
UNIVERSITY OF TARTU 

Institute of Computer Science 

Computer Science Curriculum 

Alan Kolk 

Visualization of rooftop solar potential in smart cities 

Bachelor’s Thesis (9 ECTS) 

Supervisor(s): Pelle Jakovits, PhD 

 

  

Tartu 2023 



2 

 

Visualization of rooftop solar potential in smart cities 

Abstract: 

Visualizing 3D building rooftops with solar potential data on a map-based application gives a 

new look into the possible gains of using rooftop solar panels in a smart city. For local 

governments, cities, and individuals, visualizing the solar potential of buildings allows for a 

more informed evaluation of what the maximum gain from using solar panels on a roof would 

be. In this work, a solution for visualizing 3D city buildings in the 3DCityDB web map client 

was analysed and developed as a continuation of a previous thesis project. Scripts were created, 

that directly colour KML 3D building rooftops, based on the rooftops solar potential. The 

finished solution is made using open-source software and is capable of visualizing Estonian 

CityGML data attributed with solar potential data. Issues of the previous continuation project 

were fixed, and points of future developments are discussed. The finished work also serves as 

a basis for future 3D visualizations using CityGML data and the web application can be further 

improved to support more types of semantical 3D visualizations. 

Keywords: 

Solar Potential, Smart City, Visualization 

CERCS: 

P170 Computer science, numerical analysis, systems, control 

  



3 

 

Katuste päikeseenergia potentsiaalide visualiseerimine targas linnas 

Lühikokkuvõte: 

3D-hoonete katuste visualiseerimine päikeseenergia potentsiaali andmetega kaardipõhises 

rakenduses annab uue pilgu katusel asuvate päikesepaneelide kasutamise võimalikele eelistele 

targas linnas. Kohalike omavalitsuste, linnade ja üksikisikute jaoks võimaldab hoonete 

päikeseenergia potentsiaali visualiseerimine paremini hinnata, milline oleks maksimaalne kasu 

kui kasutada päikesepaneele linna majade katusel. Käesolevas töös analüüsiti ja töötati välja 

lahendus linna 3D-hoonete visualiseerimiseks, kasutades 3DCityDB veebi kaardirakendust, 

edasi arendades olemasolevat Magistritöö projekti. Töö käigus valimisid skriptid, mis värvivad 

päikesepotentsiaali põhjal KML andmefailides asuvaid 3D-hoonete katuseid. Valminud 

lahendus kasutab avatud lähtekoodiga tarkvaraga ning on võimeline visualiseerima Eesti 

CityGML andmeid, millele on omistatud päikesepotentsiaali andmed. Varasemalt olemasoleva 

projekti vead parandati ning toodi välja uue lahenduse võimalikud edasiarendused. Valminud 

töö on aluseks ka tulevastele CityGML andmeid kasutavatele 3D-visualisatsioonidele ning 

valminud veebirakendust saab edasiarendusena veelgi täiustada, et võimaldada muid 

semantilisi 3D-visualisatsioone. 

Võtmesõnad: 

Päikeseenergia Potentsiaal, Tark Linn, Visualiseerimine 

CERCS: 

P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine 



4 

 

Table of Contents 

1 Introduction ........................................................................................................................ 5 

2 Analysis of existing solutions ............................................................................................ 7 

2.1 Related works of visualizing solar potential on buildings .......................................... 7 

2.1.1 Project Sunroof .................................................................................................... 7 

2.1.2 Visualization of semantic 3D city models ........................................................... 8 

2.1.3 PV*SOL online .................................................................................................... 9 

2.2 Existing prototype ....................................................................................................... 9 

3 Importing and converting 3D data ................................................................................... 12 

3.1 Tools for data conversion and visualization .............................................................. 12 

3.1.1 ArcGIS Online ................................................................................................... 12 

3.1.2 3DCityDB .......................................................................................................... 13 

3.2 Estonian CityGML data import into 3DCityDB ....................................................... 13 

3.3 Available visualizable 3D data formats .................................................................... 14 

3.4 Linking the attribute data to the buildings ................................................................ 16 

4 Visualizing solar potential data ........................................................................................ 17 

4.1 Colouring roof polygons ........................................................................................... 18 

4.2 Visualization based on yearly potential output ......................................................... 20 

5 Validation and analysis .................................................................................................... 23 

6 Conclusions ...................................................................................................................... 25 

6.1 Issues with the developed solution ............................................................................ 25 

6.2 Possible future improvements ................................................................................... 26 

References ................................................................................................................................ 27 

Appendix .................................................................................................................................. 29 

 



5 

 

1 Introduction 

Growing cities have introduced an increased need for alternative energy sources. To solve this 

increased demand for energy, it is necessary to research what solutions are available for city-

wide energy infrastructures. Contrary to non-renewable energy resources, renewable energy 

resources provide such alternative solutions, which do not increase the damage caused to the 

environment by harmful emissions [1]. Therefore, to start using new city-wide energy 

solutions, it is imperative to first research and then plan the general use of renewable sources 

of energy, to get the most benefit from them and to guarantee optimal growth possibilities for 

future city developments. With the modern and more affordable solar panels, it is possible to 

redefine the use of a city building rooftop. Implementing solar panels on rooftops provides 

energy from a relatively unused area and large area, which can be harnessed as a potential 

energy source for smart cities.  

Visualizing 3D rooftop solar potential data on a map-based application gives a new look into 

the planning of rooftop solar panels. When coordinates and geometrical building data is 

visualized with its solar potential data, it is easier to spot patterns in the different city areas. 

Geographical solar data, which in this work comes as a large text-based file, can be better 

understood when visualized on a map along with relevant metadata. The visual representation 

with colour-coding allows the user to grasp relevant information more easily and is visually 

more appealing. 

For local governments and cities visualizing the solar potential of buildings allows the parties 

to better evaluate what the maximum gain from constructing solar panels on building rooftops 

would be. Such a visualization could also for example allow them to analyse what type of roofs, 

the shape and facing direction, would potentially generate the most power if solar panels were 

to be installed. 

The aim of this work is to create an improved 3D visualization in the form of a web application, 

which shows solar potential data of rooftops in a smart city. This work is a continuation of a 

master’s thesis done in 2022 in The University of Tartu that created a prototype [2] of a solar 

potential estimation pipeline and an initial visualization that finds the potential energy 

generated by buildings in a city, based on the location and shape of the building. The data is 

displayed on a 3D map where the buildings are interactable, whereby clicking on any specific 

building you can get the solar potential data attributed to the building. 



6 

 

The previous prototype was a requested work from the city of Tartu in collaboration with the 

University of Tartu. This work is also part of the collaboration between the city and the 

university, to further develop the 3D solar potential web application visualization. 

An objective of this work is to cut the 3D building rooftop into parts, so instead of a single 

interactable building, we would have segments of the rooftop that all have their own solar 

potential data attributed to them. The reason for having differently coloured parts of the roof, 

is that in the previous prototype it was hard to get a good overview of how much one side of 

the roof contributed to the entire solar potential of the building. The previous implementation 

also coloured the entire building in one colour, which meant that walls were the same colour 

as the roof, whereas only the roof was planned to have solar panels on it. Having the roof and 

walls be the same colour in terms of solar potential generation, makes the visualization more 

confusing and does not allow the user to understand, which sides of the roof are the most 

beneficial to install solar panels on.  

To colour different parts of the roof with different colours, it is most likely necessary to replace 

either the used Cesium JS [3] 3D map software with another open-sourced map software or use 

a different 3D object file type to implement segmented rooftops, which could then be coloured 

with different colours based on the solar potential that each segment gets. This visualization 

improvement of rooftop segments would allow any user of the web application to get more 

detailed information about the best location, where to put the solar panels on the rooftop in 

terms of solar potential. Other improvements that this work aims to achieve compared to the 

existing prototype come from reduced demand on hardware and bugfixes of the existing web 

application, which are analysed in more detail in section 3.2 and further compared with the 

results of this work in section 5. 

The structure of this thesis is such that in section 3, related works are compared to the aims of 

this work and the existing prototype is analysed. In section 4, Estonian 3D data handling using 

3DCityDB and creating visualization exports with the data are analysed and discussed. In 

section 4.3, gathering and using attribute data is explained. In section 5, visualization 

implementation is discussed, and examples of Tartu city visualization are shown. In section 6, 

the validation of the performance and usability of the work is done along with an overviewing 

analysis. In section 7, conclusions and issues are summarized. 



7 

 

2 Analysis of existing solutions 

This section gives a brief overview of the studies and projects concerning city rooftop solar 

potential. 

2.1 Related works of visualizing solar potential on buildings 

In the following sub-sections, related works that have implemented solar potential visualization 

on building rooftops are analysed and discussed. The works are compared to what the aims of 

this thesis project are based on the positives and negatives of each related work. 

2.1.1 Project Sunroof 

Project Sunroof [4] is a solar potential web visualization that is similar to what this work aims 

to achieve. The project contains a 2D map, where buildings are coloured from violet to yellow 

based on the amount of sunlight on a rooftop. For each building on the map, it gives a brief 

analysis on the number of hours of usable sunlight per year and the area on a roof that is 

available for solar panels. It also calculates an estimation of the net savings over 20 years of 

using solar panels on a selected roof. Example of the application can be seen in figure 1. 

 

Figure 1. Project Sunroof visualization of solar irradiance on a building. 



8 

 

What is missing in terms of this work is that clicking on a building requires opening a new 

webpage where the information is then displayed. The extra manual steps needed to get 

information on a building make the application slow to use. The main problem with Project 

Sunroof is that it currently does not have the data for Estonia, so a solution specifically for 

Estonia needs to be created. This work also aims to create a 3D visualization compared to 

Project Sunroof’s 2D visualization. 

2.1.2 Visualization of semantic 3D city models 

In a journal article by Zhihang Yao et al. [5] a 3D visualization model was created using 

3DCityDB [6]. The visualization used solar irradiation data, considering the shadows created 

by nearby buildings, the elevation of the buildings, and how much sunlight they get based on 

the location and weather data, to create textured 3D building models. The textures on the 

buildings are coloured green to red based on the amount of solar irradiance that the building 

faces get. An example of the texture-based visualization can be seen in figure 2. 

Figure 2. Visualization of solar irradiance heatmap on buildings [5, Fig. 18] 



9 

 

Creating a heatmap for the solar irradiance data allows for the visualization to be very precise. 

In the context of this work, it is however not possible to create such a precise heatmap for the 

data if the work depends on the current implementation of the pipeline. Because the pipeline 

from the prototype provides data for the main cardinal directions and for flat surfaces, it would 

be necessary to recreate the pipeline into a variant that is capable of outputting such data, which 

is needed for a solar potential heatmap. Since the aim of this work is not to remake the pipeline, 

then the colouring was done based on the four cardinal directions and “flat-surface” area 

provided in the current pipeline output data. 

2.1.3 PV*SOL online 

PV*SOL online [7] is a free web tool for the calculation of a solar panel systems output. It 

calculates the solar irradiation of a selected building on a world map and finds the best 

configuration and output for solar panels based on the type, amount, and the geometrical data, 

like the roof shape and various details. In terms of visualization, it offers a basic 2D map with 

no solar potential displayed on the map, which is a main component for this work. Because of 

PV*SOL online’s basic 2D visualization and very manual use, it is considerably limited in the 

visualization, since the aim of this work is a 3D visualization, and when wanting to look at 

other buildings data, one would have to manually enter all the parameters again, which makes 

the tool slow to use.  

2.2 Existing prototype 

The objective of this work is to continue and improve a master’s thesis project (Referred to as 

“prototype” throughout this thesis) by B. Romashchenko “Mapping Solar Potential of Tartu” 

[2], which was done at the University of Tartu in 2022. As a result of the thesis project, a solar 

potential data pipeline and a prototype web application were created for processing and 

visualizing 3D city spatial data to find the solar potential of city building rooftops. The source 

code is publicly available in a GitHub repository [8]. 



10 

 

The prototype uses a custom-made pipeline for attributing the 3D spatial data with the solar 

potential of the buildings. To use the pipeline, CityGML data of a city is needed. The building 

geometry is analysed in the pipeline and solar potential data is then queried from PVGIS API 

[9], based on the roof geometry. The solar potential data is then added to the building in the 

CityGML data file and JSON files are created, which contain summarized data of the solar 

potential in the city and solar potential data for each roof polygon that was analysed by the 

pipeline. The solar potential data along with the CityGML 3D geometry is converted into 

Cesium 3D Tiles, which is then displayed in a web application, which visualizes the buildings 

of on a 3D map in a web browser. The web application uses Cesium JS for the 3D map and 

visualizing the Cesium 3D Tiles. The buildings themselves are colour-coded based on the 

amount of solar potential that they generate on average per year. An example image of the 

prototype can be seen in figure 3. 

The requester of the existing prototype, the city of Tartu, wanted to take the prototype into 

public use, but there were problems with the web application, so further development was 

requested. So, the objectives of this work were to analyse the issues with the prototype and to 

design and develop an improved visualization solution that could fix usability problems with 

the prototype and reduce the demand on hardware resources along with an improved 

visualization.  

Figure 3. Screenshot taken from the existing prototype [2].  



11 

 

In Romashchenko’s thesis [2], several future improvements are proposed. One improvement 

mentioned was to implement the 3D objects in a way, where the building rooftops can be 

segmented and coloured differently to visualize the solar potential of a roof more accurately. 

This improvement is also one of the main objectives of this work. Currently in the prototype 

the buildings are all coloured with a single colour, which represents the solar potential of the 

rooftop. By having different parts of the roof coloured differently, it is possible to more 

accurately determine where the best place to install solar panels on the roof is and understand 

what areas of the roof the data processing pipeline has taken into consideration when 

calculating the solar potential of a building. Other improvements that could be done to the web 

application were various bugfixes and reducing the amount of hardware resources the 

application required. For example, the current web application requires the users system to 

have about 4 GB of RAM, a sufficient processor and network speed to download and smoothly 

display the 3D spatial data. 

To make improvements possible, the 3D map software Cesium JS, that the prototype used for 

visualization, was decided to be replaced with another web map client, to fix the following 

issues. The prototype web application contained viewing problems, namely buildings 

disappeared when looking at a certain angle or moving in too close with the camera. The same 

thing happened if the camera was moved to the edge of the rendered city. Another problem 

with the implementation of the prototype was the use of resources when using the application. 

Since the application loads all the 3D data into memory during loading, then the application is 

slow to start. While testing the application, it took 9 seconds to load in the city of Tartu and 

depending on the hardware and network speed of the user, this time can be even longer. This 

was also a main request of the city of Tartu, as the slow loading time was something that they 

brought out in their feedback of the prototype application. 

Colouring limitations of the rooftops came from the Cesium 3D Tiles datatype used in the 

prototype for the 3D objects. The Cesium 3D Tiles take a lot of resources to display, since they 

are all loaded into memory when using the application. The datatype was also the reason why 

the author of the prototype was not able to implement splitting up the rooftop surface colour 

into different coloured parts in the 3D web map. 

 



12 

 

3 Importing and converting 3D data 

The prototype pipeline was implemented with the use of CityGML (City Geography Markup 

Language) for the 3D data objects. The data for this work is publicly provided by the Estonian 

Land Board [10]. 3D spatial data exists for the entire Estonia, but for development and testing 

only the Tartu city data was used. Since the pipeline was implemented for processing 

specifically CityGML files, and the solar potential data, that this work used for the 

visualization, came from the prototype’s pipeline, then it was decided that the input data, used 

for representing the 3D objects in this work, would also be CityGML files. The only problem 

with CityGML was that there was no way to directly visualize it in a web application [11], so 

the file had to be converted to another 3D object file type. 

3.1 Tools for data conversion and visualization 

The Cesium JS web viewer, which was used to visualize the Cesium 3D Tiles in the prototype, 

was decided to be replaced because of its issues with performance and object viewing. A new 

solution had to be found for visualizing the 3D data in a web browser. 

3.1.1 ArcGIS Online 

ArcGIS Online [12] is a web-based mapping software that can be used to build interactive web 

maps. The software has many features and is capable of creating all kinds of semantic 

visualizations. Data can be imported into the software using various kinds of file types like 

GeoJSON, KML, and other common geospatial files. Another useful feature of ArcGIS is that 

it can be used for data analysis, which is important for solar potential data where finding the 

maximum benefits of the rooftop potentials is a key point. What makes ArcGIS unsuitable for 

this work is that the software costs and that is against the objective of developing the work 

using open-source software. 



13 

 

3.1.2 3DCityDB 

3DCityDB [6] is an open-source 3D city database for storing, managing, and representing 

virtual 3D city models using a standard spatial relational database. The database can store 

CityGML and CityJSON data with its respective level of detail and can even store appearance 

data, like textures and colours. An Importer/Exporter [13] tool that comes with the 3D City 

Database can convert the imported data into different 3D visualization file formats, which can 

be used to convert the CityGML data that the work uses to another 3D file that can be visualized 

in web applications. It also contains a tiling feature for large datasets to make them more 

efficient to display and thus requiring less hardware power, which is also an objective of this 

work, as performance was an issue. It works best with the CityGML standard, so this aligns 

with the previously mentioned objective of continuing the use of CityGML in this work. 

Because of the good compatibility with CityGML and the selection of tools that exist for 

converting the CityGML files to a different 3D visualization format, 3DCityDB was chosen 

for creating a new visualization in this work. 

3.2 Estonian CityGML data import into 3DCityDB 

Importing the CityGML data into 3D City Database required setting up a database with 

extensions. This was needed to use the Importer/Exporter tool, that 3DCityDB provides. To do 

a visualization export using the tool, it is required to import the data into a 3D City Database, 

as directly converting CityGML into a visualizable 3D format using the tool is not possible. 

This meant that it is also worth researching in the future if direct conversion is possible using 

another tool, for example FME “Convert CityGML to KML” [14], that is not usable in the 

context of this work as it costs and the aim was for this project to be open-source. This is 

something that could potentially reduce the steps that are needed to create a visualization for a 

new city, so a direct conversion solution could be considered for future developments.  

The supported databases for the Importer/Exporter are PostgreSQL, Oracle, or PolarDB 

database. For the project PostgreSQL database was used with the administration platform 

pgAdmin [15] as the Author had the most experience using this database system out of the 

supported ones. The importing of the data into the database was a straight-forward process 

following the documentation of 3DCityDB [16] and the importing of the Estonian 3D data 

worked without needing any modifications. The tool correctly identified the coordinate system 

and the types of 3D objects in the dataset as buildings.  



14 

 

3.3 Available visualizable 3D data formats 

3DCityDB allows exporting the data in the database as three different 3D object types. First is 

KML (Keyhole Markup Language) geometry file format, which is based on the XML 

(Extensible Markup Language) standard. This is usable in Cesium JS, which the prototype uses, 

and in a web map client [17] that comes with 3DCityDB. Secondly it is possible to export as 

COLLADA file format, which is also an XML-based file type for 3D assets. Finally, there is 

glTF, which is specifically for 3D scenes and models. The biggest difference between KML, 

COLLADA and glTF is that the latter two allow the use of textures in digital globe browsers. 

An example of a KML file can be seen in figure 4. 

 

Figure 4. Example of a KML file from the Estonian CityGML data. 



15 

 

By experimenting with the different file formats that could be exported from the 

Importer/Exporter tool, KML and glTF worked with the Estonian CityGML data without 

needing any modifications, when importing them into the 3DCityDB web map client. When 

importing the visualization as COLLADA into the web map client, the buildings were invisible. 

But through analysis into the options of colouring the COLLADA and glTF objects, it was 

determined that to achieve a visualization, where the rooftop parts are coloured differently, 

COLLADA and glTF were unsuitable for this work, as they could only be coloured using 

textures, but a way to colour individual polygons was needed. So, it was not necessary to fix 

the issue that was present when trying to use COLLADA as the 3D file type, as textures could 

not be created with the current pipeline implementation. 

One change that needed to be done was an affine transformation on the CityGML coordinates 

data. That is because the Estonian data coordinates are in the format {latitude, longitude, 

height} but to visualize the data in the 3DCityDB web map client, the data coordinates need to 

be in the format {longitude, latitude, height}. For example, in a standard XYZ 3-dimensional 

grid, one would need to switch the places of X and Y in the data structure for the map client to 

correctly position the buildings. This change was very easy to do in 3DCityDB Import/Export 

tool, as there is an automated changing process for it in the preferences of the tool that does the 

affine transformation automatically when importing to the 3D spatial database. 

Out of the KML and glTF file formats, KML was the only format that could be used for further 

development. glTF converted the buildings into single 3D objects just like the Cesium 3D tiles 

used in the prototype, so creating segmented roofs that could have different colours would not 

have been achievable without the use of textures. KML was the only export file format that 

kept the styling data of the polygons and geometry in the building data file itself.  

The limitation that comes with KML is that the polygon styling is done in the file itself, which 

means that to colour the polygons individually, the modifications also need to be done in the 

file directly. Referencing the colours for the polygons from a different source is a topic that 

would need to be analysed further in the future. This meant, that to colour the polygons of a 

building based on the solar potential, scripts for directly changing the KML files were needed. 



16 

 

3.4 Linking the attribute data to the buildings 

The CityGML files usually contain various attribute data about the objects in the data files. 

These attributes can be for example the address, building type, construction date, or any other 

custom value. To display these attributes with 3DCityDB, you must export them into tabular 

data like CSV or Microsoft Excel. The Importer/Exporter comes with a helpful plugin called 

Spreadsheet Generator Plugin, which takes a template file to filter and export user specified 

attribute values into a tabular data file. The exported tabular file can be uploaded to Google 

Sheets and then be used to show building data in 3DCityDB web map client [17]. The created 

tabular file can also be supplemented with any additional information that we want to display 

when selecting a building in the 3DCityDB web map client. An example of the tabular file 

containing attribute data can be seen in figure 5. 

Figure 5. Attribute data of buildings exported using Spreadsheet Generator Plugin. 



17 

 

4 Visualizing solar potential data 

3D City Database comes with a web map client [17] developed by the creators of the database 

using Cesium JS. It can visualize the data that the Exporter generates from the CityGML data 

in a web client, which makes it a suitable tool for visualizing the exported data from the 

Importer/Exporter. It also allows basic interactions with the 3D objects, like highlighting and 

hiding selected objects. This was chosen to replace the Cesium JS web application that the 

prototype used, as the one made by 3DCityDB worked well with the 3D visualization data and 

contained more features that were already implemented. 

A visualization export of the Tartu city data with default styling options selected in the 

Importer/Exporter tool along with linked thematic data can be seen in figure 6. 

The individual polygons, of the KML geometry objects can be manually coloured if the KML 

files are modified directly. When a visualization export is exported into KML geometry objects, 

then each building’s roof surface and wall surface are in separate groups that group all the 

polygons which make up the surface. 

Figure 6. 3DCityDB KML geometry visualization of buildings in Tartu with linked attribute 

data. 



18 

 

4.1 Colouring roof polygons 

Since it was decided that the KML files would be modified directly, a script was made for 

colouring all the building roof surfaces in the KML dataset. The colouring of the polygons was 

based on the yearly kW/h solar potential data that was generated for each polygon using the 

pipeline. This required linking different data files to get all the needed data for the colouring 

and identifying the buildings and the specific polygons of them. To colour the buildings, it was 

first needed to get the solar potential data for them. The pipeline from the prototype generates 

a JSON data file that contains solar potential data for each roof polygon that was deemed 

suitable for solar panels in the pipeline implementation. For Tartu city the output data is already 

generated and available in a public GitHub repository [18], made by Romashchenko. The Tartu 

city data file “city-attributes.json” was 52.8 MB in size and contained 79443 roof surface 

polygons. 

In the roof data file “city-attributes.json” [18] each polygon of a building contained different 

attributes like, “area”, “azimuth”, “tilt”, “orientation”, coordinates of the polygon, and potential 

yearly and monthly kW/h data. A part of the JSON file can be seen in figure 7.  

The script for colouring the KML files also depended on a metadata JSON file that the 

visualization export generates if an option (“Record metadata about exported features in JSON 

file”) in the preferences of the tool is ticked. From the metadata JSON file, the script gets 

information about which tiles to process. Because a lot of tiles in the generated tile-grid do not 

have any buildings on them, the read-write operations that the script must do can be reduced 

by skipping empty tiles, therefore making the script process time shorter. 

Figure 7. "city-attributes.json" file containing data about roof surface polygons 



19 

 

A script named “color_building_roofs.py” was made using Python. The script can be found 

in the project repository, which can be found in Appendix I. Since a large amount of KML files 

needed to be processed, a KML parser was necessary. A Python package pyKML [19] was 

used to parse the KML documents. It uses lxml, an XML toolkit for Python, that vastly 

simplifies parsing XML files, which KML files are also based on. Python and pyKML were 

selected because of the easy handling of reading and writing files and existence of documented 

and easy to use XML and KML parsers. The script was run in Visual Studio Code using a 

desktop machine with a Ryzen 7 5800X processor, 16 GB of RAM and an SSD, the processing 

and overwriting the KML files of the whole Tartu city, which consists of around 20000 

buildings, took about 1 minute.  

The script algorithm can be described with the following steps: 

1. look through all the tiles in the dataset; 

2. process all the buildings in a single tile; 

3. get the roof solar data from the city-attributes.json file; 

4. for each polygon of the roof; 

a. match the polygon coordinates with the coordinates from city-attributes.json 

roof data; 

i. city-attributes.json coordinates are transformed from EPSG:3301 

reference system to WGS:84, which the visualization export uses. 

b. if the coordinates match, colour the roof based on the potential; 

c. create a new placemark that contains a single processed polygon; 

5. append the new polygon placemark to the KML 

6. remove old roof surface placemark; 

7. overwrite unmodified KML file; 



20 

 

Using the script, it is possible to colour the polygons of a roof with any given parameter, for 

example orientation, yearly kW/h, or monthly kW/h data. A test colouring of the entire Tartu 

dataset can be seen in figure 8. Each cardinal direction is represented with a different colour 

and the polygons that were ignored by the pipeline are coloured black. 

4.2 Visualization based on yearly potential output 

To create a distinguishable visualization of the solar potential data of rooftops a colour gradient 

was created. The colours of the gradient went from green to orange to purple, where green 

indicated little amounts of solar potential of a surface and purple indicated a large amount of 

solar potential. 

A script “retrieve_solar_potential_data.py” was created that contains a function 

“describe_yearly_kwh()”. The function uses a Python library called Pandas to easily describe 

the yearly kW/h data of the roof polygons. All the yearly potential data is gathered into a Pandas 

dataframe and then the dataframe is described with many different metrics that can be seen in 

table 1. The values in table 1 all represent yearly kW/h values of roof surface polygons and 

there are 12 percentiles specified, to find an overall distribution of the values. 

Figure 8. Tartu CityGML rooftop polygons coloured based on the orientation from the 

pipeline data. 



21 

 

 

Table 1. Analysis of Tartu roof surface polygons yearly kW/h values. 

Metrics Values (yearly_kwh) 

count 79443.00000 

mean 11268.71109 

std 35483.85916 

min 92.70000 

1% 415.10410 

5% 678.53300 

10% 997.11000 

25% 2107.99000 

35% 3044.10900 

50% 4746.19000 

65% 7105.89600 

75% 9770.26000 

85% 14482.24700 

95% 37195.70100 

99% 124549.53720 

99.9% 365933.59664 

max 4671885.84000 

 

12 percentiles were selected because this made the gradient colours to be easily distinguishable 

from each other, as the ranges for colours were picked based on the percentiles, along with the 

min and max. It was decided that too many colours in the gradient would make it hard to 

distinguish between the colours if looking at an area that was tightly packed with buildings, the 

polygon colours would blend with each other if the colours had a smoother transition in the 

gradient, making roof surfaces harder to distinguish between based on the solar potential. 

The result of colouring the roofs based on the potentials can be seen in figure 9, where polygons 

with very high levels of solar potential are visible in purple and polygons with low levels of 

solar potential are in green. 



22 

 

The script also contains a function “generate_csv()” that adds the solar potential data into the 

tabular data file that was mentioned in section 4.3 of this work. This allows the web map client 

to display data about the building, when the user clicks on a specific building including all the 

potential power values to better understand the visualization and the indicated solar potential 

values. An example can be seen in figure 10. 

Figure 9. Visualization based on the solar potential of the roof surfaces. 

Figure 10. Attribute data of a building. 



23 

 

5 Validation and analysis 

The aim to create an improved 3D visualization compared to the existing prototype [2], was 

successful. Compared to the prototype’s visualization seen in section 3.2 Figure 3, where each 

building was a single 3D object with no visual distinction between the walls and roof, the new 

solution using 3DCityDB offers a much more visually informative solution.  

It was understood that the issue with the previous prototype that did not allow colouring the 

roof parts differently lied with the data type used. By using 3DCityDB’s Importer/Exporter 

tool to create a KML visualization export, it was possible to colour individual polygons that 

the CityGML geometry defines without needing to rely on textures. The KML visualization 

export allowed a solution, in the form of scripts, to be made, that made the colouring of 

individual polygons possible. This was something that the previous data type Cesium 3D Tiles 

was not capable of allowing and is a solution that was not observed in the related works, as the 

solar potential visualizations relied mainly on generated textures. 

The prototype also had bugs that hindered the usage of the software. Under some viewing 

angles and when moving to the edges of the city that was rendered, the 3D objects would 

disappear. Clicking buildings would sometimes not work and the user had to rotate the camera 

to be able to click on the building they wanted to view data about the building. These issues 

were fixed with the usage of the 3DCityDB web map client. Usage of the new web map client 

introduced new features, like highlighting building parts that the user is hovering over and 

allowing for hiding and selecting multiple buildings in the web map. 

Performance between the new solution using 3DCityDB web map client and the prototype 

made with Cesium JS varies greatly. In local tests, the prototype was more responsive than the 

web map client. This is because the prototype loads all the data into memory, and this allows 

it to show different parts of the rendered city very quickly. The downside of the prototype 

reading the data into memory is that the initial loading time is long. In local tests, the 

application loaded for 9 seconds before the city of Tartu was shown. The long loading time is 

heavily dependent on the hardware of the computer that uses the application and since it must 

download large data files (about 128 MB) over the internet, if one were to use it from a server 

and not have the data locally, then it also depends on network speed. 



24 

 

Compared to the prototype the new application loads in very quickly since it utilises a tile-

based system, but it is not as responsive as the prototype was, because it must load parts in as 

the user is moving around with the camera. But once the new web map client has loaded tiles 

in, it is as responsive as the prototype. What the tile-based system allows is that the application 

is configurable to accommodate weaker hardware by reducing the number of tiles that are 

concurrently shown and vice-versa more powerful hardware can utilise a faster loading of tiles 

and have more tiles shown at once. This makes the new solution more available for users since 

one does not have to rely on a powerful system to run the application. When testing the web 

application with a different number of tiles shown concurrently, then systems with 4 GB of 

RAM should be able to handle the application without mayor loss in performance. 

The web map client that was used for this work is also built to allow the use of various project 

setup structures in the operation of the application. The data is easily separatable from the 

project files and can therefore be hosted on a file server and referenced using an URL. Thematic 

data, which contains the attribute info, is currently hosted on Google Drive as a Google Sheets 

file but can be moved to a database to implement a REST API structure for the project. 

The steps that a user has to take to generate a new final visualization are briefly described in 

this paragraph. First the previous prototype pipeline has to be run with 3D data from the 

Estonian Land Board to get the solar potential data. Then the Estonian Land Board 3D data 

needs to be imported into the 3D City Database. Afterwards, a visualization export into KML 

geometry must be done and the scripts must be used on the generated export. The data can then 

be imported into the web application after going through the aforementioned steps that need to 

be done in a configured environment for generating a visualization. Finally, the main server.js 

file in the project, found in the project repository in appendix I, needs to be run using Node.js 

[20] and then users of the application can look at the final visualization in a web browser. 



25 

 

6 Conclusions 

The aim to create an improved 3D visualization as stated in the introduction, was achieved. 

The new solution fixed the viewing issue, where buildings would disappear when looking 

under a certain angle or moving to the edges of the city. Clicking on buildings also worked 

without depending on the viewing angle, which was an issue with the previous prototype. 

Performance issues were solved with the use of a tile-based system that 3DCityDB offered. 

The objective of colouring the parts of a rooftop differently based on the amount of solar 

potential that a particular side generates was also made possible with the use of 3DCityDB, 

used as a core basis for the work. The usage of a different 3D object file type called KML, was 

the main key in colouring the rooftops with the data obtained by the prototype’s pipeline to 

achieve the desired visualization. 

Referencing the colours of the rooftop surfaces from a different source was not achievable in 

this work, therefore scripts were made to directly edit the KML files generated by the 

3DCityDB Importer/Exporter tool visualization export. The main colouring script 

“color_building_roofs.py” processed each tile that contained a building and coloured the 

rooftop polygons based on the solar potential data, which originated from the pipeline’s output. 

The script “retrieve_solar_potential_data.py” was used to do data analysis on the yearly 

kW/h data of the rooftop polygons to define a colour gradient for visualization and all the solar 

potential data was added to the thematic data tabular file with the help of the script. 

The direct modification of the KML files using the scripts made the visualization based on 

solar potential data possible using 3DCityDB web map client and a satisfactory result was 

achieved. 

6.1 Issues with the developed solution 

The web application is very configurable to accommodate hardware with varying power for 

the application to use. But finding the right configuration is a manual process that requires 

testing to find out how many tiles can be shown to the user at once depending on the hardware 

power that is available. 



26 

 

6.2 Possible future improvements 

There are different aspects of the work that can be improved upon. For the visualization, an 

entirely new approach could be taken, where instead of using KML geometry for colouring the 

rooftop polygons, textures or a completely solution could be implemented to further improve 

the accuracy of the visualization. 

Generating a KML export requires setting up a 3D City Database instance, which is a task only 

needed before the visualization export is generated. If the CityGML to KML conversion could 

be done directly without the use of 3D City Database, it would reduce the number of steps that 

are needed in creating a visualization.  

The web application design could be improved to better connect with the semantical data that 

is being visualized. For the project as a whole, a REST API system could be set up where the 

files are stored in a file server, the web application is hosted in a different machine, and the 

data generation could be done in a third machine. 

The KML building colouring is currently done in file, but the colours could potentially be 

referenced from a different source, this could allow for the colours to be adjusted without the 

need of running the script on the whole visualization dataset. 

 



27 

 

References 

 

[1]  A. Abu-Rayash and I. Dincer, “Development and analysis of an integrated solar energy 

system for smart cities,” Sustainable Energy Technologies and Assessments, vol. 46, 

aug 2021.  DOI: 10.1016/j.seta.2021.101170 

[2]  B. Romashchenko, Mapping Solar Potential of Tartu, Tartu: Institute of Computer 

Science, 2022. https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=75190&year=2022. 

[3]  Cesium, “Cesium JS,” [Online]. Available: https://cesium.com/platform/cesiumjs/. 

[Accessed 26 February 2023]. 

[4]  Google, “Project Sunroof,” [Online]. Available: https://sunroof.withgoogle.com/. 

[Accessed 12 March 2023]. 

[5]  Z. Yao, C. Nagel, F. Kunde, G. Hudra, P. Willkomm, A. Donaubauer, T. Adolphi and 

T. H. Kolbe, “3DCityDB - a 3D geodatabase solution for the management, analysis, 

and visualization of semantic 3D city models based on CityGML,” Open Geospatial 

Data, Software and Standards, vol. 3, no. 1, p. 5, 2018. DOI: 10.1186/s40965-018-

0046-7 

[6]  3DCityDB, “The CityGML Database 3D City DB,” [Online]. Available: 

https://www.3dcitydb.org/3dcitydb/. [Accessed 26 February 2023]. 

[7]  V. S. GmbH, “PV*SOL online,” [Online]. Available: https://pvsol-online.valentin-

software.com/#/. [Accessed 12 March 2023]. 

[8]  B. Romashchenko, “GitHub - Mapping Solar Potential of Tartu,” [Online]. Available: 

https://github.com/boroma4/Mapping-Solar-Potential-of-Tartu. [Accessed 15 February 

2023]. 

[9]  P. G. I. System, “PVGIS web tool,” [Online]. Available: 

https://re.jrc.ec.europa.eu/pvg_tools/en/. [Accessed 7 May 2023]. 

[10]  E. L. Board, “3D spatial data of Estonia,” [Online]. Available: 

https://geoportaal.maaamet.ee/eng/Download-3D-data-p837.html. [Accessed 27 

February 2023]. 



28 

 

[11]  J. T. Santhanavanich, “Web-based 3D Data Visualization with CityGML City Models,” 

[Online]. Available: https://towardsdatascience.com/web-based-3d-data-visualization-

with-ciytgml-city-models-f0796b37e9f5. [Accessed 8 May 2023]. 

[12]  Esri, “ArcGIS Online,” [Online]. Available: https://www.esri.com/en-

us/arcgis/products/arcgis-online/overview. [Accessed 8 May 2023]. 

[13]  3DCityDB, “Importer/Exporter,” [Online]. Available: 

https://www.3dcitydb.org/3dcitydb/d3dimpexp/. [Accessed 27 February 2023]. 

[14]  S. Software, “Convert CityGML to KML,” [Online]. Available: 

https://engage.safe.com/convert/citygml/kml/. [Accessed 7 May 2023]. 

[15]  pgAdmin, “pgAdmin PostgreSQL Tools,” [Online]. Available: 

https://www.pgadmin.org/. [Accessed 27 February 2023]. 

[16]  3DCityDB, “3DCityDB software documentation,” [Online]. Available: 

https://www.3dcitydb.org/3dcitydb/documentation/. [Accessed 2023 February 26]. 

[17]  3DCityDB, “3dweblient,” [Online]. Available: 

https://www.3dcitydb.org/3dcitydb/3dwebclient/. [Accessed 26 February 2023]. 

[18]  B. Romashchenko, “Solar-potential-output-example,” [Online]. Available: 

https://github.com/boroma4/solar-potential-output-example. [Accessed 22 March 

2023]. 

[19]  T. Erickson, “Python - pyKML,” [Online]. Available: https://pypi.org/project/pykml/. 

[Accessed 20 April 2023]. 

[20]  Node.js, “Node.js,” [Online]. Available: https://nodejs.org/en. [Accessed 5 May 2023]. 

 

 



29 

 

Appendix 

I. Code 

The project is publicly available as a GitHub repository along with a tutorial for setting it up 

for being locally run at: 

https://github.com/alankolk/3dcitydb-web-map-Solar-Visualization. 

The generated data for Tartu city can be found in the following GitHub repository: 

https://github.com/alankolk/Tartu_solar_visualization_data.  

 

  

https://github.com/alankolk/3dcitydb-web-map-Solar-Visualization
https://github.com/alankolk/Tartu_solar_visualization_data


30 

 

Non-exclusive licence to reproduce the thesis and make the thesis public 

 

I, Alan Kolk, 

 

1. grant the University of Tartu a free permit (non-exclusive licence) to 

 

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives 

until the expiry of the term of copyright, my thesis 

 

Visualization of rooftop solar potential in smart cities, 

supervised by Pelle Jakovits, PhD. 

 

2.    I grant the University of Tartu a permit to make the thesis specified in point 1 available to 

the public via the web environment of the University of Tartu, including via the DSpace 

digital archives, under the Creative Commons licence CC BY NC ND 4.0, which allows, 

by giving appropriate credit to the author, to reproduce, distribute the work and 

communicate it to the public, and prohibits the creation of derivative works and any 

commercial use of the work until the expiry of the term of copyright. 

 

3.  I am aware of the fact that the author retains the rights specified in points 1 and 2. 

 

4.  I confirm that granting the non-exclusive licence does not infringe other persons’ 

intellectual property rights or rights arising from the personal data protection legislation.  

 

 

Alan Kolk 

09/05/2023 


