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Hierarchical Forecasting Methods in Day-Ahead Electricity Consump-
tion Forecasting

Abstract: In various applications, several time series can be organized into one hierarchy,
such that lower-level time series can be aggregated into higher-level time series. Forecast-
ing such hierarchical time series requires reconciliation of the final forecasts to ensure
that the aggregation constraints present in the original time series are satisfied with the
forecasted time series as well. The aim of this thesis is to develop and analyze hierarchi-
cal forecasting methods in the context of hourly electricity consumption time series. As
a result, hierarchical models based on LightGBM and ridge regression are developed,
and their performance is analyzed. Two complex linear reconciliation methods – OLS
and Minimal Trace (MinT) reconciliation – are compared against the bottom-up method,
and the severe limitations of the OLS and MinT approaches are discovered. Limitations
arise due to the electricity consumption forecasting error covariance structure. However,
the analyzed reconciliation methods can be used to find forecasts for intermediary levels
in the hierarchy.
Visual abstract:

Keywords: time series forecasting, hierarchical forecasting, day-ahead forecasting,
LightGBM, ridge regression

CERCS: Artificial intelligence (P176)
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Hierarhilised prognoosimeetodid elektritarbimise päev-ette prognoo-
sides
Lühikokkuvõte: Paljudes rakendustes on võimalik mitu aegrida organiseerida ühte
hierarhiasse nii, et hierarhia alumiste tasemete aegread saab agregeerida kõrgema tase-
me aegridadeks. Selliste aegridade prognoosid tuleb omavahel sobitada, et garanteeri-
da prognoositavates aegridades olevate agregatsioonitingimuste täitmine ka aegridade
prognoosides. Selle magistritöö eesmärk on arendada ja analüüsida hierarhilisi prog-
noosimeetodeid elektritarbimise tunnipõhiste aegridade jaoks. Tulemusena on välja
töötatud ja analüüsitud LightGBM ja kantregressiooni mudelitele põhinevad hierarhilised
mudelid. Kaks keerulisemat lineaarse sobitamise meetodit – OLS ja minimaalse jälje
meetod (MinT) – on võrreldud alt-üles sobitamise meetodiga, mille käigus OLS ja MinT
lähenemisele on leitud olulised puudujäägid. Puudujäägid tulenevad elektritarbimise
prognoosivigade kovariatsioonistruktuurist. Samas, sobitamise meetodeid saab kasutada,
et leida prognoose vahepealsetele tasemetele hierarhias.
Visuaalne kokkuvõte:

Võtmesõnad: aegridade prognoos, hierarhiline prognoos, päev-ette prognoos, LightGBM,
kantregressioon

CERCS: Tehisintellekt (P176)
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1 Introduction
Electricity system must be continuously maintained to ensure balance between consumed
and produced electricity. In Estonia, Elering is the system operator who ensures that the
export and consumption of electricity within Estonia matches the production in Estonia
and imports from neighboring countries. If there is an imbalance between production
and consumption, the grid frequency will change, which in turn might negatively affect
electricity equipment and appliances connected to the grid.

Day-ahead forecasts of consumption and production are an important tool to maintain
this balance. The forecasts are collected from all the balance providers, who must
generate forecasts for the total consumption and production in their portfolio. Based on
these forecasts, Elering plans, monitors, and manages the operations of the electricity
system. In addition to system planning, the electricity market is opened, and all the
market participants must buy hourly electricity volumes from the market.

The electricity system has already seen massive changes in recent years, with the main
impact being a several-fold increase in renewable generation. Although this thesis focuses
on forecasting electricity consumption, the increased renewable generation affects market
prices, introducing the need for better day-ahead forecasts for consumption portfolios
as well. And more changes are on their way, the biggest and most immediate being
the desynchronization of the Baltic electricity system from the Russian and Belarusian
systems. The final impact of desynchronization is unknown, but it will likely increase
the cost of prediction errors. From a consumer behavior perspective, current trends and
subsidies point towards increased electric vehicle adoption and storage solutions.

The system operator and market operators are primarily interested in the overall
portfolio-level forecasts from the balancing providers. However, balancing providers
themselves are interested in the distribution of the cost of forecasting between different
client and product segments within their portfolios. Hierarchical time series forecasting
methodologies are developed for exactly this kind of problem. The total consumption
portfolio can be converted into a hierarchy, where each level in the hierarchy contains
information about a particular conceptual feature. Each node in the hierarchy has an
hourly consumption time series. Hierarchical time series methodologies are developed to
extract forecasts at all levels while maintaining accuracy.

The main objective of this thesis is to develop a hierarchical time series forecasting
model for day-ahead electricity consumption on the data of Eesti Energia’s consumption
portfolio. All data is hourly and can be split into two conceptual types – consumption time
series for different disaggregations of the portfolio, and weather parameters. Different
model configurations are explored, hierarchical methodologies are investigated, and
restrictions arising from the data and reconciliation methodologies are analyzed.

This thesis is separated into three sections. First, a more detailed overview of
the Estonian electricity market is given, to motivate the need for improved day-ahead
forecasts in Section 2. In Section 3 methodology is introduced. This includes introducing
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the concepts and theory of hierarchical time series forecasting used in this thesis, with
the most important equations and derivations explained in the text. Base models and
their configuration parameters are explained next. Lastly, the validation methodology
and metrics used to select the best forecasting models are explained.

In Section 4 the experiments are described. First, the input data and its limitations
are described, along with a high-level overview of how the data is distributed. Then,
hierarchical time series are constructed, and theoretical descriptions are matched with
the experimental reality. Most importantly, the results are demonstrated, with the results
analyzed by the different analyzed hierarchical forecast methodologies. The limitations
of the data and different methodologies are investigated and explained. Before the work
in this thesis is concluded, numerous avenues of future research are presented.
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2 Estonian Electricity Market
In this section, a short overview of the current Estonian electricity market is given to give
a general background of the functioning of the market and the necessity of day-ahead
electricity forecasts.

2.1 Design of the Electricity Market
The electricity market in Estonia was opened for large business customers in 2010 and
for smaller business and all the private customers in 2013 [tur12]. The market opening
meant that customers were able to choose their electricity providers, who had the option
of providing different electricity products. The main change for the end customer was
the price formation, which was now determined by market forces, whether via the fixed
financial instruments or the daily updated hourly Nord Pool prices, which are often called
Nord Pool spot prices, or just spot prices [Ele22a].

The regulation governing the Estonian electricity market is the Electricity Market
Law [ele24a]. A more accessible description of the details of the functioning of the
electricity market is provided by the Estonian electricity system operator Elering in the
form of the Electricity Market Handbook [Ele22a]. The handbook covers all the aspects
of how the current electricity market operates.

In general, the market can be divided into four separate markets: financial markets,
where the month-long contracts are traded and which determine the price of fixed
contracts for customers; day-ahead market, where the day-ahead orders are inserted
and where the spot contract prices are determined; intra-day market, where institutional
market participants can adjust their day-ahead orders; and finally, regulating market,
where the system operator ensures that production and consumption remain in balance
[Ele22a].

To reduce the need to understand and operate the complex market trading require-
ments, the obligation of ordering the electricity volumes from the market is delegated to
the electricity providers in standard electricity supply contracts [Ele22a]. The electricity
providers aggregate their clients into one or several portfolios and make the orders to
day-ahead or intra-day markets for the whole portfolio at once. To make the orders, the
providers need to know the expected consumption or production of their portfolios – this
is the primary motivation behind the need for consumption forecasting for the providers.

The cost of erroneous forecasts can be quite high and arises primarily from incorrect
day-ahead forecasts. For market participants, their imbalance volume is determined
as a difference between their fixed supply and the measured supply. Fixed supply is
the combination of day-ahead orders and intra-day orders, and measured supply is the
actually consumed or produced electricity that reaches the grid. The cost of the imbalance
volume – imbalance price – is determined in the regulating market, and the providers are
obligated to buy the missing volume, or sell the surplus volume at the imbalance price
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[Ele22a]. Since the liquidity at the intra-day market is often limited, with the intra-day
trading volume being only roughly 4% of the total trading volume in Nord Pool markets,
the accuracy of the day-ahead forecasts is of primary importance [Poo22].

2.2 Historical, Current and Future Trends
The electricity market in Estonia is currently divided between 12 different balance
providers, of which the largest is Eesti Energia, whose market share in 2023 fluctuated
between 50% and 60%, as can be seen in Figure 1 [Ele24b]. The fluctuations mainly arise
from two factors. Firstly, clients can move between different providers, switching due to
better prices, contract conditions, or other criteria. Secondly, the portfolio composition
might differ between the providers. When the portfolio of one balance provider is more
sensitive to temperature changes, the market share of this provider should increase during
winter and decrease during summer, in line with temperature fluctuations.

Figure 1. Market shares of balance providers in Estonia from March 2021 to February
2024. Data from [Ele24b].

Since this thesis is done based on consumption data of a significant part of the con-
sumption portfolio of Eesti Energia, the high market share of Eesti Energia is extremely
relevant. The system operator target for maintaining whole country imbalance is +/-
30 MWh [Ele23b], which translates to about 2-6% of daily peak consumption. Due to
the dominant market share of Eesti Energia’s consumption portfolio, the high errors in
day-ahead forecasts immediately affect the whole system imbalance. The imbalance set-
tlement methodology is unified across the Baltic states, and since the transmission grids
of the Baltic countries are tightly coupled, the system imbalance is strongly influenced
by other Baltic states as well [AtA22b].
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The boom of renewable generation has brought immense changes to the electricity
system of Estonia and the Baltic states. The biggest change has been a massive increase
in installed capacities and produced volumes of solar panels. From the security of supply
reports by Elering in 2021 [Ele21], 2022 [Ele22b] and 2023 [Ele23a] we can see that in
2020 the solar production volume was not even mentioned, by 2022 the peak generation
power was already 383 MW and by 2023 the peak power was 526 MW. Similarly in
Lithuania, where the installed capacities of wind power plants have exploded from 540
MW in 2021 to 1288 MW in 2024, and solar power plants from 169 MW to 1165 MW
[oTSOfEEE24].

Renewable generation generally increases system imbalances, which means higher
balancing volumes and more volatile balancing costs [GPB19]. Although higher imbal-
ances due to renewable generation forecast errors do not directly affect the consumption
forecast error, the cost on the consumption portfolio due to the forecast error is still
increasing. This necessitates investigations into better consumption-side modeling. Even
without a future increase in renewable generation, the increased weather dependence of
the generation side is set to pose serious challenges for system balancing and increased
balancing cost volatility.

In addition to the realistic further increase of renewable generation, the Baltic electric-
ity system is set to see another massive change. Namely, the Baltic power systems will be
synchronized with the Central European Synchronous Area (CESA) and desynchronized
from the Russian grid. In the process, the Baltic states are integrated into European
balancing markets, which in combination are set to complicate existing dynamics of
imbalance pricing further [AtA22a]. These changes cut the Baltic electricity system from
the massive Russian synchronization area, forcing Baltic states to be able to fully cover
the imbalances with the existing connections to the CESA and thus increase uncertainty,
necessitating more accurate day-ahead forecasts.

Given the shifts towards higher renewable energy capacities, particularly in unpre-
dictable wind and solar, the forecast accuracy for both generation and consumption
becomes even more crucial. The shorter balancing periods will require consumption fore-
casts to be significantly more precise to avoid costly imbalances. The "Baltic Balancing
Roadmap" outlines several steps taken by the system operators to reduce the impact of
desynchronization on the balancing market – 15-minute imbalance settlement period,
allowing the possibility for more granular forecasts, especially for wind and large solar
parks with real-time data flows; implementation of new frequency control products, bal-
ancing capacity markets and provisioning of new balancing capacity reserves [AtA22a].
Overall, the electricity system in Estonia is set to see massive changes, and the best
way to manage risk from all the changes for consumption portfolios is to ensure high
day-ahead forecast accuracy.
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3 Methodology
The final day-ahead forecasts are made for the whole portfolio consumption, but there
are multiple ways to achieve these forecasts. The most direct approach is to forecast the
whole portfolio consumption directly, which has the least variance. However, this could
obscure valuable insights about the accuracy and costs associated with different segments
of the portfolio, defined by location, product type, or client type. We can structure the
consumption data into a hierarchical time series to preserve this level of detail, allowing
for the natural extraction of data at various levels.

Since there is just one forecast sent to the market authorities per portfolio, the
cost is the same for the whole portfolio, but different client segments and product
types do not have the same contribution to the overall cost. Some segments are more
easily forecasted and thus contribute less, while others are more volatile. Hierarchical
forecasting techniques provide a natural way to distribute costs fairly between different
business segments.

3.1 Hierarchical Time Series
In this section, the online version of the book "Forecasting: Principles and Practice" by
Hyndman and Athanasopoulos is used, unless stated otherwise [HA21]. Many time series
can be decomposed into smaller, more specific time series, where the decomposition
happens by some natural or imposed feature. Such decomposing is called disaggregation.
In the case of electricity consumption forecasting, the most natural example would be
disaggregation by location, e.g., by county or city level. If, after disaggregation, all the
components sum back up to the original aggregated time series, we achieve a simple
hierarchically organized time series.

Figure 2. Two simple example hierarchies, where the only difference is ordering the
bottom two levels.

Figure 2 shows a simple example of a hierarchy. The hierarchy has three levels, and
each node represents one time series. In the context of this thesis, each individual time
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series is also called a segment. The time series are represented by yx,t, where the first
index identifies the time series and the second index the time period t. For each time
period t, the value for each time series is the sum of its child time series values for that
time period. In the example shown in Figure 2, we get three sums that must hold for each
time period:

yA,t = yAX,t + yAY,t,

yAX,t = yAXP,t + yAXQ,t + yAXR,t,

yAY,t = yAY P,t + yAY R,t.

(1)

For disaggregations, there is a natural order. For example, each consumption mea-
suring point has a coordinate, but we can aggregate all the measuring points in one
city together, then all the measuring points in one county, and finally all the counties to
achieve whole country consumption. There is a natural hierarchy in this partition – it does
not make sense to order the city level as higher than the county level. In other cases, the
levels are switchable. Keeping with the electricity consumption example, contract type,
and client type are interchangeable as levels – we can look at business clients regardless
of contract type, or we can look at all the customers with fixed contracts, regardless of
who they are.

The impact of such crossed levels is also shown in Figure 2. The right and left
hierarchies contain the same levels, but the bottom two levels are switched. As we can
see, the effect of the switch is only visible in the middle layers, where AX and AY in
the left hierarchy are not found in the right hierarchy. However, for the bottom layer, the
time series corresponding to the AXP in the left hierarchy is the same as the time series
APX in the right. The corresponding hierarchical equations are changed to these:

yA,t = yAP,t + yAQ,t + yAR,t,

yAP,t = yAPX,t + yAPY,t,

yAQ,t = yAQX,t + yAQY,t,

yAR,t = yARX,t + yARY,t.

(2)

The structure of the hierarchy defines a summing matrix, denoted by S. The summing
matrix is derived from the observation that all the higher levels can be represented as a
sum of the bottom-level time series. The summing matrix is an n×m matrix of zeros
and ones, where n is the total number of time series and m is the number of bottom-level
time series. In the case of the hierarchies shown in Figure 2, m = 5 for both and n = 8
for the left and n = 9 for the right. The way the summing matrix behaves is shown in
equation 3.
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

yA,t

yAX,t

yAY,t

yAXP,t

yAXQ,t

yAXR,t

yAY P,t

yAY R,t


=



1 1 1 1 1
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




yAXP,t

yAXQ,t

yAXR,t

yAY P,t

yAY R,t

 (3)

More compact way to represent this is yt = Sbt, where we have defined the yt to be
the vector of all the time series at time period t in the hierarchy and bt as a vector of all
the bottom-level time series at time t.

3.2 Hierarchical Forecasts
The eventual goal of this thesis is to generate accurate forecasts for the time series in the
hierarchy. The primary interest is the forecast for the highest level (yA,t in the example)
since this forms the basis of the day-ahead orders going to the Nord Pool markets and
ultimately determines the imbalance costs for the whole portfolio. But intermediary-level
forecasts are interesting as well – being able to determine more accurately how accurate
the forecasts would be for different client or product types is an important input for
pricing, product development, and marketing efforts.

Forecasts can be made for each individual time series in the hierarchy and such
forecasts are denoted by hatted variables, like ŷA,t+h|t = ŷA,h, where the index h shows
how many time steps into the future the forecast is made. For clarity of notation the time
indices t are dropped, unless required by the context. The vector of the forecasts for
individual time series in the hierarchy is denoted as ŷh and is called the vector of base
forecasts, or just base forecasts.

However, since the forecast is made independently for each time series, the hierarchi-
cal summing conditions defined in equations 1 and 2 might not hold for the respective
forecasts and the forecasts are not coherent. The process of generating coherent forecasts
from the base forecasts is called reconciliation.

The coherency of forecasts is better explained with an example from the left graph
of Figure 2. For the time series themselves, we know that yAX,t + yAY,t = yA,t for all t.
Let us know assume that the forecasts of AX and AY made at time t = T are perfectly
accurate, that is ŷAX,h = yAX,T+h, ŷAY,h = yAY,T+h. If the forecast for the top level
time series A is not perfectly accurate ŷA,h ̸= yA,T+h (which is a possibility, since the
forecasts for each time series are independent of other forecasts), the first equation of 1
does not hold for the forecasts, and thus the forecasts are not coherent:

ŷA,h ̸= ŷAX,h + ŷAY,h. (4)
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The three investigated methodologies all follow similar principles. First, the base
forecasts ŷh are compressed by a matrix P with dimensions m × n into bottom-level
reconciled forecasts. After that, the summing matrix S is applied to get reconciled
forecasts for all the levels in the hierarchy ỹh:

ỹh = SPŷh (5)

The role of the mapping matrix P is to generate new bottom-level forecasts by linearly
combining the base forecasts of all levels of the hierarchy. Due to the application of the
summing matrix S, the forecasts ỹh are guaranteed to be coherent, and we automatically
achieve reconciled forecasts for all the time series in the hierarchy. The hierarchical
forecasting problem can now be split into two: generating the base forecasts ŷh and
finding the best possible matrix P .

In the end, all three methods are linear reconciliation methods, meaning that the
reconciled forecasts are calculated as a linear combination of the base forecasts. The
difference between the methods is the calculation methodology for the weights. The
bottom-up and OLS reconciliation only uses the structure of the hierarchy to calculate
the weights, with the structure being encoded in the summing matrix S. Bottom-up
reconciliation makes no extra assumptions about the data, but the OLS method sets
restrictions on the forecast error distribution. Minimal trace reconciliation uses forecast
error covariance information in calculating the weights but is the most general of the
three methods.

3.2.1 Bottom-Up Reconciliation

The simplest possible approach to achieve reconciled forecasts is to take the bottom-level
forecasts b̂h and sum them up to all the other levels using the summing matrix S, in
which case we need to set the first n−m rows of the mapping matrix to zero, and the
rest is an identity matrix:

ỹh = SPŷh = Sb̂h (6)

In equation (6) the mapping matrix is P = [0m×(n−m)
...Im] [SLWH19], with Im being

the (m × m) identity matrix and 0m×(n−m) being a matrix of zeros with dimensions

(m× (n−m)). The notation C = [Ax×y
...Bx×z] is adopted from [SLWH19] and shows

that the first y columns of the matrix C are filled with elements of matrix A and the next
z columns are filled with elements of matrix B.

The bottom-up approach automatically guarantees that the forecasts at all levels are
coherent, but the trade-off is potentially losing information from higher levels. Another
similarly simple approach is to use top-down forecasts, where only the top-level series

is forecasted. In such case the mapping matrix P = [p
...0m×(n−1), where p is a set
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of proportions p = [p1, p2, . . . , pm] that distributed the top-level base forecasts to the
bottom level, which are then summed by S to return top-down forecasts [SLWH19].

The bottom-level forecasts are found via a set of proportions that distribute the base
forecasts of the top level to the bottom level [HA21]. There are theoretical studies
dating back to the 1960s regarding the relative merits of either bottom-up [GG60] or
top-down approaches [OWE68], with later empirical literature suggesting the relative
advantage of bottom-up forecasts [HAAS11]. In this thesis, only the bottom-up approach
is analyzed, since electricity consumption profiles can be completely different from
segment to segment and cannot reliably be determined as a simple percentage of the
whole country forecasts.

3.2.2 Minimal Trace Reconciliation

Bottom-up and top-down approaches are the simplest possible reconciliation methods,
but they can be improved under certain conditions. Wickramasuriya et al. [SLWH19]
were able to find a mapping matrix P, such that it minimizes the sum of error variances for
the reconciled forecasts. One option is to calculate the covariance matrix of reconciled
forecast errors and minimize its trace, earning the method the name Minimal Trace
Reconciliation, or MinT.

First, let us fix our current time period to t = T , and from now on, all the estimations
and forecasts are conditional on the data known only up to time T . Forecasts are called
unbiased if the expected values of the forecasts and corresponding true values of the time
series are equal, that is

E[ŷT+h|T ] = E[yT+h]. (7)

The following derivation for the universal unbiasedness condition follows Hyndman et al.
[HAAS11]. Let us assume that equation (7) holds. As the bottom level forecasts b̂h are
a subset of the base forecasts ŷh, they are also unbiased. From the definition of unbiased
forecasts, the reconciled forecasts are unbiased if E[ỹh] = E[yT+h]. We can expand ỹh

by using (5) and use linearity of expectation to get

E[yT+h] = E[ỹh] = E[SPŷh] = SPE[ŷh]. (8)

Let us now define βh = E[bT+h] to be the unknown true mean of the bottom level time
series at time period T +h. From the definition of the summing matrix S yT+h = SbT+h,
so E[yT+h] = SE[bT+h]. Substituting this to the left side of equation (8) we get

SE[bT+h] = SPE[ŷh] (9)

. On the other hand ŷh = Sb̂h, again from the definition of S, or E[ŷh] = SE[b̂h], so by
substituting this to equation (9) we get

SE[bT+h] = SPSE[b̂h]. (10)
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The derivation started with the assumption that the base forecasts are unbiased. Since the
bottom level forecasts b̂h are a subset of the base forecasts ŷh, they are also unbiased:
E[bT+h] = E[b̂h]. From equation (10) we then get the unbiasedness condition

S = SPS. (11)

Since no assumptions were made regarding the mapping matrix P, this condition is
universal and holds for all P in linear reconciliation approaches. The unbiasedness of
reconciled forecasts is assumed in all the derivations in this section and Section 3.2.3.

Let us define the base forecast errors by

êh = yt+h − ŷt+h|t, (12)

and reconciled forecast errors by

ẽh = yt+h − ỹt+h|t. (13)

Let Wh be the covariance matrix of the base forecast errors. Wickramasuriya et al.
[SLWH19] proved that the reconciled forecast errors can be found from the base forecast
errors using the same transformation: ẽh = SPêh. From this, we get that the covariance
matrix of the reconciled forecast errors in (13) is given by

Var(ẽh) = Var(yt+h − ỹt+h|t) = SPWhP
TST . (14)

Finally we need to find matrix P such that it minimizes the trace of Var(yt+h − ỹt+h|t),
conditional on the unbiasedness assumption SPS = S from equation (7). Wickrama-
suriya et al. [SLWH19] show that the optimal reconciliation matrix is given by

P = (STW−1
h S)−1STW−1

h . (15)

Thus the reconciled forecasts are given by

ỹh = SPŷh = S(STW−1
h S)−1STW−1

h ŷh. (16)

As we can see, the reconciliation is data-dependent; to find the mapping matrix P, we
first need to calculate the covariance matrix of the base forecast errors.

3.2.3 OLS Reconciliation

Hyndman et al. [HAAS11] proposed a simpler reconciliation method that considers only
the structure of the hierarchy encoded in the summing matrix S. The core idea of the
original derivation is to treat base forecasts as the target variable of a linear regression
equation, earning the method the name OLS reconciliation method.
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The main additional assumption made to reach the final form of mapping matrix P is
that the errors of base forecasts approximately satisfy the same aggregation constraint
as the time series themselves. This means that the errors of higher-level base forecasts
are derivable from the errors of the bottom-level forecasts [HAAS11]. If we define
εb,h = yt+h − ŷt+h|t as the errors of bottom-level forecasts, then this restriction can be
expressed as

εh ≈ Sεb,h. (17)

Using this assumption Hyndman et al. [HAAS11] were able to show that P takes the
form that depends only on the structure of the hierarchy, and not the errors of base
forecasts, resulting in

P = (STS)−1ST , (18)

from which
ỹh = SPŷh = S(STS)−1ST ŷh. (19)

Comparing equations (15) and (18) we can see that they have the same overall structure.
We can get equation (18) from (15) by taking Wh = khIn, with kh > 0 is a positive
constant [SLWH19].

3.3 Base Models
3.3.1 Base Model Selection

While reconciling hierarchical forecasts, the internal workings of the base models are
not directly relevant. However, the base models must be accurate and reliable to achieve
satisfactory overall results. For this reason, the base models must be carefully selected
and analyzed, because the quality of the hierarchical forecasts ultimately depends on the
accuracy of these underlying models.

There are numerous methods specifically tailored for time series forecasting, from
simple historical averaging to complex neural network algorithms. Classical time series
forecasting methods utilize statistical methods and include moving averages, exponential
smoothing, and ARIMA models, which, despite their relative simplicity, have been
shown to be competitive against the more modern machine learning approaches across
a variety of time series [MSA20]. It is also possible to use regression as a time series
forecasting method when the future values of the time series are considered as a function
of its current and past values. Other variables can also be used as features, whether they
are forecasts from some other models (e.g., weather forecasts), known future values (e.g.,
time values, client counts), or lagged values of non-dependent variables [HA21].

Electricity consumption is highly periodic, with clear patterns repeating daily, weekly,
and seasonally. This periodicity allows for applying regression models with lagged values
in addition to exogenous or explanatory variables. In Figure 3, the Estonian consumption
data is shown for two different time periods. On the left, the consumption for February
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2023 is graphed, and the weekly period is clearly visible, with clear peaks during daytime
and troughs during nighttime. In addition, there is dependence on weekdays, with clearly
higher daily consumption during workdays. From the right graph of Figure 3 the yearly
pattern is visible – there is a clear dependence on temperature, with higher consumption
occurring during winter months.

Figure 3. Example profiles of hourly energy consumption in Estonia. The left graph
shows the consumption over the year 2023, and the right graph shows the hourly con-
sumption in February 2023. Data from Elering Live Dashboard [Ele24c].

In 2020, the M5 forecasting competition was held on the Kaggle platform [HMS20].
The competition task was a hierarchical forecast on the Walmart retail sales dataset. The
competition data covered data from three US States and had several hierarchical levels,
including item level, department, and product category levels. The final submission
had to be a reconciled forecast for all the levels, and the evaluation was based on the
weighted average root mean squared scaled error across all the time series. Several of the
top models in the competition, including the winning submission, utilized LightGBM
models, which is why this is one of the models considered in this thesis [MSA22]. The
second type of selected model is simple ridge regression, chosen for its simplicity, rapid
training times, and robust performance with correlated features.

3.3.2 Ridge Regression

Ridge Regression, is an extension of ordinary linear regression that is particularly useful
for addressing multicollinearity between predictor variables. It modifies the object
function of the least squares method by adding a penalty term proportional to the square
of the magnitude of the coefficients.

To see how the ridge regression works we start from the standard multiple regression
problem y = Xβ, where y is the target variable and β the coefficient vector. The
simplest method, ordinary least squares, finds the coefficient vector β by defining the
objective function (y − Xβ)T (y − Xβ), which is then minimized with respect to β.
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This results in the coefficients β, minimizing the residual sum of squares between the
targets and the predicted values.

Ridge regression modifies the objective function, by adding a term proportional to
the sum of squares of the coefficients. This sum of squares is equivalent to the L2 norm
of the coefficients, which is why the added term is called the L2 regularization term. The
minimization task then becomes

min
β

{(y −Xβ)T (y −Xβ) + αβTβ}. (20)

Here the α is the regularization parameter that controls the regularization strength. If
α approaches zero, the minimization function becomes closer to that of OLS, showing
that OLS is a special case of ridge regression. In general, the effect of increasing the
regularization α is reducing the absolute magnitude of the coefficients. This effect of the
regularization is also the reason why ridge regression works well with collinear features
– in the presence of collinear features, OLS solutions can become unstable and overly
sensitive to small changes in the model input, which results in large variance of the
coefficient estimates. The damping effect of the regularization term forces coefficients
smaller and reduces the variance. [HK70]

3.3.3 LightGBM

LightGBM, or Light Gradient Boosting Machine is a specific implementation of the
gradient boosting framework. Gradient boosting is an ensemble machine learning
technique that builds a model by sequentially adding multiple weak learners, which in
the case of LigthGBM are decision trees. The objective is to minimize the predictive
errors by iteratively adding new trees in a way that minimizes the objective function
[Fri01].

The article describing the XGBoost, another gradient boosting framework, gives
a concise overview of the gradient boosting process [CG16]. The objective function
quantifies the predictive error, as in ridge regression. The next tree is added at each
iteration step to minimize the objective function. At each iteration, the gradient of the
loss function is calculated with respect to the prediction of the current model. The new
tree is then fitted to these gradients, thus essentially trying to predict the loss gradient at
each point of the data.

However, the problem with this approach is that to fit the best decision tree, all the
data points must be scanned, which is a massive computational cost. Following the article
introducing the LightGBM method [KMF+17], the core ideas to tackle this problem are
described in the following paragraphs.

The first of the strategies is a histogram-based algorithm that divides feature values
into histograms [RS98]. The best split points are based on the histograms, not the
individual data points, and since the number of histogram bins is considerably less than
the number of data points, the training speed is substantially increased.
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Of the original contributions the first technique employed by LightGBM is Gradient-
based One-Side Sampling (GOSS). The gist of the method is to focus on data points that
contribute most significantly to the information gain. GOSS selects all the data instances
with large gradients and randomly samples a fixed proportion of the instances with small
gradients. In addition, to focus more on the under-trained instances, the sampled data
with small gradients is amplified by a factor dependent on the sampling proportion.

LightGBM utilizes Exclusive Feature Bundling (EFB) to handle high-dimensional
sparse data more efficiently. EFB groups mutually exclusive features, which rarely take
nonzero values simultaneously into a single feature. This bundling reduces the feature
space’s complexity, leading to faster computation and less memory usage without a
significant loss in model accuracy.

In addition, the Python LightGBM implementation implements several techniques
to reduce the potential for overfitting and enhance generalization. The simplest is the
number of boosting iterations which defines the number of trees to be built, with a higher
number of iterations resulting in a more precise but potentially overfitting model. There
is also a shrinkage, or learning rate parameter, that regularizes the contribution of new
models in each boosting iteration [Fri02].

Bagging techniques [Bre96] are also implemented, for both features and samples.
Feature fraction determines the fraction of features to be used for each boosting iteration,
and is especially useful for datasets with high feature count. Similarly, the bagging
fraction determines the percentage of the whole dataset used in specified iterations.
The iterations where to apply bagging are defined by the bagging frequency parameter
[Lig24].

3.4 Evaluation Methodology
3.4.1 Metrics

The trained base models and reconciled forecasts are evaluated using mean absolute
percentage error (MAPE). MAPE shows the average absolute deviation of the forecasts
from actual values as a percentage, defined by the formula

MAPE =
100%

n

n∑
i

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (21)

Here yi is the actual value for the forecasted period i, ŷi is the forecast, and n is the
number of forecasted periods. Since MAPE has the actual values yi in the denominator,
it cannot be used when the forecasted values are near zero. Intuitively, MAPE works
well with relative errors, where the error depends on the scale of the quantity to predict.
MAPE is one of the most popular metrics for forecasting tasks in general due to its
simplicity and scale invariance. However, the main benefit of MAPE is that it suits other
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business processes well, where the margins to cover the costs coming from expected
forecast inaccuracies are generally covered as a fixed fee on the true consumption. This
makes the allowance for errors higher during higher true consumption periods.

3.4.2 Expanding Window Approach

For validation and test periods, the expanding window strategy was used. This method
involves incrementally increasing the training dataset over time and adding newer data
points to the training set while performing validation on the next time period. This
allows us to use more of the dataset for training while also having a longer time range
for validation. From Figure 3, the yearly periodicity of electricity consumption patterns
is visible. To catch these yearly variations, the validation should ideally be performed in
at least a yearly period.

The availability of the data sets its own limitations, however, so the expanding
window approach used in this thesis is illustrated in Figure 4. The training period started
in March 2021, and the validation periods from March 2023. For each iteration, the
validation period was one calendar month, and the validation period started one month
later. Similarly, the training period was expanded with one extra month. The last month
in the overall validation period was December 2023, and the first two months of 2024
were used as test periods. The models were similarly trained during the test periods with
a monthly expanding training dataset.

The model hyper-parameters were chosen and evaluated during the validation period
from March 2023 to December 2023. Due to long training times, a preliminary search
of reasonable range for the hyper-parameters was made with about 30 segments before
the full hierarchy hyper-parameter search presented in Section 4.3 was performed. The
segments chosen for the preliminary search had either high overall consumption or high
variance of consumption profile.

Figure 4. The expanding window validation approach used in this thesis.

20



4 Experiments

4.1 Software and Hardware
Data collection, wrangling, model training, and analysis were done on the same Windows
11 computer with 32 GB of RAM and an Intel i5-1135G7 processor. All the work was
done in the same Python 3.11.4 environment, Jupyter Notebook version 6.0 was used as
the main tool for analysis, with pandas and numpy as the main data wrangling libraries.
Two main Python libraries were used for configuring, training, and evaluating models.
For the metrics and simpler regression models, the Scikit-Learn 1.4.1 library, and as
the LightGBM implementation, the lightgbm 4.3.0 Python library was used. OpenAI’s
ChatGPT version 4 was used as a tool to aid in the preparation of some of the data
analysis and plotting scripts, in addition as an aid for formatting citations and some
paragraphs of the text in the thesis [Ope24].

4.2 Data
This section is redacted.

4.3 Results
4.3.1 Experiment Design

On all the segments, two types of models were tested using different hyper-parameters:
ridge regression models and LightGBM models. For both types of models, the same
evaluation strategy was used, and a hyper-parameter search was conducted. For ridge
regression 12 different L2 regularization terms were tested from 0.001 to 128. For
LightGBM parameters, the hyper-parameter search was conducted manually due to the
longer training time of the models and larger parameter space.

The models were evaluated with the expanding window strategy as described in
Section 3.4.2, with the illustrated strategy shown in Figure 4. Each of the 874 new base
models was retrained with the expanded training data and again evaluated in the next
month. The last evaluated month was February 2024.

There is one notable exception to the trained models. The models were not trained on
163 bottom-level segments where the size type corresponded to ’tiny’. Instead, week-ago
values were used for these segments as forecasts. The reasoning was stability – since
many of the individual time series in those segments are very volatile, a trained model
would be prone to very unstable forecasts. This also sped up the training process, and
since the total volume of those segments is very small by nature, the effect on the overall
performance is negligible.
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After the base models on all the 874 segments were trained and evaluated hierarchical
reconciliation was applied. Hierarchical reconciliation was applied with three different
methodologies as described in Section 3.1. The first option is the bottom-up approach,
and since the primary goal is the total forecast, we can look at the aggregate to the top
level from all the bottom levels. This simplest approach also helps us discover the best
hyper-parameters for each level. After that, the reconciliation approaches described in
Section 3.2.3 and Section 3.2.2 were applied and analyzed.

The models and their configurations are shown in Table 1. In total, 15 different
LightGBM models were tested with the shown hyper-parameter configuration. The rest
of the hyper-parameters were not changed from their default values. For ridge regression,
12 different regularization parameter values alpha were tested. The ID column in Table 1
is used to later reference the models in the text.

4.3.2 Base Forecast Results – Bottom-Up Approach

The first step is forecasting all 874 segments at different levels, resulting in the base
forecasts, which are later reconciled. It is instructive to look at the results by levels by

Table 1. Model configuration and hyper-parameters

ID Model Alpha Bagging
fraction

Bagging
frequency

Feature
fraction

Iteration
number

Learning
rate

Model 0 LightGBM – 0.6 10 0.7 100 0.1
Model 1 LightGBM – 0.6 10 0.7 50 0.1
Model 2 LightGBM – 0.6 10 0.7 100 0.05
Model 3 LightGBM – 0.7 5 0.9 100 0.1
Model 4 LightGBM – 0.5 5 0.7 100 0.1
Model 5 LightGBM – 0.7 5 0.8 100 0.1
Model 6 LightGBM – 0.6 10 0.9 100 0.1
Model 7 LightGBM – 0.4 5 0.4 100 0.1
Model 8 LightGBM – 0.5 5 0.7 100 0.2
Model 9 LightGBM – 0.5 5 0.7 100 0.3
Model 10 LightGBM – 0.5 10 0.7 100 0.2
Model 11 LightGBM – 0.6 10 0.9 100 0.2
Model 12 LightGBM – 0.5 10 0.7 100 0.5
Model 13 LightGBM – 0.5 20 0.7 100 0.2
Model 14 LightGBM – 0.6 20 0.7 100 0.1
Model 15 LightGBM – 0.7 5 0.7 100 0.1
Model 16 LightGBM – 0.4 5 0.7 100 0.1
Model 17 Ridge 0.001 – – – – –
Model 18 Ridge 0.01 – – – – –
Model 19 Ridge 0.1 – – – – –
Model 20 Ridge 1 – – – – –
Model 21 Ridge 2 – – – – –
Model 22 Ridge 4 – – – – –
Model 23 Ridge 8 – – – – –
Model 24 Ridge 16 – – – – –
Model 25 Ridge 32 – – – – –
Model 26 Ridge 64 – – – – –
Model 27 Ridge 96 – – – – –
Model 28 Ridge 128 – – – – –
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Figure 5. Left graph: heatmap of MAPE values for each model and by taking each level
as the bottom-most level. Right graph: heatmap of monthly MAPE values by model
when aggregated to the top level from Level 0. In both graphs, the values are clipped at
5% to ensure readability.

summing the forecast to the top-level forecasts, i.e., the whole country forecasts. This
results in five different forecasts for the top-level forecast – the top-level base forecast
itself and aggregated from different lower levels. The five forecasts are not reconciled but
are comparable against each other. For such a procedure, the MAPE metric is calculated
for each model, and the result is visualized as a heatmap in Figure 5.

From Figure 5 in the left graph, we can notice a couple of trends. First, with ridge
regression models (Models 17-28) it is clearly visible that the regularization parameter
is important. When the parameter is set near zero, the validation MAPE goes even
over 5%. For ridge regression models, we can clearly see the trend that the higher the
regularization parameter, the better the models performed during the test period, while
for the validation period, the best regularization parameter is around 16. Similarly, the
validation MAPEs for the LightGBM models are slightly better than for the test period,
which is analyzed in more detail later in this section.

Another noticeable trend is the difference in performance at different levels. Both
models are better at Level 0 and Level 3, with more noticeable improvement at Level 0
for LightGBM and at Level 3 for ridge regression models. This suggests that metering
point size (introduced at Level 0) and client type (business or private) are more important
for forecasting than product type or location.

A more granular way to look at the data would be to look at the monthly performance
of each model, instead of just validation and test periods. In Figure 5 in the right graph
this data is shown as a heatmap, where only the Level 0 (bottom level) forecasts are
aggregated to the top level. It is clearly visible that different model types have issues
with certain months: LightGBM with April 2023, ridge regression with July and August
2023 and both have troubles with January 2024.

Importantly, the worse performance during the test period is not due to simple
overfitting, since January is extremely bad for both models while February is extremely
good. This result is easily explainable with temperature patterns. As can be seen in
Figure 6, the beginning of the year 2024 had extremely cold temperatures, which resulted
in high consumption values and high forecasting errors for that period. A complicating
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Figure 6. Average hourly temperatures in Estonia during the period covered by the data.

factor was that this period with high temperatures fell to the first week of the year when
the consumption pattern, in general, was different from the rest of the year. The fact that
the ridge regression model with a high regularization parameter was relatively accurate
suggests that very regularized models might be suitable for use during unusual weather
periods.

The performance drops in April 2023 for LightGBM, and summer 2023 for ridge
regression models are less obvious but suggest that different model architectures might
complement each other.

4.3.3 Reconciliation Results

The three methods described in Section 3.2.1, Section 3.2.3, and Section 3.2.2 were
applied to the data. In the case of bottom-up reconciliation, the lowest level is Level 0.
Since the bottom-up and OLS reconciliation calculations do not depend on the forecasted
values, the base-level forecasts are made, and from those, the reconciled forecasts are
calculated.

Minimal Trace reconciliation depends on the covariance matrix of the errors of the
base forecasts. The estimate of the covariance matrix was found with the expanding
window strategy. The base models were trained and evaluated using the expanding
window strategy. For each evaluated month in the expanding window strategy, the
forecasting errors from March 2023 up to the beginning of the month were used to
calculate the covariance matrix. This covariance matrix was then used in the formula
(16) to reconcile the forecasts for the month under evaluation. The need to estimate the
covariance matrix means that the validation period was one month shorter: from April
2023 up to the end of 2023. To ensure comparability, the validation period for bottom-up
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and OLS reconciliation methods was also shortened, the resulting MAPE values are
shown in Table 2.

Table 2. MAPE comparison of reconciliation methods.

Model Validation Validation Validation Test Test Test
Bottom-Up OLS MinT Bottom-Up OLS MinT

Model 0 2.83% 2.83% 3.24% 3.27% 3.90% 3.62%
Model 1 3.21% 3.30% 3.76% 3.67% 4.26% 3.87%
Model 2 3.21% 3.30% 4.48% 3.70% 4.31% 3.73%
Model 3 2.77% 2.94% 3.25% 3.26% 3.89% 3.62%
Model 4 2.78% 2.89% 3.33% 3.20% 4.09% 3.80%
Model 5 2.80% 2.83% 3.18% 3.26% 4.05% 3.52%
Model 6 2.82% 2.87% 3.29% 3.20% 3.81% 3.36%
Model 7 2.79% 2.90% 3.72% 3.26% 3.92% 3.42%
Model 8 2.84% 2.88% 3.62% 3.05% 3.90% 3.21%
Model 9 2.85% 2.94% 3.48% 2.99% 4.19% 3.46%
Model 10 2.78% 2.85% 3.74% 3.04% 3.97% 3.46%
Model 11 2.79% 2.83% 3.14% 3.08% 3.84% 3.71%
Model 12 2.95% 3.43% 3.36% 3.12% 4.05% 3.46%
Model 13 2.83% 2.84% 3.23% 3.05% 3.88% 3.21%
Model 14 2.78% 2.82% 3.06% 3.26% 3.91% 3.64%
Model 15 2.86% 2.87% 3.24% 3.22% 3.91% 3.87%
Model 16 2.84% 2.85% 3.40% 3.19% 3.96% 3.49%
Model 17 4.85% 6.00% 12.67% 3.42% 3.99% 4.89%
Model 18 4.61% 5.30% 12.81% 3.41% 3.88% 6.41%
Model 19 3.83% 3.52% 15.38% 3.32% 3.69% 5.27%
Model 20 3.09% 3.07% 10.69% 3.13% 3.47% 8.07%
Model 21 3.02% 3.03% 11.87% 3.07% 3.40% 8.48%
Model 22 2.97% 2.98% 11.68% 3.02% 3.32% 5.88%
Model 23 2.94% 2.94% 9.88% 2.97% 3.27% 4.88%
Model 24 2.93% 2.90% 7.73% 2.92% 3.22% 5.22%
Model 25 2.94% 2.89% 7.56% 2.86% 3.19% 5.15%
Model 26 2.99% 2.91% 8.04% 2.80% 3.13% 4.70%
Model 27 3.03% 2.93% 8.35% 2.77% 3.09% 4.42%
Model 28 3.07% 2.95% 8.30% 2.75% 3.05% 4.56%

Overall the observations from Section 4.3.2 hold – for the bottom-up approach from
Level 0 the LightGBM models are slightly better during the validation period, with very
similar MAPE values, and for the validation period, the best ridge model is Model 24,
corresponding to the regularization parameter 16 as shown in Table 1. The test period
bottom-up results are the same as in Figure 5 in the left graph in row ’Test, Level 0’ since
the test period is not changed.

It is clear that the more complicated reconciliation methods did not really improve
the performance, the reasons for this are analyzed in Section 4.3.4 with the best overall
model as an example. The OLS reconciliation retained the performance, with a minor
increase in MAPE values for most LightGBM models and a minor increase for most
ridge regression models. For most models, the difference in accuracies was less than
0.2%. However, the MinT reconciliation produced considerably worse results, both for
validation and test periods and especially for ridge models.

The best overall model was Model 14, which had the best average MAPE of 2.89%
across the reconciliation methods. It also had the best MAPE for OLS and MinT
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reconciliations, while for the bottom-up approach, it was the third-best, having only
0.01% worse MAPE than Model 3, which had the best MAPE for this method. For
the test period, the selected model had the average MAPE of 3.6%, with the bottom-up
method having the best accuracy of 3.05%. The main reason for the worse performance
on the test set remains the same as for all the models – bad accuracy in January, as can
be seen from Figure 5, not overfitting.

4.3.4 Analysis of Reconciliation Methods

The analysis in this section is done using the best model during the validation period,
Model 14. Table 2 shows that reconciliation significantly worsened the top-level forecast,
especially the MinT method. This shows that the assumptions of reconciliation methods
are not true, and thus, the reconciliation cannot be performed. The MinT reconciliation
uses the covariance matrix of the forecasting errors, estimated from the previous months’
forecasting errors. Already from Figure 5, we can see that the forecasting MAPEs vary
from month to month quite significantly.

This is more visible in Figures 7 and 8. In Figure 7 the kernel density estimations for
the errors of Model 14 for the single Level 4 segment are shown for each month on the
left and for all the errors from April 2023 to the corresponding month on the right. From
the left graph, we can see that the monthly error distributions look quite different already
for the most aggregated time series, which suggests that just a few months is not a long
enough time to estimate the covariance matrix of errors. From the right graph, we can
see that the distribution for longer periods shows signs of converging but is still relatively
different.

A similar conclusion can be drawn from Figure 8, where the top-level MAPEs by
month for each model after the MinT reconciliation are shown on a heatmap. We can
see that both LightGBM and ridge regression models have very high MAPE values for
the first months in the validation set. However, especially for LightGBM models, the
post-reconciliation MAPEs are within reasonable bounds, suggesting that for the MinT
approach to work, the whole year of forecast errors is necessary.

The difference between bottom-up and OLS reconciliation is less extreme and nearly
unnoticeable. For Model 14, the accuracy was reduced by just 0.04%. The main
assumption that went into the derivation of the OLS method was that the base level errors
are approximately additive the same way the base forecasts are, as shown in equation
(17). That is, when we sum the lowest level base forecast errors using the summing
matrix S, as defined in Section 3.1 they should match the higher level base forecast
errors. This assumption is generally upheld, though not precisely. This explains why the
OLS reconciliation results roughly match the bottom-up method accuracies but do not
improve significantly on them.

The extent of violation of the error aggregation constraint can be seen by looking at
the forecast error reconciliation errors (EREs). First, the bottom-level base forecasts are
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Figure 7. Kernel density estimations for the errors of LightGBM Model 3 at whole
country level base forecasts. The left plot shows the distribution estimations by monthly
values, and the right plot shows the cumulative error values from April 2024 up to and
including the ’Max month’.

Figure 8. Top-level MAPEs by month for each model after the MinT reconciliation is
applied. The MAPE values are clipped at 5% for readability.

aggregated, producing the calculated expected errors for each segment Levels 1-4. The
calculated errors are subtracted from the base forecasts of the corresponding segment
at Levels 1-4. This subtraction results in the ERE for each segment, which shows how
much the assumption of the OLS reconciliation method is violated. This calculation is
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Figure 9. Forecast error reconciliation errors. The top graphs show the distribution
by level. The bottom graph shows monthly aggregated error reconciliation error as a
percentage of the monthly aggregated volume for each month by level.

done for each segment and each hour during the validation and test periods.
In the ideal case, the EREs are all zeroes so that the OLS reconciliation would be the

optimal reconciliation method. In practice, this is unachievable, and the distribution of
EREs is shown in Figure 9. The top graph shows the distribution of hourly ERE values
by levels. Since at Level 1, there are 175 segments and the EREs are smaller in absolute
values, the scale of both axes is so different across levels. Overall the distributions are
centered around zero, with steep peaks at zero, which confirms the approximate validity
of the assumption.

Similar evidence is shown in the bottom graph of the same figure, where the EREs
for each level are summed up for each month and then divided by the total consumption
volume of the whole portfolio for that month. It can be seen that the total ERE percentage
as a percentage of total consumption remains below 3% for each month. This is a small
but important difference, and the problem seems to come from Levels 3 and 4, where
the ERE distribution flattens out and, especially for Level 4, the distribution is skewed
slightly to the right, which means that the bottom level forecasts overforecast slightly
more than the higher level forecasts.

4.3.5 Intermediary Aggregations

Again, the analysis in this section is done using the best model during the validation
period, Model 14. One part of the original motivation to look at hierarchical forecasts was
to be able to better distribute the cost of forecasting errors to different client segments.
For this purpose, aggregations by product type and client type provide the necessary
input regarding their contributions to the overall cost. The results for Model 14 are shown
in Figure 10.
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Figure 10. Intermediary aggregation results for Model 14. The top graph shows MAPE
values by client type and the bottom graph by product type for each month.

The results are shown for business and private customers in the top graph of Figure 10.
For the base forecasts, there are four possible ways to get forecasts for each client type
separately: aggregated from any of the lower levels up to Level 3, essentially performing
bottom-up reconciliation. In addition, the forecasts from OLS and MinT reconciliation
can be used, and since they are automatically reconciled there is just one forecast per
product. Similar logic holds for product type, but because the product type is at a lower
level in the hierarchy, only levels up to Level 2 can be aggregated.

From Figure 10 we can see that the accuracies at lower levels are much worse than at
the whole country level, where the monthly MAPE values were around 3%. For business
clients, the accuracies at Level 3 or with OLS reconciliation are at a similar level; for
private clients, the overall level is slightly higher. For aggregations to product type,
the accuracies are much worse, especially for the smaller segments, so all but FIX and
SPOT. This suggests that the variability of forecast accuracies is larger for the smaller
segments, but aggregations smooth out the differences, and the smaller segment errors
are not strongly correlated.

At Level 3, or client type level, we can see that the OLS reconciliation accuracies
follow quite well the Level 3 base forecasts, and MinT reconciliation results are also at a
similar level with bottom-up reconciliation accuracies. Similar observations can be made
for the product type level, except for General Service and Universal Service forecasts.
The General Service and Universal Service products, as explained in Section 4.2, have
large unnatural jumps in client numbers while being relatively small segments compared
to the Spot segment. With that, we can explain the rise in MAPE values for the OLS
reconciliation, which takes into account the structure of the hierarchy, but not the data
itself.

The reconciliation methods keep the accuracies of each segment at around the level
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we would forecast them directly. This means there are no weird distribution effects,
where overforecast in one segment compensates for underforecast in another segment
after the reconciliation is performed. This gives us the confidence to use the reconciliated
forecasts to distribute the cost originating from the whole country level forecasts between
different client or product types.

4.4 Discussion and Future Research
The primary aim of this thesis was to investigate hierarchical time series forecasting
methods to see if they can be applied to the day-ahead forecasts of electricity consumption.
The investigation was performed with somewhat mixed results – the simplest, bottom-up
approach was surprisingly accurate, considering the extremely different size and profile of
forecasted time series, as seen from Section 4.2. At the same time, the use of theoretically
optimal forecasting methods was severely limited by the restricting assumptions the
optimal methods imposed on the forecasting models and their performance.

There is ample opportunity for further research on this topic. The first opportunity
is to look at different datasets. Currently, the MinT reconciliation is hindered by the
requirements imposed on the covariance matrix of base forecasts. If a longer period of
data is available for training, a longer validation period can also be used, thus providing
year-round forecasting errors for the empirical covariance matrix. The hope that a longer
validation period might help with the reconciliation methods is supported by the fact that
in-sample MinT reconciliation resulted in MAPE values of less than 2%.

Secondly, only actual weather measurements are currently available, but in production
systems, the actual weather is not known during prediction time. Internal analyses have
shown limited improvement for previous models, but this is an unexplored nuance in this
thesis.

In this thesis, only two types of models, LightGBM and ridge regression, were
analyzed. From the test period, we saw that higher regression regularization parameter
values were extremely good at predicting the highly volatile and expensive period at
the beginning of the year. This is a promising discovery since the sudden increase in
consumption is always hard to predict and has caused prices to skyrocket in both spot
and imbalance markets. Exploring where the strengths of different models lie, and other
model types would be useful in handling future special situations.

The current hierarchy was built out of convenience, and there are no physical limi-
tations that prevent us from switching the order of the lower four levels. Whether this
would improve performance is unknown currently, and it might be that some levels are
even unnecessary. As seen in Figure 5, it might be that, for example, county or location
level does not really provide any benefit. This would be surprising, considering there
are days when the difference in temperature in different parts of Estonia might reach
20 degrees Celsius, but alternatively, the aggregated information might smooth out the
noise.
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In addition, the reconciliation methods themselves can be looked at theoretically.
Current methods make very general assumptions and do not restrict the reconciled
forecasts very strictly. This results in a somewhat weird reconciliation, where some
segments have negative consumption forecasts. This, of course, is not physically accurate
and is compensated by higher positive forecasts for some other segments, but it may be
feasible to put restrictions on the forecasts as shown in [VEC15] if the requirement for
linear reconciliation is dropped.

The current analysis was done on only Estonian consumers. There are other big
segments in Estonia and other countries, for which similar methodology could be applied.
The other portfolios have different customer composition and behavioral patterns (e.g.,
solar panels on the roof), which might mean that the current methodology and model
hyper-parameters cannot be directly transferred to those segments. Whether this is true or
whether the models are universally usable would be another direction for future research.

Furthermore, the general behavior of customers has changed significantly in the past
few years. There has been a massive boom in solar panel installations, customers are
more price-aware and thus price-sensitive, there are more electric cars on the road, and
the number of storage units is increasing, to name a few changes. This implies that older
training data might not be as relevant and weighting more recent or otherwise similar
training data with higher weights might improve the performance of the models.

This thesis only looked at day-ahead forecasts, but for system balancing intra-day
forecasts are just as important. Thus, looking at whether the same models can be
applied to forecast intra-day consumption with better accuracy than day-ahead portfolio
consumption is another possible direction for future analysis.

To dive deeper into the nuances of models’ behavior, the distribution is also a potential
avenue of investigation. As seen in Figure 9, the error distributions differ from month to
month, with some months containing extremely fat tails. In terms of electricity system
functioning and the cost to the electricity retailers, avoiding extremely high forecasting
errors is of great financial interest. One way to trade error variance with error mean
would be to investigate alternative target metrics and objective functions.

Finally, the electricity system itself will be seeing important changes, as described in
Section 2, of which the most relevant will be the 15-minute balancing period for day-
ahead forecasting. If and how this impacts the performance of the models is currently
unknown but will be a very relevant question in the years to come.
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5 Conclusion
The primary goal of this thesis was to investigate hierarchical time series forecasting
methods in the context of day-ahead electricity consumption forecasting. Three hierar-
chical forecast reconciliation approaches were analyzed more thoroughly: the bottom-up
method, OLS reconciliation, and Minimal Trace (MinT) reconciliation.

The source of the consumption dataset is Eesti Energia, which includes consumption
values at various levels of aggregation. The weather dataset was sourced from Open-
Weather and included the measured values of several of the most commonly used weather
parameters with hourly resolution. All data had hourly granularity from March 2021
to March 2024. Based on the consumption data, the hierarchy was built, and feature
engineering was performed.

Base models were then trained on all the consumption time series in the hierarchy.
Two types of models were used with different hyper-parameters: ridge regression and
LightGBM, with 28 models trained in total. Monthly expanding window was used for
hyper-parameter validation and testing. The validation period was from March 2023 to
December 2023, and the test period was the first two months of 2024.

The bottom-up reconciliation method was used as a baseline, against which the more
complex methods were compared. With the bottom-up reconciliation method, most
LightGBM models performed better than ridge regression models, although there was
some variation based on the selected set of hyper-parameters. However, the performance
during the test period was more varied, with the best models being ridge regression
models.

The main result of this thesis is that the more complex reconciliation methods did
not consistently improve forecasts for day-ahead electricity consumption forecasting.
For LightGBM-based models, the OLS reconciliation was only slightly worse than
the bottom-up method, with MAPE being only 0.04% worse for the selected model
in the validation period. The MinT reconciliation was already considerably worse in
performance, with the accuracy decreasing by 0.28% during the validation period. For
ridge regression models, the relative performance of different reconciliation approaches
varied more. For higher values of the regularization parameter, the OLS method was
better than the bottom-up method, but the MinT approach was considerably worse for all
the ridge regression models.

A more detailed analysis was done to explain the drop in performance of supposedly
optimal reconciliation methods. The MinT approach relies on the covariance matrix of
base forecast errors. However, it appears that the model error distribution varies over
different months, so the covariance matrix built on the forecasts of one month might
not hold for the next month. The possible approach to solve this issue would be to use
a longer period for calculating the covariance matrix, but due to the limited amount of
available training data, this was not performed.

The OLS reconciliation approach does not directly use the covariance information of
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the base forecast errors. However, this simplification depends on an assumption made
regarding the structure of the base forecast errors. The base forecast errors are assumed
to approximately satisfy the same aggregation constraint as the time series themselves. It
appears that there are significant enough deviations from this constraint, which explains
the underperformance of this method.

One of the primary motivations for investigating the hierarchical time series forecast-
ing methods was the possibility of constructing coherent forecasts for different levels
of the hierarchy. This question was analyzed, and it appears the reconciliation methods
work as intended and it is possible to use the hierarchical forecasting approaches for
simultaneous forecasting for different client or product segments.

This thesis provided an overview and analysis of the hierarchical time series fore-
casting for Estonian consumption forecasting. There are several possible avenues for
future research, from using different datasets and other model types, changing the struc-
ture of the hierarchy, increasing validation length, or using alternative reconciliation
methodologies.
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Appendix

I. Features

Feature name Description

Weather features
air_temperature Measured air temperature
feels_like_temperature Accounts for the human perception of temperature
pressure Atmospheric pressure at sea level, hPa
relative_humidity Humidity percentage
rain_1h Precipitation of rain in mm
snow_1h Precipitation of snow in mm
wind_x, wind_y Wind vector components, found from wind speed and direc-

tion components using simple trigonometry
clouds_all Cloudiness percentage
clear_sky_ghi,
clear_sky_dni,
clear_sky_dhi

Global horizontal, direct normal and diffuse horizontal irra-
diation for clear sky scenarios

cloudy_sky_ghi,
cloudy_sky_dni,
cloudy_sky_dhi

Global horizontal, direct normal and diffuse horizontal irra-
diation for cloudy sky scenarios

Interval features
county Location of the measuring point
product_type Type of product in the contract for the corresponding hour
size_type The size indication of the measuring point
P_OR_B Client type of the measuring point
SP_YEARCON The expected yearly consumption of the measuring point
interval_sum The consumption at the measuring point for the correspond-

ing hour
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