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Two-Party Multi-Point Function Secret Sharing

Abstract:
Multiparty computation (MPC) is an important field of cryptography that deals with
protecting the privacy of data, while allowing to do computation on that data. A key
part of MPC is the parties involved having correlated randomness that they can use
to make the computation or the communication between themselves more efficient,
while still preserving the privacy of the data. Examples of these correlations include
random oblivious transfer (OT) correlations, oblivious linear-function evaluation (OLE)
correlations, multiplication triples (also known as Beaver triples) and one-time truth
tables. Multi-point function secret sharing (FSS) has been shown to be a great building
block for (pseudo-)random correlation generation. The main question is how to construct
fast and efficient multi-point FSS schemes. Here we propose a novel approach to multi-
point FSS using tree structure, pseudorandom generator and systems of linear equations.
Our scheme MultiFunUSLESS has similar efficiency parameters to previously proposed
multi-point FSS schemes and is more efficient in the evaluation phase, this means it is
the best option in some use cases. On the whole, it provides us with a new perspective,
how to construct multi-point FSS schemes. In all walks of computer science efficiency
is key: algorithms should be faster, take less resources and communication should be
minimal and that is what we are trying to achieve with our work.

Keywords:
Function secret sharing, multi-point function, secret sharing, linear algebra, distributed
point function, finite fields

CERCS: P170 Computer science, numerical analysis, systems, control

Kahe osapoolega mitmikpunktfunktsiooni saladusejaostusskeem
Lühikokkuvõte:
Turvaline ühisarvutus on tähtis krüptograafia haru, mis tegeleb privaatsete andmete
töötlemisega. Üks oluline komponent turvalises ühisarvutuses on korreleeritud juhus-
likkus, mis aitab osapooltel teha arvutusi efektiivsemalt või vähendada nendevahelise
suhtluse mahtu, säilitades seejuures andmete privaatsust. Mõned näited sellisest kor-
releeritud juhuslikkusest on juhuslikud pimeedastusseosed (OT), lineaarfunktsiooni
pimeväärtustamisseosed (OLE), Beaveri kolmikud ja ühekordsed tõeväärtustabelid. Mit-
mikpunktfunktsiooni saladusejaostust saab edukalt kasutada (pseudo)juhuslike seoste
genereerimisel. Sellest tulenevalt tekib küsimus, et kuidas saame konstrueerida efektiivset
mitmikpunktfunktsiooni saladusejaostusskeemi. Käesolevas magistritöös läheneme me
sellele küsimusele uutmoodi, kasutades puu struktuuri, pseudojuhuarvude generaatorit ja
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lineaarvõrrandisüsteeme. Meie skeem MultiFunUSLESS on efektiivsuselt võrreldav vara-
semate konstruktsioonidega ja on väärtustamisfaasis neist kiireim. Seega on see teatud
kasutusjuhtudel parim valik. MultiFunUSLESS võimaldab meil mitmikpunktfunktsiooni
saladusejaotusskeemi konstrueerimisele läheneda uutviisi. Arvutiteaduses on efektiivsus
võtmesõnaks – algoritmid peaksid arvutama kiiremini, kasutama vähem ressursse ja
suhtlus peaks olema minimaalne. See ongi käesoleva magistritöö eesmärk.

Võtmesõnad:
funktsiooni saladusejaostus, mitmikpunktfunktsioon, saladusejaostus, lineaaralgebra,
hajuspunktfunktsioon, lõplikud korpused

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction
Two-party multi-point function secret sharing is a scheme, during which two parties
can reveal evaluations of some multi-point function, only if they work together. Point
functions are functions that evaluate to a predetermined value b at the predetermined
special point a and evaluate to 0 everywhere else. Multi-point functions have some
constant number of such special points.

Multi-point function secret sharing is part of the broader topic of secure multiparty
computation (MPC), which is prevalent in all areas of life, where private information
needs to be processed. If private information has to be processed and no single party can
be trusted with the whole data, then the computation can be shared between multiple
parties such that no single party learns any significant part of the private data. Examples
of this include: medical information for research, handling private financial data or
keys for cryptocurrencies [IEE]. Function secret sharing (FSS) was proposed to be
useful in the setting of querying and updating distributed databases (private information
retrieval – PIR) [BGI15]. Multi-point FSS has seen some success in the constructions of
other primitives like vector oblivious linear-function evaluation (VOLE) [BCGI18] and
random oblivious transfer. The common denominator is that FSS schemes can be used to
make efficient pseudorandom correlation generators (PCG) and then PCG can provide
correlated randomness to the parties involved. Correlated randomness is a precious
resource in cryptographic applications. For example, identical random strings distributed
among the parties can be used for perfectly secure encryption by using one-time pad
encryption. Other examples of more useful types of random correlation in respect to MPC
are random oblivious transfer (OT) correlations, oblivious linear-function correlations
(OLE), multiplication triples (also known as Beaver triples [Bea91]) and one-time truth
tables [BCGI18], [BCG+19].

For this thesis I was given a draft for the algorithms by my supervisor. My contribution
was to modify the algorithms, formalize them, prove that they are correct and secure
according to the FSS definition, calculate their efficiency and compare with other multi-
point FSS schemes. We call our scheme MultiFunUSLESS. Previous schemes rely on
many pseudorandom generator (PRG) evaluations that are quite costly. Therefore, the
idea was to try to bring the number of required PRG calls down. MultiFunUSLESS has
similar key size and time complexity to other multi-point function secret sharing schemes
and it shines in its simple mathematical constructions and its efficiency of evaluating the
shared function at some small constant number of points.

The outline of this work is as follows. In the second section, all the preliminary
knowledge that the reader needs for understanding the thesis is given. In the next
section, algorithms are introduced and explained. In the fourth section the properties of
MultiFunUSLESS are presented and rigorously proved. In the fifth section, prior works
are listed and compared with MultiFunUSLESS. In the final section, conclusions and
possible future work is given.
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2 Preliminaries
This section is meant as a guide to return to, if something in later sections becomes
confusing. However, it is recommended to read through sections about secret sharing,
functional secret sharing, distributed point functions and multi-point functions as these
topics are less well known. Most of the definitions given are classical with some minor
changes to fit more tightly with this research paper.

2.1 Notation
Let us list some important notation.

• For sets X and Y , we denote F(X → Y ) as the family of functions φ : X → Y .

• For n ∈ N, we denote {0, 1}n as bit strings with length n and {0, 1}∗ as the set of
all bit strings.

• For bit strings x ∈ {0, 1}∗ and integers i ∈ N, we denote xi as the i-th bit of x.

• For bit strings a, b ∈ {0, 1}∗, we denote a||b as the concatenation of a and b.

• For bits a1, a2 ∈ {0, 1}, we denote a1a2 as the concatenation of a1 and a2.

• For bit strings a, x ∈ {0, 1}n, we denote x1x2 . . . xi = a1a2 . . . ai as the first i bits
of x coinciding with the first i bits of a.

• For secret shared value τ from some abelian group G and a two-party additive
secret sharing scheme, we denote [τ ]1 and [τ ]2 as the secret shares of party 1 and
party 2. That is

[τ ]1 + [τ ]2 = τ.

• For values a, b from some set X , we denote [a
?
= b] as the boolean function that

checks the equality of two elements of X. In other words

[a
?
= b] =

{
0, if a ̸= b,
1, if a = b.

2.2 Cryptography
2.2.1 Probabilistic polynomial time (PPT) algorithm

Probabilistic polynomial time algorithms are algorithms that run for polynomial number
of steps and that can use some internal randomness to make choices. Polynomial
number of steps means that there exists some polynomial tpoly such that for all inputs
x ∈ {0, 1}∗ and all internal randomness the time it takes for the algorithm to halt is less
than tpoly(|x|) [Gol01].
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2.2.2 Pseudorandom generator (PRG)

A pseudorandom generator is a polynomial time deterministic algorithm that gets a small
uniform seed as its input and outputs a large pseudorandom value [KL08]. Pseudorandom
here means that no bounded adversary can distinguish between this large value and a
uniform large value. More formally,

Definition 1. Let X and Y be sets such that |X| < |Y |. We say that a function
f : X → Y is a εPRG-pseudorandom generator (PRG), if for every PPT adversary A∣∣∣Pr [A(f(x)) = 1 | x $← X

]
− Pr

[
A(y) = 1 | y $← Y

]∣∣∣ ≤ εPRG.

2.2.3 Secret sharing

Secret sharing is the process of sharing a piece of data between multiple parties such
that a malicious subset of parties cannot access the data without cooperating with at
least t parties, where t is a threshold set by the scheme [Sha79][KL23]. A piece of
data held by one party is called a secret share. Let us denote the set of parties with
P := {P1, . . . , Pn}.

Definition 2. A perfect secret sharing scheme for a set of secrets S, threshold t and set
of parties P consists of a pair of PPT algorithms (share, reconstruct), where

• share: On input s ∈ S outputs shares σ1, . . . , σn ∈ {0, 1}∗;

• reconstruct: On inputs (i, σi) from parties Pi ∈ P̂ ⊆ P , outputs the secret s′ ∈ S
or the error symbol ⊥.

This scheme must satisfy the following properties:

• Completeness: For every s ∈ S and every subset of parties P̂ ⊆ P , that satisfy∣∣∣P̂∣∣∣ ≥ t

Pr
[
s′ = s | (σ1, . . . , σn)← share(s); s′ ← reconstruct({Pi() : Pi ∈ P̂})

]
= 1,

where Pi() := (i, σi) denotes the output of the i-th party;

• Privacy: For every s ∈ S, every subset of parties P̂ ⊂ P , that satisfy
∣∣∣P̂∣∣∣ < t, and

every PPT algorithm A

Pr
[
s′ = s | (σ1, . . . , σn)← share(s); s′ ← A({Pi() : Pi ∈ P̂})

]
≤ ptriv,
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where Pi() := (i, σi) denotes the output of the i-th party and ptriv denotes the
trivial probability of guessing the secret or guessing the shares of other parties

ptriv := max{max
s∈S
{Pr [s← S]}, max

Pi∈P\P̂
σi∈{0,1}∗

{Pr [σi ← share(s)]}}.

Definition 3. Let G be an abelian group. Additive secret sharing is a perfect secret
sharing scheme with threshold t = n = |P| and ptriv = maxs∈G{Pr [s← G]}, for which

• share: On input s ∈ G, samples σ1, . . . , σn−1
$← G. Then computes

σn = s−
n−1∑
i=1

σi

and outputs shares σ1, . . . , σn.

• reconstruct: On input of all n shares σ1, . . . , σn, outputs
∑n

i=1 σi. On any other
subset of input shares outputs ⊥.

2.2.4 Function secret sharing (FSS)

Function secret sharing is a type of secret sharing, where the data shared by the parties is
a description of some function φ from a predefined function family F . This description
can be used to calculate the secret share of φ(x) for any x in the domain of φ [BGI15].
More formally, let p ∈ N.

Definition 4. A p-party function secret sharing (FSS) scheme with respect to function
class F(X → Y ) and secret sharing scheme SS is a pair of PPT algorithms (Gen, Eval),
where

• Gen: Gets the description of φ ∈ F as its input and it outputs p keys k1, . . . , kp ∈
{0, 1}∗.

• Eval: On input (i, ki, x), the algorithm outputs the i-th party’s secret share of φ(x)
in respect to SS , where i ∈ {1, . . . , p}, ki ∈ {0, 1}∗ and x ∈ X .

The scheme must satisfy the following properties:

• Completeness: For all φ ∈ F(X → Y ), x ∈ X ,

Pr[reconstruct(Eval(1, k1, x), . . . ,Eval(n, kp, x)) = φ(x)|
k1, . . . , kp ← Gen(φ)] = 1.
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• Security: We call an FSS scheme (Q, εFSS)-indistinguishable, if for all corrupted
parties T ⊂ {1, . . . , p}, |T | ≤ Q < p and for all PPT algorithms A:

Pr
[
b = b̄

]
− 1

2
≤ εFSS,

where b and b̄ come from the following experiment:

– The adversary outputs (φ1, φ2, σ)← A(), where φ1, φ2 ∈ F(X → Y ) are
descriptions of two functions from function family F and σ ∈ {0, 1}∗ is the
state of A.

– The challenger selects b← {0, 1} and calculates (k1, . . . , kp)← Gen(φb).

– The adversary gets the corrupted keys and calculates b̄← A({ki}i∈T , σ).

Note that in the following sections we denote Eval(i, ki, x) as Evali(ki, x).

2.2.5 Distributed point function (DPF)

Let X and Y be some sets e.g. X = {0, 1}n and Y = {0, 1}m for some n,m ∈ N. The
following definitions come from [BGI15].

Definition 5. For a ∈ X and b ∈ Y the point function Pa,b is defined by Pa,b(a) = b
and Pa,b(x) = 0 for all x ̸= a.

Definition 6 ([BGI15], [GI14]). A distributed point function (DPF) is an FSS scheme
with respect to the family of point functions over X = {0, 1}n and Y = {0, 1}m.

2.2.6 Multi-point function

Let X and Y be some sets e.g. X = {0, 1}n and Y = {0, 1}m for some n,m ∈ N.

Definition 7 ([BCGI18]). For a⃗ ∈ X t and b⃗ ∈ Y t the t-multi-point function Pa⃗,⃗b is
defined by

Pa⃗,⃗b(x) =

{
bi, if x = ai,
0, otherwise,

where ai is the i-th element of a⃗ and bi is the i-th element of b⃗.

2.2.7 Ideal Cipher Model

We define block cipher more broadly than usual.

Definition 8 ([KL08]). Let γ, κ ∈ N and F : {0, 1}γ ×{0, 1}κ → {0, 1}γ be an efficient
function. We call F a keyed permutation or a block cipher if for all k ∈ {0, 1}κ the
function F (·, k) is bijective.
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Definition 9 ([CPS08]). The Ideal Cipher Model (ICM) is an idealized model, where a
publicly accessible block cipher exists. This block cipher takes in κ bit keys and γ bit
inputs and returns γ bit outputs and is chosen uniformly from all such block ciphers. This
is equivalent to choosing a function from 2κ independent random permutations.

2.3 Statistical distance and computational distance
In this section statistical distance comes from [Gol01] and computational distance
from [KL08].

Definition 10 (Probability Ensemble). Let I be a countable index set. An ensemble
indexed by I is a sequence of random variables indexed by I . Namely any X = {Xi}i∈I ,
where each Xi is a random variable, is an ensemble indexed by I .

Definition 11. Let X := {Xi}i∈N and Y := {Yi}i∈N be ensembles. The statistical
distance between X and Y is defined as

SD(X, Y ) =
1

2
·
∑
α

|Pr [Xn = α]− Pr [Yn = α]| .

Definition 12. Let X := {Xi}i∈N and Y := {Yi}i∈N be ensembles. We say X and Y are
ε-indistinguishable if for every PPT distinguisher D:

|Pr [D(Xn) = 1]− Pr [D(Yn) = 1]| ≤ ε,

where D(Xn) means that x is chosen according to the distribution of Xn and then D(Xn)
is run.

Definition 13. We call two cryptographic games G0 and G1 ε-close, if for all PPT
algorithms A

|Pr [G0(A) = 1]− Pr [G1(A) = 1]| ≤ ε,

where G0(A) denotes that A is used as a subroutine in G0 and the probability is taken
over the randomness of the games and the randomness of A.
Note: Two ensembles can also be called ε-close, if the statistical distance between them
is less or equal than ε.

2.4 Algebra
The following definitions come from [MP13].

Definition 14. A ring (R,+, ·) is a nonempty set R with two operations “+”(addition)
and “·”(multiplication) such that

11



1. (R,+) is an abelian group;

2. multiplication “·” is associative i.e for all a, b, c ∈ R: (a · b) · c = a · (b · c);

3. left and right distributive laws hold i.e for all a, b, c ∈ R:

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

Definition 15. Let (R,+, ·) be a ring. R is a field if it satisfies the following conditions:

1. multiplication “·” is commutative i.e for all a, b ∈ R: a · b = b · a;

2. all non-zero elements of R form a group under “·”.

Definition 16. A finite field is a field with finite number of distinct elements.

Definition 17. If R is a ring and there exists such positive integer c such that for all
x ∈ R it holds cx = 0, then the smallest of such integers is called the characteristic of
the ring R. Otherwise, the characteristic of the ring is 0.

For example, F2k has characteristic 2, because addition in the field boils down to
XORing of the bit representations of elements.

Now let F be a field and m,n ∈ N. The next definitions and theorems come from
[AR91].

Definition 18. Let r ∈ N and v1, . . . , vr be vectors in a vector space V over the field
F. Vector w ∈ V is called a linear combination of the vectors v1, . . . , vr, if there exist
k1, . . . , kr ∈ F such that

w = k1v1 + . . .+ krvr.

Definition 19. Let r ∈ N and v1, . . . , vr be vectors in a vector space V . We call subspace
Ṽ of V the space spanned by v1, . . . , vr if every ṽ ∈ Ṽ can be expressed as a linear
combination of v1, . . . , vr and every linear combination of v1, . . . , vr is in Ṽ .

Definition 20. If A is a m× n matrix over the field F, then the subspace of Fn spanned
by the row vectors of A is called the row space of A. The subspace of Fm spanned by the
column vectors of A is called the column space of A. The solution space of homogeneous
system of linear equations Ax = 0 is called the nullspace or the kernel of A.

Theorem 1. For any matrix A over F, the dimension of the row space and the dimension
of the column space are equal.

Definition 21. The common dimension of the row space and the column space of matrix
A is called the rank of the matrix. It is denoted by rank(A).
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Definition 22. The dimension of the nullspace of A is called nullity of A and is denoted
by nullity(A).

Theorem 2. A system of linear equations Ax = b is solvable if and only if the rank of
the coefficient matrix A is the same as the rank of the augmented matrix (A | b).

Theorem 3 (Dimension theorem of matrices). If A is a matrix with n columns then

rank(A) + nullity(A) = n.

2.5 Probability theory
In this subsection, some important results from probability theory are listed from the
book [GW09].

Let A,B be events. Here A∩B corresponds to “both events occur”, A∪B corresponds
to “at least one event occurs” and ¬A corresponds to “A does not occur”. If A ∩B = ∅,
then we say A and B are disjoint events.

Definition 23. If Pr [B] > 0 then the conditional probability of A given B is denoted as
Pr [A | B] and defined as

Pr [A | B] :=
Pr [A ∩B]

Pr [B]
.

Theorem 4. If {Bi | i ∈ {1, . . . , n}}, n ∈ N is a set of disjoint events such that
Pr
[⋃

i∈{1,...,n}Bi

]
= 1 and for all i, j ∈ {1, . . . , n} either Pr [Bi ∩Bj] = 0 or i = j,

then
Pr [A] =

∑
i∈{1,...,n}

Pr [A | Bi] .

2.6 Big O notation
Let f : N+ → R+ be a function.

Definition 24 ([MSS08]). We define the following sets:

• O(f(n)) := {g(n) | ∃c > 0,∃n0 ∈ N+,∀n ≥ n0 : g(n) ≤ c · f(n)},

• Ω(f(n)) := {g(n) | ∃c > 0,∃n0 ∈ N+,∀n ≥ n0 : g(n) ≥ c · f(n)},

• Θ(f(n)) := O(f(n)) ∩ Ω(f(n)).

These sets are useful in describing asymptotic behaviour of different functions, for
example, time complexity and number of bits for communication.
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2.7 Bernoulli inequality
The following result is well known and was taken from [Car00].

Theorem 5 (Bernoulli inequality). Let a ∈ R, n ∈ N. If a > −1 and n ≥ 1, then

(1− a)n ≥ 1− na.

3 Algorithms
From now on let k, n, t, v ∈ N, v ≥ t+ 1, f : F2k → Fv

2k
be a εPRG-PRG, (a1, . . . , at) ∈

({0, 1}n)t and (b1, . . . , bt) ∈ Ft
2k

. We require that if i, j ∈ {1, . . . , t} and i ̸= j, then
ai ̸= aj The values aj, bj define a multi-point function φ : {0, 1}n → F2k such that for
all j ∈ {1, . . . , t}

φ(x) =

{
bj, if x = aj,
0, otherwise.

A function secret sharing scheme consists of two algorithms – the key generation
algorithm (Gen) and the evaluation algorithm (Eval). The following subsections define
these algorithms. The idea is to generalize DPF construction of Boyle et. al [BGI15],
[BGI16] to the multi-point function case. This means the keys returned by the key
generation algorithm should define complete binary trees with k levels.

To evaluate φ on x both parties essentially move bit by bit down the binary trees
defined by the keys given to the parties by Gen. This means if we are at some node and
the next bit is 0, then we move to the left child and if the next bit is 1, then we move
right. If a path from the root node to some leaf node follows some aj , then we call that
path an alive path. Every other path from root to leaf is called a dead path. We call
nodes that lie on some alive path alive nodes and other nodes dead nodes. The goal is to
have a shared secret of 0 at the dead nodes and non-zero shared secret at alive nodes. For
this we use some clever linear algebra. Both parties have to apply a linear function to the
values at the leaf nodes to get either a shared secret of 0, if the last node was dead, or bj ,
if the alive path followed was aj . Note that every alive node has to have at least one alive
child, but it can have two. Also note that there are at most t alive nodes at each level of
the binary tree. Dead nodes cannot have any alive children, therefore our construction
must preserve the deadness of nodes. The key part we use in accomplishing this goal is
that we are working over a field of characteristic 2. This means the sum of two equal
elements is always zero and if the sum of two elements is zero, then they are equal. We
use a deterministic PRG to guarantee that, if both secret sharings become the same, then
they stay the same.

For example, on Figure 1 alive paths are colored green, alive nodes are colored green
and dead nodes are colored black and the 3-multi-point function from the function family
F({0, 1}4 → F23) is defined by points (0010, 001), (0011, 101) and (1011, 010). On the
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Figure 1. The main idea of MultiFunUSLESS

left we can see keys sk1 and sk2 and on the right we see the resulting shared secret of
the sum of the keys.

3.1 Key generation algorithm
The key generation algorithm (formalised in Algorithm 1 and Algorithm 2) works as
follows:

1. Sample Xϵ from Fv+1
2k
\ {0} and τϵ from F2k . Sample shares of (Xϵ, τϵ) for party

one and party two. Add ϵ to set R0.

2. Iterate over i ∈ {1, . . . , n} and at each iteration do the following:

(a) Randomly sample two different values wi,0 and wi,1 from F2k . They have to
be different, because this ensures that alive nodes with exactly one dead child
can kill only one child and not both of them.

(b) Iterate over the set Ri−1 (set of alive nodes) and separate its nodes’ children
r||b into alive nodes Ri and dead nodes R′i. Here r ∈ {0, 1}i−1 and b ∈ {0, 1}.
Collect the nodes from Ri−1 with two children into the set R̂i−1.

(c) For each dead node r||b in R′i, add a constraint
〈
Xr, d⃗i−1

〉
= τr · wi,b to a

system of linear equations. This kills this dead node.

(d) For each alive node r in R̂i−1 from the previous layer i − 1 that have two
alive children r||0 and r||1, add a constraint

〈
Xr, d⃗i−1

〉
= τr · wr,2 to the

system of linear equations, where wr,2 ∈ F2k is not equal to wi,0 nor wi,1.
This ensures with high probability, that alive nodes are not killed by accident.
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(e) Solve for d⃗i−1 ∈ Fv
2k

. Since there are at most t rows in the system of linear
equations and v > t variables, then we know there are either no solutions or
a lot of solutions. If the system is not solvable, then return ⊥ and abort. If it
is solvable, then sample one of those solutions.

(f) For each alive node r||b in Ri, set as the new secret shared values

([Xr||b]1, [τr||b]1)← f(
〈
[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,b),

([Xr||b]2, [τr||b]2)← f(
〈
[Xr]2, d⃗i−1

〉
+ [τr]2 · wi,b),

(Xr||b, τr||b)← ([Xr||b]1, [τr||b]1) + ([Xr||b]2, [τr||b]2).

Note that we do not have to do this operation for dead nodes, because at each
iteration we are only using the secret shares of the values in the alive nodes.

3. Solve linear system of equations, where for every j ∈ {1, . . . , t}〈
Xaj , g⃗

〉
= bj + τaj ,

and uniformly sample a solution to this. If the system is not solvable, then return
⊥ and abort.

4. Set ([Xϵ]1, [τϵ]1, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗) as the first key sk1 and send it to
P1.

5. Set ([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗) as the second key sk2 and send
it to P2.
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Algorithm 1: Gen – Key generator for the scheme
Input :{(a1, b1), . . . , (at, bt)}, f

1 [Xϵ]1
$← Fv

2k
;

2 [Xϵ]2
$← Fv

2k
\ {[Xϵ]1};

3 Xϵ ← [Xϵ]1 + [Xϵ]2;
4 [τϵ]1, [τϵ]2

$← F2k ;
5 τϵ ← [τϵ]1 + [τϵ]2;
6 R0 ← {ϵ}, where ϵ is an empty string;
7 for i = 1 to n do
8 wi,0, wi,1, d⃗i−1, Ri ← SubGen();

9 A←

 Xa1
...

Xat

;

10 B⃗ ←

 b1 + τa1
...

bt + τat

;

11 Solve Ag⃗ = B⃗ and sample g⃗ from the solution space;
12 sk1 ← [Xϵ]1, [τϵ]1, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗;
13 sk2 ← [Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗;
14 Give to P1 the key sk1;
15 Give to P2 the key sk2;
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Algorithm 2: SubGen – Subroutine for Gen(Algorithm 1)
Input :The state of Gen
Output :wi,0, wi,1, d⃗i−1, Ri

1 wi,0
$← F2k \ {0};

2 wi,1
$← F2k \ {0, wi,0};

3 Ri ← ∅;
4 R′i ← ∅;
5 R̂i−1 ← ∅;
6 for r ∈ Ri−1 do
7 for b ∈ {0, 1} do
8 if ∃aj such that aj starts with r||b then
9 Ri ← Ri ∪ {r||b};

10 else
11 R′i ← R′i ∪ {r||b};

12 if r||0 ∈ Ri and r||1 ∈ Ri then
13 R̂i−1 ← R̂i−1 ∪ {r};

14 Let A be a |Ri−1| × v matrix of zeroes;
15 Let B⃗ be a zero column vector of length |Ri−1|;
16 ji ← 1;
17 for r||b ∈ R′i do
18 Set the ji-th row of A to be Xr;
19 Set the ji-th element of B⃗ to be τr · wi,b;
20 ji ← ji + 1 ;

21 for r ∈ R̂i−1 do
22 wr,2

$← F2k \ {wi,0, wi,1};
23 Set the ji-th row of A to be Xr;
24 Set the ji-th element of B⃗ to be τr · wr,2;
25 ji ← ji + 1 ;

26 Solve Ad⃗i−1 = B⃗ and sample d⃗i−1 from the solution space;
27 for r||b ∈ Ri do
28 ([Xr||b]1, [τr||b]1)← f(

〈
[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,b);

29 ([Xr||b]2, [τr||b]2)← f(
〈
[Xr]2, d⃗i−1

〉
+ [τr]2 · wi,b);

30 Xr||b ← [Xr||b]1 + [Xr||b]2;
31 τr||b ← [τr||b]1 + [τr||b]2;

32 return wi,0, wi,1, d⃗i−1, Ri;
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3.2 Evaluation algorithm
The evaluation algorithm for party P ∈ {1, 2} on input x = x1||x2|| . . . ||xn ∈ {0, 1}n
works as follows:

1. Set (X0, τ0)← ([Xϵ]P , [τϵ]P ).

2. Iterate over i ∈ {1, . . . , n} and do the following:

(a) Calculate zi ←
〈
Xi−1, d⃗i−1

〉
+ τi−1 · wi,xi .

(b) Evaluate (Xi, τi)← f(zi). If r||xi := x1||x2|| . . . ||xi is an alive node, then
we have got (Xi, τi) = ([Xr||xi ]P , [τr||xi ]P ). If r||xi is a dead node, then r is

either alive or dead. If r is alive then from
〈
Xr, d⃗i−1

〉
= τr · wi,xi , we can

deduce that〈
[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,xi =

〈
[Xr]2, d⃗i−1

〉
+ [τr]2 · wi,xi .

This means both parties use the same argument in f and since f is determinis-
tic, then we know that both parties have the same value as their secret shares,
which means that their shared secret is 0. And since the evaluation algorithm
for both parties continues exactly the same, we know that both secret shares
will stay the same until the end of the protocol. If r is dead, then we know
that for some ancestor of r must be dead and the same reasoning follows.

3. Calculate z ← ⟨Xn, g⃗⟩+ τn.

We formalise this in Algorithm 3. To make the analysis easier we can also divide the
algorithm into Algorithms 4 and 5.

Algorithm 3: EvalP – Evaluator for the scheme
Input :skP , f, x = x1|| . . . ||xn

1 X0, τ0, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗ ← skP ;
2 for i = 1 to n do
3 zi ←

〈
Xi−1, d⃗i−1

〉
+ τi−1 · wi,xi;

4 (Xi, τi)← f(zi);

5 z ← ⟨Xn, g⃗⟩+ τn;
6 return z
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Algorithm 4: EvalPi – Subroutine for the evaluator
Input :Xi−1, τi−1, wi,0, wi,1, d⃗i−1, f, x

i

1 zi ←
〈
Xi−1, d⃗i−1

〉
+ τi−1 · wi,xi;

2 (Xi, τi)← f(zi);
3 return (Xi, τi)

Algorithm 5: EvalP – Another way to define EvalP

Input :skP , f, x = x1|| . . . ||xn

1 X0, τ0, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗ ← skP ;
2 for i = 1 to n do
3 (Xi, τi)← EvalPi (Xi−1, τi−1, wi,0, wi,1, d⃗i−1, f, x

i);

4 z ← ⟨Xn, g⃗⟩+ τn;
5 return z

4 Properties of MultiFunUSLESS
In this thesis, we model the PRG f in the Ideal Cipher Model. Let us assume we have the
ideal block cipher F : {0, 1}k(v+1) × {0, 1}k → {0, 1}k(v+1). Sample x ∈ {0, 1}k(v+1)

and define an ideal PRG f̂ as F (x, ·). Since F is sampled randomly from all permutations
and also x is uniform, then f̂ produces uniformly random elements from {0, 1}k(v+1).
We can interpret these as elements of Fv

2k
. In the following proofs assume that any PRG

f is close enough to f̂ .
We have to prove that the following properties hold, then we can easily reason that

this protocol satisfies the conditions for being an FSS scheme.

1. Algorithm 2 has a low probability of error assuming its inputs are correct.

2. If the secret shared by the parties P1 and P2 is [0], then after one evaluation cycle
by Algorithm 4 the secret is still [0].

3. If Mi−1 ̸= 0, then x1x2 . . . xi−1 = a1ja
2
j . . . a

i−1
j for at least one of the aj .

4. For all i and all j with high probability

(Xa1j ||...||aij , τa1j ||...||aij) ̸= 0.

5. Algorithm 1 has a low probability of error assuming its inputs are correct.

6. If there exists j ∈ {1, . . . , t} such that x = aj , then executing Algorithms 1 and 3
produces a shared secret of bj .
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7. If there does not exist j ∈ {1, . . . , t} such that x = aj , then executing Algorithms 1
and 3 produces a shared secret of 0.

8. It is not possible to tell any information about aj or bj , for any j ∈ {1, . . . , t},
from the viewpoint of one party.

4.1 Error probability of SubGen

The problem with solving systems of linear equations is that they might not be solvable.
Therefore, there is a small chance that Algorithm 2 will terminate with an error.

Theorem 6. The probability that Algorithm 2 will end with an error provided that its
inputs are correct is

Pr [Algorithm 2 returns ⊥] ≤ t

(2k)v−t+1
.

By correct inputs we mean that the values SubGen uses are correctly defined and for all
alive nodes r of the previous level: (Xr, τr) ̸= 0.

Proof. Let us analyse what is the probability of success and look at the system of linear
equations Ad⃗ = B⃗. At first let us assume that A ∈ Ft′×v

2k
is fixed, where t′ ≤ v. From

Theorem 2 we get that Ad⃗ = B⃗ is solvable iff rank(A) = rank(A | B⃗). We know that the
rank of a matrix shows the number of independent rows in the matrix. Thus, there exist
rank(A) independent rows of A. The same rows must be independent in matrix (A | B⃗),
because adding elements to independent vectors cannot make those vectors dependent.
For rank(A) = rank(A | B⃗) to hold, the dependent rows of A must also be dependent in
(A | B⃗). Since these rows are dependent on the independent rows, then there are rank(A)
elements of B⃗ that we can choose freely and t′ − rank(A) elements that are determined
by them. Therefore, for a fixed A there are (2k)rank(A) different vectors B⃗ for which
rank(A) = rank(A | B⃗) and the probability of getting such vector is thus

Pr
B⃗

$←Ft′
2k

[
Ad⃗ = B⃗ is solvable

]
=

(2k)rank(A)

(2k)t′
.

However, A is not fixed, it is also uniformly random. Therefore, if we want to
calculate the probability of success we have to sum over all A. Hence

Pr
A

$←Ft′×v

2k

B⃗
$←Ft′

2k

[
Ad⃗ = B⃗ is solvable

]
=

= Pr
B⃗

$←Ft′
2k

[
Ad⃗ = B⃗ is solvable | rank(A) = 0

]
· Pr

A
$←Ft′×v

2k

[rank(A) = 0] + . . .+
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+ Pr
B⃗

$←Ft′
2k

[
Ad⃗ = B⃗ is solvable | rank(A) = t′

]
· Pr

A
$←Ft′×v

2k

[rank(A) = t′] =

=
t′∑

j=0

Pr
B⃗

$←Ft′
2k

[
Ad⃗ = B⃗ is solvable | rank(A) = j

]
· Pr

A
$←Ft′×v

2k

[rank(A) = j] =

=
t′∑

j=0

 (2k)j

(2k)t′
·

∣∣∣{A | A ∈ Ft′×v
2k
∧ rank(A) = j}

∣∣∣
(2k)t′·v

 .

The number of A with rank j is

∣∣∣{A | A ∈ Ft′×v
2k
∧ rank(A) = j}

∣∣∣ = (2k)
j(j−1)

2 ·
j−1∏
i=0

((2k)v−i − 1)((2k)t
′−i − 1)

(2k)i+1 − 1

according to [MP13]. Therefore success of a single call of SubGen is

t′∑
j=0

 (2k)j

(2k)t′
·
(2k)

j(j−1)
2 ·

∏j−1
i=0

((2k)v−i−1)((2k)t′−i−1)
(2k)i+1−1

(2k)t′·v

 =

=
1

(2k)t′(v+1)

t′∑
j=0

(
(2k)

j(j+1)
2 ·

j−1∏
i=0

((2k)v−i − 1)((2k)t
′−i − 1)

(2k)i+1 − 1

)
,

where t′ = |Ri−1|. Let us bound it further to show that this value is close to 1. Notice
that the last element of the sum is also the biggest. Hence

Pr [success] ≥ (2k)
t′(t′+1)

2

(2k)t′(v+1)

t′−1∏
i=0

((2k)v−i − 1)((2k)t
′−i − 1)

(2k)i+1 − 1
.

In the product we divide with the following elements (2k)1 − 1, (2k)2 − 1, . . . , (2k)t′ − 1
and multiply by (2k)1 − 1, (2k)2 − 1, . . . , (2k)t′ − 1. Thus, we get

Pr [success] ≥ (2k)
t′(t′+1)

2

(2k)t′(v+1)

t′−1∏
i=0

(
(2k)v−i − 1

)
.

Notice that t′(t′+1)
2

is the sum of an arithmetic series from 1 to t′ with step 1 (see [Gra72]
for example). We have

Pr [success] ≥ (2k)1+2+...+t′

(2k)t′v+t′

t′−1∏
i=0

(
(2k)v−i − 1

)
=
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=
(2k)0 · . . . · (2k)t′

(2k)t′v(2k)t′

t′−1∏
i=0

(
(2k)v−i − 1

)
=

=
t′−1∏
j=0

(2k)j

(2k)v

t′−1∏
i=0

(
(2k)v−i − 1

)
.

Let us combine the two products and get

Pr [success] ≥
t′−1∏
i=0

(2k)i

(2k)v
(
(2k)v−i − 1

)
=

t′−1∏
i=0

(
1− 1

(2k)v−i

)
.

The smallest term in this product is when i = t′ − 1, thus

Pr [success] ≥
t′−1∏
i=0

(
1− 1

(2k)v−t′+1

)
=

(
1− 1

(2k)v−t′+1

)t′

.

Now from the Bernoulli inequality (5) we get

Pr [success] ≥
(
1− 1

(2k)v−t′+1

)t′

≥ 1− t′

(2k)v−t′+1
.

Since t ≥ t′, then

Pr [success] ≥ 1− t′

(2k)v−t′+1
≥ 1− t

(2k)v−t+1
.

And thus the probability of error is

Pr [Algorithm 1 returns ⊥] ≤ 1− 1 +
t

(2k)v−t+1
=

t

(2k)v−t+1
.

4.2 Dead nodes’ children stay dead
If the secret shared by the parties P1 and P2 is [0], then after one evaluation cycle by
Algorithm 4 the secret is still [0]. This can be stated more formally as follows.

Theorem 7. For all i ∈ {1, . . . , n}; xi ∈ {0, 1}; [Xi−1]1, [Xi−1]2 ∈ Fv
2k

; [τi−1]1, [τi−1]2 ∈
F2k and all key pairs generated by Gen: if [Xi−1]1 = [Xi−1]2 and [τi−1]1 = [τi−1]2 and

([Xi]1, [τi]1,[Xi]2, [τi]2)← αi([Xi−1]1, [τi−1]1, [Xi−1]2, [τi−1]2, wi,0, wi,1, d⃗i−1, f, x
i),

then [Xi]1 = [Xi]2 and [τi]1 = [τi]2, where αi is Algorithm 6 and EvalPi is Algorithm 4.
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Algorithm 6: αi – One cycle of multiparty computation
Input : [Xi−1]1, [τi−1]1, [Xi−1]2, [τi−1]2, wi,0, wi,1, d⃗i−1, f, x

i

1 ([Xi−1]1, [τi−1]1)← Eval1i ([Xi−1]1, [τi−1]1, wi,0, wi,1, d⃗i−1, f, x
i);

2 ([Xi−1]2, [τi−1]2)← Eval2i ([Xi−1]2, [τi−1]2, wi,0, wi,1, d⃗i−1, f, x
i);

3 return ([Xi−1]1, [τi−1]1, [Xi−1]2, [τi−1]2)

Proof. Let us fix i ∈ {1, . . . , n}, xi ∈ {0, 1} and a key pair generated by Gen. Assume
[Xi−1]1 = [Xi−1]2 and [τi−1]1 = [τi−1]2. Now let us calculate αi

[zi]1 ←
〈
[Xi−1]1, d⃗i−1

〉
+ [τi−1]1 · wi,xi ,

([Xi]1, [τi]1)←f([zi]1),

[zi]2 ←
〈
[Xi−1]2, d⃗i−1

〉
+ [τi−1]2 · wi,xi =

=
〈
[Xi−1]1, d⃗i−1

〉
+ [τi−1]1 · wi,xi = [zi]1,

([Xi]2, [τi]2)←f([zi]2) = f([zi]1) = ([Xi]1, [τi]1).

Therefore, we get
[Xi]1 = [Xi]2, and [τi]1 = [τi]2,

which is exactly what we wanted to show.

4.3 Node is alive if it is supposed to be alive
This can be stated more formally as follows.

Theorem 8. For all i ∈ {0, . . . , n} if Mi ̸= 0, then there exists j ∈ {1, . . . , t} such that

x1x2 . . . xi = a1ja
2
j . . . a

i
j.

Notice that due to the construction of Algorithms 1 and 3, we can be sure, that the
shared value in the evaluation phase (Xi−1, τi−1) is the same as (Xx1x2...xi−1 , τx1x2...xi−1)
in the key generation phase. This is the reason why we can denote Mi−1 as (Xx1x2...xi−1 ,
τx1x2...xi−1).

Proof. Let us prove this by induction.
Base step: Let i = 0. The statement holds trivially, because there is no 0-th bit of x,

therefore, it coincides with the beginning of every aj .
Induction step: Let us assume for i− 1 the statement holds and denote

r := x1x2 . . . xi−1,
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i.e.
(Xr, τr) ̸= 0 ⇒ ∃j ∈ {1, . . . , t} : r = a1ja

2
j . . . a

i−1
j .

Let us show the statement holds for i as well and assume towards contradiction that

(Xr||xi , τr||xi) ̸= 0 ∧ ∄j ∈ {1, . . . , t} : r||xi = a1ja
2
j . . . a

i
j.

Since (Xr||xi , τr||xi) ̸= 0, then property 2 implies that (Xr, τr) ̸= 0. Now we can use the
induction assumption and get that ∃j ∈ {1, . . . , t} : r = a1ja

2
j . . . a

i−1
j . This means that

during the execution of SubGen r ∈ Ri−1 and since ∄j ∈ {1, . . . , t} : r||xi = a1ja
2
j . . . a

i
j ,

then we know that r||xi ∈ R′i. In SubGen lines 17 to 20 the following equation is
enforced: 〈

Xr, d⃗i−1

〉
= τr · wi,xi ,

which, because of linearity of the scalar product and the fact that

[Xr]1 + [Xr]2 = Xr and [τr]1 + [τr]2 = τr,

is the same as〈
[Xr]1, d⃗i−1

〉
+
〈
[Xr]2, d⃗i−1

〉
= [τr]1 · wi,xi + [τr]2 · wi,xi ,

that is 〈
[Xr]1, d⃗i−1

〉
− [τr]1 · wi,xi = −

〈
[Xr]2, d⃗i−1

〉
+ [τr]2 · wi,xi .

Since we are working in F2k , then we get〈
[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,xi =

〈
[Xr]2, d⃗i−1

〉
+ [τr]2 · wi,xi .

Now we can calculate (Xr||xi , τr||xi):

(Xr||xi ,τr||xi) = ([Xr||xi ]1, [τr||xi ]1) + ([Xr||xi ]2, [τr||xi ]2) =

= f
(〈

[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,xi

)
+ f

(〈
[Xr]2, d⃗i−1

〉
+ [τr]2 · wi,xi

)
=

= f
(〈

[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,xi

)
+ f

(〈
[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,xi

)
=

= (0, . . . , 0, 0).

This is a contradiction, because we assumed (Xr||xi , τr||xi) ̸= 0. Therefore, there
exists j ∈ {1, . . . , t} : r||xi = a1ja

2
j . . . a

i
j . By the principles of mathematical induction,

the statement holds for any i ∈ {0, . . . , n}.
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4.4 Alive nodes are probably not dead
Theorem 9. For all i ∈ {0, . . . , n}, for all j ∈ {1, . . . , t} and for all PRG f : F2k →
Fv+1
2k

for which

Pr
[
f(x) = f(x′) ∧ x ̸= x′ : x, x′

$← F2k

]
≤ εcol,

it holds
Pr
[
(Xa1j ||...||aij , τa1j ||...||aij) ̸= 0

]
≥
(
psolvable · (1− εcol)

t
)i
,

where the probability is taken over the randomness of Gen and

psolvable := 1− t

(2k)v−t+1
.

Proof. Let us prove this claim by induction over i ∈ {0, . . . , n}.
Base step: Let i = 0. In any case (Xϵ, τϵ) ̸= 0 and thus the probability is 1, because

the construction of Gen ensures that Xϵ is not 0. Therefore the claim holds trivially.
Induction step: Let us assume that the claim holds for i− 1 and show it also holds

for i. Denote
pi := Pr

[
(Xa1j ||...||aij , τa1j ||...||aij) ̸= 0

]
,

and rj := a1j || . . . ||ai−1j .
The proof follows the scheme seen on Figure 2. Nodes of the scheme represent

different events and edges between them represent the probability of this event happening
on the condition that previous events happened. If there is only one outgoing edge, then
the next event happened with probability 1 given the previous events. If there are two
outgoing edges, then the sum of the probabilities equals 1, or in other words, the child
events of the parent are complements of each other.

Let us start to calculate the probability of the success path from Figure 2. The first
question is, if (Xrj , τrj) ̸= 0 for all j ∈ {1, . . . , t}. This happens by the induction
assumption with probability

pi−1 ≥
(
psolvable · (1− εcol)

t
)i−1

.

On the other hand, if there exists j ∈ {1, . . . , t} such that (Xrj , τrj) = 0, then we know
from property 2, that (Xrj ||aij , τrj ||aij) = 0. Therefore, in this case we fail.

Now let us assume for all j ∈ {1, . . . , t} : (Xrj , τrj) ̸= 0. The next question is,
whether Ad⃗i−1 = B⃗ is solvable during the i-th step. If it is not, then Gen aborts and we
end in failure. We know from Subsection 4.1 that it is solvable with probability at least

psolvable := 1− t

(2k)v−t+1
.
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∃j : (Xrj , τrj) = 0

∃j : (Xrj ||aij , τrj ||aij) = 0

fail

∀j : (Xrj , τrj) ̸= 0

Ad⃗i−1 = B⃗ is not solvable

algorithm aborts

fail

Ad⃗i−1 = B⃗ is solvable

∀j:⟨Xrj ,d⃗i−1⟩̸=τrj ·wi,ai
j

zj,1←⟨[Xrj ]1,d⃗i−1⟩+[τrj ]1·wi,ai
j

zj,2←⟨[Xrj ]2,d⃗i−1⟩+[τrj ]2·wi,ai
j

∃j:
f(zj,1)=f(zj,2)

∃j:
(X

rj ||aij
,τ

rj ||aij
)=0

fail

∀j:
f(zj,1) ̸=f(zj,2)

∀j:
(X

rj ||aij
,τ

rj ||aij
)̸=0

success

Figure 2. Proof scheme for property 4.
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If Ad⃗i−1 = B⃗ is solvable, then a random d⃗i−1 is picked. Let us fix this value.
Let us fix j ∈ {1, . . . , t}. If r has one alive and one dead child, then we know that

r||aij is alive and r||(1− aij) is dead. Therefore, the system of linear equations enforces〈
Xrj , d⃗i−1

〉
= τrj · wi,(1−aij).

Since wi,(1−aij) ̸= wi,aij
, then

〈
Xrj , d⃗i−1

〉
̸= τrj · wi,aij

.
If r has two alive children, then we know that the system of linear equations enforces〈

Xrj , d⃗i−1

〉
= τrj · wrj ,2.

Since wrj ,2 ̸= wi,aij
, then

〈
Xrj , d⃗i−1

〉
̸= τrj · wi,aij

.

Therefore, we know that for all j ∈ {1, . . . , t} it holds
〈
Xrj , d⃗i−1

〉
̸= τrj ·wi,aij

. This
also means that〈

[Xrj ]1, d⃗i−1

〉
+ [τrj ]1 · wi,aij

̸=
〈
[Xrj ]2, d⃗i−1

〉
+ [τrj ]2 · wi,aij

.

Let us denote

zj,1 :=
〈
[Xrj ]1, d⃗i−1

〉
+ [τrj ]1 · wi,aij

,

zj,2 :=
〈
[Xrj ]2, d⃗i−1

〉
+ [τrj ]2 · wi,aij

.

During the execution of Gen, (Xrj ||aij , τrj ||aij) is calculated as f(zj,1)+f(zj,2). Now there
are two possibilities: on the one hand, if for all j ∈ {1, . . . , t} : f(zj,1) ̸= f(zj,2), which
means (Xrj ||aij , τrj ||aij) ̸= 0, then we succeed. Otherwise, if there exists j ∈ {1, . . . , t}
such that f(zj,1) = f(zj,2), then for that j the equality (Xrj ||aij , τrj ||aij) = 0 holds. This is
a failure.

What is the probability that for all j ∈ {1, . . . , t} : f(zj,1) ̸= f(zj,2)?
It is quite natural to think that random collisions in a PRG are very rare. Therefore, we
require from our PRG f : F2k → Fv+1

2k
that

Pr
[
f(x) = f(x′) ∧ x ̸= x′ : x, x′

$← F2k

]
≤ εcol.

Let us fix j ∈ {1, . . . , t}. We know that [τrj ]1 and [τrj ]2 are both uniform over F2k .
Therefore, [τrj ]1 · wi,aij

and [τrj ]2 · wi,aij
are uniform over F2k , because wi,aij

is fixed and
non zero. And thus zj,1 and zj,2 are also uniform over F2k . From before we get zj,1 ̸= zj,2.
This is exactly the situation that we assumed was frequent. Thus, for one j the probability
of f(zj,1) ̸= f(zj,2) is 1− εcol. Assuming all t instances of zj,1, zj,2 are independent, the
probability that we are looking for is equal or larger than (1− εcol)

t.
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Now let us follow the success path:

pi ≥ pi−1 · psolvable · (1− εcol)
t ≥

≥
(
psolvable · (1− εcol)

t
)i−1 · psolvable · (1− εcol)

t =
(
psolvable · (1− εcol)

t
)i ≥

≥
(
(1− εcol)

t ·
(
1− t

(2k)v−t+1

))i

.

Therefore, by the principles of mathematical induction for all i ∈ {0, . . . , n} the state-
ment holds.

4.5 Error probability of Gen

In the previous subsection we saw, what is the success probability of SubGen in the sense
that it does not kill alive nodes and it does not abort. These are the success conditions of
Gen as well. However, in the end Gen calculates g⃗ as well, which is also a possible point
of failure. This subsection captures the entire failure probability of MultiFunUSLESS.
At first, let us show that, if during the process an alive node has been killed, then Gen
aborts (unless that alive path is supposed to evaluate to 0).

Lemma 1. For all j ∈ {1, . . . , t}, if

(Xaj , τaj) = 0 and bj ̸= 0,

then Gen aborts.

Proof. Let us fix j ∈ {1, . . . , t} and assume

(Xaj , τaj) = 0 and bj ̸= 0.

During the execution of Gen at lines 9 to 11, we try to find g⃗ ∈ Fv
2k

such that〈
Xaj , g⃗

〉
= bj + τaj .

That is

⟨0, g⃗⟩ = bj + 0,

0 = bj.

This is not possible, because bj ̸= 0. Therefore, Gen aborts.

From the previous proof we also get that, if bj = 0, then Gen does not abort, due to
this alive node having been killed. This is not a problem, because the end result of the
protocol is still correct. The evaluation of desired t-multi-point function on x = aj is
bj = 0.
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Theorem 10. The probability that Algorithm 1 will end with an error provided that its
inputs are correct is

Pr [Algorithm 1 returns ⊥] ≤ 1− pn+1
solvable · (1− εcol)

tn,

where εcol is the probability that two random different inputs x1 ̸= x2 to the PRG f
collide (f(x1) = f(x2)) and

psolvable := 1− t

(2k)v−t+1
.

Proof. From Lemma 1 we can conclude that Gen succeeds if Gen does not abort. By
succeeding we mean that Gen does not make any keys that do not evaluate to the original
multi-point function, It can happen during the executions of SubGen or during the solving
of the linear equation Ag⃗ = B⃗. There are two possibilities:

1. For all j ∈ {1, . . . , t} we have

(Xaj , τaj) ̸= 0.

This holds with probability

Pr
[
(Xaj , τaj) ̸= 0

]
≥
(
psolvable · (1− εcol)

t
)n

.

It is reasonable to assume that in this case (Xaj , τaj) are uniformly random for all
j ∈ {1, . . . , t}. The question is what is the probability of solving Ag⃗ = B⃗, if A
and B⃗ are uniformly random. Thus, we have the same case as in Subsection 4.1
and the probability not aborting is greater than psolvable.

2. There exists j ∈ {1, . . . , t} such that

(Xaj , τaj) = 0.

We saw in Lemma 1 that in this case if bj ̸= 0, then the algorithm aborts. We do
not know what is the probability of bj ̸= 0. Thus, it is easier to bound the success
with 0.

From previous two branches we get that the probability of success is

Pr [Gen succeeds] ≥ psolvable
(
psolvable · (1− εcol)

t
)n

+ 0 = pn+1
solvable · (1− εcol)

tn.

And the probability of aborting is

Pr [Gen outputs ⊥] ≤ 1− pn+1
solvable · (1− εcol)

tn.
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4.6 The evaluation of an alive path produces correct output
Theorem 11. For all x ∈ {0, 1}n, if there exists j ∈ {1, . . . , t} such that x = aj , then
[bj]1 + [bj]2 = bj , where [bj]1 is the output of Eval1 and [bj]2 is the output of Eval2,
provided that Gen succeeds.

Proof. Let us fix x ∈ {0, 1}n and assume there exists j ∈ {1, . . . , t} such that x = aj
and that Gen, Eval1 and Eval2 succeed. Let [bj]1 be the output of Eval1 and [bj]2 be the
output of Eval2.

[bj]1 = ⟨[Xx]1, g⃗⟩+ [τx]1,

[bj]2 = ⟨[Xx]2, g⃗⟩+ [τx]2.

Since the scalar product is linear,

bj = ⟨Xx, g⃗⟩+ τx = ⟨[Xx]1 + [Xx]2, g⃗⟩+ [τx]1 + [τx]2 =

= ⟨[Xx]1, g⃗⟩+ [τx]1 + ⟨[Xx]2, g⃗⟩+ [τx]2 = [bj]1 + [bj]2.

Therefore, if the protocol succeeds, then P1 and P2 have a shared secret of bj .

4.7 The evaluation of a dead path produces shared secret of 0
Theorem 12. For all x ∈ {0, 1}n, if there does not exists j ∈ {1, . . . , t} such that x = aj ,
then [z]1 + [z]2 = 0, where [z]1 is the output of Eval1 and [z]2 is the output of Eval2,
provided that Gen succeeds.

Proof. Let us fix x ∈ {0, 1}n and assume there does not exists j ∈ {1, . . . , t} such that
x = aj and that Gen, Eval1 and Eval2 succeed. Let [zj]1 be the output of Eval1 and [zj]2
be the output of Eval2. We know from Gen and property 2, that at some point the shared
secret becomes 0 and it stays 0, thus we know that [Xx]1 = [Xx]2 and [τx]1 = [τx]2. Let
us calculate [zj]1 + [zj]2:

[zj]1 + [zj]2 = ⟨[Xx]1, g⃗⟩+ [τx]1 + ⟨[Xx]2, g⃗⟩+ [τx]2 =

= ⟨[Xx]1, g⃗⟩+ [τx]1 + ⟨[Xx]1, g⃗⟩+ [τx]1 = 0.

This is exactly what we wanted to show.

4.8 One party cannot evaluate the secret function alone
For readability, the games are moved to Subsection 4.11.

It is not possible to tell any information about aj or bj , for any j ∈ {1, . . . , t}, from
the viewpoint of one party. We can define a security definition that should capture
property 8.

31



Definition 25 (FSS real or random indistinguishability). We call a FSS scheme εFSS-
ROR-indistinguishable if for every PPT adversary A it holds

|Pr [Game 1(A) = 1]− Pr [Game 3(A) = 1]| ≤ εFSS,

and
|Pr [Game 2(A) = 1]− Pr [Game 3(A) = 1]| ≤ εFSS,

where P1← denotes the output that is given to P1 and P2← denotes the output that is given to
P2.

Theorem 13. For all εPRG-PRG f : F2k → Fv+1
2k

:
MultiFunUSLESS is (t · n · εPRG + (n+ 1) · εmat)-ROR-indistinguishable, where

εmat =
t

(2k)v−t+1
.

Proof. In this proof, we color changes in code magenta.
Without loss of generality, let us assume that adversary A is playing as P2. Also, let us
assume we have εPRG-PRG f : F2k → Fv+1

2k
. This means that for every PPT adversary B

|Pr [Game 4(B) = 1]− Pr [Game 5(B) = 1]| ≤ εPRG.

Now let us look at Game 2 and the first occurrence of the line (1)

([Xr||b]1, [τr||b]1)← f(
〈
[Xr]1, d⃗i−1

〉
+ [τr]1 · wi,b). (1)

Since ϵ ∈ R0, then at least one of the corresponding node’s children must be in R1. Let
us denote this child by b. Now let us look at

〈
[Xϵ]1, d⃗0

〉
+ [τϵ]1 · w1,b. Since w1,b ̸= 0

and [τϵ]1 is uniform over F2k , then [τϵ]1 · w1,b is also uniform over F2k . From this we can

also conclude that
〈
[Xϵ]1, d⃗0

〉
+ [τϵ]1 · w1,b is also uniform over F2k . Notice that A does

not know this value, because they do not know [τϵ]1. Even if they know all the other parts
of this expression [τϵ]1 hides it.

Therefore, we have reached Game 4. We can replace the first occurrence of line (1)
with

([Xr||b]1, [τr||b]1)
$← Fv+1

2k
,

and get a new game called Game 2-1, which differs by only this line and is εPRG-close to
Game 2. Repeating this procedure at every occurrence of line (1) or in other words at
every alive node, we can replace all such lines and reach Game 2-t′, which is t · n · εPRG-
close to Game 2. Let us write out Game 2-t′ and rename it to Game 6. This can be
further simplified, because Xr||b and τr||b on lines 30 and 31 of SubGen are now also
uniformly random. We get the new game Game 7. We can do the sampling right before
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we need sampled values and get Game 8, which turns into Game 9, because the aim
of the sampling is to sample random matrices and vectors. Note that the symbol “. . .”
denotes the lines that have not been changed and are the same as in Game 2.

Since d⃗i−1 is not used for calculating Xr||b, τr||b, then we can try to replace it with a
random vector of length v. Let us fix d⃗ ∈ Fv

2k
. Let us show that the statistical distance

between Game 10 and Game 12 is small. For this let us consider Game 11. This game is
like Game 10, but it returns ⊥, if Ad⃗ = B⃗ is not solvable. In fact because of Theorem 2,
Game 10 returns ⊥ if and only if Game 11 returns ⊥. Thus,

SD(Game 10,Game 12) = SD(Game 11,Game 12).

Let us calculate SD(Game 11,Game 12):

SD(Game 11,Game 12) =

=
1

2

∑
α∈Fv

2k
∪{⊥}

|Pr [Game 11 = α]− Pr [Game 12 = α]| =

=
1

2

∑
α∈Fv

2k

∣∣∣∣∣∣∣∣
∑

A∈F|
Ri−1|×v

2k

∑
B⃗∈F|

Ri−1|
2k

Pr [A] Pr
[
B⃗ | A

]
·

· Pr
d⃗

$←solutions to
Ad⃗=B⃗

[
d⃗ = α | B⃗ ∩ A

]
− 1

(2k)v

∣∣∣∣∣+
+

1

2

∑
A∈F|

Ri−1|×v

2k

∑
B⃗∈F|

Ri−1|
2k

Pr [A] Pr
[
B⃗ | A

]
Pr

d⃗
$←solutions to
Ad⃗=B⃗

[
d⃗ = ⊥ | B⃗ ∩ A

]
.

Since B⃗ is independent of A, then

Pr [A] =
1

(2k)|Ri−1|·v
, Pr

[
B⃗
]
=

1

(2k)|Ri−1|
.

Now we can see that d⃗ = ⊥ iff rank(A) < rank(A|B⃗). The analysis for this probability
can be seen in Section 4.1. Therefore, the second summand is

1

2
·

∑
A∈F|

Ri−1|×v

2k

∑
B⃗∈F|

Ri−1|
2k

Pr [A] Pr
[
B⃗
]
Pr

d⃗
$←solutions to
Ad⃗=B⃗

[
d⃗ = ⊥ | B⃗ ∩ A

]
=

=
1

2
·

∑
A∈F|

Ri−1|×v

2k

∑
B⃗∈F|

Ri−1|
2k

rank(A)<rank(A|B⃗)

Pr [A] Pr
[
B⃗
]
=

1

2
·

# of A and B⃗ such that
rank(A)<rank(A|B⃗)

# of A and B⃗
=
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=
1

2
Pr
[
Ad⃗ = B⃗ is not solvable

]
.

Let us fix α and look at the first summand. More precisely let us calculate∑
A∈F|

Ri−1|×v

2k

∑
B⃗∈F|

Ri−1|
2k

Pr [A] Pr
[
B⃗
]
Pr

d⃗
$←solutions to
Ad⃗=B⃗

[
d⃗ = α | B⃗ ∩ A

]
.

If Aα ̸= B⃗, then we know that Pr
d⃗

$←solutions to
Ad⃗=B⃗

[
d⃗ = α | B⃗ ∩ A

]
= 0. If Aα = B⃗, then

Ad⃗ = B⃗ is solvable and there are (2k)v−rank(A) solutions to it. The probability of
uniformly sampling d⃗ such that d⃗ = α is thus

Pr
d⃗

$←solutions to
Ad⃗=B⃗

[
d⃗ = α | B⃗ ∩ A

]
=

1

(2k)v−rank(A)
.

We get ∑
A∈F|

Ri−1|×v

2k

∑
B⃗∈F|

Ri−1|
2k

Pr [A] Pr
[
B⃗
]
Pr

d⃗
$←solutions to
Ad⃗=B⃗

[
d⃗ = α | B⃗ ∩ A

]
=

=
∑

A∈F|
Ri−1|×v

2k

∑
B⃗∈F|

Ri−1|
2k

Aα=B⃗

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−rank(A)
=

=

|Ri−1|∑
j=0


∑

A∈F|
Ri−1|×v

2k

rank(A)=j

∑
B⃗∈F|

Ri−1|
2k

Aα=B⃗

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−j

 .

If A and α are fixed, then there is exactly one B⃗ for which Aα = B⃗. Therefore,

|Ri−1|∑
j=0


∑

A∈F|
Ri−1|×v

2k

rank(A)=j

∑
B⃗∈F|

Ri−1|
2k

Aα=B⃗

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−j

 =

=

|Ri−1|∑
j=0


∑

A∈F|
Ri−1|×v

2k

rank(A)=j

1

(2k)|Ri−1|(v+1)
· 1

(2k)v−j

 =
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=

|Ri−1|∑
j=0


∣∣∣{A | A ∈ F|Ri−1|×v

2k
∧ rank(A) = j}

∣∣∣
(2k)|Ri−1|(v+1) · (2k)v−j

 =

=
1

(2k)v

|Ri−1|∑
j=0

(2k)j ·

∣∣∣{A | A ∈ F|Ri−1|×v
2k

∧ rank(A) = j}
∣∣∣

(2k)|Ri−1|(v+1)

 =

=
1

(2k)v
Pr
[
Ad⃗ = B⃗ is solvable

]
,

where the last equality comes from Subsection 4.1. Replacing this result into the first
summand we get

1

2

∑
α∈Fv

2k

∣∣∣∣ 1

(2k)v
Pr
[
Ad⃗ = B⃗ is solvable

]
− 1

(2k)v

∣∣∣∣ =
=

1

2
· 1

(2k)v

∑
α∈Fv

2k

∣∣∣Pr [Ad⃗ = B⃗ is solvable
]
− 1
∣∣∣ =

=
1

2
· 1

(2k)v
· (2k)v ·

(
1− Pr

[
Ad⃗ = B⃗ is solvable

])
=

=
1

2
·
(
1− Pr

[
Ad⃗ = B⃗ is solvable

])
.

We can now calculate the statistical distance

SD(Game 11,Game 12) =

=
1

2

(
1− Pr

[
Ad⃗ = B⃗ is solvable

])
+

1

2
Pr
[
Ad⃗ = B⃗ is not solvable

]
=

= 1− Pr
[
Ad⃗ = B⃗ is solvable

]
≤ t

(2k)v−t+1
.

Thus, the statistical distance between Game 10 and Game 12 is at most

εmat :=
t

(2k)v−t+1
.

Now we can replace the linear equations in Game 9 with random d⃗ and get Game 13 that
is k · εmat close to Game 9.

The same analysis can be done for finding g⃗ and thus we can replace it as well and
get Game 14 that is εmat close to Game 13. We can also notice that Game 14 ≡ Game 3.
This means we have found the computational distance between Game 3 and Game 2:

|Pr [Game 2(A) = 1]− Pr [Game 3(A) = 1]| ≤ t · n · εPRG + (n+ 1) · εmat.

If A plays the role of P1, then the proof is analogous.
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4.9 Completeness and security

Theorem 14. MultiFunUSLESS is complete. That is, for all a⃗ ∈ ({0, 1}n)t, b⃗ ∈ Ft
2k

, all
input x ∈ {0, 1}n and all PRGs f , if φ is t-multi-point function defined by a⃗ and b⃗, then

Pr
[
Eval1(sk1, x) + Eval2(sk2, x) = φ(c) | sk1, sk2 ← Gen(⃗a, b⃗, f)

]
= 1.

Note that this probability assumes Gen did not abort.

Proof. This follows straight from Theorems 11 and 12.

Theorem 15. MultiFunUSLESS is (1, t · n · εPRG + (n + 1) · εmat)-indistinguishable.
That is, for all εPRG-pseudo random generators f , if Pi is corrupted, i ∈ {1, 2}, and P3−i
is not corrupted, then for all PPT algorithms A

Pr [Game 15(A) = 1]− 1

2
≤ t · n · εPRG + (n+ 1) · εmat,

where
εmat =

t

(2k)v−t+1
.

Proof. From Theorem 13 we know that MultiFunUSLESS is (t ·n ·εPRG+(n+1) ·εmat)-
ROR indistinguishable. Let us assume towards contradiction that MultiFunUSLESS is
not (1, t · n · εPRG + (n+ 1) · εmat)-indistinguishable. Thus, there exists PPT algorithm
A such that

Pr [Game 15(A) = 1]− 1

2
> t · n · εPRG + (n+ 1) · εmat.

Let us define a new adversary B against ROR indistinguishably in Algorithms 7 and 8:

Algorithm 7: B()
1 (a01, b

0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 return (ab1, b
b
1), . . . , (a

b
t , b

b
t);

Algorithm 8: B(ski)
1 b̄← A(ski, σ);
2 return [b̄

?
= b];

Without loss of generality, let us assume i = 1. Now let us inline B⃗ into Game 1
and 3. We get Game 16 and 17. In Game 17, we can delete line 3, because we do not use
these values and move line 2 down. We get Game 18.
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Let us calculate |Pr [Game 1(B) = 1]− Pr [Game 3(B) = 1]|. For this notice that
Game 16 ≡ Game 15. Therefore,

Pr [Game 1(B) = 1] = Pr [Game 16(B) = 1] = Pr [Game 15(A) = 1] >

>
1

2
+ t · n · εPRG + (n+ 1) · εmat.

Since in Game 18 b is sampled randomly just before the comparison with b̄, then the
probability that b = b̄ must be 1

2
i.e

Pr [Game 3(B) = 1] = Pr [Game 18(B) = 1] =
1

2
.

That is

|Pr [Game 1(B) = 1]− Pr [Game 3(B) = 1]| > t · n · εPRG + (n+ 1) · εmat.

We have reached a contradiction. Thus, MultiFunUSLESS is (1, t·n·εPRG+(n+1)·εmat)-
indistinguishable.

4.10 Efficiency
Let tF denote the time for one field operation over F2k , tF vec the time for one operation
over vector space Fv

2k
and tPRG the time for one PRG evaluation.

Theorem 16. Algorithm 1 produces keys with size Θ(vkn) bits.

Proof. The key for Pi, i ∈ {1, 2} is defined as ([Xϵ]i, [τϵ]i, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 ,
g⃗). Element of F2k takes k bits to store. Let us analyze the key size element wise:

• [Xϵ]i ∈ Fv
2k

takes v · k bits.

• [τϵ]i ∈ F2k takes k bits.

• {wi,0}ni=1 ∈ Fn
2k

takes n · k bits.

• {wi,1}ni=1 ∈ Fn
2k

takes n · k bits.

• {d⃗i}n−1i=0 ∈ Fv·n
2k

takes v · n · k bits.

• g⃗ ∈ Fv
2k

takes v · k bits.

Let us sum this together and get

v · k + k + n · k + n · k + v · n · k + v · k = (v · n+ 2v + 2n+ 1) · k = Θ(vkn).
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Lemma 2. For SubGen to check, if a child node r||b of an alive node r is supposed to be
dead or alive, takes O(t ⌈log t⌉) steps per level.

Proof. Let us describe a possible algorithm for this operation.

1. For each alive node r keep a list of indices j for which a1j || . . . ||a
|r|
j = r. Denote it

by Lr.

2. During the check, iterate over Lr and check if (|r| + 1)-th bit of aj is equal to b.
Return this truth value.

3. While iterating, divide indices into two lists Lr||0 and Lr||1.

Each index takes ⌈log t⌉ space and ⌈log t⌉ time steps to be read. On any given level there
are t indices distributed among Lr and since only one bit of each aj is looked at, the time
complexity per level sums up to O(t ⌈log t⌉). This means that when evaluating for all
r ∈ Ri−1, then the total cost is O(t ⌈log t⌉).

Theorem 17. Algorithm 2 (SubGen) is O(vt2 · tF + t · tF vec + t · tPRG). In fact it takes at
most 2t PRG evaluations.

Proof. Let us count the operations made by SubGen.

• Lines 1 to 5 take Θ(tF) steps, because the operations are either over F2k or constant.

• Lines 6 to 13 take O(t ⌈log t⌉), due to check on line 8 taking O(t ⌈log t⌉) for all
r ∈ Ri−1 and other operations can be done in constant time.

• Lines 14 to 25 take O(t(tF vec + tF)) steps, because there are at most t alive nodes
in R′i ∪ R̂i−1 and for each alive node a constant number of field and vector space
operations are done.

• Line 26 takes O(vt2 · tF + tF vec) steps. We can use Gaussian elimination on the
system of linear equations, which takes O(vt2) field operations (see Theorem 20
in the Appendix). Choosing d⃗i−1 is an operation in the vector space.

• Lines 27 to 32 take O(t(2tPRG + tF vec + tF)) steps. There are at most t alive nodes
in Ri and for each alive node the PRG is called twice and some constant number
of field operations and vector space operations are done.

Summing these together we get

Θ(tF) +O(t ⌈log t⌉) +O(t(tF vec + tF)) +O(vt2 · tF + tF vec)+

+O(t(2tPRG + tF vec + tF)) = O(vt2 · tF + t · tF vec + t · tPRG).
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Theorem 18. Algorithm 1 (Gen) is O(nvt2 · tF + nt · tPRG). In fact it takes at most 2tn
PRG evaluations.

Proof. Let us count the operations made by Gen.

• Line 1 to 6 take Θ(tF vec + tF) steps, because there are constant number of field
operations and vector space operations.

• Line 7 and 8 take O(nt(vt · tF + tF vec + tPRG)) steps, due to n evocations of
SubGen.

• Line 9 and 10 take Θ(tF vec + tF) steps, because there are constant number of field
operations and vector space operations.

• Line 11 takes O(vt2 · tF + tF vec) steps. We can use Gaussian elimination on the
system of linear equations, which takes O(vt2) field operations. Choosing g⃗ is an
operation in the vector space.

• Lines 12 to 15 take Θ(vkn) steps, due to the key size.

Summing these together we get

Θ(tF vec + tF) +O(nt(vt · tF + tF vec + tPRG)) + Θ(tF vec + tF)+

+O(vt2 · tF + tF vec) + Θ(vkn) = O(nt(vt · tF + tF vec + tPRG) + vkn).

Let us assume that tF vec ≈ v · tF and tF ≥ k. Then

O(nt(vt · tF + tF vec + tPRG) + vkn) = O(nvt2 · tF + nt · tPRG).

Theorem 19. Algorithm 3 (EvalP ) has time complexity Θ(nvtF + ntPRG). In fact it takes
n PRG evaluations.

Proof. Let us count the operations made by EvalP .

• Line 1 takes Θ(vkn) steps, due to the key size.

• Lines 2 to 4 take Θ(n(tF vec + tF + tPRG)) steps, because lines 3 and 4 are repeated
n times.

– Lines 3 and 4 take Θ(tF vec + tF + tPRG) steps, because the scalar product is a
vector space operation, addition and multiplication are field operations and
the PRG is called once.

• Line 5 takes Θ(tF vec + tF) steps, because of the scalar product and addition.
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• Line 6 takes some constant number of steps.

Let us add these values together and get

Θ(vkn) + Θ(n(tF vec + tF + tPRG)) + Θ(tF vec + tF) + Θ(1) =

= Θ(n(tF vec + tF + tPRG + vk)).

Let us assume that tF vec ≈ v · tF and tF ≥ k. Then

Θ(n(tF vec + tF + tPRG + vk)) = Θ(n(v · tF + tF + tPRG + vk)) = Θ(nvtF + ntPRG).

4.11 Games
Game 1:

Input :A - the adversarial algorithm
1 (a1, b1), . . . , (at, bt)← A();
2 sk1

P1← Gen((a1, b1), . . . , (at, bt), f);
3 return A(sk1);

Game 2:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 sk2

P2← Gen((a1, b1), . . . , (at, bt), f);
3 return A(sk2);

Game 3:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 Xϵ

$← Fv
2k

;
3 τϵ

$← F2k ;
4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 d⃗i−1

$← Fv
2k

;

8 g⃗
$← Fv

2k
;

9 sk ← Xϵ, τϵ, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗;
10 return A(sk);
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Game 4:
Input :B - the adversarial algorithm

1 x
$← F2k ;

2 y ← f(x);
3 return B(y);

Game 5:
Input :B - the adversarial algorithm

1 y
$← Fv+1

2k
;

2 return B(y);

Game 6:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 · · · ;
3 for r||b ∈ Ri do
4 ([Xr||b]1, [τr||b]1)

$← Fv+1
2k

;

5 ([Xr||b]2, [τr||b]2)← f(
〈
[Xr]2, d⃗i−1

〉
+ [τr]2 · wi,b);

6 Xr||b ← [Xr||b]1 + [Xr||b]2;
7 τr||b ← [τr||b]1 + [τr||b]2;

8 · · · ;
9 return A(sk2);

Game 7:
1 · · · ;
2 for r||b ∈ Ri do
3 (Xr||b, τr||b)

$← Fv+1
2k

;

4 · · · ;
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Game 8:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k

;
3 [τϵ]2

$← F2k ;
4 R0 ← {ϵ}, where ϵ is an empty string;
5 for i = 1 to n do
6 · · · ;
7 Let A be a |Ri−1| × v matrix of zeroes;
8 Let B⃗ be a zero column vector of length |Ri−1|;
9 ji ← 1;

10 for r||b ∈ R′i do
11 (Xr, τr)

$← Fv+1
2k

;
12 Set the ji-th row of A to be Xr;
13 Set the ji-th element of B⃗ to be τr · wi,b;
14 ji ← ji + 1 ;

15 for r ∈ R̂i−1 do
16 wr,2

$← F2k \ {wi,0, wi,1};
17 (Xr, τr)

$← Fv+1
2k

;
18 Set the ji-th row of A to be Xr;
19 Set the ji-th element of B⃗ to be τr · wr,2;
20 ji ← ji + 1 ;

21 Solve Ad⃗i−1 = B⃗ and sample d⃗i−1 from the solution space;

22 for i = 1 to t do
23 (Xai , τai)

$← Fv+1
2k

;

24 A←

 Xa1
...

Xat

;

25 B⃗ ← (b1 + τa1 , · · · , bt + τat)
T ;

26 Solve Ag⃗ = B⃗ and sample g⃗ from the solution space;
27 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗);
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Game 9:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k

;
3 [τϵ]2

$← F2k ;
4 R0 ← {ϵ}, where ϵ is an empty string;
5 for i = 1 to n do
6 wi,0

$← F2k \ {0};
7 wi,1

$← F2k \ {0, wi,0};
8 Ri ← ∅;
9 R′i ← ∅;

10 R̂i−1 ← ∅;
11 for r ∈ Ri−1 do
12 for b ∈ {0, 1} do
13 if ∃aj such that aj starts with r||b then
14 Ri ← Ri ∪ {r||b};
15 else
16 R′i ← R′i ∪ {r||b};

17 if r||0 ∈ Ri and r||1 ∈ Ri then
18 R̂i−1 ← R̂i−1 ∪ {r};

19 A
$← F|Ri−1|×v

2k
;

20 B⃗
$← F|Ri−1|

2k
;

21 Solve Ad⃗i−1 = B⃗ and sample d⃗i−1 from the solution space;

22 A
$← Ft×v

2k
;

23 B⃗
$← Ft

2k
;

24 Solve Ag⃗ = B⃗ and sample g⃗ from the solution space;
25 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗);

Game 10:
1 A

$← F|Ri−1|×v
2k

;
2 B⃗

$← F|Ri−1|
2k

;
3 Solve Ad⃗ = B⃗ and choose a d⃗;
4 return d⃗;
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Game 11:
1 A

$← F|Ri−1|×v
2k

;
2 B⃗

$← F|Ri−1|
2k

;
3 if rank(A) < rank(A|B⃗) then
4 return ⊥;

5 Solve Ad⃗ = B⃗ and choose a d⃗;
6 return d⃗;

Game 12:
1 d⃗

$← Fv
2k

;
2 return d⃗;

Game 13:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k

;
3 [τϵ]2

$← F2k ;
4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 d⃗i−1

$← Fv
2k

;

8 A
$← Ft×v

2k
;

9 B⃗
$← Ft

2k
;

10 Solve Ag⃗ = B⃗ and sample g⃗ from the solution space;
11 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗);
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Game 14:
Input :A - the adversarial algorithm

1 (a1, b1), . . . , (at, bt)← A();
2 [Xϵ]2

$← Fv
2k

;
3 [τϵ]2

$← F2k ;
4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 d⃗i−1

$← Fv
2k

;

8 g⃗
$← Fv

2k
;

9 return A([Xϵ]2, [τϵ]2, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗);

Game 15:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 sk1, sk2 ← Gen((ab1, b
b
1), . . . , (a

b
t , b

b
t), f);

4 b̄← A(ski, σ);
5 return [b̄

?
= b];

Game 16:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 sk1
P1← Gen((ab1, b

b
1), . . . , (a

b
t , b

b
t), f);

4 b̄← A(sk1, σ);
5 return [b̄

?
= b];
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Game 17:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 b
$← {0, 1};

3 (a1, b1), . . . , (at, bt)← (ab1, b
b
1), . . . , (a

b
t , b

b
t);

4 Xϵ
$← Fv

2k
;

5 τϵ
$← F2k ;

6 for i = 1 to n do
7 wi,0

$← F2k \ {0};
8 wi,1

$← F2k \ {0, wi,0};
9 d⃗i−1

$← Fv
2k

;

10 g⃗
$← Fv

2k
;

11 sk ← Xϵ, τϵ, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗;
12 b̄← A(sk, σ);
13 return [b̄

?
= b];

Game 18:
Input :A - the adversarial algorithm

1 (a01, b
0
1), . . . , (a

0
t , b

0
t ), (a

1
1, b

1
1), . . . , (a

1
t , b

1
t ), σ ← A();

2 Xϵ
$← Fv

2k
;

3 τϵ
$← F2k ;

4 for i = 1 to n do
5 wi,0

$← F2k \ {0};
6 wi,1

$← F2k \ {0, wi,0};
7 d⃗i−1

$← Fv
2k

;

8 g⃗
$← Fv

2k
;

9 sk ← Xϵ, τϵ, {wi,0}ni=1, {wi,1}ni=1, {d⃗i}n−1i=0 , g⃗;
10 b̄← A(sk, σ);
11 b

$← {0, 1};
12 return [b̄

?
= b];

5 Comparison to prior works
The study of function secret sharing schemes dates back to 2014 with [GI14] and 2015
with [BGI15], [BGI16]. These research papers focused on point functions and the general
topic of function secret sharing. In the following years, applications for FSS schemes
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required the use of multi-point functions instead of point functions. The following two
approaches were developed in [BCGI18]:

• The most trivial approach of getting efficient multi-point function is to repeat the
DPF scheme multiple times. We call this approach the simple scheme. For a
t-multi-point function the key size is t times bigger than in the point function case
and both evaluation and generation algorithms take t times longer.

• The second kind of approach is using combinatorial batch codes to distribute the
information into m buckets and use the DPF construction on these smaller batches
of information to make it secure. The drawback is that cheap evaluation of a single
value becomes impossible, because this approach optimises for the full evaluation
of the domain. However, full evaluation becomes a lot cheaper. We call this
approach the batch code scheme.

In Table 1 we can see how the three schemes compare to each other. Parameters t, n, k
come from that t-multi-point functions are taken from the function family F({0, 1}n →
F2k), ϵ > 0 is a constant used in the batch-code scheme and v is the security parameter.

Number of Number of
Scheme Key size PRG calls PRG calls

in Gen in Eval
Simple scheme O(t(vn+ k)) O(tn) tn

Batch-code scheme O(t1+ϵ(v ⌈n− log t⌉+ k)) O(n) O(n)
MultiFunUSLESS O(vnk) O(tn) n

Table 1. Multi-point function secret sharing scheme comparison

Since other schemes work over bits and in the end convert to F2k and MultiFunUS-
LESS works over F2k the entire time, then the key size can be quite large for Multi-
FunUSLESS. If t is bigger than k, then the key becomes of the same order as in the other
schemes.

Number of PRG calls in the generation algorithm is the best for the batch-code
scheme and if we go into the details of it, the second place belongs to MultiFunUSLESS,
because our scheme does less or equal to 2tn calls and the simple scheme does exactly
2tn calls. On the other hand, MultiFunUSLESS has to solve n + 1 systems of linear
equations over the finite field F2k . Thus, another costly operation might have been
introduced and the win in PRG calls might be moot. The best score in the efficiency
category for MultiFunUSLESS is the number of PRG calls in the evaluation algorithm.
It does t times less calls to the PRG than the simple algorithm and some constant number
times less calls as the batch-code scheme. The batch-code scheme does more PRG calls,
due to having to do the full evaluation of the domain and then finding the evaluation of a
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single point. This is why MultiFunUSLESS outperforms batch-code approach, when we
do some small number of single evaluations of φ.

Overall we can see that our scheme is the best choice if t ≥ k and we want to do
some constant number of evocations of Eval. One other bonus is that the other schemes
need one PRG and one map that maps random elements of {0, 1}v to F2k , but our scheme
only needs the PRG.

6 Conclusions and future work
We presented a new multi-point function secret sharing scheme MultiFunUSLESS and
proved that it is complete and secure with a generation function that passes with high
probability. The scheme has the biggest advantage over its competitors if just a small
number of single evaluations are needed. Moreover, it is built from simple mathematical
constructions and it does not require two pseudorandom primitives as the other construc-
tion do. But there is room for optimization and improvement, because in many cases
the key size is much bigger. In the future, we could analyse, if it is necessary to work
over F2k , or could we work over some smaller field, which would make the algorithm
more efficient. We could try to pack the key to make it smaller as it is done in [BGI16].
On the other side, we could look at the possibility of generalizing the finite field F2k

setting to the ring Z2k setting to further boost the efficiency as arithmetic over the ring is
faster than arithmetic over the field. On the more practical side, the scheme should be
implemented in real life and then performance against other multi-point FSS schemes
should be measured to see the effects of solving systems of linear equations on the time
of the generation algorithm. Furthermore, since Gen needs a trusted setup to work, a line
of inquiry would be to change it to an interactive protocol between the parties that can
work without the need to trust a third party.

In conclusion, MultiFunUSLESS has much potential in becoming even faster and
more efficient. In this thesis the first big steps were taken towards this.
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Appendix

I. Additional proofs

Time complexity of Gaussian elimination

Theorem 20. Let t, v, k ∈ N, v > t, A ∈ Ft×v
2k

and B⃗ ∈ Ft
2k

. Gaussian elimination on
the matrix equation Ax = B⃗ takes O(vt2).

Proof. Let us describe Gaussian elimination [AR91] line by line and bound the time
complexity of each step. Operations on rows are done on the augmented matrix (A | B⃗).

Start iterating over columns of A from left to right. Let j be the column index. And
S be an empty set at the beginning.

1. Search for a row i ̸∈ S with non-zero element in j-th column. It takes at most t
field operations.

2. If all elements were 0, then move onto the next column and go back to the previous
step.

3. If a non-zero element a was found, find its inverse a−1 and add i to set S. This
takes one field operation and some constant number of steps.

4. Multiply the elements of this row i with a−1 and replace the i-th row with these
values. This takes O(v) field operations.

5. For each row i′ ̸∈ S take the j-th element b. Multiply each element of the i-th row
with b and subtract these values from the elements of the i′-th row and replace the
i′-th row with the result. This takes O(tv) field operations.

6. Repeat for column j + 1 until j = v or |S| = t.

After this the matrix is in the row-echelon form. The worst case scenario is if first v − t
columns are all zero columns and the last t are linearly independent of each other. In
this case, we do O(t(v − t)) = O(tv) field operations to check the zero columns and
O(t(t+ 1 + tv + 1)) = O(vt2) field operations to get the row-echelon form.

To get to the reduced row-echelon form, we do similar triangular process, but look at
column indices in S. This is similar enough that it also takes O(vt2) field operations.
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