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Deblurring of microscopic 3D spheroid images using GANs

Abstract:
Spheroids are 3D aggregates of cells that have become increasingly important in the study of
cancer and drug discovery due to their ability to mimic in real tumour microenvironments.
However, spheroid imaging presents several challenges due to its complex structure, irregular
shape, and optical properties. In this thesis, we experiment with deep learning approaches to
address these challenges and improve the quality of spheroid images. Specifically, we use a
modified U-Net architecture and generative adversarial networks (GANs) to generate
high-resolution spheroid images. We evaluate our approach on a dataset of spheroids and
compare the performance of unsupervised and supervised neural network architectures for the
deblurring of spheroid images. Our work provides useful information for further research in
spheroid image analysis and has potential applications in cancer diagnosis and drug
discovery.
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Mikroskoopiliste 3D-sferoidipiltide hägustamine GAN-ide abil
Lühikokkuvõte:
Sferoidid on 3D rakkude agregaadid, mis on muutunud vähi ja ravimite avastamise uurimisel
üha olulisemaks tänu nende võimele imiteerida reaalseid kasvaja mikrokeskkondi. Kuid
sferoidne kujutamine esitab mitmeid väljakutseid nende keerulise struktuuri, ebakorrapärase
kuju ja optiliste omaduste tõttu. Käesolevas töös katsetame süvaõppe lähenemisviise, et
lahendada neid probleeme ja parandada sferoidipiltide kvaliteeti. Täpsemalt, me kasutame
modifitseeritud U-Neti arhitektuuri ja generatiivseid võistlusvõrke (GAN-id), et genereerida
kõrge resolutsiooniga sferoidipilte . Hindame oma lähenemist spheroidide andmestikele ja
võrdleme juhendatud ja järelevalveta närvivõrgu arhitektuuride toimimist sferodipiltide
hävitamiseks. Meie töö annab kasulikku teavet sferoidipiltide analüüsi edasiseks uurimiseks
ning sellel on potentsiaalseid rakendusi vähi diagnoosimisel ja ravimite avastamisel.

Võtmesõnad:
sügavõpe, konvolutsioonilised närvivõrgud, sferoidid, generatiivsed vastandvõrgud,
kujutisest pildiks tõlkimine, hägustamine

CERCS: T111 - Pilditehnika; P176 - Tehisintellekt; B110 - Bioinformaatika,
meditsiiniinformaatika, biomatemaatika, biomeetrika
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1 Introduction
In recent years, three-dimensional (3D) cell culture models, such as spheroids, have gained
increasing interest in the field of biomedical research due to their ability to mimic the real
microenvironment and exhibit physiological and functional properties that cannot be captured
with traditional two-dimensional (2D) cell cultures. Spheroids are self-assembled, spherical
aggregates of cells with great potential for various applications, including drug screening,
tissue engineering, and disease modelling [1].

However, analysing spheroids can be challenging due to their complex structure and optical
properties, which presents difficulties for imaging systems. Traditional methods for analyzing
spheroids, such as spheroid cleaning protocols and optical cleaning [2] , have limitations in
terms of their efficacy and cost. While classical computer vision algorithms, including
deconvolution and thresholding-based methods, can also be used, they often require manual
application to each individual data sample, which can be time-consuming and inefficient
when working with large datasets.

Therefore, there is a need for automated and reliable methods for image deblurring, which is
essential to facilitate the use of spheroids in biomedical research. In recent years, deep
learning-based approaches, particularly convolutional neural networks (CNNs), have shown
great promise in various biomedical image analysis tasks, including image translation and
deblurring. These approaches can extract meaningful features from images, enabling accurate
and efficient spheroid deblurring.

This thesis explores the potential of deep learning-based approaches for spheroid deblurring.
We aim to analyse how neural networks can effectively solve the spheroid deblurring task,
thereby accelerating the development of new therapies and improving disease modelling [1].
We evaluate our methods on provided datasets of microscopy images of spheroids and
compare the performance of supervised and unsupervised models for deblurring. We
investigated whether a model trained on unsupervised data could outperform a model trained
on supervised data. Additionally, we investigate the effects of different network architectures
and image augmentations on the performance of the proposed models. By doing so, we aim
to contribute to developing automated and reliable methods for spheroid deblurring using
deep learning-based approaches, thereby facilitating their use in various biomedical
applications.
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We have formed the thesis structure in the following way:

— Background chapter gives a concise biological context around spheroids and provides
a short overview of neural network architectures and their application in image
translation tasks;

— Data and Methods chapter describes microscopy image data used for spheroid
deblurring, image preprocessing steps that were used for the experiments and the
neural network parameters and modifications that were utilised during experiments;

— Experiments and Results chapter, gives an overview on the performed experiments
with supervised and unsupervised data and models;

— In Discussion, we describe the limitations of the approaches that we tried and sets
directions for potential future work;

— Conclusion summarises the results obtained during the experiments and the thesis
itself;
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2 Background
In this section, we first present a comprehensive introduction to spheroids, including their
culturing process, distinction from 2D cell cultures, and the challenges associated with their
analysis. Subsequently, we describe the neural network architectures that are commonly
implemented in computer vision tasks and illustrate their relevance in resolving the image
deblurring problem through the image translation task.

2.1 Spheroids
 Spheroids are three-dimensional cell cultures closely mimicking the real microenvironment,
making them important for studying cells’ behaviour in isolated surroundings [3]. They are
widely used in biomedical applications, such as drug discovery, tissue engineering, and
cancer research [4]. Spheroids are formed by aggregating cells that have been cultured in
laboratory surrounding under conditions that promote self-assembly. They can be made from
different types of cells, including cancer cells, stem cells, and primary cells. They can be
cultured using various techniques, including hanging drop, agarose overlay, and non-adherent
surface-based methods [3]. These techniques promote cell aggregation and provide a 3D
environment that allows cells to interact with each other and the extracellular matrix, forming
spheroids. In this thesis, we are working with spheroid cysts. Spheroid cysts differ from
spheroid tumours in their cellular composition and structure. Spheroid tumours are
characterised by the growth of cells within the spheroid, while spheroid cysts contain a
hollow lumen filled with fluid or other materials.

Compared to traditional two-dimensional cell cultures, spheroids offer advantages such as
better resemblance to a real cell morphology, higher interactions between cells, and improved
cellular functions [4]. They are essential for drug screening and development because they
provide a more realistic environment for testing drug efficiency and irradiation response than
2D cell cultures [4]. However, analysing spheroids can be challenging due to their complex
structure, heterogeneity, and variability. Traditional approaches for analysing spheroids
involve manual analysis, which is time-consuming, subjective, and prone to errors.

Various approaches have been developed to overcome these challenges, including neural
network-based methods, chemical and biological assays, and microfluidic devices. Neural
networks have been shown to be effective in accurately segmenting spheroids, extracting
features, and predicting drug response. Chemical and biological assays can provide
information on the viability and function of cells within the spheroid. Microfluidic devices
offer precise control over the microenvironment, enabling the manipulation and analysis of
spheroids under controlled conditions.

2.2 Biomedical image translation using neural networks
Neural networks have been widely used in computer vision to extract meaningful information
from images and perform classification, detection, segmentation, and image synthesis tasks.
In biomedical image analysis, computer vision techniques have become increasingly
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important to automate image interpretation, enable large-scale analysis, and assist medical
diagnosis. Deep learning models such as convolutional neural networks (CNNs) or neural
network frameworks such as generative adversarial networks (GANs), and their variants have
been successfully applied to various biomedical imaging tasks, including tumour detection
and segmentation, medical image super-resolution, and image-to-image translation. These
models have shown promising results and the potential to improve the accuracy and
efficiency of medical imaging analysis, ultimately leading to better patient care. The neural
networks were also successfully applied to the biomedical image translation task. Biomedical
image translation involves transforming one type of medical image to another, such as
converting MRI images to CT images or converting low-resolution images to high-resolution
images. This translation task is important for disease diagnosis, treatment planning, and
monitoring. In recent years, various neural network architectures and frameworks, such as
GANs and U-Nets, have been used for biomedical image translation tasks with promising
results. Generative adversarial networks are the neural network frameworks that comprised of
two or even more networks that compete each other. The discriminator is the first network
which attempts to distinguish between real and generated images. The second network,
known as the generator, aims to produce images that are indistinguishable from genuine
images. These frameworks can learn complex and non-linear relationships between images
and generate high-quality images that aid medical decision-making. This motivated us to
investigate neural network architectures and their potential applications to address the
problem of spheroid deblurring.

2.2.1 ResNet

The ResNet is a deep neural network architecture that can effectively train deep neural
networks [5]. During training, the accuracy of the network may saturate and then degrade as
the network depth increases due to the vanishing gradient problem, where the gradient signal
becomes too small to update the weights in the earlier layers during backpropagation. To
address this issue, the authors of ResNet architecture proposed a residual learning approach
that can be expressed as:

,

where is the input, is a residual function, and is an identity mapping function.
In ResNet, the model is divided into several residual blocks. The architecture of a ResNet
block is shown in Figure 1. In this block, the residual function is described by its stacked
layers. An identity mapping function uses a shortcut connection (residual connection) and
element-wise addition to bypassing one or more layers in the network, allowing gradients to
be backpropagated more effectively without adding new parameters and complex
computations. The authors conducted ablation studies to evaluate the performance of neural
networks with and without residual connections in multiple domains, such as image
classification, object detection, and object localisation tasks. The results demonstrated that
adding residual connections improves the network's performance in all evaluated domains.
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Figure 1. The architecture of the residual block [5]. The input of the layers is represented by
, and the residual function that stacks the network layers is represented by .

2.2.2 U-Net

The U-Net [6] is a convolutional neural network architecture designed explicitly for
biomedical image segmentation tasks with limited training data available. The architecture
comprises a contracting path that captures context and a symmetric expanding path that
enables precise localisation, as depicted in Figure 2. The contracting path involves multiple
unpadded convolutional layers followed by a rectified linear unit (ReLU) and max-pooling
layers, resulting in a downsampling approach. The downsampling operation reduces the
spatial resolution and doubles the number of feature maps. The feature maps from the
contracting path are cropped, copied, and combined with the upsampled expanding path
output to improve the localisation after each downsampling step using skip connections.
Cropping is necessary to fit the contracting feature map into the expanding feature map. The
skip connections between the contracting and expanding paths maintain spatial information
and enable precise segmentation. The expanding path involves a convolutional layer that
reduces the input feature map, which is then concatenated with the cropped contracting
feature map and passed through multiple convolution layers, each followed by a ReLU. The
U-Net architecture was evaluated on three biomedical image segmentation tasks:
segmentation of neuronal structures in electron microscopic recordings and cell segmentation
in light microscopic images. In all tasks, the U-Net outperformed other methods regarding
accuracy and error rates. It is worth mentioning that U-Net also required fewer training
samples than other methods due to its efficient use of the available training data.
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Figure 2. The U-Net architecture [6]. Blue boxes represent multi-channel feature maps, while
copied feature maps are depicted by white boxes. Arrows indicate the different operations
performed in the architecture. The top of the box indicates the number of channels, while the
lower left edge indicates the x-y size.

2.2.3 pix2pix

Pix2pix is a conditional generative adversarial network capable of generating high-quality
and realistic image outputs from input images [7]. As a conditional GAN, it learns a mapping
between the input image with the random noise and the output image, requiring
corresponding pairs for training. Pix2pix consists of a generator and a discriminator network,
common elements of any GAN. Figure 3 presents the pix2pix architecture. The discriminator
network aims to differentiate the real output image from the generated one by considering the
input image. On the other hand, the generator network aims to deceive the discriminator and
produce an indistinguishable image from the target image. The proposed pix2pix generator
network is based on the U-Net architecture, an encoder-decoder network with skip
connections that enable it to capture the input image’s low-level and high-level features of the
input image. The PatchGAN architecture was proposed as the discriminator network, a model
that consists of convolutional layers. This architecture is called PatchGAN because it
classifies between the real and generated images using image patches, which can be smaller
or have the same size as the original image. The discriminator is applied convolutionally
across the whole image, averaging all the responses to provide the output. The model was
trained using a combination of adversarial loss and generator loss, which enforces the
similarity between the generated and real images. The generator loss is the L1 loss, which
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calculates the mean absolute difference between all generated and real output images. The
adversarial loss function can be expressed as:

,

where is the input image, is the random noise, is the output image, is the generator,
is the discriminator, denotes mean likelihood over all real and output images,

denotes mean likelihood over all real and generated images [7]. Here tries to minimise the
objective function while an adversarial tries to maximise it.

Figure 3. Pix2pix training [7]. The architecture of the model consists of a generator and
discriminator . The discriminator classifies the target and generated images that are paired
with the input image. Meanwhile, the generator attempts to produce an image closely
resembling the target image to deceive the discriminator's classification.

Pix2pix was initially proposed as a deep learning-based method for metal artifact reduction
(MAR) in computed tomography (CT) images of the ear [8]. MAR is a challenging task
encountered in CT imaging due to the presence of metal objects, such as cochlear implants,
that cause severe image distortions and artifacts. The dataset used in the study consisted of
pre-implantation CT (Pre-CT) and post-implantation CT (Post-CT) images. As a
pre-processing step, the Post-CT images were replicated into three channels, and the intensity
values in each channel were modified using different percentiles. The authors trained the
model using both ResNet-based and U-Net-based generators, with and without
pre-processing and used a 70×70 PatchGAN as the discriminator network. The authors
trained the model on a dataset of 90 ears and tested it on a dataset of 74 ears. The results
demonstrate that the proposed methods outperform the previous MAR method in terms of
both visual quality and quantitative metrics. The ablation experiments revealed that both
U-Net-based and ResNet-based generators perform better with pre-processing, with the
ResNet-based generator with preprocessing outperforming the U-Net-based generator with
preprocessing. These results suggest that pix2pix has the potential to improve the diagnostic
accuracy of CT imaging and assist in the clinical decision-making process for patients with
cochlear implants.
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2.2.4 CycleGAN

Similar to pix2pix, CycleGAN [9] is a framework that enables image-to-image translations.
One of the benefits of CycleGAN over pix2pix is its capability to perform unsupervised
image translations without requiring image pairs for training. Compared to pix2pix, the
CycleGAN model comprises two generators that learn how to translate images between both
domains and two discriminators that learn how to differentiate generated images for each
generator. The CycleGAN architecture is shown in Figure 4 (a). Unsupervised image
translation is achieved by modifying the loss function and introducing the cycle consistency
loss. The general loss function is computed as the sum of adversarial losses for both domains
and the cycle consistency loss. The adversarial loss is computed using the same method as in
pix2pix. The cycle consistency loss is a sum of L1 losses that computes the difference
between the original and reconstructed images for both domains, as shown in Figure 4 (b) and
(c). The reconstructed image is the image that has been translated into the target domain and
subsequently translated back into the original domain. The cycle consistency loss aims to
ensure that the learned mappings for both domains do not conflict with one another. The
authors employed a ResNet-based generator and a 70x70 PatchGAN discriminator for the
CycleGAN model based on the performance of the 70x70 PatchGAN in pix2pix.

Figure 4. Description of how the CycleGAN works [9]. (a) describes the CycleGAN
architecture that consists of two generators and two discriminators. (b) shows the forward
cycle-consistency loss from domain to and back. (c) depicts the backward
cycle-consistency loss from domain to and back.

CycleGAN has also been utilised in the biomedical domain for synthesising CT images from
magnetic resonance (MR) images [10]. This approach addresses the issue of the limited
availability of paired MR-CT datasets, which can impede the development and
implementation of deep learning techniques for medical imaging. The dataset for the
experiments consisted of brain MR and CT images of 24 patients. The dataset was partitioned
into a training set containing images from 18 patients and a test set, which included MR-CT
pairs from 6 patients. The model employed a ResNet-based generator and a 70x70 PatchGAN
discriminator, similar to the approach in the CycleGAN paper [9]. The authors compared the
performance of their method to a ResNet generator trained on paired images. The authors
compared the synthesised CT and MR images and their respective ground truth images. The
results indicate that CycleGAN trained on unpaired data outperforms the ResNet model
trained on image pairs regarding image quality, accuracy, and robustness.
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3 Data and Methods
This section describes the data that was used and the format of how the images were
obtained. We give an overview of the preprocessing steps we performed to form the datasets
for the deblurring task. Then we describe the image augmentation approaches that we used in
our experiments. After that, we discuss the neural network architectures utilised in this work.
Finally, we provide information about the AI-enabled services that assist thesis writing.

3.1 Dataset
Spheroids data were provided by PerkinElmer to the Biomedical Computer Vision Group of
the University of Tartu. The spheroids were prepared using DRAQ5 fluorescent dye and
imaged at 40x magnification on a 384-well microplate using the Opera Phenix High-Content
Screening System. Two distinct datasets were utilised for this study. The first dataset,
hereafter referred to as the "unsupervised" dataset, consisted of raw spheroid images and
corresponding annotation files. The normalised crops of the front and rear parts of the
spheroid from the normalized dataset are shown in Figure 5. The second dataset, hereafter
referred to as the "supervised" dataset, comprised image pairs of raw spheroid images and
their corrected versions with corresponding annotation files. The corrected images depict
spheroids without background blur and highlight cells in certain areas. These corrected
images were generated using a semi-automated proprietary algorithm developed and
protected by PerkinElmer, which was used as the ground truth for this study. We would like
to point out that we had no access to this data before most of our experiments.

Figure 5. Two spheroid planes from the unsupervised dataset. The left image represents the
clear half of the spheroid while the right image is from the blurred half of the spheroid. Both
images are located in 30 planes each from the plane with the biggest spheroid diameter.

Both the unsupervised and supervised datasets are three-dimensional stacks of images. We
use the term “three-dimensional stack” interchangeably with the term “stack”, while the

13



words “image” and “plane” are used as synonyms to denote individual images within the
stack throughout the thesis. All images are saved in TIFF format with a grayscale 16-bit
depth and a size of 1080x1080 pixels. The unsupervised dataset comprises 920 images,
forming four stacks of 230 planes each. The supervised dataset consists of 600 images
forming a stack of 300 image pairs. The distance between the two images in all stacks is 0.5
μm. The unsupervised dataset contains 31 spheroids, while the supervised dataset contains
seven spheroids of varying depths and morphologies. Additionally, the number of spheroids
in the unsupervised stacks is uneven, with the first stack containing fifteen spheroids, the
second containing thirteen spheroids, and the third and fourth containing one and two
spheroids, respectively. As the screening system only images a portion of the well, some
spheroids are not fully captured, resulting in variations in the size of the measured spheroids.

Figure 6. The examples of data in the supervised dataset. The upper left image represent
plane that is located on the clear part. Raw plane from the rear half that shows how the
spheroid looks without correction and located upper right. Corrected plane that shows how
the corrected image looks after normalisation is located at bottom left figure. Our approach
on the reduce the visibility of the pattern is located on the bottom right figure.

The obtained corrected images had one feature we observed after normalisation. Due to the
correction algorithm outputs, each corrected image had a checkerboard pattern in the
background which can be observed in Figure 6 as well as raw images and our attempts to
reduce it visibility. This pattern appeared because the correction of spheroids changes the
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intensity and signals to get rid of the blur and increase the brightness of the cells. In order to
reduce its visibility on the images, we decided to trashhold values that are responsible for the
background. This approach does not remove the pattern, but allows to ignore it during
analysis. We used this thresholding for the corrected images to make them more contrast in
further experiments.

3.2 Preprocessing
We used three steps to create a dataset from the original images. These pre-processing steps
were applied to both supervised and unsupervised datasets. The first step is image
transformation (normalisation), as the original images are in low contrast. The second step is
image segmentation. This step is necessary to collect information about spheroids’ sizes,
lengths and shapes. Based on the second step, the third step is to crop the images and form
the dataset. This is needed to make a dataset bigger and reduce the white space in the image.
We experimented with multiple transformation (normalisation) techniques, segmentation
methods and crop sizes to make the optimal images for neural network training.

3.2.1 Image transformation (normalisation)

The raw images captured by the imaging system used in this study exhibited low contrast,
making it challenging to discern the cells and the surrounding blur. To overcome this
limitation, we implemented multiple image transformation techniques to normalise the image
values and increase the contrast.

One of the techniques we applied was log transformation, which involved applying the
natural logarithm function to each pixel value in the image. By expanding low-intensity pixel
values and compressing high-intensity values, this transformation led to an image with
improved contrast and dynamic range. While log-transformed images facilitated a more
precise structure of the spheroids, they also increased the contrast of the background blur.

We also attempted quantile transformation, which involved reassigning pixel values below
and above the distribution quantile to the closest pixel values. This technique limited the
pixel value range and allowed the highlighting both high and low pixel values. However, it
resulted in glaring cells of the spheroids, which made it challenging to discern the structure of
single cells.

Finally, we explored gamma correction, which involved altering the image’s brightness and
contrast by changing the relationship between the input and output pixel values. This
technique relied on the gamma function, which relates the input pixel value to the output
brightness degree. The gamma function can be defined by the expression:

,
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where represents the input image and is the gamma value, which is applied as an
exponent to the input image to obtain the output image . A gamma value of less than one
would increase the image’s contrast and make it brighter, while a gamma value greater than
one would decrease the contrast and make it darker. We used a gamma value of 0.2 to
normalise the images for our experiments.

Following experimentation with various normalization techniques, we found that gamma
correction was the most effective approach for normalizing the images. Our selection of an
image normalization technique was based entirely on qualitative analysis of the normalised
images. Subsequently, upon acquiring the supervised dataset, we confirmed our suggestion
that gamma correction produced a superior performance by utilizing the Structural Similarity
Index Measure (SSIM) on image normalisation techniques. The gamma corrected images
contained sufficient information about the background blur and represented the bright enough
spheroids. The comparison of all image transformation methods applied to one specific image
is depicted in Figure 7.

Figure 7. Comparison of the image transformation results. Original — the raw image we
obtained from PerkinElmer. Log transformation — the result of logarithmic transformation
employed to the raw image. Quantile transformation — the result of Quantile transformation
utilised to the raw image. Gamma correction — the result of Gamma correction applied to the
raw image.

3.2.2 Segmentation

It was necessary to segment spheroids to obtain crucial information about their size and
precise location. Spheroids could be segmented by detecting connected components to
thresholded pixel values across the entire image stack. To achieve the segmentation, we tried
several thresholding techniques.

The first approach we tried was Otsu's thresholding, which automatically determines the
threshold value based on the pixel intensities. Instead of being manually selected, Otsu's
threshold value is based on minimising the variance between the background and foreground
classes while maximising the between-class variance. This approach produced segmentations
that captured all spheroids on the image. However, the generated masks were inaccurate as
they included background blur. This led to the blur filling the spaces between the spheroids
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and not allowing them to segment as separate entities. An example of how the blur capture
affects segmentation is shown in Figure 8, titled “Otsu”.

Subsequently, we attempted to segment spheroids using a watershed algorithm. This
technique involves applying gradient transformation to the image to identify local minima,
the regions of interest. These regions are marked as the source of “water” that "floods" the
surrounding parts of the image until it reaches the "flood" from another water source. The
resulting watershed line forms the boundary between water sources and is used to create
segmentation masks. Although watershed segmentation is more advanced than previous
algorithms, it is susceptible to image noise. Figure 8, titled “Watershed”, depicts the result of
the watershed algorithm. In our case, the watershed algorithm could not capture the cells in
spheroids as a single entity. Connected component labelling revealed that the spheroids were
incorrectly labelled. Hence, we decided to adopt another approach for segmentation.

Finally, we utilised the segmentation masks provided by PerkinElmer, which were generated
using a semi-automated proprietary algorithm for segmentation. This algorithm, developed
and protected by the company, provided ready-made segmentation masks that eliminated
background blur from the spheroid masks and segmented the spheroids, considering their
morphology. The visual representation of segmentation provided by PerkinElmer is shown in
Figure 8, titled “Proprietary”.

We opted for a proprietary algorithm to segment the connected components of the spheroids
in the stack, as it produced the most precise masks. This allowed us to compute all the
necessary spheroid measurements accurately. Figure 8 visually compares the segmentation
results obtained through all the approaches applied to a specific image.

Figure 8. Comparison of all segmentation approaches applied on one normalised image.
Original — gamma-corrected image before segmentation. Otsu — the result of Otsu’s
thresholding on the image. Watershed — the result of the Watershed algorithm applied to the
image. Proprietary — the obtained mask that was segmented using a proprietary algorithm.

3.2.3 Cropping and dataset generation

Our analysis of spheroid sizes revealed that the largest spheroid in the unsupervised dataset
was 391x338 pixels, while the largest spheroid in the supervised dataset was 411x502 pixels.
To standardise the image sizes, we cropped the original images into 391x391 pixel crops for
the unsupervised dataset and 512x512 pixel crops for the supervised dataset. As a part of our
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observations, we calculated each spheroid area on the planes. We also calculated the area of
each spheroid on its respective planes and identified the plane and corresponding spheroid
coordinates where each spheroid had the largest area. The plane with the largest area was
called the "biggest plane" of the specific spheroid. For each spheroid, we selected the XY
coordinates of the biggest plane as the reference point for image cropping. Including all
planes of the spheroid in the dataset during training resulted in noisy images, so we filtered
out planes with less than 20% of the size of the biggest plane. This means crops with a
spheroid area of fewer than 20 pixels will not be included in the dataset if the biggest plane
area is 100 pixels.

For the unsupervised dataset, we divided each spheroid into two parts based on the biggest
plane. When the light beams from the fluorescent dye reach the spheroid cells, the cells
exhibit absorption and reflection, causing only a fraction of the light to transmit.
Consequently, inadequate light reception occurs in the area behind the biggest plane, resulting
in bright and well-defined cells in front of the biggest plane. In contrast, the cells behind it
appear blurred and indistinguishable. This led us to use the planes before the biggest plane as
a “clear” dataset, while the planes behind it were used as a “blurred” dataset.
In contrast, for the supervised dataset, we formed pairs with raw and corrected planes for
each spheroid without dividing it into halves, like in the case of the unsupervised dataset.

3.3 Image augmentations
After the first experiments with the unsupervised dataset, we found that the model was
sensitive to the spheroid surrounding. This resulted in artifacts such as noise around the
spheroid perimeter, hallucinating cells on the image, and adding more blur on the crops.
While noise can be avoided simply by removing the first and last planes of the spheroid in the
dataset, we assumed that the solution for removing hallucinating cells after generation is to
remove all the cells that do not belong to the spheroid itself from the image. As our initial
experiments were conducted with a limited number of spheroids, we tried to solve the
problem by augmenting the existing crops. To perform these augmentations, we based them
on the spheroid masks obtained from the segmentation. The comparison of all implemented
augmentations is shown in Figure 9.

The first image augmentation approach that we tried was to “filter out” neighbouring
spheroids from crops. We call it “filter out” because we also change the background values
around spheroids in this approach. The idea of this approach consists of two parts. The first
part is to change the background around the spheroids by decreasing the pixel intensity higher
than the mean background intensity. In the second part, we remove all the adjacent spheroids
and replace them with pixel values with slight deviations from the mean.

The second augmentation we used was to “blur” surrounding cells. In this approach, we apply
heavy Gaussian blur with a sigma value of 431 on the nearby spheroids. This approach does
not remove neighbouring spheroids but makes them blurry enough that the model cannot
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relate them to the environment of the target spheroid.

The third approach we applied to the spheroids was to “dilate” the target spheroid mask and
remove all the background that does not belong to the target mask. In this approach, we use
morphological operator dilation to expand the spheroid mask and to capture the surrounding
blur. The cells and other backgrounds outside this mask were removed from the image. That
augmentation helps to save the surrounding blur we are interested in and remove all the
distractions from planes.

Figure 9. Results of the image augmentations that were applied on crops. Original —
gamma-corrected image before applying augmentations. “Filter out” — the approach where
the neighbouring spheroids are removed, and background values are changed. “Blur” — the
augmentation that applies heavy Gaussian blur on surrounding spheroids. “Dilate” — an
approach that extends the spheroid segmentation mask using a morphological dilation
operator and removes all the background outside the mask area.

3.4 Neural Networks
This section describes the specifications of the neural networks used to solve the deblurring
task in spheroids that we focus on in this thesis. As the main neural network architectures
related to our task were described in the Background part, in this section, we discuss the
changes we made to the baseline approaches to be able to deblur images of spheroids. The
unsupervised dataset was utilized for training both CycleGAN and CycleGAN with
conditional planes. CycleGAN with and without conditional planes were also qualitatively
evaluated using the unsupervised dataset, while the supervised dataset was later used only for
their quantitative evaluation. The 3D-U-Net requires image pairs, so we trained it only using
the supervised dataset. As our experiments progressed, we discovered the need to go beyond
2D image translation using CycleGAN and added conditional planes into the model,
transforming it into 2.5D image translation. Already having successful examples of U-Net
modifications for 3D images, we decided to use a 3D-U-Net on a supervised dataset to
capture a full spheroid context during training.

3.4.1 CycleGAN

For our problem, we employed the original implementation of CycleGAN [9] as our baseline.
Compared with the neural networks presented below, the architecture of this model remained
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unaltered. After conducting initial experiments, we observed that the model's performance
was more sensitive to the input data than parameter adjustments. Therefore, we kept the
parameters fixed for subsequent experiments. This section outlines the network parameters
used for training the CycleGAN model. The Mean Squared Error (MSE) function was used as
the objective function, with Adam as the optimizer. All models were trained for 200 epochs.
The number of filters in the last convolution layer was set to 64 for both the generator and the
discriminator. We used a PatchGAN discriminator with a patch size of 70x70 pixels. For the
CycleGAN generator, we adopted a ResNet-based generator [9] architecture consisting of 9
ResNet blocks and downsampling/upsampling operations inside. In this implementation, the
ResNet block comprises two padding and two convolutional layers, with the input added to
the final convolution layer's output via the residual connection.

3.4.2 CycleGAN with conditional planes

Figure 10. CycleGAN with conditional planes framework. Parallelograms represent images.
Parallelograms with hatches on the perimeter represent conditional planes. Parallelograms
with diagonal lines inside stand for generated images, while the figures with crossed lines
represent reconstructed images. Generator G(x) translates images from the “Blurred” domain
into “Clear”, while generator F(x) translates images from the “Clear” domain into “Blurred”.
Both discriminators try to distinguish between real and generated images using conditional
planes. Cycle-consistency loss is calculated using only the reconstructed plane and original
target plane.
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Based on our previous observations and results obtained from CycleGAN, it became evident
that 2D images cannot capture information regarding how the blur changes as we move from
one plane to another. Thus, we hypothesised that context from previous planes might contain
information regarding the blur propagation and decided to transition from 2D to 2.5D
context. In practical scenarios, the model must deblur the target image using only previous
images as contextual planes. Therefore, we utilised images located before the target plane as
contextual planes. The proposed idea involves feeding the target plane and a couple of
contextual planes to the generator, which would generate only the target image. Similarly, the
discriminator also takes contextual and target images, distinguishing the generated image
from the real one. However, contextual planes are used solely as additional information, and
their output remains unchanged. We employed the same parameters as those used in
CycleGAN for our experiments. However, we modified the neural network architecture by
changing the generator and discriminator network inputs to feed the target image with the
conditional planes and output only the translated target image. During feeding the conditional
planes into generators and discriminators, they remain unchanged. The cycle consistency loss
was calculated without the conditional planes as they do not alter the results. The architecture
is shown in Figure 10. We also modified the image sampling process to avoid selecting
images from different spheroids.

3.4.3 3D-U-Net

Having the pairs of raw and corrected images, we were not obliged anymore to cut spheroids
into halves to create a dataset. It allowed us to use the whole spheroid to capture more context
during the model training.

Initially, a 3D-U-Net was implemented for a volumetric segmentation [11]. The main
difference between a standard U-Net and a 3D-U-Net is using 3D convolutional layers
instead of 2D. The implementation that we have used enabled us to adopt the original
3D-U-Net for our task. In the image translation task, the network would be trained to learn a
mapping between images from raw images to the corrected ones using a loss function that
minimises the difference between the predicted and ground truth images. To transform the
model from a segmentation task into an image translation task, we changed the loss and
objective function to MSE. To produce grayscale images instead of segmentation masks, we
removed the final activation function and left only one output channel. The model was
trained on 500 epochs. Before the training, the model preprocessed and augmented the
images to improve its robustness. As the preprocessing step, the model applies the
augmentations such as random flipping of the volumetric image and its random rotation at 90
degrees along the specified axes.

3.5 Evaluation Metrics for neural networks
Evaluating the performance of our models is a crucial step in the improvement of image
quality. Two widely used metrics for evaluating the quality of image generation and
reconstruction are the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index
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Measure (SSIM). Having a paired supervised dataset, these metrics can be used for
evaluating both the models trained on unsupervised and supervised data.

3.5.1 Peak Signal-to-Noise Ratio (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is a metric used to evaluate the quality of images or
videos after they have been compressed or distorted. PSNR measures the difference between
the original, uncompressed or undistorted image and the compressed or distorted version in
terms of mean square error (MSE). It is expressed in decibels (dB).

PSNR is widely used in image and video compression as it provides a simple and objective
way to compare the quality of different compression algorithms. It is also used in image
restoration to evaluate the effectiveness of denoising, deblurring, or other restoration
techniques.However, PSNR has some limitations. It only considers the mean squared error
between the original and distorted images and does not consider the human perception of
image quality. Therefore, images with high PSNR may not necessarily be perceived as high
quality by human observers. Additionally, PSNR is sensitive to small changes in pixel values,
which may not be significant to the overall image quality.

3.5.2 Structural Similarity Index Measure (SSIM)

SSIM is a widely used method for measuring the similarity between two images. SSIM
measures [12] the quality degradation of a distorted image by comparing it to a reference or
original image. It is calculated by considering three components of image information:
luminance, contrast, and structure. The luminance component represents the image’s overall
brightness, the contrast component measures the differences in brightness, and the structural
component considers the patterns of pixels in the image.

To calculate SSIM, two windows, one for the reference and the other for the distorted image,
are selected. The windows are moved over the entire image, and for each window, the mean,
variance, and covariance of the luminance, contrast, and structure components are computed.
The SSIM index is then obtained by taking the product of the three components, where the
weights are chosen based on the expected visual importance of each component [12]. The
SSIM index ranges from -1 to 1, with 1 indicating perfect similarity between two images and
-1 indicating maximum dissimilarity. A higher SSIM value indicates that the distorted image
is closer to the original image in terms of structural information. Hence, the quality of the
image is considered to be better.

SSIM has been shown to correlate well with human perception of image quality, and is
widely used in evaluating the performance of image processing algorithms, including neural
networks. It has advantages over other metrics like PSNR because it considers the structural
information of the image rather than just the pixel-wise differences.
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3.6 Thesis Writing
To write this thesis, we also used such services as Grammarly and ChatGPT. Grammarly is an
AI-enabled cloud-based typing assistant. It can check the text for grammar, spelling and
punctuation, clarity, engagement and delivery mistakes, proposes a replacement for found
errors and detects plagiarism [13]. We used Grammarly to correct grammar mistakes,
rearranging words in a sentence for better clarity and correctly placing punctuation marks.
ChatGPT is a chatbot based on the Generative Pre-trained Transformer 3.5 (GPT-3.5) large
language model [14]. It can solve tasks such as question answering, text generation, text
summarisation, and text translation. We utilised the ChatGPT to paraphrase the sentences
more academically, summarise the articles later checked and used as a basis for the thesis,
and answer questions related to the thesis topic.
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4 Experiments and Results
In this section, we present the experiments conducted to test our hypotheses, which are
grouped based on the neural network architectures employed. The models’ performances
were evaluated based on the one spheroid from the supervised dataset serving as the test set.
This test set comprises 114 pairs of raw and corrected images. The remaining spheroids were
used for training the 3D-U-Net and not used elsewhere. The evaluation metrics used were
peak signal-to-noise ratio and structural similarity index measure. We used SSIM and PSNR
between the corrected and raw images of the test spheroid as the baseline for all models. It is
important to note that the experiments conducted on unsupervised data were qualitatively
evaluated through visual comparison since numerical measurements were not feasible until
the supervised dataset was obtained. Finally, we compared the results of each model and
determined which model better solved our task based on the experiments conducted.

4.1 CycleGAN experiments
This section outlines the experiments conducted with CycleGAN and their results. Our
primary goal was to investigate how the input data affected the model's performance. Due to
limited training data, we employed all the image augmentations presented in Сhapter 3.2.2 to
determine whether they would enhance the image deblurring process. In subsequent
experiments, we continued to use these augmentations for comparative analysis. As
previously mentioned in the Data and Methods section, all models were trained using the
same parameters. Our experiments mainly focused on comparing the model's performance
with increasing amounts of data and data augmentation.

During our experiments with CycleGAN, we did not have access to the supervised dataset.
Therefore, our assessments were based on qualitative analysis and visual comparisons of
original and generated images. After obtaining the supervised dataset, we evaluated our
experiments quantitatively using a test set spheroid.

4.1.1 Initial experiments

In the initial experiments, we selected 12 spheroids with round shapes to train the CycleGAN
forming a training set consisting of 655 pairs for the "clear" and "blurred" domains. Our aim
was to assess the model's ability to produce satisfactory results using perfect-case data.
However, as the target spheroids were still surrounded by neighboring cells that could
interfere with the model's performance, we introduced image augmentations to minimize
their impact on the target crops. The example of models outputs and comparison with raw
and corrected data is shown in Figure 11.
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Figure 11. Performance of the initial experiments models. Raw and Corrected images
represent the input data and the expected output data. Non-augmented image stands for the
model that was trained on data without any augmentations. Dilated, Blurred and Filtered out
indicate the augmentation approaches that were utilissed.

The results of the evaluation are depicted in Figure 12, where we trained the models using
both raw data and image augmentations. Overall, we observed that at least one method was
approaching the baseline performance. The PSNR graph shows that the models trained on
non-augmented data and the "dilated" approach outperformed the baseline results on
individual planes, whereas the model trained on the other augmentation images barely
surpassed the baseline on only a few images. Nevertheless, none of the models completely
outperformed the baseline in PSNR. A similar trend was observed for SSIM, where only the
models trained on non-augmented and "dilated" approaches managed to outperform the
baseline values on some planes. Although the "dilated" and non-augmented trained model
demonstrated better SSIM performance, they did not exceed the baseline.
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Figure 12. Evaluation metrics for initial experiments. Both graphs show metrics for the
models trained on non-augmented, “Blurred”, “Dilated”, and “Filtered out” approaches. The
left graph shows the Structure Similarity Index measurements, while the right graph shows
the Peak Signal-to-Noise Ratio measurements of the models.

4.1.2 Experiments with central planes

During the initial experiments, it was observed that the blur did not affect the central planes
near the largest plane, and these planes in the blurred part of the spheroid appeared as clean
as those in the clear part of the spheroid. This observation led to the idea of removing the
central planes to prevent model confusion during training. In this regard, we utilized the
datasets from previous experiments and removed the three central planes from each spheroid
half, reducing the dataset from 655 to 619 image pairs. To maintain the balance between the
two domains required for training, we also removed the central planes from the “clean” part
of the dataset. However, for these experiments, we did not evaluate the model trained on
“dilated” data as it produced blank black images. The results of the models testing is shown
in the Figure 13.
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Figure 13. The results of deblurring using the models trained on the dataset without central
planes. Raw and Corrected are the images used for our models evaluation. All other images
are the results of generation made using CycleGAN. The model trained on Dilated data
produced blank images during this experiment.

The results of the models' performance trained on these datasets are presented in Figure 14. It
was observed that the performance of the models slightly decreased, as indicated by the
PSNR and SSIM results, showing that none of the models outperformed the baseline, and the
number of planes where the models exceeded the baseline values decreased. The CycleGAN
trained on non-augmented data generated images structurally closer to the baseline but still
did not reach its values. The models trained on data with other types of image augmentations
also did not improve their results, even if they had exceeded the baseline values in previous
experiments. However, the difference in results compared to previous experiments has
decreased.
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Figure 14. The results of models trained without central planes. SSIM (left) and PSNR
(right) show the performance of the models trained on non-augmented, “Blurred”, “Dilated”,
and “Filtered out” pre-processing approaches.

4.1.3 Experiments with a bigger amount of spheroids

The poor results from previous experiments we observed gave us an understanding that the
model lacked data. We realised that such a limited amount of data does not provide the model
with proper information about the diversity of spheroid shapes and blur behaviour on
different cells and planes. It affected the model’s robustness as well. This realization led us to
increase the number of spheroids used for training from 12 to 28 out of 31 to improve the
model's robustness. One spheroid was excluded as it did not have a blurred half, and we did
not have the proper amount of planes to make a pair, while the remaining two were used for
testing and visual analysis. The increase in the dataset size from 618 to 1295 image pairs
allowed for more effective training of the model.
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Figure 15. Results of image translation using the models trained on the bigger amount of
spheroids. The plane of is located in the rear part of spheroids, so the cells are surrounded by
blur. The image translation held using models trained on Dilated, Blurred, Filtered out and
non-augmented images.

The impact of the increased dataset size on the performance of the models is presented in
Figure 16. While the models did not exceed the SSIM and PSNR threshold, some models
trained on "blurred" and "dilated" augmentations generated some images that surpassed the
baseline. The best performance in terms of SSIM was achieved by the model trained on a
"dilated" augmentation dataset, with a peak value of 0.42 for plane X. The models trained on
non-augmented, "blurred," and "filtered out" images showed only a slight improvement. In
terms of PSNR, the model trained on "dilated" augmented data outperformed other models,
with a peak value of 18.3 compared to peak values of 18.1 for the model with non-augmented
data, 17.1 for the model with "blurred" augmented data, and 17 for the model with "filtered
out" augmented data.
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Figure 16. The results of models trained using a larger amount of spheroids. Both graphs
show metrics for the models trained on non-augmented, “Blurred”, “Dilated”, and “Filtered
out” approaches. The left graph represents SSIM score, while the right one describes PSNR
on the test images.

4.1.4 Experiments with the rebalanced amount of spheroids

In order to ensure the effectiveness of our model deblurring, we realized that our previous
testing approach using only two spheroids was insufficient. Moreover, the spheroids in the
test set had a round shape and were isolated without neighboring spheroids. To address this,
we expanded the training dataset to include 26 spheroids and the test set to include 4
spheroids, with the addition of two spheroids containing neighboring spheroids that were
cropped due to their location on the image border. This enabled us to evaluate the model's
performance not only on single spheroids but also on images with multiple spheroids adjacent
to each other. The comparison of the models performance is shown in Figure 17.
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Figure 17. Comparison of the image deblurring attempts using the models trained on the
image augmentations and non-augmented images. Raw and Corrected images were used for a
better comparison between other results.

However, we observed a slight decrease in performance during these experiments, as shown
in Figure 18. The results were similar to our previous experiments, where most models failed
to outperform the raw and corrected image measurements on most planes. Notably, the model
trained on "dilated" augmentations showed the most significant decrease in performance,
possibly due to the fact that this augmentation had the most significant impact on the data and
thus affected the model's performance. Additionally, we observed that the results of "dilated"
augmented data only increased significantly after we doubled the dataset size. Thus, even a
seemingly small change in the dataset could lead to performance degradation.

31



Figure 18. The results of models trained using a rebalanced amount of spheroids. Both left
(SSIM) and right (PSNR) graphs show metrics for the models trained using data with
non-augmented, “Blurred”, “Dilated”, and “Filtered out” approaches.

4.2 CycleGAN with conditional planes experiments
This section presents the experimental setup using CycleGAN with conditional planes. We
utilized the dataset obtained from the experiments with a rebalanced amount of spheroids
since it provided a sufficient amount of data for training and testing. We chose the
non-augmented dataset because it contains the surrounding area of the spheroid and has more
representative data for real-life scenarios. Although the dataset with augmentations showed
better results, it lacks the surrounding area of the spheroid. We conducted our initial
experiments based on visual comparison and qualitative analysis and later evaluated them on
the spheroid from the supervised dataset, similar to the original CycleGAN experiments. In
the following sections, we detail the parameters we modified during the experiments,
including the number of conditional planes, and improvements to the sampling procedure.

These experiments primarily focused on the impact of the number of conditional planes on
the model's performance. An increase in the number of conditional planes led to a decrease in
the number of generated images. This reduction occurred because all the planes with an index
less than the set number of conditional planes were used as conditional images but not as
target ones. We describe the changes in the sampling procedure in the sections where they
had an impact on the results.

4.2.1 First experiment

The initial experiment aimed to verify the proper functioning of the model. Specifically, we
set the number of conditional planes to three to test the sampling process. The deblurring
performance of the model is show in Figure 19. The measurments of this evaluation are
presented in Figure 20. The CycleGAN with conditional planes failed to meet the baseline in
any of the metrics.
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Figure 19. The first deblurring task for the CycleGAN with conditional planes. The deblurred
image was generated by model, while the generated image is surrounded by raw image on the
left and corrected image on the right.

Figure 20. First evaluation of CycleGAN with conditional planes. The baseline is the
difference between the corrected and raw images. The left graph represents SSIM while the
right represents PSNR.

4.2.2 Experiments with loss weights

Our subsequent experiment aimed to investigate the impact of weight changes in the loss
function on the model's performance. We sought to determine whether increasing or
decreasing the weights would enhance the model's performance, while the generator and
discriminator inputs are altered. For this experiment, we employed a single conditional plane
to assess the effect on the minimum number of additional planes. The performance of these
models is depicted in Figure 21.
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Figure 21. Deblurring performance of the models with different weights for loss function.

In the first approach, we increased the weights from the default value of 10 to 11.5.
Conversely, in the second approach, we decreased the weights from the default value of 10 to
8.5. The measurements are presented in Figure 22. The performance of both models was
consistent with the first experiment, wherein each model had only one conditional plane.
Notably, the difference between the two models with different weights was insignificant.
Although the model with smaller weights outperformed the model with larger weights, the
improvement was minimal. Nonetheless, neither of the models could generate an image that
surpassed the similarity between raw and corrected images.
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Figure 22. Evaluation of the models with different loss weights. Weights smaller — the
model that was trained with smaller weights for cycle loss. Weights bigger — the model that
was trained with bigger weights for cycle loss. The left graph shows SSIMs, while the right
one shows PSNR of the models and the baseline.

4.2.3 Experiments with a number of conditional planes

In this section, we sought to investigate the influence of the number of conditional planes on
the model's performance. To ensure that the sampling procedure did not select parts of other
spheroids, we modified the image names to include information about the spheroid and its
plane. We implemented a sampling procedure based on their naming convention that checked
the plane ID and compared it with the number of conditional planes. We trained the models
with one, three, and five conditional planes. The performance of these models on the
deblurring task is depicted in Figure 23.
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Figure 23. Performance of the models trained on the different number of conditional planes. 1
Plane means that during the sampling model used 1 conditional plane together with target
image. The same applies to 3 Planes and 5 Planes with respectful change in number of
conditional planes.

The evaluation results of the models are presented in Figure 24. Interestingly, the model
trained with three conditional planes produced results similar to those of the first experiment,
where three conditional planes were also used for training. It can be observed that the
increasing number of conditional planes did not improve the image generation quality beyond
a certain point. The results show no significant improvement over the increasing number of
conditional planes. Conversely, the model trained with only one conditional plane
outperformed the other models but still failed to pass the baseline results. This indicates that
increasing the number of planes does not enhance image generation but rather has the
opposite effect. Based on the graph lines, we conclude that the optimal number of conditional
planes is one. In the following experiments, we explore this assumption further.
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Figure 24. Evaluation of the models trained using a different number of conditional planes.
The legend indicates the number of conditional planes used for model training. The left graph
shows the Structure Similarity Index measurements, while the right graph shows the Peak
Signal-to-Noise Ratio measurements of the models and the baseline.

4.2.4 Experiments with CycleGAN generators

In the original CycleGAN [9] , the ResNet blocks were utilised as the generator. However, we
deemed it necessary to explore alternative generator architectures to provide a more
comprehensive analysis. Hence, we chose to implement the U-Net generator in combination
with the PixelGAN discriminator for the CycleGAN with conditional planes. The PixelGAN
discriminator is similar to the PatchGAN discriminator, but instead of comparing image
patches of size 70x70 or any other sizes, it compares two images using a patch size of 1 pixel.
We trained both models with one conditional plane, with the first model using a 70x70 pixel
PatchGAN discriminator, and the second model using the PixelGAN discriminator. The
performance of the models are presented in the Figure 25.
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Figure 25. Result of CycleGAN with conditional planes and U-Net-based generators
performance. U-Net + PatchGAN means that the model utilises U-Net generator and the
PatchGAN with 70x70 pixel patches. U-Net + PatchGAN indicates that the model used
U-Net generator with PixelGAN as discriminator.

The evaluation results of these models are presented in Figure 26. While both models were
close to surpassing the baseline of SSIM, neither the U-Net generator with PatchGAN
discriminator nor the U-Net generator with PixelGAN discriminator could achieve the same
results as the PSNR value between the raw and the corrected images. Our measurements
indicate that the model with the PixelGAN discriminator slightly outperforms the model with
the PatchGAN discriminator, but the difference is not significant.
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Figure 26. The results of the models’ performance were trained using different
discriminators. U-Net generator — a model that used U-Net as a generator and 70x70 pixels
PatchGAN as a discriminator. U-Net generator, pixel discriminator — a model that utilised
U-Net as a generator and PixelGAN as a discriminator. The left graph represents SSIM, while
the right shows PSNR.

4.3 3D-U-Net experiment
Since the supervised dataset consists of pairs, the small number of spheroids is compensated
by the number of planes from each spheroid. One of the seven spheroids in this dataset was
used to run our experiments and test all models. We trained a 3D-U-Net using images from
five spheroids and validated the model using images from the remaining spheroid. The
training set consisted of 843 image pairs, while the validation set contained 119 image pairs.
The visual comparison of the model's performance compared to raw and corrected images is
presented in Figure 27.

Figure 27. The visual comparison of the 3D-U-Net generation evaluated on the test spheroid.
Raw — original image. Generated— result of 3D-U-Net deblurring on raw image. Corrected
– the corrected image which is used as ground truth.
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The results are summarized in Figure 28. The 3D-U-Net model showed significant
improvements over unsupervised models, surpassing the baseline measurements on both
metrics. In addition to the quantitative metrics, it is noteworthy to observe the visual
enhancement in the quality of spheroids in the generated image compared to the raw image.

Figure 28. Results of 3D-U-Net performance. The left graph stands for SSIM, while the right
graph depicts PSNR.

4.4 Results
After conducting a thorough set of experiments, we have determined that the 3D-U-Net
trained on a supervised dataset outperforms the CycleGANs trained on unsupervised data.
The experiments conducted in this study have demonstrated that more complex frameworks
such as GANs may not always be capable of learning complex mappings between clear and
blurred images without corresponding pairs. We have observed that the performance of the
unsupervised model improves when one conditional plane is added during training and when
using a U-Net-based generator. However, this approach only enables the model to produce
images that reach the level of the baseline metric but do not surpass it. One reason for the low
quantitative metrics of the unsupervised models is that the metrics are measured using
corrected images that contain a background pattern that occurs after the correction procedure.
While the 3D-U-Net was trained on pairs where the corrected images contain this pattern, its
output also generates this pattern, which increases the similarity of images during the
measurements.

In contrast, training on supervised data allows the production of a model capable of handling
the deblurring task with a smaller number of corrected spheroids. Furthermore, training on
3D images enables the model to learn more complex mappings across all dimensions
compared to using 2D images.
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Discussion
For us, the biggest challenge in this work was the data we were working with. Due to the
background pattern on the corrected spheroids, the proper evaluation of unsupervised models
difficult as the models do not produce this pattern as they did not have such data in the
dataset.

We conducted our experiments using the 3D-U-Net on supervised data; however, this
architecture is not the only one that employs three-dimensional images to address biomedical
image tasks. For example, a modified version of pix2pix known as vox2vox [15] utilized CT
images of the brain to generate 3D models of tumors, which is a relevant application in the
context of 3D culture deblurring. Utilizing a model that can effectively segment spheroids
could enhance research efforts related to spheroids and simplify their analysis.

Another potential approach for image deblurring involves utilizing CycleGAN with a blur
kernel [16]. This model was employed for microscopy image deconvolution, where the blur
kernel refers to the point spread function (PSF) of the microscope, which characterizes the
amount of blurring that occurs when imaging a point source with the microscope. Replacing
one of the generators with a physical function or model capable of simulating the blur spread
throughout the well may improve the performance of unsupervised models.
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Conclusion
Spheroids are widely used in biomedical research due to their complex microenvironments
and ability to simulate various biological processes. However, their structure poses challenges
for image analysis due to the poor quality of obtained images. Traditional computer vision
algorithms may be time-consuming and require a lot of manual fine-tuning to be applied
effectively. In this thesis, we conducted a comparative study on unsupervised and supervised
approaches for improving the quality of spheroid images using deep learning techniques. Our
experiments showed that the supervised approach was more effective in improving visual
quality while preserving important structural features. The results also demonstrated that the
supervised model outperformed other unsupervised methods in terms of image quality
metrics such as PSNR and SSIM.

The main contribution of our thesis is that a simpler model trained on a smaller supervised
dataset of corrected and raw image pairs can generate high-quality images better than a more
complex framework trained on unsupervised data. Also using 3D model enables learning
mapping across z-stack as well. However, there are still limitations associated with the
obtained supervised data. For instance, the corrected images contain a pattern generated by
the correction algorithm, which can be easily removed by thresholding to eliminate its impact
on the analysis. Deblurred spheroid images have the potential to enhance measurement
accuracy and reliability in research, which can lead to the discovery of new treatments and
therapies.
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