along with Inverse Document Frequency. The only thing that we need
is delimiter for words and as far as we already know in the books it is usually space. If
computed score is close to 0, this means that given word is rarely seen among the books,
meaning that it can be marked as specific for certain book. On the other hand high score
value illustrates that selected word is observed across the most of the books. Usually
words like: “and”, “or”, “with” have high TF-IDF score.
If we will try to draw parallels between URLs and books we can think about collection of
URLs as separate book and given the fact that we already know delimiter from
initialization phase we can compute TF-IDF score for each part of the URL in a given
collection, this will give us score value and based on this value we can categorize URL
part as dynamic or static. Usually threshold for classifying word as relevant or non-
relevant is predefined. Through the years multiple studies we conducted to dynamically
calculate threshold based on dataset. As the matter of fact research paper [4] used
threshold 0.2 for classification and according to their studies it has shown really good
results. For our research we will also use predefined threshold, with an exception that tool
that we develop will have a possibility to change its value during runtime based on user’s
needs. We will discuss this in more details in the tool development section.

 24

TF-IDF	Using	MapReduce		

Through the years MapReduce programming model justified its efficiency for text
mining, information retrieval and various other large data processing tasks. The model
was influenced by map and fold functions commonly used almost in any functional
programming language. MapReduce programming model is based on key value pairs,
where map generates values for a specific key and values for the same keys goes to the
same reducer. But before going into MapReduce implementation details, we need to take
a look at how map and fold functions look like in functional programming.

Map applies given function to each element of the list and gives modified list as an
output.
map	f	lst:	(’a	->	’b)	->	(’a	list)	->	(’b	list)

Fold applies given function to one element of the list and the accumulator (initial value of
accumulator must be set in advance). After that result is stored in the accumulator and
this is repeated for every element in the list.
fold	f	acc	lst:	(acc	->	’a	->	acc)	->	acc	->	(’a	list)	->	acc

Lets take a look simple sum of squres example using map and fold functions. As we
already described Map applies given function to every element of the list and gives us
modified list. For the task stated above we have list of integers and we want to have each
number in power of two. So our map function would look like this:

		(map	(lambda	(x)	(*	x	x))		
	 '(1	2	3	4	5))		
		→	'(1	4	9	16	25)	

As for the Fold, since we want to have sum of elements we need to set initial value of
accumulator as 0 and we can pass + as a function.

		(fold	(+)	0	'(1	2	3	4	5))	→	15	

Combination of map and fold for sum of squares would look like this:

		(define	(sum-of-squares	v)		
				(fold	(+)	0	(map	(lambda	(x)	(*	x	x))	v)))	
	
		(sum-of-squares	'(1	2	3	4	5))	→	55	

If we think about TF-IDF calculation for URLs, we need to apply given function for each
URL and fold calculated results by predefined formulas, thus MapReduce programming
model can be very handy for us. In order to calculate Term Frequencies and Inverse
Document Frequencies we need to generate data for several intermediate steps such as
word count in each URL, total number of words for the collection of URLs and etc.
Therefore calculating everything in a single MapReduce task can be overwhelming with
respect to algorithm design and implementation. To address this issue we can split the
task into four interdependent MapReduce iterations, this will give us possibility to
perform step-by-step analysis on the dataset and during final iteration we will have a
possibility to calculate score for each URL part in the dataset.

 25

First	MapReduce	Iteration	

During first MapReduce iteration we need to split each URL into parts and output each
URL part separately, where URL identifier and a part itself will be defined as keys. This
will give possibility to the reducer to calculate total occurrence of the specific URL part
in the dataset.
The implementation would look like this:

Map:
Input: (raw URL)

Function: Split the URL into parts and output each pert.
Output: (urlPart;urlCollectionId, 1)
Reduce:

Input: (urlPart;urlCollectionId, [counts])
Function: Sum all the counts as n

Output: (urlPart;urlCollectionId, n)

Second	MapReduce	Iteration	

For the second iteration input for the map function is the output of the first iteration. The
purpose of the map function is to modify key values of the first iteration so that we can
collect number of times each URL part appeared in a given collection. This will give
possibility to the reducer to calculate number of total terms in each collection.

The implementation should look something like this:
Map:

Input - (urlPart;urlCollectionId, n)
Function – We need to change the key to be only collection identifier and move the url
part name into the value field.
Output - (urlCollectionId, urlPart;n)

Reduce:
Input - (urlCollectionId, [urlPart;n])

Function – We need to sum all the n's in the collection of URLs as N and output every url
part again.

Output - (word;filename, n;N)

Third	MapReduce	Iteration	

The goal of the third iteration is to calculate URL part frequency in the collections. To do
so we need to send to the reducer calculated data for the concrete URL part, therefore

 26

map function should move urlCollectionId to the value field and the key should only
contain urlPart value. After such modification reducer can calculate how many times
urlPart appeared across different collections.
The implementation should look something like this:

Map:
Input - (urlPart;urlCollectionId, n;N)

Function - Move urlCollectionId to value field
Output - (urlPart, urlCollectionId;n;N;1)

Reduce:
Input - (urlPart, [urlCollectionId;n;N;1])

Function - Calculate total number of urlParts in a collection as m. Move urlCollectionId
back to the key field

Output - (urlPart;urlCollectionId, n;N;m)

Fourth	MapReduce	iteration		

At this point we will have all required data to calculate Term Frequency and Invert
Document Frequency for each URL part, such as:

• n – How many times given URL part appeared in the collection
• N – Number of occurrences of the given URL part across different URL

collections.
• m – Total number of URL parts in a collection.

For the TF we will use following formula:

𝑓!,!

Where 𝑓 represents number of times given word appeared in a document.

We can calculate Inverse Document Frequency using following formula:

log
N
𝑛!

Where N is total number of documents and 𝑛! - number of terms in a document. We do
not need reduce function for this final stage, since TF-IDF calculation done for each URL
part in a given collection.

The Implementation should look something like this:
Map:

Input - (urlPart;urlCollectionId, n;N;m)
Function - calculate TF-IDF based on n;N;m and D. Where D is the total number of url
collections.

 27

𝑇𝐹𝐼𝐷𝐹 =
𝑛
𝑁 × log(

𝐷
𝑚)

Output - (urlPart;urlCollectionId, score)

As we already described we need to label each URL part as static or dynamic based on
the score. As soon as calculation is done in the map function, we can check the score
value against predefined threshold. If score is lower than the threshold we will assign
mark URL part as dynamic, else – static. In addition the parameter identification we
would also like to exclude some random URLs, which can be marked as “not important”
for the application. TF-IDF is essentially the importance score of the given URL part. If
the sum of the scores for all the parts in URL is really low for example 1.7647059e-10
this means that URL appeared 1 or 2 times in the dataset, thus we can say that in the
application with more than 200 000 services, URL is not important because it wasn’t
used intensively enough to be considered as a service, and we defined service as the
endpoint which provide a set of operations that are of direct value to the end-user. In this
research we will use threshold of 0.005 to filter out not important services.

To summarize upon successful completion of the MapReduce Iterations analysis phase
will be finished. At this point we will have each URL part across the dataset marked as
dynamic or static, thus forthcoming URL Reduction Phase will have all the necessary
information to group URLs and generate appropriate service names for them.

URL	Reduction	Phase	

URL Reduction Phase take as an input list of following class, which is generated during
Analysis phase:

		class	AnalyzedUrlData	{						
				public	String	appId						
				public	int	urlId						
				public	List<String>	dynamicParts	=	[]						
				public	List<String>	staticParts	=	[]						
				public	double	score					
				public	String	originalUrl		
		}	

For the service name generation we are mainly intersted in three fields of this class,
which are:

• dynamicParts – holds list of dynamic parts in the current URL.
• staticParts – holds list of static parts in the current URL.
• originalUrl – Value of the the original URL.

For the service name generation we can iterate over the list of dynamic parts and replace
it in the originalUrl	field with predefined static string. Below is the small example using
Groovy programming language:

		dynamicParts.each	{	part	->						
				originalUrl.replace(part,	"dynamic")		

 28

		}	

Figure 10: Code snippet for replacing dynamic parts in the URL with static value

Upon replacing all the dynamic parts with a static string, we will have new URL-based
service names. Let’s look at the following example:

Suppose we have list of following URLs
/api/v2/invoice/inv123
/api/v2/invoice/inv424
/api/v2/invoice/inv948
/api/v2/invoice/inv000
/api/v2/invoice/inv782
/api/v2/invoice/inv545

During analysis phase we have successfully marked api,	v2,	invoice as static parts and
invoice identifiers as dynamic parts. Therefore we have following list of dynamic pats for
the URL Reduction Phase:
[inv123,	inv424,	inv948,	inv000,	inv782,	inv545]	

As soon as code snippet presented in the figure 10 finishes its execution we will have the
following result:
/api/v2/invoice/dynamic
/api/v2/invoice/dynamic
/api/v2/invoice/dynamic
/api/v2/invoice/dynamic
/api/v2/invoice/dynamic
/api/v2/invoice/dynamic

Now we have list of identical URLs and we can use Groovy’s built-in function to remove
duplicates.

		['/api/v2/invoice/dynamic'		
			'/api/v2/invoice/dynamic',		
			'/api/v2/invoice/dynamic',				
			'/api/v2/invoice/dynamic',		
			'/api/v2/invoice/dynamic',		
			'/api/v2/invoice/dynamic'].unique()	->	['/api/v2/invoice/dynamic']	

URL Reduction Phase gives us possibility to significantly reduce amount of data and
generate proper service name for URL-based services. After service name generation
Graph Building Phase can build graph representation of the URLs, with generated
statistics per node.

 29

Graph	Building	Phase	

Graph building is the final stage of the service discovery lifecycle and the main goal of it
is to create tree like JSON structure from the generated service names. In Groovy
programming language we can define tree as the following:

 def	tree	=	{	->	
				return	[:].withDefault	{														
						tree()										
				}						
		}	
	
		def	node	=	tree()	

Figure 11: Code snippet for generating tree data structure implemented in Groovy

Where node is the implementation of the Java based Map interface. Groovy is dynamic
language therefore we can populate the map with the following code:

node.root.child1	
node.root.child2	
node.root.child3	
node.root.child1.child1_1	
node.root.child2.child2_1	

Figure 12: Code snippet for populating tree data structure

Figure 13 shows us graph diagram of the code snippet presented above.

Figure 13: Graph representation of the code snippet presented in the figure 12

 30

Now as we have an idea how tree data structure can be built with Groovy we can start
thinking on how to generate JSON tree representation for generated services names. We
know that Graph Building Phase receives generated service names in the following
format:

'/api/v2/invoice/dynamic'		
'/api/v2/invoice/dynamic/add'		
'/api/v2/invoice/generate'	
'/api/v2/invoice/dynamic/update'		
'/api/v2/invoice/dynamic/generate	

Figure 14: Example input for graph building phase

In order to build a tree from the service names, we need to split each service name with
application specific delimiter.

'/api/v2/invoice/dynamic'	->	['api',	'v2',	'invoice',	'dynamic']	
'/api/v2/invoice/dynamic/add'	->	['api',	'v2',	'invoice',	'dynamic',	'add']	
'/api/v2/invoice/generate'	->	['api',	'v2',	'invoice',	'generate']	
'/api/v2/invoice/dynamic/update'	->	['api',	'v2',	'invoice',	'dynamic',	'update']	
'/api/v2/invoice/dynamic/generate	->	['api',	'v2',	'invoice',	'dynamic',	'generate']	

Figure 15: Tokenization example of the input data for the graph-building phase

Using node	variable from the figure 11 we can build a tree with a code snippet presented
in the figure 15.

		listOfTokenizedServices.each	{	tokenizedService	->				
				tokenizedService.collect	{	service	->						
						node."$service"					
				}		
		}	

Figure 16 illustrates final output of the service discovery tool for the example presented
in the figure 14.

 31

Figure 16: final output of the Graph Building Phase

During tool implementation section we will see that graph building in real-life scenario
can become rather complex operation, especially considering the fact that we want graph
in very specific format (Which we will discuss during tool development section). It
requires deep recursion, which means we need to explore every level of the list.
Graph Building step wraps up our URL-based service discovery. Let’s briefly take a look
what we achieved.

• We were able to successfully tokenize and clean large dataset of URLs without
any prior information.

• We managed to perform initial analysis to identify application specific delimiter,
which gave us possibility to support different types URL design.

• We performed URL part classification as static or dynamic depending on
calculated TF-IDF score.

• We generated new service names and significantly reduced number of URLs.
• We built URL tree structure to illustrate application API design.

To summarize we were able to adapt different forms of service discovery techniques to
our needs, giving us possibility to discover important services in the URL dataset. As we
now have the idea about the algorithms we need to implement we can start thinking about
the actual tool development, which will be discussed in the upcoming section 3.3.

 32

3.3	Tool	Development	

In this chapter we will try implement all the designed algorithms and ideas discussed
during the previous chapter. Tool that we will implement can be used as standalone web
application, which runs inside the Jetty container, or as Java library that can be added as a
dependency in existing project. For the development, combination of Groovy and Java
programming languages were used. Groovy is dynamic language for the Java platform,
with the features similar to functional programming languages therefore implementing
algorithms in it are much faster than in traditional Java language. In addition to Groovy
and Java following tools, frameworks and libraries will be used:

• Gradle – Build automation system with Groovy based domain specific language.
• Angular – Front-end development.
• Treant-js – SVG based JavaScript library for drawing tree diagrams.
• Spring framework – Back-end development.
• Jetty – Application server.

For the sake of brevity of this research, I won’t describe each library and framework in
details; instead I will provide the concrete examples during this chapter how and why
they are used in terms of development process.

Before going into implementation details I would like to mention that during the review
of the development process I will not cover whole codebase, but rather describe the most
interesting cases and how they were solved. Also I will try to give an overall architectural
picture and describe public API and how it can be used in different projects.

Source code is available on a Github - https://github.com/lkokhreidze/service-discovery.
Please also note this this tool will be used at Plumbr for research purposes. Core
algorithms will remain intact, but from time to time some code modifications may take
place to improve overall performance or to add new features.

3.3.1	Overall	Architecture	

As it was stated in during section 3.2, before starting data processing we need to clean the
dataset, since it can contain large amount of irrelevant URLs, which may corrupt final
result. During research we found out that URLs captured by Plumbr at the JVM
boundaries may contain different types of static content such as ‘.html’, ‘.js’, ‘.text’, etc.
Based on the various query results, URLs ending with the following extensions are
eliminated from the input dataset:
'.html', '$', '.php', '.js', '.txt', '.css', '.jtp', '.ico', '.gif', '.text'

This was achieved by implementing following Groovy method

		public	static	List<String>	parse(String	id,	List<String>	records)	{																										
				CollectionUtils.init()										
				records.collect	{		
						"$id;$it".toString()		
				}.filter	'.html',	'$',	'.php',	'.js',	'.txt',	'.css',	'.jtp',	'.ico',	'.gif'						
		}	

 33

Where filter	 is dynamically added in the List	 interface implementation with the
following code:

		List.metaClass.filter	{	String[]	patterns	->														
						delegate.removeAll	{	entry	->	patterns.any	{	entry.endsWith(it)	}	}																			
						delegate										
		}	

With the help of this method we exclude any URL which can potentially corrupt final
output of the Service Discovery tool. After performing initial data maintenance we can
start actual discovery process.

During the research in chapter 3.2 we divided URL-based service discovery into five
consecutive steps. Tool implements those steps with the help of a DiscoveryProcessor	
interface. Each class that implements this interface should provide solution for the
following 5 methods:

		public	void	init(List<String>	services,	Configuration	configuration)	
	
		public	DiscoveryProcessor	group()							
	
		public	DiscoveryProcessor	analyze()					
			
		public	ResultSetWithStats	reduce()		
	
		public	TreeResultSetWithStats	toGraph()												

This interface is implemented in two discovery provider classes: DiscoverUrlServices	and
DiscoverRmiServices.	Research presented herein is mainly concentrated on Plumbr use
case and dataset provided by Plumbr does not contain only URL-based services. RMI
based services extracted from the Plumbr supported frameworks are also presented in the
dataset. As the main focus of this master’s thesis is service discovery for URLs, we need
to distinguish between RMI and URL based service names. To do so during invocation of
the init	method we can apply String parsing rule, which will populate records for
corresponding discovery provider. Below is the service name parsing rules to populate
records for the corresponding classes. For RPC-based service discovery:

		this.services	=	services.findAll	{	serviceName	->												
				!serviceName.startsWith("/")	&&	serviceName.contains(".")										
		}	

For URL-based service discovery:

		this.services	=	services.findAll	{	serviceName	->												
				serviceName.startsWith("/")	
		}	

Those service name-parsing rules are based on the careful dataset review and research
through the research paper [5]. As we discovered during the literature review, usually
RPC based services start with CamelCase class name followed by method name, thus

 34

service names matching this specification will be sent to RMI discovery provider class
(DiscoverRmiServices). On the other hand URL-based services always start with “/”,
therefore service names matching this rule will be sent to URL discovery provider class
(DiscoverUrlServices). For this master’s thesis RPC based services do not qualify for the
analysis, therefore such services are ignored. Although during chapter 5 we will discuss
possibility of implementing RPC based service analysis for the future work.

3.3.2	Discovery	Process	

After performing initial data maintenance and service name classification we can start
actual data process. During this we will sequentially implement remaining group,	analyze,	
reduce	and toGraph	methods.

Group()	

As we stated during previous chapter purpose of this method is to perform URL based
tokenization and group tokenized URLs based on the identified URL style. If we will
take a look at the method signature it takes no arguments and returns implementation of
DiscoveryProcessor	interface. The reason to do so is that by itself, this method do not
provide any relevant information to the end user, but rather represents intermediate step
before actual output, thus it is logical to return intermediate state of the discovery
provider class with populated grouped dataset. Below is the initial implementation of this
method:

		@Override						
		DiscoveryProcessor	group()	{										
				this.grouped	=	this	
						.initialGroups	
						.collect	{	k,	v	->														
								def	d	=	delimiterAnalyzer.getDelimiter(k)														
								def	group	=	v.collect	{	split(it,	d)	}.groupBy{	it[0]	}													
								[(k):	group]										
						}										
				this						
		}	

Where this.initialGroups	is the dataset populated during initialization phase by init	
method. delimiterAnalyzer.getDelimiter(k)	is an	entry point for the application specific
delimiters, where k variable represents application identifier. The group	variable will hold
the list tokenized URL parts grouped by the first part of the URL. Final output will be
saved in the this.grouped	map representation with application identifier as key. This
intermediate map dataset can be used by forthcoming method implementation in the
service discovery lifecycle.

This was the initial approach for building groups from the original dataset in order to get
different number of documents for TF-IDF calculation. During the research in the

 35

previous section we mentioned that this approach has its drawbacks, which we will
discuss, with possible solutions. Up-to-date tool version is implemented using new, more
advanced approach, which more or less isn’t dependent on the data size or structure.
Technique presented above was demonstrated in order to show progress of the research
and its bottlenecks as we move along with the service discovery process.

Analyze()	

During the chapter 3 we described Analysis phase as the backbone of the URL-based
service discovery, thus it is no surprise that actual implementation is the largest compared
to any other. This method uses following classes for calculating TF-IDF score:

• uni.tartu.algorithm.TfIdf	
• uni.tartu.algorithm.MiniMapReduce

MiniMapReduce	class holds two static classes Mapper	and Reducer	with map and reduce
methods respectively. Both this methods accept closure4 as parameter, so that Mapper
and Reducer will have a clear understanding on how to perform its functionality.
During the research in chapter 3 we mentioned that due to large amount of intermediate
processes and data preparation before actual TF-IDF calculation, implementing
everything in single MapReduce iteration could be too overwhelming, therefore we
decided to split MapReduce process into four steps, where first three iterations are for the
data preparation and final process is the TF-IDF score calculation. Considering this fact,
TfIdf	holds 3 inner static classes, which should be passed into TfIdf	constructor. Each of
the inner class has an object of Mapper	and Reducer	classes. With this approach we ensure
3 things:

1. Instance of the TfIdf	class	cannot be created without providing three MapReduce
iteration steps.

2. While initializing iterations closure specifications for Mapper	and Reducer should
be passed as parameters.

3. TfIdf.calculate()	is the final method for score calculation and it cannot be
performed without satisfying two upper conditions first.

We now have a brief understanding how analysis work and what requirements need to be
satisfied before calculation TF-IDF. Now let’s take a look at each iteration separately.
Below is the code for the first iteration with closure specification:

	/**															
		*	first	MapReduce	job	closure	specification	
		*		
		*	Mapper										
		**/													
		FirstIteration.build({	k,	v	->																		

4 http://groovy-lang.org/closures.html – A closure in Groovy is an open, anonymous,
block of code that can take arguments, return a value and be assigned to a variable.

 36

				v.collect	{	i	->																						
						i.collect	{	j	->																										
								def	keys	=	getKey(k	as	String)																										
								j.equals(keys[0])	?:	"${keys[0]};${j}__${keys[1]}".toString()																		
						}																		
				}.flatten().each	{																						
						def	keys	=	getKey(it	as	String)																						
						if	(keys)	{																										
										def	urlPart	=	keys[0],																															
														urlId	=	keys[1]	as	int,																															
														parts	=	split(urlPart,	";")																										
									populate(parts,	urlPart,	urlId,	originalServices.get(urlId).rawUrl)																															
							}																		
				}														
		},		
		/**															
			*	Reducer										
			**/													
		{	map,	k,	v	->																		
			map	<<	[(k):	v.sum(0)]														
		})	

Figure 17: Code snippet for first MapReduce iteration

As we already know first step in TF-IDF calculation is to count how many times given
URL part appears in the application URLs. Analysis is performed on the data generated
during the grouping phase. Let’s look at mapper closure and analyze it line by line. Entry
point for closure is k and v parameters. k parameter is the application identifier and v -
values. As we know for each application identifier (k) we have list of tokenized URLs,
therefore in order to calculate count for each of the URL part we need nested loop. In
Groovy we can achieve this by declaring to nested collect	closures, where first collect
gets the array of tokenized URLs and second one – each element in the array. Using
flatten() method we can populate intermediate data structures, that are required during
different parts of the service discovery process. populate	method puts URL part value and
1 in the corresponding data structure. Below is the method implementation:

		def	name	=	parts.length	<	2	?	'null'	:	parts[1]										
		putUrlIdHolder(name,	new	UrlInfoData(urlPart:	urlPart,		
																																							urlId:	urlId,		
																																							originalUrl:	originalUrl))												
		put((urlPart),	1)	

	

putUrlIdHolder	populates data structure that during reduction phase will be used to
retrieve original URL value and modify static and dynamic part. At this point we are
interested in put((urlPart),	1), which inserts into the dataset URL part value as the key
and 1 as count. This will be key-value pair that is sent to the reducer.
As we can see from the figure 17, reducer part is fairly simple after constructing proper
mapper; it will sum all the 1’s for a specific key. As a result, input for the second iteration
will be count of occurrences of a certain URL part in a given URL collection. With the

 37

first iteration we answered first TF-IDF question regarding how many times given URL
part appeared in the collection, defined during the previous chapter.

/**															
	*	second	MapReduce	job	closure	specification	
	*	
	*	Mapper																		
	**/														
		SecondIteration.build({	k,	v	->																		
				def	arr	=	(k	as	String).split(";")																		
				arr.length	<	2	?:	put(arr[0],	"${arr[1]};${v}".toString())														
		},		
			
		/**															
			*	Reducer																		
			**/														
		{	map,	k,	v	->																		
				int	N	=	v.sum	{																						
						(it	as	String).split(";")[1]	as	int																		
				}																					
				v.flatten().each	{																						
						def	parts	=	(it	as	String).split(";"),																											
										key	=	"${k};${parts[0]}",																											
										val	=	"${parts[1]};$N"																						
						map	<<	[(key):	(val)]																		
				}																		
				map														
		})	

Figure 18: Code snippet for the second MapReduce iteration

During the second iteration we should find out number of occurrences of each URL part
in a given URL collection. In order to do so we need to calculate how many URL parts
does a URL collection have? For that mapper closure should move URL name to the
value field, so that key for the reducer will be only collection identifier. During first
iteration we joined key value for collection identifier and URL name with ‘;’ symbol,
therefore in the mapper we can split key part with the very same identifier and move
URL name to the value fields. Mapper in the figure 18 illustrates how we can do this.

As soon as mapper is done, Reducer will receive URL collection identifier as the key and
URL part with count as the value - (urlPart;n). To calculate total number of URL parts in
a collection we can sum all the n as N and output URL part with collection identifier as
the key and n, N as the value. Reducer in the figure 18 demonstrates how we can do this
using built in Groovy and Java string functions.

	/**															
		*	third	MapReduce	job	closure	specification	
		*															
		*	Mapper	
		**/														
		ThirdIteration.build({	k,	v	->																		

 38

				def	parts	=	(k	as	String).split(";"),																							
								id	=	parts[1],																							
								urlPart	=	parts[0]	?:	'null'																		
				put((urlPart),	("$id;${v};1"))														
		},		
	/**			
		*	Reducer	
		**/														
		{	map,	k,	v	->																		
				def	m	=	v.sum	{																						
						(it	as	String).split(";")[3]	as	int																		
				}																		
				v.flatten().each	{																						
						def	parts	=	(it	as	String).split(";"),																											
										key	=	"${k};${parts[0]}"	as	String,																											
										val	=	"${parts[1]};${parts[2]};$m"	as	String																						
						map	<<	[(key):	(val)]																		
				}																		
				map														
		})	

Figure 19: Code snippet for the third MapReduce iteration

Third iteration is the final one in terms of data preparation for the TF-IDF calculation. At
this point for any given URL part we have n – occurrence of an URL part in a collection
and N – total number of URL parts in a collection. Only that is remaining is the m, which
is will tell us in how many collections given URL part appeared. As figure 19 shows to
do this we need to tell the mapper closure to set the key value to as urlPart with the value

(collectionId;n;N;1) where 1 is occurrence value for the URL part. Reducer parts in the
figure 19 sums all the 1’s for the given URL part as m and returns URL part and
collection identifier as the key with n, N and calculated m as the value.
As we now have all required data we can calculate TF-IDF. In terms of implementation
we can define function in uni.tartu.algorithm.TfIdf	class that will take analyzed data as
the argument and calculate TF-IDF score for each URL part. In order to calculate TF-IDF
we need to get one additional parameter D – which is defined as total number of
documents in a corpus. In our case it will be total number of URL collections. Below is
method signature.

 Map<String,	AnalyzedUrlData>	calculateTfIdf(Map	data,	long	D,	Configuration	conf)		

Figure 20: Method signature for TF-IDF calculation

As we can see method returns Map where original URL value will be defined as key. The
reason for this is that during URL reduction phase it will be easier and faster to get
analyzed data for any given URL and generate new service name based on that. For
further proceeding it is important to understand structure of AnalyzedUrlData	class, so let’s
take a brief look at it.

 39

		class	AnalyzedUrlData	{						
				public	String	appId						
				public	int	urlId						
				public	List<String>	dynamicParts	=	[]						
				public	List<String>	staticParts	=	[]						
					
				@Override						
				public	String	toString()	{										
						return	"$accountId;$originalUrl	-	($urlId)	params:	${urlPart}	static	parts:					
														${staticParts}".toString();						
				}		
		}	

Figure 21: Class structure for holding results for TF-IDF analysis.

As we can see most of the attributes are standard and we used them during different
phases of tool implementation. What are interesting in this class are dynamicParts	and
staticParts	defined as list of strings. During TF-IDF calculation we will fill this class
based on calculated score. For static parts score will be close to 0.0 meaning that they
appeared multiple times across different URL collections. And for dynamic parts score
will be much greater than 0. During initial research tool showed the best results with the
threshold of 0.003. Let’s take a look how data will be populated for the following
example:
/api/v2/invoice/inv123

Suppose we calculated TF-IDF score for each URL part. Given threshold 0.003, we will
populate data for Map<String,	AnalyzedUrlData> as following:

		(/api/v2/invoice/inv123,	new	AnalyzedUrlData(accountId:	'sampleAppId',		
	 	 	 	 										urlId:	1,		
														 	 	 										staticParts:	['api',	'v2',	'invoice'],				
	 	 	 	 										urlPart:	['inv424']))	

As we can see for any original URL we have its TF-IDF analysis results. This will be
useful during URL reduction phase, when we need to quickly look up for the results for a
specific URL.
This concludes our analysis phase. At this point we saw how TF-IDF score can be
calculated in Groovy using MapReduce programming model. Now we have everything at
place for reducing number of URLs and for proper service name generation.

Reduce()	

After constructing proper AnalyzedUrlData, reduce() method functionality becomes rather
simple. When reduce method starts new service name generation, it will have all required
data at place. Code snippet presented in the figure 22 shows how reduce method is
implemented in the URL discovery provider class.

 40

		@Override						
		DiscoveryProcessor	reduce()	{										
				log.info("started	reduction	phase	for	URL	discovery")										
				def	originalSize	=	this.originalServices.size()										
				def	urlReducer	=	new	UrlReducer(scores)										
				this.reducedUrls	=	urlReducer.reduce()	
				this	
		}	

Figure 22: Reduce method implementation.

As we can see uni.tartu.algorithm.UrlReducer	is the class which takes analyzed URL
data in the constructor and performs service name generation with reduce()	method.
Logic how it is done is quite simple. Basically we have original URL data as the key and
analyzed data as the value. As we already reviewed during analyze method discussion,
each analyzed URL data holds static and dynamic parts in separate class fields (see figure
21). Therefore all we need is to iterate over map, get its value, find dynamic part in the
URL key and change it with some predefined static content. Figure 23 shows
implementation of reduce method in UrlReducer class

		public	List<String>	reduce()	{										
				List<String>	reducedUrls	=	[]										
				for	(AnalyzedUrlData	it	in	this.analyzedUrls)	{														
						def	delimiter	=	delimiterAnalyzer.getDelimiter(it.accountId)														
						def	regexToInject	=	'PARAMETER_PART'														
						def	currentStr	=	it.originalUrl														
						it.urlPart.each	{	dynamic	->																		
								def	inj	=	delimiter	+	regexToInject	+	delimiter																		
								currentStr	=	replace(dynamic,	inj,	currentStr,	delimiter)														
						}														
						reducedUrls.add(currentStr)										
				}	
				reducedUrls.collect().unique()						
		}	

Figure 23: reduce method implementation for uni.tartu.algorithm.UrlReducer class.

As soon as we will replace or dynamic parts with static content we can use Groovy’s built
in function unique()	to output unique newly generated service names. URL reduction
phase gives us possibility to create more meaningful service names from raw URL data
and remove duplicate records. During the next section concerning result evaluation and
case study at Plumbr we will see how raw URLs can be dramatically reduced in real-life
scenarios.

 41

ToGraph()	

After proper service name generation we can start with the final step for the URL-based
service discovery process. As we already mentioned during the initial research graph-
building phase is rather complex step, with deep level recursion. Before exploring how it
can be developed, let’s take a look how we want to display our graph. First and foremost
tree representation of the graph always have root. So before building any other node we
should define what the root is. Each node of the tree should have following attributes:

• Name – node name, in our case it will be URL part name
• Children – List of children of a current node
• HTMLclass – If node has children than value should be ‘the-parent’, else nothing
• Collapsed – Boolean field, which indicates if the children of a current node are

collapsed.

All of the above mentioned attributes are required in order to draw proper tree
representation in JavaScript. We will see actual examples in the upcoming section.

Actual implementation of the tree builder is in the uni.tartu.algorithm.tree.TreeBuilder	
class. Due to the complexity of the class I won’t include whole source code of the
algorithm in this research, instead in the 24 I will provide two main recursive methods,
which play major part in tree construction.

		private	def	collectNodes(e)	{										
				e.with	{														
						if	(!(it	instanceof	Map))	{																		
								return	[]														
						}														
						it.collect	{	k,	v	->																		
								if	('children'.equals(k))	{																						
										return	[:]																		
								}																		
								def	children	=	[]																		
								children.addAll(collectNodes(v))																		
								constructNode(k	as	String,	children)														
						}										
				}						
		}							
	
		private	def	constructNode(String	k,	List	children,	boolean	collapsed	=	true)	{												
				def	node	=	tree()										
				node.text.name	=	k										
				if	(children)	{														
						node.HTMLclass	=	'the-parent'														
						node.children	=	children														
						node.collapsed	=	collapsed										
				}										
				node						
		}	

Figure 24: Partial implementation of the TreeBuilder class.

 42

In the collectNodes	method we will terminate the recursion if the e parameter isn’t
instance of the java.util.Map, which means that parameter e has no inner attributes or
children and we reached current max level of the recursion. In any other case we will try
to collect all the children of the current node and write them into children	field.
constructNode	build the required node structure, where k parameter is the URL part name
and children is the list of sub-nodes of the current node. During the initial research we
mentioned that we can recursively define the tree where each Map attribute will inner
field of a current node (see figure 11). This def	node	=	tree()	piece of code gives us
possibility to do so. Each new attribute of the node	variable will be defined in a existing
node structure. This enables us to create complex tree structures in more easy way
compared to classic Java approach.
After toGraph() method finishes operation, we will be done with URL based service
discovery. We defined ways how we can perform initial data filtering, complex service
grouping, TF-IDF score calculation using our own implementation of MapReduce
programming model, large set of string mutation and dynamic graph building with
complex structure. All of this was implemented using Groovy-programming language
with some standard Java features. In the upcoming section we will see how well tool is
performing in real life scenarios, using data provided by Plumbr.

4. Evaluation
In this chapter we will discuss experiments and their technical setup. Also we will see the
final output of the developed tool for Plumbr case to understand how well developed
algorithms and application scale in real life scenario. In order to understand this before-
after analysis will be performed to see percentage of data reduction and improved
scalability of Plumbr. Last but not the least we will discuss current limitations of the tool
and threats to validity.

4.1	Experimental	setup	

In this section we will try analyze data acquired from the Plumbr database using
developed service discovery tool. For the research purposes we would like to select
accounts with large enough data and with completely different URL-based service
designs. For this objective following query was designed:

		select	count(*)	as	count,	t.id		
		from	table****	as	t		
		group	by	t.id		
		order	by	count	desc;	

Based on query results two accounts were selected with completely different URL
design. For the sake of confidentiality URL values will be modified as we will move
along with the research, but actual URL style will remain the same. In this paper we will

 43

refer to the above-mentioned accounts as “account-A” and “account-B”. Before
proceeding with the research let’s summarize what we know about the dataset.

Account-A

• 103,193 detected services in total.
• Contains controller based services.
• Approximately 0.43% is noise.

Account-B

• 279,521 detected services in total.
• Does not contain controller based services.
• Approximately 0.2% is noise.

As we can see there are significant difference between accounts among all the criteria.
But at this point the most interesting thing for us is URL delimiter. During this master’s
thesis we mentioned Delimiter Analyzer algorithm several times. It is the very first
algorithm that will be evaluated against the input data after the initial noise filtering. Its
main objective is to find account specific delimiter and save it into the memory. As we
saw during Tool Development section discovered delimiter would be used almost in all
of the phases of service discovery. Considering this facts it is important to do some initial
research on the data to have some understanding on what kind of results should we
expect from the algorithm. In order to do so query presented in the figure 25 was
implemented, that randomly fetches 1000 services, given account identifier as the
parameter.

		SELECT	t.service		
		FROM	table*****	AS	t			
		JOIN	(SELECT	CEIL(RAND()	*	(SELECT	MAX(id)																														
																														FROM			table*****))	AS	id)	AS	rand		
		WHERE	t.id	>=	rand.id								
		AND	t.identifier	=	:inputId		
		ORDER	BY	t.id	ASC		
		LIMIT	1000;	

 Figure 25: SQL query for fetching random records.

Table presented in the figure 26 illustrates sample records extracted from the query
results.

Account-A Account-B

/sample/123d21asd1242123 /dynamic-news-title-hello-
world.n1399j3.news-info

/operation/643/jkqflac_/go /san-francisco-weather.w1319q3.news-
weather

 44

/operation/724/xa127beg/go /new-york-daily-weather.n3419v2.news-
weather

/operation/724/bl1d343/go /bmw-cars-2010-title.c929ch3.car-rental

/operation/902/xa555beg/go /dynamic-news-title-hello-
california.n0000j3.news-info

/operation/981/sdcceer/go /cars.n1399j3.car-guide

/operation/323/gurg12/go /cars.n9238j3.car-guide

/feed/724 /world-news-2016.n1399j3.world-news

/crm/si2hs213f023 /cars.n8fhryr3.car-guide

/crm/heet1334023 /cars.njekwo10.car-guide

/crm/okrug8134fgs /cars.njehey102.car-guide

Figure 26: Sample results from the query described in the figure 20.

Figure 26 clearly shows fundamental difference between two accounts in regards to URL
structure and design. Most likely URL delimiter for the account-A is “/” and for
account-B – “.”, thus we know what to expect from the Delimiter Analyzer algorithm.
Presented query results can also help us to build up initial assumptions about the final
output of the tool. With this we sum up our introductory research, for now we have basic
idea about the content of the dataset, with the minimal notion of the final results. In the
upcoming sections we will take a look how each phase of the Service Discovery tool
performed for the given data.

4.2	Summary	of	Results	

Account-a
Figure 27 illustrates minimalistic version of the user interface for the service discovery
process. On this screen all major statistics and results for the input dataset will be
displayed. In the input field we specify the ID of the account (or application) we want to
analyze. After this UI will inform us that service discovery process has started. Screen
will dynamically inform user about the current progress.

 45

Figure 27: User interface for starting service discovery process.

As we already know very first thing that service discovery process will do is to reduce the
noise in the input dataset. We already covered in details how and why it is done, thus in
this section we will only discuss the actual results. According to the logs during filtering
process, tool discovered 1439 polluted URLs, below is the log from the tool:

		2016-05-03	19:52:44.359		INFO	24154	---	[tp1091781053-19]	uni.tartu.parser.Parser											
		:	Found	1439	polluted	URLs.	Current	filters:	[.html,	$,	.php,	.js,	.txt,	.css,	.jtp,		
																																																.ico,	.gif,	.text,	.pdf]	

Please also note URLs which are markes as polluted due to the applied filter will be part
of the final statistics, which means that we will see what kind of URLs were ignored
during the process.
After initial filtering, next steps will be actual service discovery phases that are defined in
uni.tartu.discovery.DiscoveryProcessor	interface and implemented in DiscoverRmiServices	
and DiscoverUrlServices	which are located in uni.tartu.discovery.providers	package.

		2016-05-03	19:52:44.360		INFO	24154	---	[tp1091781053-19]		
		uni.tartu.discovery.DiscoveryRunner						:	started	service	discovery	process.	

We are now at the point when we need to start initialization phase and discover account
specific delimiter in order to process further.

		2016-05-03	19:52:44.814		INFO	24154	---	[tp1091781053-19]			
		u.t.d.providers.DiscoverUrlServices						:	started	initialisation	phase	for	URL			
														 	 	 								discovery		
		2016-05-03	19:52:45.553		INFO	24154	---	[tp1091781053-19]				
		uni.tartu.algorithm.DelimiterAnalyzer				:	started	to	analyze	delimiter	per	account	

As we can see tool successfully started analyzing delimiter for account and we received
following results:

 46

		2016-05-03	19:52:45.743		INFO	24154	---	[tp1091781053-19]			
		uni.tartu.algorithm.DelimiterAnalyzer				:	for	account:	account-A				
		got	delimiter:	{dot=1.6789262750,	slash=99.9025139582}	

In the beginning of this section we talked a bit about the assumptions and we said that it
is very likely that for the account-A we will get the “/” as delimiter. During the research
we agreed upon 90% threshold for selecting the account specific delimiter. As we can see
algorithm discovered that in 99.9% cases slash is indeed used as URL delimiter and in
1.6% - dot. One may ask how come that sum of this two results is more than 100%?!
Actually using one delimiter in the URL does not exclude possibility to use another one
as well. This means that we have really interesting cases where URL delimiter is not one
symbol but combination of several ones. Algorithm will select “/” as account delimiter
given that it is used in almost every URL presented in the dataset. 	

As soon as we discovered account specific delimiter we will move further with the
process. Logs for the remaining phases is pretty straight forward, therefore I will just
include logs, that describes intermediate statistics before the final output.

		2016-05-03	20:45:38.017		INFO	24416	---	[tp1280128554-19]				
		u.t.d.providers.DiscoverUrlServices										:	started	grouping	phase	for	URL		
																															 	 			discovery		
		2016-05-03	20:45:38.627		INFO	24416	---	[tp1280128554-19]		
		u.t.d.providers.DiscoverUrlServices										:	created	intermediate	URL	groups	with		
				 	 	 	 	 			size:	101		
		2016-05-03	20:45:38.628		INFO	24416	---	[tp1280128554-19]			
		u.t.d.providers.DiscoverUrlServices										:	started	analyzing	phase	for	URL			
	 	 	 	 	 			discovery		
		2016-05-03	20:45:42.969		INFO	24416	---	[tp1280128554-19]		
		uni.tartu.algorithm.TfIdf																:	started		calculating	TF-IDF	score		
		2016-05-03	20:46:11.197		INFO	24416	---	[tp1280128554-19]		
		uni.tartu.algorithm.TfIdf																:	got	TF-IDF	scores	with	size:	14276		
		2016-05-03	20:46:11.197		INFO	24416	---	[tp1280128554-19]		
		u.t.d.providers.DiscoverUrlServices										:	started	reduction	phase	for	URL		
	 	 	 	 	 			discovery		
		2016-05-03	20:46:11.736		INFO	24416	---	[tp1280128554-19]		
		u.t.d.providers.DiscoverUrlServices										:	reduced	and	generated	URLs	with	size:		
	 	 	 	 	 			308	
		2016-05-03	20:46:11.752		INFO	24416	---	[tp1280128554-19]				
		uni.tartu.storage.ResultSetWithStats					:	started	building	graph	from	reduced	URLs	
		2016-05-03	20:46:11.737		INFO	24416	---	[tp1280128554-19]			
		uni.tartu.discovery.Discovery												:	got	intermediate	results,	building	result		
	 	 	 	 								set.	Discovery	process	is	done!		

URL-based service discovery process is now finished. We were able to generate all
required data in order to display statistics and built tree. Below are screenshots from the
Service Discovery tool UI that illustrates what final output looks like for account-A.

 47

Figure 28: Discovered first level URL services for account-A.

Figure 28 shows us what we call First Level service names. First Level service names
represent entry point for generated service names. For instance if we have following raw
URL data: “/api/rest/invoices/123jfew”, first level service would be api. In the figure 29
we can low level service names, in other words “children” of the upper level services.
Displaying generated services like this gives us opportunity to build dependency
between URL parts, therefore end user has possibility to observe resource structure of
the URLs. Any application tends to grow and as it expends and advances, it gets even
harder for architects or developers to maintain their software. With the help of Service
Discovery tool they can actually see high level, structured overview of their application
URL-based services captured during JVM monitoring.
Figure 30 concludes our service discovery results with interesting statistics calculated
during the process.

Figure 29: Example of generated low-level URL services for account-A.

 48

Figure 30: Calculated statistics for account-A.

Overall tool performed really well for the account-A. As we can see URLs were
reduced by 99.67%, which is 101228 services. From 101553 raw URL data we were
able to discover 325 services and generate meaningful name for each of them.

Account-b

Discovery process for account-b will be the same, thus here I will only describe final
output of the tool. It seems that Account-b has different URL style, presumably with dot
as delimiter. Also data size is more than twice as large as for account-a, thus it will be
interesting how well our solution performs in terms of larger dataset with completely
different structure.
As we expected Delimiter Analyzer detected dot (.) as the URL parts delimiter for the
account-b.

		2016-05-04	00:24:53.929		INFO	25383	---	[tp1280128554-20]		
		uni.tartu.algorithm.DelimiterAnalyzer				:	for	account:	1d***************	
		 	 	 				 								got	delimiter:	{dot=96.5803332315,		
	 	 	 	 								slash=3.5785538401}	

 49

Figures 31 and 32 show us structural overview of discovered services, while figure 33
sums up statistical data for the account-b.

Figure 31: Discovered first level URL services for account-B.

Figure 31 shows us discovered first level URLs that will be used as major containers for
the rest of URL parts. Figure 32 shows us low-level URLs for the selected first level part.

Figure 32: Example of generated low-level URL services for account-B.

 50

Figure 33: Calculated statistics for the account-b.

Based on the statistics presented in the figure 33 we can say that service discovery tool
performed well for the account-b. In the Plumbr database this account has the largest
amount of services, since it isn’t implemented in one of Plumbr supported frameworks.
We were able to successfully discover 196 services out of 278185, which gave us
reduction score of 99.92%, which is really impressive.

Current implementation isn’t the best one with respect to performance. For instance,
calculation for account-b dataset takes approximately 2 minutes and 18 seconds to
complete and to display results on the UI. For the account-a – 35 seconds. Time isn’t
dependent only on input data size. URL structure for the account-b is much more
complicated, thus parsing, tokenizing and analyzing complicated URL structure takes
quite amount of resources. Performance can be improved in the context of future
research.
To summarize tool, which was implemented and designed during this master’s thesis,
was able to identify meaningful services from raw URL data, without having any
information or description about the input data. This gives possibility to significantly
reduce URL data among per account or application and group services with different
parameters or path variables under the same generated service name.

 51

4.3	Discussion	

In this section we will examine discovered limitations for service discovery tool. Even
though tool performed really well in for the large datasets with variety of registered
URLs, but when it comes to small amount of data, tool fails to generate meaningful
services. At this point it is hard to define what is “small” amount of data, since quality of
discovery process also depends on the URL difference within the dataset itself. For
example if we have input data with 5000 records and all of the URLs represent same
service, with different path variables like in the following examples:

• /api/rest/invoices/14sfrfra/generate
• /api/rest/invoices/yhr1234/generate

Tool won’t identify any service, because it won’t have any comparable URL styles.
During the discussion of the Group() method we identified some limitation and problems
with the approach of having same style of URLs into the same group. Now we can
discuss this issue, because this problem mainly occurs in case of small datasets. As we
defined in the section 3.3.2, Group()	method will try to save smaller chunks of the URLs
in a same group, depending on their style. For example URLs starting with ‘api’ would
go to the same group, with ‘rest’ – to second one and so on. If we consider example of
having same style of URLs as an input, Group() method will generate only one chunk for
all of the URLs. As we said size of the groups in terms of TF-IDF algorithm, is the same
as number of different documents. As we know number of documents in the algorithm is
defined as D (see sections 3.2.2) and it is used to calculate Inverse Document Frequency
score. In the case presented above we would have following situation, value of the D
would be 1 because there is only 1 generated group, logically m which represents
occurrence of a given URL part in different documents would also be 1, thus we would
have following formula for IDF score calculation: log(!

!
) which is 0. It does not matter

what the value of n or N is, final score of TF-IDF will always be 0, thus we won’t be able
to identify any parameter in the input data.
To address this issue we introduced uni.tartu.algorithm.ServiceGrouping, with getMaxRange	
method. This method takes the size of the input data as parameter and generates range of
the grouping dataset using following formula:

𝑑𝑎𝑡𝑎𝑆𝑖𝑧𝑒
1000

For example for the data with 5000 services it will generate range of 1 to 5 groups.
Services are randomly assigned to particular group. This gives us possibility to support
low volume datasets with more or less same URL structure. But we should also note that
there would be same issue if the data size were less than 1000. At this point only
solution that comes to mind is to dynamically set group range depending on the data
size. To do that we introduced discovery.properties file were user can specify the
grouping ratio depending on the data which he/she wants to analyze. Suppose we have
data with 500 URLs, than grouping ration of 100 would be sufficient enough to generate
5 groups before TF-IDF calculation.

 52

It is worth mentioning that this approach does not eliminate the problem, but rather
provides enough flexibility to its consumer to get meaningful results even on the small
amount of data. At this point following properties can be set in the discovery.properties,	
which should be included in the class path of the tool:

		discovery.importanceThreshold=0.005		
		discovery.parameterThreshold=0.003			
		discovery.filters=.html,$,.php,.js,.txt,.css,.jtp,.ico,.gif,.text,.pdf			
		discovery.groupingRatio=1000	

We already discussed importance and parameter thresholds during the chapter 3. As for
filters property it enables users specify filtering URL filtering rules of their choice, as
we already know URL cleaning will be done at a very first stage of service discovery
process. In this section we covered last dynamic property for the service discovery tool,
which gives possibility to improve service discovery quality for small amount of data.

TF-IDF and MapReduce algorithms are still considered to be applicable for large
amount of data, thus using this approach for low amount of URLs is still not the best
option, even though we minimized impact as much as we could.

5. Conclusion & Future Work
Based on the conducted experiments and the case study, we can say that chosen
approaches showed really good results on a reasonably large dataset with different URL
designs. We managed to successfully perform noise reduction before actual analysis in
order to avoid final output pollution. In addition, we have implemented “smart”
tokenization technique suggested in the paper [4]. This gave us the opportunity to
analyze URLs with completely different characteristics. As we observed in this research
URLs tend to be rather different depending on the implementation and the framework,
therefore analysis should flexible enough to handle various types of datasets. In order to
achieve this we introduced discovery.properties file, which gives possibility to configure
analysis for users needs. Visualization is the important part for any data analysis, in
terms of URLs we have chosen to represent URLs in a hierarchy model, which gives
high-level overview of the application service structure.

Although we answered our research questions and managed to identify services in the
raw URL data for Plumbr use case, there are still things that can be improved in terms of
future research. It includes, but isn’t limited to discovering important services through
the RPC interface documentation. In this research we didn’t concentrate on this aspect of
the service discovery, since it wasn’t relevant for the Plumbr use case. But as for the
future research it can be implemented in the existing tool. As a result we can get a
universal set of techniques that can generate RESTful style services through raw URL
data as well as over RPC interface documentation. Research presented in the paper [4]
can be good starting point for that.

 53

In the previous chapter we spoke about current limitations for small datasets. Although
we managed to introduce a way to minimize impact of false service discovery, more
broaden research can be conducted in this respect. Maybe using different approach, like
building similarity matrix for the URLs will give better results for small amount of data?
That’s the question that can be answered in the future studies.
In the research presented herein we introduced “minified” version of MapReduce for
TF-IDF calculation. MapReduce is widely used programming model, which can handle
large amount of data running in multi cluster environment. Most popular implementation
of MapReduce in that regard is via hadoop ecosystem. In that case millions of raw URL
data can be analyzed multiple applications in parallel. Although modifying current
service discovery tool does not make much sense, since hadoop MapReduce is
completely different framework, therefore new tool should developed for this use case.
Also it is worth to mention to experiment with different variations of TF and IDF score
calculations. Although TF-IDF version that we used in this research is considered to be
the most appropriate for text mining, there was no proper research for using TF-IDF for
URL data classification. Maybe different version can give better results?

Last but not the least we can implement Resource Model generation over the identified
URL services. It will make perfect sense if RPC style service discovery is in place.
Therefore we would have a scenario were completely unstructured URL data can be
transformed into Resource Models along with the generated RESTful style services from
RPC documentation. Combination of this two (URL data and RPC documentation)
would give excellent REST Resource Model generator. Probably in that case we may
need additional data for URLs, such as HTTP verbs to generate proper Resource
Models. For RPC documentation we may infer HTTP verbs using more advanced
natural language processing techniques. For example method presented in the RPC
documents which involves word get (getInvoices(), getPurchaseOrders(), etc.) can be
mapped to HTTP verb GET, for word create (createPO(), createInvoice()) – POST and
so on.

 54

6. Bibliography
[1] B. Kitchenham - “Procedures for performing systematic reviews,” Keele, UK,

Keele Univ., vol. 33, no. TR/SE-0401, p. 28, 2004.
[2] M. Maleshkova, C. Pedrinaci, J. Domingue - “Investigating Web APIs on the

World Wide Web” In Proceedings of the 8th IEEE European Conference on
Web Services (ECOWS 2010), 1-3 December 2010, Ayia Napa, Cyprus. IEEE
Computer Society, 2010, pp. 107-114.

[3] M. Laitkorpi, J. Koskinen, T. Systä - “A UML-based Approach for Abstracting
Application Interfaces to REST-like Services” Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE 2006), 23-27 October 2006,
Benevento, Italy. IEEE Computer Society, 2006, pp. 134-146.

[4] M. Athanasopoulos, K. Kontogiannis - “Extracting REST resource models from
procedure oriented service interfaces”, Journal of Systems and Software 100, pp.
149-166, 2015.

[5] P.A. Ly, C. Pedrinaci, J. Domingue - “Automated information extraction from
web APIs documentation” In Proceedings of the 13th International Conference
on Web Information Systems Engineering (WISE 2012), Paphos,
Cyprus, November 28-30, Springer, 2012, pp. 497-511.

[6] M. Gulden, S. Kugele - “Concept for generating simplified RESTful interfaces”,
WWW (Companion Volume) 2013: pp. 1391-1398.

[7] D. Mukhopadhyay, A. Chougule - “A Survey on Web Service Discovery
Approaches”, In Proceedings of the Second International Conference on
Computer Science, Engineering and Applications (ICCSEA 2012), May 25-27,
2012, New Delhi, India, Springer, 2012, pp. 1001-1012.

[8] Web Platform Specs, World Wide Web Consortium, accessed May 11, 2016.
<https://specs.webplatform.org/url/webspecs/develop>

[9] Uniform Resource Locators, Internet Engineering Task Force (IETF), accessed
May 16, 2016.
<https://www.ietf.org/rfc/rfc1738.txt>

[10] Hypertext Transfer Protocol – HTTP/1.1, World Wide Web Consortium (W3C),
accessed May 16, 2016.
<https://www.w3.org/Protocols/rfc2616/rfc2616.html>

[11] Roy Thomas Fielding - “Architectural Styles and the Design of Network-based
Software Architectures”, University Of California, Irvine, USA, 2000.

[12] Tianlei Zhang, Hui Meng, Liping Xiao, Guisheng Chen, Deyi Li - “Web service
discovery based on keyword clustering and ontology”, PLA Communication
Command Academy, WuHan, 430010, China, 2008.

[13] G. Salton, J. Michael - “Introduction to modern information” McGraw Hill, New
York, 1983.

[14] URL - W3C Working Draft, accessed May 18, 2016
<https://www.w3.org/TR/2012/WD-url-20120524>

 55

Non-exclusive license to reproduce thesis
I, Levani Kokhreidze (date of birth: 10th of July 1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:
1.1 reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry of
the term of validity of the copyright, and

1.2 make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the term
of validity of the copyright,
Service Discovery supervised by Marlon Dumas and Vladimir Šor.

2. I am aware of the fact that the author retains these rights.
3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 19.05.2016

