
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Markus Kängsepp

Calibration of Convolutional Neural
Networks

Master’s Thesis (30 ECTS)

Supervisor: Meelis Kull, PhD

Tartu 2018

Calibration of Convolutional Neural Networks

Abstract: Deep neural networks have become more popular over time and nowadays
these are used for many practical applications. However, the precise output by itself
might not be enough, as in some areas it is also important to know how confident the
model is. As recently shown, deep neural network predictions are not well-calibrated, in
contrast to shallow ones. For example, deep neural networks tend to be over-confident.

In 2017, Guo et al. published temperature scaling method (Guo et al., 2017) and
compared it to other existing confidence calibration methods. Later that year, Kull et
al. published beta calibration method (Kull et al., 2017), however, it was not tested on
neural networks. The thesis evaluates beta calibration in context of convolutional neural
networks and in order to compare the results with other calibration methods, some of the
Guo et al. results were replicated.

This thesis compares histogram binning, isotonic regression and temperature scaling
methods from Guo et al. and beta calibration by Kull et al. on various state-of-the-art
convolutional neural networks. In addition to loss measures used by Guo et al., Brier
score was added. The results were in accordance with Guo et al. outcome. The beta
calibration was a little bit worse for most of the models compared to temperature scaling,
however, in case of error rate, it was a bit better compared to temperature scaling.

Keywords: neural networks, calibration, convolution, image classification, residual
networks, replication

CERCS: P170

2

Konvolutsiooniliste närvivõrkude kalibreerimine

Lühikokkuvõte: Süvanärvivõrgud koguvad aina populaarsust ja tänapäeval on need
kasutusel ka mitmetes praktilistes rakendustes. Sellest hoolimata, ainult klassi märgendi
ennustamine ei pruugi olla enam piisav, sest mõningatel aladel on ka tähtis teada kui
kindel mudel enda väljundis on. Hiljuti näidati, et sügavate närvivõrkude ennustused pole
nii hästi kalibreeritud, võrreldes madalamate võrkudega. Näiteks sügavad närvivõrgud
kipuvad olema liigselt enesekindlad.

Aastal 2017, Guo et al. avaldas temperatuuri skaleerimise (Guo jt, 2017) (temperature
scaling) meetodi ning võrdles seda teiste olemas olevate kalibreerimismeetoditega. Samal
aastal avalikustas Kull et al. beta kalibreerismeetodi (Kull jt, 2017) (beta calibration),
kuid seda ei testitud närvivõrkudel. Antud töö käigus hinnati beta kalibreerimise headust
konvolutsioonilistel närvivõrkudel ja selleks, et võrrelda tulemusi teiste kalibreerimis-
meetoditega on osa Guo et al. tulemustest replitseeritud.

See lõputöö võrdleb histogrammimeetodit (histogram binning), isotoonilist regres-
siooni (isotonic regression) ja temperatuuri skaleerimine Guo et al. artiklist ja beta
kalibreerimist Kull et al. artiklist erinevatel uusimatel konvolutsioonilistel närvivõrkudel.
Lisaks Guo et al. poolt kasutatavatele kaomõõtudele (loss measure), Brieri skoor lisati
võrdlusesse. Töös saadud tulemused olid kooskõlas Guo et al. tulemustega. Beta kalibree-
rimine oli enamustel mudelitel veidi halvem kui temperatuuri skaleerimine. Vaatamata
sellele, veamäära korral oli beta kalibreerimine vähekene parem kui teised võrdluses
olevad kalibreerimise meetodid.

Võtmesõnad: tehisnärvivõrgud, kalibreerimine, konvolutsioon, pildi klassifitseerimine,
residuaalne närvivõrk, replikatsioon

CERCS: P170

3

Contents

1 Introduction 6

2 Background 7
2.1 Calibration . 7

2.1.1 Reliability Diagrams . 7
2.1.2 Scoring Measures . 9
2.1.3 Logits and Neural Networks 10
2.1.4 Calibration Methods . 11
2.1.5 Multiclass Calibration . 14

2.2 Datasets . 14
2.2.1 CIFAR-10 . 14
2.2.2 CIFAR-100 . 15
2.2.3 ImageNet . 15
2.2.4 Street View House Numbers (SVHN) 16
2.2.5 Birds . 16

2.3 Neural Networks . 16
2.3.1 Residual Network . 19
2.3.2 ResNet SD . 21
2.3.3 DenseNet . 22
2.3.4 Wide ResNet . 24

3 Related Work 26
3.1 Necessity of Calibration . 26
3.2 Calibration in Neural Networks . 27

4 Methods 29
4.1 Data Preparation . 29

4.1.1 CIFAR-10 . 29
4.1.2 CIFAR-100 . 29
4.1.3 ImageNet . 30
4.1.4 Street View House Numbers (SVHN) 30
4.1.5 Birds . 30

4

4.2 Training . 30
4.2.1 ResNet . 31
4.2.2 ResNet SD . 31
4.2.3 DenseNet . 32
4.2.4 Wide ResNet . 32

5 Results 33
5.1 ECE . 33
5.2 Reliability Diagrams . 34
5.3 MCE . 35
5.4 Brier Score . 37
5.5 Error Rate . 38
5.6 Negative Log Likelihood . 39
5.7 Computational efficiency . 40

6 Discussion 41
6.1 Problems with Replication . 41
6.2 Contributions . 42

7 Conclusion 44

References 49

Appendix 50
I. Reliability Diagrams . 50
II. Licence . 54

5

1 Introduction

Neural networks have lately gained huge popularity in machine learning community.
Deep learning models have broken into many industries, including self-driving cars (Bo-
jarski et al., 2016), healthcare (Caruana et al., 2015) and natural language process-
ing (Sutskever et al., 2014). In these industries, it is not only necessary to achieve high
accuracy, but also the confidence of prediction is a matter of interest. For example, the
medical diagnosis tool needs to know when to rely on machine learning model or when
to contact medical crew for confirmation (Jiang et al., 2011). However, a high confidence
alone is not beneficial, if it is not well-calibrated. The calibrated model is a model, which
confidence matches to the actual accuracy of the prediction. For example, there are 100
predictions where confidence of a model is 90 percent, then about 90 of the predictions
should be correct.

Although shallow neural networks give well-calibrated results (LeCun et al., 1998),
modern deep networks tend to output overconfident predictions as shown by Guo et
al. (Guo et al., 2017). They have shown that deeper and wider models, networks with
batch normalization and smaller weight decay may result in less calibrated predictions.

The aim of this thesis is to evaluate beta calibration (Kull et al., 2017) in context of
convolutional neural networks. In order to give a valid comparison with other calibration
methods, some of the results of the paper ”On Calibration of Modern Networks” by Guo
et al. (Guo et al., 2017) are replicated. Specifically, several variations of convolutional
neural network models are trained on 4 different image datasets: CIFAR, ImageNet,
SVHN and Birds. From calibration methods the following are used: histogram binning,
isotonic regression, temperature scaling and beta calibration. However, the temperature
scaling, one parameter version of Platt Scaling, seems to still be the best method for
image classification and for convolutional neural networks.

In the following Chapter 2, a background information about calibration, datasets and
neural networks is described. In Chapter 3, a more detailed description of the previous
work is given. It describes findings of Guo et al. and some other work done in this area.
Next, Chapter 4 is about datasets preparation and training procedure, also giving links to
trained model weights and to uncalibrated predictions. Chapter 5 has tables and figures
with the results and a description of the outcomes. Lastly, there is Chapter 6 about overall
thoughts and problems faced in the process of replication. In addition, Appendix has
extra figures with reliability diagrams for all trained models.

6

2 Background

This chapter gives the necessary background information about the calibration and neural
network models that were used in the thesis.

2.1 Calibration

First, in order to calibrate confidence of a model, the model has to output estimated prob-
abilities of predictions. In other words, the output should contain predicted confidences
P̂ for all the classes Ŷ .

The confidence of a prediction indicates how certain the model is about given predic-
tion, thus it can also be called an uncertainty estimation. However, it usually does not
come out of the model well-calibrated, hence, the need for confidence calibration.

The idea of confidence calibration is to modify the estimated confidences in such
way that these are more reliable. In other words, for perfectly calibrated estimations, the
confidence matches the actual accuracy of the prediction. For example, let there be 100
predictions with the confidence of 0.8, thus 80 of these should be correct. However, it
may also be important to achieve reliable probabilities for all the classes, not only for
predicted class. For example, in the case of log-loss (subsection 2.1.2), the confidence of
actual true class matters.

Next, there are some ways to visualize and measure calibration error.

2.1.1 Reliability Diagrams

Reliability diagram (Figure 1) is a great way to visualize the calibration error (Niculescu-
Mizil and Caruana, 2005). It compares the average confidence of predictions to the
average accuracy of predictions. These are split into M bins, with interval size of 1

M
.

That way it is possible to see the gap (red bar in Figure 1) between the confidence and
the accuracy of a certain interval. However, the reliability diagram does not indicate the
number of samples that fall into one bin.

The bin Bm is defined as a set of the indices of samples, which prediction confidences
fall into the interval Im = (m−1

M
, m
M
]. The following equations demonstrate how the

confidence and accuracy of Bm is calculated:

7

conf(Bm) =
1

|Bm|
∑
i∈Bm

(p̂i),

where p̂i is the confidence of prediction at index i.

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi),

where ŷi is predicted label and yi is the actual label of the class at index i.
In order to achieve perfect calibration, the acc(Bm) and conf(Bm) must be equal

for every bin. Meaning there would be no gap (red bar) visible on the actual diagram.
However, that would give perfect calibration in expectation. This means that if the
confidence of prediction falls into the bin, it is expected to have mean confidence of the
bin. On the other hand, to achieve perfect calibration in the test phase, the confidence
should exactly match with the accuracy. So, in practical cases, it is almost impossible to
achieve perfect calibration.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Reliability Diagram -
 (DenseNet-40 CIFAR-100)

Gap
Outputs

Figure 1. Example of a reliability diagram with uncalibrated confidences.

In Figure 1, the reliability diagram has no bars in the first two bins, because there
were no predictions in the confidence interval of [0, 0.1] and (0.1, 0.2]. Furthermore, the
bar of the last bin does not follow the diagonal as other bars do, because it depends on
the average confidence and for the last bin it is close to 1.0.

8

2.1.2 Scoring Measures

The visual methods (i.e reliability diagrams) are not the best way to accurately compare
a large number of calibration methods, for that the scalar measures are superior. This is
the case because it is hard to compare a large number of diagrams and the diagrams do
not summarise the overall quality of calibration very well. For instance, the number of
samples in each bin is not visualised.

Expected Calibration Error (ECE) is a calibration measure that gives an overall
estimate of error between confidence and accuracy over all the bins (Naeini et al., 2015).
First, the predictions are divided intoM bins based on the confidence, similar to reliability
diagrams. Then the error is approximated by finding a weighted average of the difference
between accuracy and confidence for all the bins,

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)|,

where n is the number of samples.
However, the score is dependent on the selection of the parameter M . For example, if

M is small, the size of the confidence intervals are big, which means that the confidences
in the bins vary a lot. On the other hand, if M is big, some of the bins have likely a small
number of samples, so the average accuracy of the samples might not reflect the reality.
The ECE measure is used as a primary error indicator in the replicated paper (Guo et al.,
2017).

Maximum Calibration Error (MCE) shows the biggest error the calibrated confi-
dences have (Naeini et al., 2015). It is similar to ECE as it also finds errors inside the
bin, however the maximum error is returned instead of weighted average,

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)|

This measure shows the biggest gap between confidence and accuracy. For example,
in medicine, it might be crucial to know the confidence interval of a prediction, because
the 10 percent error in the confidence in the worst case, may turn odds against certain
treatment or cure. In addition, in the case of MCE, the bins with few instances might

9

affect the score heavily, because the average accuracy might differ a lot from the average
confidence.

Negative Log Likelihood (NLL) is a commonly used loss measure for neural networks
and in deep learning, it is also called log loss or cross-entropy loss (Bengio et al., 2015).
It is a standard way to measure the quality of a probabilistic model (Friedman et al.,
2001). Let π̂(Y |X) be a probabilistic model with n samples that outputs probability of
class Y given instance X , then NLL is defined as follows:

NLL = −
n∑

i=1

log(π̂(yi|xi)),

where yi is a true label and xi is an instance.
NLL is also used as a loss measure for optimizing the parameters of temperature

scaling and Beta calibration.

Brier Score is another way to measure the accuracy or calibration of model out-
comes (Brier and Allen, 1951). The Brier score, in essence, is mean square error,
however, it takes binary or categorical values and the set of probabilities assigned to
these values as an input. The output is in the range of 0 to 1 and the lower the score, the
better the model performs. Let there be n samples with y as vector of true labels and p̂
as vector of predicted probabilities. The length of the vectors is r and it depends on the
number of classes. Brier score is defined as:

Br =
1

n

n∑
i=1

r∑
j=1

(p̂ij − yij)2

2.1.3 Logits and Neural Networks

Neural networks usually output probabilities for a prediction, however, logits zi ∈ R
can be used as an input of calibration methods. The logits are outputs of a neural
network model, before using softmax function. The softmax function or sigmoid function
p̂i = σSM(zi) is used to fit all the probabilities p̂i in the range of 0 to 1, so that the sum
of values is 1. The softmax function is defined as:

10

σsm(zi) =
exp(zi)∑K
j=1 exp(zj)

,

where K is the number of classes.
Logits are used as an input for some of the calibration methods. More about these

methods in following subsection 2.1.4.

2.1.4 Calibration Methods

This chapter gives an overview of the process of calibration. First, different calibration
methods are described for binary class models and afterwards for multiclass calibration.

The calibration is done as a post-processing step for all the models, however, it can be
also added as an extra step to the end of a neural network model training procedure. For
calibration, an extra hold-out validation set is needed. It is used for fitting the parameters
of the calibration model and may be used for model hyper-parameter tuning too. Finally,
the test set is used to check the final calibration error and error rate of the model. The
error rate is checked, because some calibration methods are changing the outcomes of
the model, in addition to the confidences of the outcome. It is assumed that the training
set, validation set and test set share the same distribution.

Next, the calibration methods used in this thesis are described. In total, there are 3
methods used from Guo et al. (Guo et al., 2017) paper, including temperature scaling,
histogram binning and isotonic regression. Furthermore, one extra method called Beta
calibration introduced by Kull et al. (Kull et al., 2017) is added to the comparison.

The following methods are described at first for binary outcomes and an extension to
multiclass models is introduced in the Subsection 2.1.5 (Multiclass Calibration), similarly
to Guo et al. (Guo et al., 2017). In the case of the binary models, the input is xi and the
outcome is yi = {0, 1}. However, for simplicity, it is assumed that the model outputs
only a positive class yi = 1 and its probability p̂i. Additionally, logit value zi of true
class is available, for example, it is needed for temperature scaling. The goal is to get
calibrated confidence q̂i using yi, p̂i and zi.

Histogram Binning is a simple non-parametric calibration method (Zadrozny and
Elkan, 2001). The idea is to divide the samples into M equally sized mutually exclusive
bins {B1, B2, ..., BM}. The boundaries of the bins are defined by the number of the bins,
so that each bin has an equal interval length. Another option is to have an equal number

11

of samples in each bin and based on that calculate the intervals. The boundaries of bins
are defined as 0 = a1 ≤ a2 ≤ ... ≤ aM ≤ aM+1 = 1, so the bin Bi covers the interval
(ai, ai+1]. For each bin, a new confidenceCm is found based on the predicted probabilities
that fall into that bin. After the calibration process is done, the new probability of a
prediction ŷi is the calibrated confidence Cm, if its probability p̂i falls into bin Bm.

The calibrated confidence of a bin is calculated by selecting Cm values so that it
minimizes following function:

min
C1,...,CM

M∑
m=1

n∑
i=1

1(am < p̂i ≤ am+1)(Cm − yi)2,

where the 1 is an indicator function, showing whether the probability belongs to given
bin or not. In essence, the calibrated confidence of a bin is the average accuracy of the
bin, Cm = 1

|Bm|
∑

i∈Bm
1(yi = 1).

Isotonic Regression is another non-parametric method that is widely used for calibra-
tion (Zadrozny and Elkan, 2002a). It learns a piecewise constant function f that outputs
calibrated probabilities q̂i = f(p̂i). The function f tries to minimize the squared error,

min
M

C1,...,CM
a1,...,aM+1

M∑
m=1

n∑
i=1

1(am < p̂i ≤ am+1)(Cm − yi)2

subject to 0 = a1 ≤ a2 ≤ ... ≤ am ≤ am+1 = 1,

C1 ≤ C2 ≤ ... ≤ CM ,

where M is number of bins, a1, ..., aM+1 are bin boundaries and C1, ..., CM are output
values of function f . Despite the number of parameters, it turns out that it is easy to
optimise with Pool Adjacent Violators (PAV) algorithm (Ayer et al., 1955).

Platt Scaling is a parametric calibration method that uses non-probabilistic predictions
as an input for calibration (Platt et al., 1999). The input is used to train a logistic
regression model with the parameters a, b ∈ R, which returns calibrated probabilities.
Platt scaling was not included in the final comparison of the calibration methods, however,
it is brought out here because a couple of other methods are extensions of Platt scaling.

12

Temperature Scaling is used in the context of distilling (G. Hinton et al., 2015) and
statistical mechanics (Jaynes, 1957), however Guo et al. (Guo et al., 2017) took it to
neural network calibration. It is a modification of Platt Scaling using only single scalar
parameter T . The parameter T is used for all the classes, so this method is suitable
for multiclass calibration. Temperature scaling uses logits vector zi as an input to find
calibrated confidence, the new confidence prediction is calculated as

q̂i = max
k
σSM(zi/T)

(k),

where k indicates the class.
The optimal temperature T can be found by optimizing it using NLL as a loss

measure. In addition, the temperature scaling changes probabilities of predictions, but it
does not affect the maximum probability. This means that the predicted class does not
change and thus, the accuracy of the model does not change.

Beta Calibration (Kull et al., 2017) is a parametric calibration method that is based
on beta distribution. It is similar to logistic regression (Platt Scaling), except, the beta
calibration is derived based on beta distribution, but logistic regression is derived based
on Gaussian distribution. Beta calibration has 3 parameters a, b and c, and is able to fit
more distributions compared to logistic regression as more shapes are possible in beta
calibration map family,

µbeta(p̂; a, b, c) =
1

1 + 1/(ec p̂a

(1−p̂)b)

where a, b ≥ 0 and c ∈ R.
The predicted probabilities are converted into logarithmic space to use logistic

regression for fitting. The parameters are fit using bivariate logistic regression on
logarithmically transformed probabilities using NLL loss,

LRbilogistic(ln p̂,− ln(1− p̂); a, b, c)

The fitted parameters are used with µbeta(p̂test; a, b, c) to calculate calibrated proba-
bilities p̂test.

13

2.1.5 Multiclass Calibration

All the datasets used in this thesis have multiple classes to predict. Meaning some of
the calibration methods have to be changed a bit to be able to calibrate predictions for
multiple classes (K > 2). Additionally, in the case of neural networks, the logits zi and
probabilities p̂i are vectors with size of k and class labels are ŷi = {0, 1, ..., k}. The true
label ŷi of the class is argmaxkz

(k)
i and the probabilities p̂i are derived using softmax

function p̂i = maxk σsm(zi)
(k).

A common way of doing a multiclass calibration would be using K 1-vs-all mod-
els (Zadrozny and Elkan, 2002b). So there is k = {1, 2, ..., K} binary calibration
problems, where the label is 1(yi = k) and predicted probability is p̂(k)i = σsm(zi)

(k).
This means that a single class is fixed as a positive class and all others as negative, and
repeating the process for all the classes. As a result, a vector with unnormalized cali-
brated probabilities is formed Qi = [q̂

(1)
i , ..., q̂

(K)
i], where q̂(k)i is a calibrated confidence

of the class k. As a new confidence q̂i′ a maximum value from the vector is selected and
normalized by the sum of the vector

∑K
k=1 q̂

(k)
i . The new class label ŷi′ is argmax of Qi.

2.2 Datasets

In this thesis, 4 different datasets were used. This subsection describes briefly all the
datasets.

2.2.1 CIFAR-10

The CIFAR-10 dataset (Krizhevsky, 2012) has colour images with dimensions of 32x32
from 10 different classes: aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck. In total, there are 60 000 images, originally split into 50 000 training images and
10 000 test images. There are 10 balanced classes, so there are 6000 images in each
class. In given replication task the training data is randomly split into two, in order to get
a validation set. In the end, there are 45 000 training, 5000 validation and 10 000 test
images.

14

Figure 2. Example images of CIFAR-10 dataset.

2.2.2 CIFAR-100

The CIFAR-100 (Krizhevsky, 2012) dataset is a lot like the CIFAR-10, except that instead
of 10 classes, there are 100 classes. So for each class, there are 600 images, 500 for
training and 100 for testing. These are split into 45 000 training, 5000 validation and 10
000 test images, similarly to CIFAR-10.

Figure 3. Example images of CIFAR-100 dataset.

2.2.3 ImageNet

The Imagenet (Deng et al., 2009) dataset consists of colour images with various sizes
from 1000 different classes. In total there are 1.28 million training images and 50 000
testing images. The test set is randomly split into two, so actually, there are 25 000
images for both validation and testing.

Figure 4. Example images of ImageNet.

15

2.2.4 Street View House Numbers (SVHN)

The SVHN dataset (Netzer et al., 2011) contains 32x32 colour images from 10 classes.
The images are centred around the single digit, however, there are other digits from the
house number visible too. The dataset has 73 257 training images, 26 032 test images
and 531 131 additional training images. The additional training set is combined with the
original training set. The validation set is formed by taking 400 images from each class
from the training set and 200 images from the additional set. In the end, there are 598
388 training, 6 000 validation and 26 032 test images.

Figure 5. Example images of SVHN dataset.

2.2.5 Birds

The Caltech-UCSD Birds (Welinder et al., 2010) data set consists of 5994 training images
and 5794 test images. The test set is split into two: leaving 2897 images in validation set
and 2897 in test set.

Figure 6. Example images of Birds dataset.

2.3 Neural Networks

This subsection is based on "Deep Learning" book written by Goodfellow et al. (Good-
fellow et al., 2016). Deep neural networks are a part of machine learning methods that
attempt to learn data representation. The smallest unit of a neural network is a node,

16

also called neuron, because of its similar function to an actual neuron. Each node has
a certain amount of inputs and outputs based on the architecture of a neural network.
To compute the output of a node, inputs of it are multiplied by weights and summed
together. The weights are optimized in a training process. Nodes of a neural network
are grouped into layers, so each layer has input from the previous layer and gives output
to the following layer. First layers learn simple concepts, which are used in following
layers as a base for more complex concepts. Figure 7 shows a simplified version of a
neural network for image classification.

Figure 7. An example of a neural network. The images on the nodes visualize possible
features captured by hidden units. (Goodfellow et al., 2016)

Neural networks start with a visible layer consisting of input, followed by hidden
layers that extract abstract features of input, in this case, an image. The second layer is
called "hidden" because the values for those layers are not given in the data.

In this thesis, convolutional neural networks (ConvNets) (LeCun et al., 1989) were
used. These networks use grid-like topology called filters (kernels) for processing data.

17

In case of image processing, these filters can be thought of as a 2D grid of pixels that
slide over the input image spatially. The filters compute dot-products, which are added
to feature maps. The feature maps are used as an input for next layer (Figure 8). After
training the network, the filters try to match certain patterns in images, for example, edges,
circles, corners (Figure 7). These filters are combined into more complex representations,
which can be used to classify input data.

Figure 8. The architecture of LeNet-5 convolutional neural network for digit recogni-
tion (LeCun et al., 1998).

Most convolutional neural networks use also a pooling layer, which makes the
representation more invariant to smaller translations of the input. Meaning that small
changes in input leave most of the pooled outputs unchanged. Pooling takes surrounding
pixels into account, whether taking maximum pixel intensity, an average of pixels or
some other aggregation of nearby pixels. For example, the max pooling (Zhou and
Chellappa, 1988) returns maximum output from a rectangular area. The pooling is useful
because it allows the inputs to vary a little, meaning that the feature of input image does
not have to be in the exact same spot. For example, in case of face recognition, the
position of eyes does not have to be always the same, however, it is necessary that there
are 2 eyes, one on the left and another on the right side of the face. Additionally, pooling
can be used to downsample inputs, as it summarizes the pixels over nearby images. In
order to achieve a downsampling with a stride of 2, the maximum pixel intensity is
returned for every other pixel.

Models in this thesis use rectified linear activation function (ReLU), which only
takes positive input into account using function f(x) = max(0, x) (Nair and G. E.
Hinton, 2010). ReLU has sparse activations and helps to propagate gradients. The sparse
activation means that many of the nodes are not activated, this occurs because ReLU

18

converts a negative input into zero. ReLU helps to propagate gradients because the
derivative of the function is 0 or 1, meaning the gradient is cancelled out or kept the same
throughout the backpropagation.

In addition, batch normalization (Ioffe and Szegedy, 2015) is used to scale and
normalize the activations, so that layers have inputs with zero mean and unit variance.
The mean and unit variance is calculated based on current mini-batch, thus the name
"batch" normalization. Batch normalization helps to improve performance and stability
of neural networks.

Following subsections give an overview of convolutional models used in the thesis,
also, the structure of models is described for datasets used in this thesis. More information
about these datasets is given in sections 2.2 and 4.1

2.3.1 Residual Network

The residual network (ResNet) (He et al., 2015a) is a convolutional network that fits
residual functions F (x) = H(x)−x, where x is input to the layer andH(x) is underlying
mapping fit by few weight layers. The input x, also called as identity mapping, is later
added to F (x), as shown in Figure 9.

Figure 9. The building block of residual learning (He et al., 2015a).

Ultimately, a residual block still tries to fit underlying mapping H(x), however the
nonlinear layers of residual block do not have to approximate the identity mapping.

The residual architecture (He et al., 2015a) is used for all the datasets (section 2.2):
CIFAR-10, CIFAR-100, ImageNet, Birds. In case of CIFAR datasets, the network has 110
layers. It is constructed of 6n+ 2 weight layers, first starting with the 3x3 convolutional
layer. Next, there is a stack of 2n layers (or n residual blocks) for each feature map size
{32, 16, 8} with the filters {16, 32, 64}. Figure 10 shows the structure of residual block

19

with ReLU activation. After each convolutional layer, the batch normalization is also
used. At the end of the model, there is used global average pooling and dense layer with
softmax. The output size of last dense layer is based on the number of classes. The
Table 1 gives an overview of the network architecture.

Figure 10. On the left, there is a usual residual block and on the right a ”bottleneck”
residual block (He et al., 2015a).

Table 1. The architecture of ResNet 110 (n=18) for CIFAR datasets (He et al., 2015a).

Output map size 32x32 16x16 8x8
Number of layers 1+2n 2n 2n
Number of filters 16 32 64

In case of ImageNet, the network has 50 or 152 layers, however, the structure is a
bit different from the network for CIFAR datasets. Namely, it uses residual blocks with
bottlenecks as shown in Figure 10. A more precise overview is given in Table 2, it is
worth noting that after each convolutional layer, in addition to activation (ReLU), a batch
normalization is used.

20

Table 2. The architecture for ResNet for ImageNet dataset for 50 and 152 weight
layers (He et al., 2015a). After residual blocks down-sampling with a stride of 2 is done.

Layer name Output size 50-layer 152-layer
conv1 112x112 [7x7, 64], stride 2

conv2_x 56x56

3x3 max pool, stride 2 1× 1, 64

3× 3, 64

1× 1, 256

× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

conv3_x 28x28

1× 1, 128

3× 3, 128

1× 1, 512

× 4

1× 1, 128

3× 3, 128

1× 1, 512

× 8

conv4_x 14x14

 1× 1, 256

3× 3, 256

1× 1, 1024

× 6

 1× 1, 256

3× 3, 256

1× 1, 1024

× 36

conv5_x 7x7

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

1x1 Average pool, 1000-d fc, softmax

2.3.2 ResNet SD

Residual Network with Stochastic Depth (ResNet SD) (Huang, Sun, et al., 2016) is
similar to the original residual network. The idea is to drop a random set of layers with a
certain probability for each mini-batch training. The dropped layers are bypassed using
identity function. The survival probabilities for the set of layers decay linearly according
to the number of layers (Figure 11). In testing phase, all the layers are used for making a
prediction.

21

Figure 11. The linear decay of survival probability (p) for ResNet with stochastic
depth (Huang, Sun, et al., 2016)

The ResNet SD architecture is used for CIFAR-10, CIFAR-100 and SVHN datasets.
The architecture is exactly the same as shown previously in Table 1, except for adding
stochastic depth. In addition, for SVHN a 152 layer network is used (n = 25).

2.3.3 DenseNet

Dense convolutional network (Huang, Liu, et al., 2016) contains dense blocks, where
each layer takes identity mapping (feature maps) as an input from all the previous layers
(Figure 12). By using the feature maps of previous layers, the dense blocks allow the
maximum information flow, which helps to enhance feature propagation and encourage
feature reuse. The number of filters added after each dense block is determined by growth
rate k. The initial number of filters are 2 ∗ k. More precise overview of structures used
in given thesis can be found in Table 3 and Table 4.

Figure 12. DenseNet with 3 dense blocks (Huang, Liu, et al., 2016).

22

Table 3. Structure of DenseNet 161 for ImageNet dataset with the growth rate of 48. All
the convolutional layers (inside brackets) consist of sequence BN-ReLU-Conv (Huang,
Liu, et al., 2016).

Layers Output size DenseNet-161
Convolution 112× 112

[
7× 7

]
× 1, stride 2

Pooling 56× 56 3× 3 max pool, stride 2

Dense Block (1) 56× 56

[
1× 1

3× 3

]
× 6

Translation Layer (1)
56× 56

[
1× 1

]
× 1

28× 28 2× 2 average pool, stride 2

Dense Block (2) 28× 28

[
1× 1

3× 3

]
× 12

Translation Layer (2)
28× 28

[
1× 1

]
× 1

14× 14 2× 2 average pool, stride 2

Dense Block (3) 14× 14

[
1× 1

3× 3

]
× 32

Translation Layer (3)
14× 14

[
1× 1

]
× 1

7× 7 2× 2 average pool, stride 2

Dense Block (4) 7× 7

[
1× 1

3× 3

]
× 24

Classification Layer
1× 1 7× 7 global average pool

1000D fully-connected, softmax

23

Table 4. Structure of DenseNet 40 for CIFAR-10/100 datasets with growth rate of 12.
All the convolutional layers (inside brackets) consist sequence BN-ReLU-Conv (Huang,
Liu, et al., 2016).

Layers Output size DenseNet-40
Convolution 32× 32

[
3× 3

]
× 1

Dense Block (1) 32× 32
[
3× 3

]
× 12

Translation Layer (1)
32× 32

[
1× 1

]
× 1

16× 16 2× 2 average pool, stride 2

Dense Block (2) 16× 16
[
3× 3

]
× 12

Translation Layer (2)
16× 16

[
1× 1

]
× 1

8× 8 2× 2 average pool, stride 2

Dense Block (3) 8× 8
[
3× 3

]
× 12

Classification Layer
1× 1 8× 8 global average pool

10D fully-connected, softmax

2.3.4 Wide ResNet

Wide residual network (Wide ResNet) (Zagoruyko and Komodakis, 2016) increases the
width and decreases the depth of a network. The idea is to alleviate the problem of
diminishing feature reuse by using less residual blocks and increasing the number of
filters of residual blocks. The diminishing feature reuse means that the features computed
in earlier layers are fading away in the process of going through many layers. The
network is widened by enlarging the number of filters in each block by factor k. The
parameter N indicates how many blocks are in one group as shown in Table 5. Finally, to
achieve 32-layer network, 5 blocks per group are used, meaning N = 5 and the growth
factor is set to k = 10.

24

Table 5. Structure of Wide Residual Network (Zagoruyko and Komodakis, 2016) for
CIFAR-10/100 datasets. The convolutional layers are in brackets with the filter size,
the parameter k indicates the growth factor. The parameter N shows the number of
residual blocks in one group. The downsampling is done in the first layers of ”conv3”
and ”conv4”

Group name Output size Layers
conv1 32× 32 [3× 3, 16]

conv2 32× 32

[
3× 3, 16× k
3× 3, 16× k

]
×N

conv3 16× 16

[
3× 3, 32× k
3× 3, 32× k

]
×N

conv4 8× 8

[
3× 3, 64× k
3× 3, 64× k

]
×N

avg-pool 1× 1 [8× 8]

output 10D fully-connected, softmax

25

3 Related Work

3.1 Necessity of Calibration

In this subsection, the findings of Guo et al. (Guo et al., 2017) about the necessity of
calibration are brought out.

Firstly, the capacity of the model has an effect on calibration error. Namely, deeper
and wider models result in higher calibration error, but on the other hand, these kind of
models are necessary to achieve smaller classification error. In Figure 13, the far left plot
shows classification error and expected calibration error (ECE) on ResNet model (He
et al., 2015a) with 64 convolutional filters and a varying number of layers (depth). The
middle left plot displays scores on ResNet model with 14 layers with various filter sizes
(width).

Figure 13. Calibration error (ECE) and error rate on models with varying depth (far left),
varying width (middle left), using normalization or not (middle right) and varying weight
decay (far right). Taken from Guo et al. paper (Guo et al., 2017).

In addition, Guo et al. (Guo et al., 2017) demonstrated an association of batch
normalization to error rate and calibration error. The middle right plot of Figure 13,
shows that on a 6-layer convolutional network. The normalization certainly helps to
achieve better accuracy and enables using deep architectures but at the cost of accurate
confidence estimations.

Last, but not least, Guo et al. (Guo et al., 2017) pointed out that calibration error is
dependent on weight decay. More precisely, the smaller the weight decay, the higher the
calibration error. The far right plot of Figure 13, displays weight decay in relation to
calibration error on ResNet model with 110 layers.

26

3.2 Calibration in Neural Networks

Next, the calibration methods for different approaches and contexts are mentioned. All
the papers below are written in the past few years and approach the calibration problem
of neural networks from a different angle.

Kuleshov et al. (Kuleshov and Ermon, 2016) approach the calibration problem in
online context, where it is possible that the inputs are potentially adversarial. As a result,
a recalibration technique is proposed and tested on real-world datasets. Moreover, the
technique does not make i.i.d. (independent and identical distribution) assumptions.

Kuleshov et al. (Kuleshov and Liang, 2015) get calibrated results for structured
prediction problems, for example, speech recognition, optical character recognition and
medical diagnosis. Calibration of structured predictions is challenging because of large
output space and different types of probability queries by users. As a result, a special
calibration method for structured predictions was tested on real-world datasets.

Lakshminarayanan et al. (Lakshminarayanan et al., 2016) demonstrate that deep
ensembles can be used for uncertainty estimation. Well-calibrated uncertainty estimates
that are as good or even better than approximate Bayesian neural networks are achieved.
The method is also able to output reliable estimates in case of dataset shift.

Pereyra et al. (Pereyra et al., 2017) penalize overconfident predictions as a way of
regularizing neural networks. In the end, this method is able to achieve better results
in various domains: image classification, language modeling, machine translation and
speech recognition.

Hendrycks et al. (Hendrycks and Gimpel, 2016) show a way to detect out-of-
distribution samples using the confidence of predictions. In order to achieve that, simple
statistics derived from softmax prediction probabilities are used as a baseline.

Gal et al. (Gal and Ghahramani, 2015) represent model uncertainty using dropout (Sri-
vastava et al., 2014) in neural networks. The dropout is used as a Bayesian approximation
without sacrificing computational complexity or test accuracy.

Bendale et al. (Bendale and Boult, 2016) propose a way to adapt deep neural networks
for open set recognition. For that, a new model layer, called OpenMax, is introduced. It
outputs probability of the sample being from an unknown class.

Zhang et al. (Z. Zhang et al., 2018) make confidence analysis for each individual
image. In order to do that, a progressive neural network structure is proposed, which on
each stage has to check whether the prediction is confident enough to proceed or a more

27

complex model has to be used.
Keren et al. (Keren et al., 2018) output calibrated prediction intervals in case of neural

network regressors. Instead of outputting a single scalar value, the model gives out an
interval and calibrated confidence of output being in that range.

28

4 Methods

This chapter gives an overview of used datasets and training procedures to obtain the
final replicated results. The models and training procedures can be found in a Github
repository1.

4.1 Data Preparation

This subsection gives overview of the preprocessing of previously mentioned datasets
(subsection 2.2). All the datasets follow same preprocessing and data augmentation
process as mentioned in Guo et al. paper (Guo et al., 2017). The data preparation was
not described in the paper, instead references to the original articles were given.

4.1.1 CIFAR-10

The CIFAR-10 dataset is preprocessed before using it for training. The images are
normalized by subtracting the per-channel mean of the training images and dividing
by the standard deviation. The only exception was ResNet 110 model, where per-pixel
normalization was used.

In order to increase the number of images for training, the data is also augmented.
The images are flipped horizontally in 50 percent of cases. Additionally, the training
images are also padded by 4 pixels from every side and then randomly cropped, so the
final image size is 32x32. The padded pixels are either reflection of the image or constant
value 0, also dependent on the model.

In case of testing the model, the preprocessed images from a test set with no augmen-
tations are used.

4.1.2 CIFAR-100

The data preprocessing and data augmentation of CIFAR-100 is done in the same manner
as for CIFAR-10. Normalizing the images by subtracting the mean and dividing by the
standard deviation. Also, horizontal flipping and translation techniques are used.

1https://github.com/markus93/NN_calibration

29

https://github.com/markus93/NN_calibration

4.1.3 ImageNet

Imagenet data preprocessing and augmentation depends on the model and may differ
in reality, because in given thesis pre-trained weights were used for Imagenet models.
The preprocessing covers scale augmentation (Simonyan and Zisserman, 2014), more
precisely the image is scaled so the shorter side is either 256 or 480 pixels. That image
is randomly cropped to get dimensions 224x224, horizontally flipped and the mean
subtracted from it. Finally, the colour augmentation (Krizhevsky et al., 2012) is used.

In case of testing, the images are resized so the shorter side would be 256 pixels and
then centre cropped for final 224x224 pixels.

4.1.4 Street View House Numbers (SVHN)

For SVHN dataset preprocessing, the images are normalized by subtracting the per-
channel mean of the training set and dividing by the standard deviation. However, no
data augmentation is performed as noted in the paper (Huang, Sun, et al., 2016).

4.1.5 Birds

The Caltech-UCSD Birds dataset is used for fine-tuning ImageNet model, so the per-
channel means of ImageNet training set are subtracted from images. Also, the data
preparation process is similar, scaling the images so the shorter side would be 256 pixels
and after the image is randomly cropped into the size of 224x224 and horizontally
flipped.

While testing, the images are also scaled so the shorter side is 256 pixels and then
centre cropped into a 224x224 image.

4.2 Training

All the models had to be trained by the author of this thesis, except for ImageNet. This
occurred because for the calibration process a separate validation set is essential and in
order to keep the same split ratios to Guo et al. (Guo et al., 2017) the train set had to be
split. However, the available pre-trained models used all the training data or did not bring
out the indices of a validation split. Fortunately, pre-trained models for ImageNet were
usable, as following the Guo et al. (Guo et al., 2017), the test set was split for validation

30

dataset, instead of the training set. All the model weights trained and used for this thesis
are available in the same Github project2.

The models are implemented using open source deep learning library Keras (version
2.1.4) (Chollet et al., 2015) with TensorFlow (version 1.4.1) backend (Abadi et al., 2015).
The models are trained using same hyperparameters as presented in papers, if available,
nonetheless, the hyperparameters are still brought out for clarity in following subsections.

The models, if not stated differently, are trained using Stochastic Gradient Descent
(SGD) optimizer with a Nesterov momentum of 0.9 without dampening. The weights
are initialized using He normalization (He et al., 2015b) and the weight decay is set to
0.0001. In the end, the final model, after training for all the epochs, is used for testing.

4.2.1 ResNet

In case of CIFAR-10 and CIFAR-100 datasets, a script from a public repository is
used (Li, 2018) as a base and necessary modifications are done to match the parameters
of the original model (He et al., 2015a). The 110-layer network is trained with a mini-
batch size of 128. The starting learning is 0.1 and it is divided by 10 at 100 and 150
epochs, running up to 200 epochs.

For Birds dataset, the model with pre-trained weights of 50-layer ResNet on ImageNet
dataset is provided by Keras library (Chollet et al., 2015). These weights are used as
a starting point for fine-tuning Birds dataset. The learning rate is set to 0.0001 with a
decay of 10−6. The model is trained up to 250 epochs or up to moment the validation
loss has not changed for 10 previous epochs.

Pre-trained weights of ResNet 152 are used (Yu, 2017b) also for ImageNet dataset.
The initial learning rate of the model is 0.1 and is divided by 10, each time the model
stops improving. The model is trained up to 120 epochs with a mini-batch size of 256.
The test is run on the model provided by the same author (Yu, 2017b).

4.2.2 ResNet SD

The stochastic depth model implementation is taken from a public repository (Chen,
2018) and essential modifications to match the proposed model are done.

The CIFAR-10 and CIFAR-100 datasets are trained on 110-layer network (Huang,
Sun, et al., 2016). The mini-batch size is 128 and starting learning rate is 0.1, which is

2https://github.com/markus93/NN_calibration/tree/master/models

31

https://github.com/markus93/NN_calibration/tree/master/models

divided by 10 at epoch 250 and 375, running up to 500 epochs. Finally, the model with
best validation accuracy is used.

The SVHN data set is trained on 152-layer network (Huang, Sun, et al., 2016) with
same parameters as for CIFAR datasets, however, the learning rate is divided by 10 at
epoch 30 and 35 and the model is trained for 50 epochs. Additionally, for first epoch
learning rate 0.04 is used, otherwise, the model did not start converging.

4.2.3 DenseNet

The dense network model implementations are taken from a public repository (Majumdar,
2018a; Yu, 2017a) adding only modifications crucial to match original training procedure.

The CIFAR-10 and CIFAR-100 datasets are trained on the 40-layer network with
the growth rate of 12 (Huang, Liu, et al., 2016). The mini-batch size is 64 and starting
learning rate is 0.1, which is divided by 10 at epoch 150 and 225. After training for 300
epochs, the model with best validation accuracy is used.

The model for ImageNet dataset is a pre-trained 161-layer network (Huang, Liu,
et al., 2016), however, the learning process for this was similar to CIFAR datasets, except
it was trained for 90 epochs with batch size 256 and the learning rate is divided by 10 at
30 and 60 epoch.

4.2.4 Wide ResNet

In case of Wide Residual networks, implementation from a public repository is used (Ma-
jumdar, 2018b).

The CIFAR-10 and CIFAR-100 datasets are trained on 32-layer network with growth
factor k of 10. However, in the article (Guo et al., 2017) there was no information
about the actual growth factor given. In addition, the depth measure from the original
article (Zagoruyko and Komodakis, 2016) did not match with the one used by other
residual network authors (He et al., 2015a; Huang, Sun, et al., 2016).

The model is trained in mini-batches with the size of 128 and starting learning rate
of 0.1 (Zagoruyko and Komodakis, 2016). The model is trained for 200 epochs and the
learning rate is divided by 20 at epoch 60, 120 and 160. In addition, the weight decay is
set to 0.0005, which is different from all the other models.

32

5 Results

This chapter gives an overview of the achieved results and comparison to Guo et al. More
precisely, there are detailed tables of ECE, MCE, NLL, error rate and Brier score. In
addition, some insight into reliability diagrams is given.

In the comparison the scores on uncalibrated models were used as well as the
calibrated probabilities obtained with histogram binning, isotonic regression, temperature
scaling and beta calibration. The histogram binning models were trained using bin size
M of 15, and the bins were divided into intervals of equal lengths. BetaCal package (Kull
et al., 2017) was used for 3 parameter beta calibration and Scikit-learn (Pedregosa et al.,
2011) library was used for isotonic regression.

The final results are achieved using an hold-out test set, it is separate from the training
set and the validation set. In order to calculate ECE and MCE, the number of bins was
set to M = 15. Following tables contain all the models and calibration methods used
for the datasets. Information about these can be found from Chapters 4 and 2.1. The
abbreviated names of models are followed by the number of convolutional layers in
them. In addition, a grey colour represents the original score achieved by Guo et al. (Guo
et al., 2017) and the best results are in bold. The average rank is added in the end of the
tables for easier comparison. The subscripted numbers after scores indicate the rank.
The scores of replicated results and Guo et al. results are ranked separately.

The model output logits used for this thesis are available in same Github project3,
these are in a serialized format in Python programming language (version 3.6.4) and
include labels and logits of validation and test set.

5.1 ECE

In Table 6, expected calibration errors (ECE) are shown for various models and calibration
methods. The best performing method is temperature scaling and it is the case for all the
image classification models. The follow-up method is beta calibration, mostly it is rather
close to temperature scaling score, however, in some cases, it performs much worse (i.e.
DenseNet 40 with CIFAR-100).

3https://github.com/markus93/NN_calibration/tree/master/logits

33

https://github.com/markus93/NN_calibration/tree/master/logits

Table 6. ECE (%) (M = 15 bins) results for various models and calibration methods.
The best scores are in bold and results achieved by Guo et al. (Guo et al., 2017) are
coloured in grey for comparison.

Method Data Uncal Uncal Histo Histo Iso Iso Temp Temp Beta
Resnet 50 Birds 2.352 9.194 12.635 4.342 8.654 5.223 1.691 1.851 3.113

Resnet 110 CIFAR-10 4.755 4.64 1.252 0.581 1.474 0.812 1.131 0.833 1.423

Resnet 110 CIFAR-100 18.485 16.534 9.064 2.662 6.543 4.993 2.381 1.261 4.602

Resnet 110 (SD) CIFAR-10 4.115 4.124 1.194 0.672 1.033 1.113 0.561 0.601 0.982

Resnet 110 (SD) CIFAR-100 15.865 12.674 7.604 2.462 5.213 4.163 1.211 0.961 3.552

DenseNet 40 CIFAR-10 5.505 3.284 2.134 0.442 1.682 0.613 0.951 0.331 1.703

DenseNet 40 CIFAR-100 21.165 10.374 11.974 2.682 5.252 5.853 0.901 1.181 6.033

Wide ResNet 32 CIFAR-10 4.515 4.524 1.013 0.722 1.194 1.083 0.801 0.541 0.972

Wide ResNet 32 CIFAR-100 18.785 154 7.644 3.012 5.822 4.513 0.781 2.321 7.013

ResNet 152 ImageNet 6.653 5.484 8.925 4.362 7.054 4.773 1.471 1.861 3.472

DenseNet 161 ImageNet 5.723 6.284 8.715 4.522 6.904 5.183 1.941 1.991 3.102

Resnet 152 (SD) SVHN 0.865 0.444 0.533 0.141 0.251 0.283 0.614 0.172 0.502

Average Rank 4.42 4.00 3.92 1.83 3.00 2.92 1.25 1.25 2.42

In comparison with Guo et al. (Guo et al., 2017) results, the calibration errors are very
similar, the only larger difference is between errors of DenseNet 40 with CIFAR-100
dataset, and there is 10 units difference already in uncalibrated errors, however the ECEs
of temperature scaling are still smaller compared to Guo et al. result. Additionally, the
uncalibrated ECEs of the replicated results differ from Guo et al. results on average by
2.59 units, the errors of histogram binning and isotonic regression differ on average by
3.84 and 1.06 units respectively. On the other hand the ECEs of temperature scaling
differ only by 0.45 units on average.

5.2 Reliability Diagrams

The reliability diagrams on Figure 14 give a comparison between different calibration
methods on Resnet 110 on CIFAR-10 dataset. It is possible to see that some of the bins
with lower confidence have rather high gap (red bar) - a difference between confidence
and accuracy. That may be the case, because of low number of elements in the bin or
unlucky validation split. Based on the ECE score, one could say that histogram binning
is rather good at calibration, however looking at the Figure 14, the calibrated output
of histogram binning is rather bad at higher confidences. This occurs because of the
distribution of samples in the bins. Figure 15 shows that most of the samples fall into

34

last bin.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-110
CIFAR-10 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Beta)

Gap
Outputs

Figure 14. Reliability diagrams (M = 15) for ResNet 110 on CIFAR-10 dataset for
various calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f S
am

pl
es

ResNet-110
CIFAR-10 (Uncal)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Histo)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Iso)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Temp)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Beta)

Figure 15. Distribution (M = 15) of ResNet 110 on CIFAR-10 dataset for various
calibration methods.

On Figure 16, there are reliability diagrams created by Guo et al. (Guo et al., 2017)
and by the author of this thesis shown side by side. The diagrams look really similar,
except for histogram binning, which looks much worse in second case. Last is also
indicated by the difference of the ECE scores, 2.46 compared to 7.60.

5.3 MCE

Maximum Calibration Error is the lowest for temperature scaling (Table 7), except for
two models. On reliability diagrams (Figure 14) the largest red gap corresponds to MCE.
Based on that the largest error is in confidence interval (3/15, 4/15], except for histogram
binning, where the interval is (13/15, 14/15].

The ECE results were quite similar in comparison with Guo et al. (Guo et al., 2017).
On the other hand, the MCE scores vary a lot, this is largely affected by the model
training procedure and validation set that is used for calibration.

35

(a) Reliability diagrams (M = 10) for ResNet 110 (SD) on CIFAR-100 dataset for various
calibration methods by Guo et al. (Guo et al., 2017).

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-110(SD)
CIFAR-100 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Beta)

Gap
Outputs

(b) Reliability diagrams (M = 10) of ResNet 110 (SD) on CIFAR-100 dataset for various
calibration methods.

Figure 16. Comparison of reliability diagrams, (a) is created by Guo et al. (Guo et al.,
2017) and (b) is created by the author of this thesis.

36

Table 7. MCE (%) (M = 15 bins) results for various models and calibration methods.

Method Data Uncal Uncal Histo Histo Iso Iso Temp Temp Beta

Resnet 50 Birds 27.294 30.064 42.905 25.353 22.892 16.592 27.143 9.081 13.181

Resnet 110 CIFAR-10 29.584 33.784 44.455 26.873 24.582 7.801 23.641 8.562 26.223

Resnet 110 CIFAR-100 39.885 35.504 31.644 7.032 13.383 10.363 7.101 4.741 11.442

Resnet 110 (SD) CIFAR-10 32.484 34.524 49.095 17.003 8.142 16.452 7.821 15.451 10.033

Resnet 110 (SD) CIFAR-100 48.295 26.424 28.974 9.122 11.583 10.953 4.101 8.851 10.832

DenseNet 40 CIFAR-10 33.404 22.444 45.105 7.772 8.491 19.543 9.932 4.581 25.033

DenseNet 40 CIFAR-100 45.405 21.524 16.944 9.361 12.162 10.592 2.211 19.403 12.923

Wide ResNet 32 CIFAR-10 37.224 27.974 32.983 12.193 26.722 6.191 7.061 9.112 74.585

Wide ResNet 32 CIFAR-100 45.645 33.114 41.874 6.222 14.072 14.873 3.611 5.331 15.163

ResNet 152 ImageNet 14.294 12.202 28.325 14.574 11.033 8.741 6.781 12.293 8.852

DenseNet 161 ImageNet 13.073 14.074 27.745 13.143 13.394 11.571 4.971 12.292 10.882

Resnet 152 (SD) SVHN 25.034 19.364 22.282 11.161 24.783 18.673 18.241 18.052 25.905

Average Rank 4.25 3.83 4.25 2.42 2.42 2.08 1.25 1.67 2.83

In this case, MCE gives good idea how bad the model can perform in the worst case
scenario, however it does not indicate in which confidence range it is more likely to be
poorly-calibrated.

5.4 Brier Score

Brier scores are really similar for all the calibration methods (Table 8). The best is mostly
histogram binning, except for Resnet 152 (SD), and for Wide ResNet 32, where isotonic
regression and beta calibration are the best, respectively.

The results from Brier score are opposing to ECE and MCE results, where the
histogram binning was performing the worst. Guo et al. (Guo et al., 2017) did not include
Brier score, so it cannot be confirmed whether Brier score should give conflicting results
to ECE and MCE.

37

Table 8. Brier score results for various models and calibration methods.

Method Data Uncal Histo Iso Temp Beta

Resnet 50 Birds 0.52632 0.50721 0.53033 0.53134 0.56875

Resnet 110 CIFAR-10 0.83165 0.77921 0.79044 0.78813 0.78642

Resnet 110 CIFAR-100 0.66115 0.51101 0.53784 0.52493 0.51962

Resnet 110 (SD) CIFAR-10 0.83385 0.78541 0.79714 0.79202 0.79513

Resnet 110 (SD) CIFAR-100 0.66145 0.54282 0.56664 0.53561 0.55233

DenseNet 40 CIFAR-10 0.81925 0.76311 0.77834 0.77022 0.77473

DenseNet 40 CIFAR-100 0.65505 0.47111 0.51704 0.49142 0.49553

Wide ResNet 32 CIFAR-10 0.83885 0.78111 0.79684 0.78972 0.79463

Wide ResNet 32 CIFAR-100 0.69875 0.53471 0.58494 0.56313 0.56262

ResNet 152 ImageNet 0.64765 0.59332 0.58561 0.59493 0.59624

DenseNet 161 ImageNet 0.65185 0.59762 0.59751 0.60493 0.60674

Resnet 152 (SD) SVHN 0.90725 0.88592 0.88814 0.88713 0.88471

Average Rank 4.75 1.33 3.42 2.58 2.92

5.5 Error Rate

The error rates (Table 9) are really similar compared to Guo et al. (Guo et al., 2017).
The most consistently performing is naturally temperature scaling as it does not affect
predictions. However, the best overall error rates are achieved by beta calibration,
although it reduces the accuracy of the model in a couple of cases. On the other hand,
histogram binning method increases the error rate the most and isotonic regression affects
error rate in a negative direction in case of larger number of classes.

38

Table 9. Error rate (%) results for various models and calibration methods.

Method Data Uncal Uncal Histo Histo Iso Iso Temp Temp Beta

Resnet 50 Birds 26.861 22.541 3.775 55.024 34.314 23.373 26.861 22.541 27.203

Resnet 110 CIFAR-10 6.442 6.211 6.595 6.454 6.361 6.363 6.442 6.211 6.442

Resnet 110 CIFAR-100 28.522 27.831 31.265 34.784 29.314 28.413 28.522 27.831 28.361

Resnet 110 (SD) CIFAR-10 5.963 5.643 6.205 5.591 5.912 5.622 5.963 5.643 5.861

Resnet 110 (SD) CIFAR-100 27.172 24.911 29.745 33.784 27.474 25.423 27.172 24.911 26.321

DenseNet 40 CIFAR-10 7.581 5.911 7.935 6.124 7.654 5.963 7.581 5.911 7.593

DenseNet 40 CIFAR-100 30.002 26.451 32.495 34.784 30.224 26.733 30.002 26.451 29.811

Wide ResNet 32 CIFAR-10 6.073 6.961 6.185 7.304 5.982 7.013 6.073 6.961 5.941

Wide ResNet 32 CIFAR-100 26.182 28.001 28.895 34.294 26.334 28.613 26.182 28.001 25.981

ResNet 152 ImageNet 23.802 22.311 31.325 48.104 28.164 22.943 23.802 22.311 23.721

DenseNet 161 ImageNet 22.952 22.571 30.665 48.324 26.824 23.203 22.952 22.571 22.771

Resnet 152 (SD) SVHN 1.852 1.981 2.075 2.064 1.964 2.043 1.852 1.981 1.821

Average Rank 2.00 1.17 5.00 3.75 3.42 2.92 2.00 1.17 1.42

5.6 Negative Log Likelihood

Negative log likelihood acts similarly to error rate (Table 10). Meaning it is negatively
affected in case of histogram binning and isotonic regression and performs the best using
temperature scaling and beta calibration.

39

Table 10. NLL results for various models and calibration methods.

Method Data Uncal Uncal Histo Histo Iso Iso Temp Temp Beta

Resnet 50 Birds 0.98591 0.97862 10.51625 1.62264 4.36454 1.41283 0.98622 0.87921 1.29263

Resnet 110 CIFAR-10 0.35834 0.32854 0.54725 0.25323 0.27083 0.22372 0.20931 0.21021 0.21392

Resnet 110 CIFAR-100 1.69373 1.49784 4.21395 1.43793 1.89264 1.20702 1.09171 1.04421 1.13182

Resnet 110 (SD) CIFAR-10 0.30334 0.29594 0.49945 0.20273 0.25443 0.18672 0.17761 0.17181 0.18562

Resnet 110 (SD) CIFAR-100 1.35253 1.11573 4.01875 1.19854 1.63714 1.03172 0.94211 0.86131 0.96432

DenseNet 40 CIFAR-10 0.42824 0.22284 0.57255 0.21203 0.27733 0.19692 0.22511 0.17501 0.23922

DenseNet 40 CIFAR-100 2.01744 1.01342 4.18295 1.21564 1.64913 1.06153 1.05711 0.90261 1.15322

Wide ResNet 32 CIFAR-10 0.38174 0.32934 0.51325 0.27783 0.23273 0.24282 0.19151 0.22831 0.20202

Wide ResNet 32 CIFAR-100 1.80224 1.34343 3.93525 1.44994 1.56073 1.20862 0.94451 1.05651 1.03862

ResNet 152 ImageNet 0.98852 0.89612 6.15915 1.45074 2.85204 1.18593 0.94211 0.86571 0.99473

DenseNet 161 ImageNet 0.94402 0.93382 6.19035 1.47164 2.88574 1.19123 0.90931 0.88851 0.97333

Resnet 152 (SD) SVHN 0.08543 0.08422 0.28875 0.11374 0.10934 0.09503 0.07861 0.08211 0.07962

Average Rank 3.17 3.00 5.00 3.58 3.50 2.42 1.08 1.00 2.25

5.7 Computational efficiency

Temperature scaling calibration method was computationally the most efficient, and
arguably it was the easiest one to include into a deep learning model. Furthermore,
temperature scaling was 5 times faster than its closest competitor beta calibration in
case of ImageNet dataset, which also had the largest validation dataset and most classes.
Otherwise, the running times were close to 2-3 seconds for all the methods. Temperature
scaling was able to converge in less than 10 iterations for all the models.

The models were trained using a single GPU (NVIDIA Tesla P100) provided by the
High Performance Computing Center of University of Tartu. The training for one epoch
took up to 160 seconds, so in total up to 13 hours for CIFAR-10, CIFAR-100 and Birds
datasets. ResNet with Stochastic Depth trained for 13 hours, Wide ResNet and DenseNet
both trained for 9 hours and ResNet for 5 hours. The ResNet (SD) on SVHN dataset was
trained for 19 hours.

40

6 Discussion

In process of replication, it was confirmed that temperature scaling works surprisingly
well on neural networks with image datasets. Temperature scaling outperformed other
calibration methods on almost every dataset and model using various error measures.
Only the error rates of beta calibration were slightly smaller than for temperature scaling.
One might think that other methods performed worse than temperature scaling because
of overfitting. However, it was not the case because using temperature scaling the ECE
scores were also smaller on the validation data (Figure 17).

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-110
CIFAR-100 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Beta)

Gap
Outputs

Figure 17. Reliability diagrams (M = 15) for ResNet 110 on CIFAR-100 validation
dataset for various calibration methods.

6.1 Problems with Replication

Unfortunately, there was not much information about how Guo et al. (Guo et al., 2017) im-
plemented their models, it was only said that implementation details from original papers
were followed. However, in some cases, the original paper was rather vague about the
implementation and had two different approaches for data preprocessing (Zagoruyko and
Komodakis, 2016; Huang, Liu, et al., 2016) and had separate results for data augmenta-
tion (Huang, Liu, et al., 2016). Some of the papers also did not mention whether per-pixel
or per-channel normalization was used or were vague about the preprocessing (He et al.,
2015a; Huang, Sun, et al., 2016; Zagoruyko and Komodakis, 2016).

Furthermore, the SVHN did not start converging with the suggested learning rate of
0.1, even after 30 epochs. The starting learning rate was changed to 0.04 for the initial
epoch. Additionally, in case of Birds data set, the fine-tuning approach was used, but the
hyperparameters and data preprocessing was not described at all.

In addition, Guo et al. (Guo et al., 2017) did not write about the growth factor of

41

Wide ResNet model and did not follow the depth measure in the original paper, because
following the format there, it was impossible to get 32 layer network. Actually, the
weight layers were counted as in original Residual network paper (He et al., 2015a),
which left out convolutional projection layers that carry residuals. These projections
were used when the number of filters or size of input changed.

In case of ImageNet, it is usually tested using 4 corner crops and 1 centre crop from
the image and its horizontal flip, getting total of 10 patches. Based on these, predictions
of the model are averaged. However, in this thesis, only centre crop was used for testing.
Saying that, in given thesis, the last model was used, instead of a model with the best
validation score.

These problems made it much harder to train the models and to achieve similar test
error rates to the replicated paper. It was also the cause why scores for LeNet model (Le-
Cun et al., 1998) and Stanford Cars dataset (Krause et al., 2013) were left out from final
results. More precisely, in case of LeNet, the preprocessing and hyperparameters were
not described and the error rates achieved were 10 percent higher compared to Guo et
al. results. ResNet 50 model on Stanford Cars dataset started converging, but only for
training set as it did not learn anything for the validation set. Although the preprocessing
and fine-tuning for Cars dataset was done similarly to training on Birds dataset.

It is worth noting that some details of the models might be different from the original.
Nonetheless, the results achieved in this thesis are comparable to Guo et al. (Guo et al.,
2017) results and the minor differences should not matter too much.

6.2 Contributions

Firstly, the author’s contributions to the work were modifying models according to the
needs. Despite having models readily available on the web, there were some complica-
tions with couple of the models. For example, one of the ResNet models with Stochastic
depth was not working properly and did not achieve good enough results even though
the same hyperparameters as described in original paper were used.

Secondly, all the datasets except CIFAR-10 and CIFAR-100, had to be loaded in from
scratch. The datasets preprocessing needed to be done, because of the extra validation
set. Meaning pre-calculated means and variances could not be used. Fortunately Keras
had data augmentation implemented, only random cropping had to be added.

Lastly, reliability diagrams and evaluation of the models were implemented by the

42

author. In addition, temperature scaling and histogram binning were added to work-flow,
however, those were rather easy to implement. All the replication process is available on
public Github repository4.

4https://github.com/markus93/NN_calibration

43

https://github.com/markus93/NN_calibration

7 Conclusion

In conclusion, many of the results of Guo et al. (Guo et al., 2017) paper were replicated
and compared to beta calibration. In the process, there were used 4 convolutional neural
network models: Residual Network (ResNet), ResNet with Stochastic Depth, Wide
ResNet and DenseNet. These models were trained on following datasets: CIFAR-10/100,
Imagenet, SVHN and Caltech-UCSD Birds. The results of the models were calibrated
using histogram binning, isotonic regression and temperature scaling. Additionally, beta
calibration method was added to the comparison. As a result, temperature scaling method
was superior and outperformed other calibration methods on various error measures.
Beta calibration had performed a little bit better in case of error rate, but regarding other
calibration measures, temperature scaling clearly outperformed it.

Future work is to add more models with different architectures and find out why
Brier scores give conflicting results compared to ECE and MCE. Also to add some extra
multiclass calibration methods that were not done by Guo et al. to get more in-depth
analysis. Furthermore, it would be interesting to understand what qualities neural network
has or should have in order to be suitable for temperature scaling.

44

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . & Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org. (Cit. on p. 31).

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E. (1955). An
empirical distribution function for sampling with incomplete information. The
annals of mathematical statistics, 641–647. (Cit. on p. 12).

Bendale, A. & Boult, T. E. (2016). Towards open set deep networks. In The ieee
conference on computer vision and pattern recognition (cvpr). (Cit. on p. 27).

Bengio, Y., Goodfellow, I. J., & Courville, A. (2015). Deep learning. Nature, 521(7553),
436–444. (Cit. on p. 10).

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., . . .
Zhang, J. et al. (2016). End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316. (Cit. on p. 6).

Brier, G. W. & Allen, R. A. (1951). Verification of weather forecasts. In Compendium
of meteorology (pp. 841–848). Springer. (Cit. on p. 10).

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.
In Proceedings of the 21th acm sigkdd international conference on knowledge
discovery and data mining (pp. 1721–1730). ACM. (Cit. on p. 6).

Chen, L. (2018). Implementation of stochastic depth networks in Keras. accessed
05/14/2018, from https : / / github. com/ transcranial / stochastic - depth. (Cit. on
p. 31)

Chollet, F. et al. (2015). Keras. https://keras.io. (Cit. on p. 31).
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In 2009 ieee conference on computer
vision and pattern recognition (pp. 248–255). doi:10.1109/CVPR.2009.5206848.
(Cit. on p. 15)

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning.
Springer series in statistics New York. (Cit. on p. 10).

Gal, Y. & Ghahramani, Z. (2015). Dropout as a Bayesian Approximation: Represent-
ing Model Uncertainty in Deep Learning. ArXiv e-prints. arXiv: 1506 .02142
[stat.ML]. (Cit. on p. 27)

45

https://github.com/transcranial/stochastic-depth
https://keras.io
https://dx.doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. http : / / www.
deeplearningbook.org. MIT Press. (Cit. on pp. 16, 17).

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern
neural networks. CoRR, abs/1706.04599. arXiv: 1706.04599. (Cit. on pp. 2, 3, 6,
9, 11, 13, 26, 29, 30, 32–38, 41, 42, 44)

He, K., Zhang, X., Ren, S., & Sun, J. (2015a). Deep residual learning for image
recognition. CoRR, abs/1512.03385. arXiv: 1512.03385. (Cit. on pp. 19–21, 26,
31, 32, 41, 42)

He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. CoRR, abs/1502.01852.
arXiv: 1502.01852. (Cit. on p. 31)

Hendrycks, D. & Gimpel, K. (2016). A baseline for detecting misclassified and out-of-
distribution examples in neural networks. CoRR, abs/1610.02136. arXiv: 1610.
02136. (Cit. on p. 27)

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531. (Cit. on p. 13).

Huang, G., Liu, Z., & Weinberger, K. Q. (2016). Densely connected convolutional
networks. CoRR, abs/1608.06993. arXiv: 1608.06993. (Cit. on pp. 22–24, 32, 41)

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with
stochastic depth. CoRR, abs/1603.09382. arXiv: 1603.09382. (Cit. on pp. 21, 22,
30–32, 41)

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. (Cit. on
p. 19).

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review,
106(4), 620. (Cit. on p. 13).

Jiang, X., Osl, M., Kim, J., & Ohno-Machado, L. (2011). Calibrating predictive model
estimates to support personalized medicine. Journal of the American Medical
Informatics Association, 19(2), 263–274. (Cit. on p. 6).

Keren, G., Cummins, N., & Schuller, B. (2018). Calibrated Prediction Intervals for
Neural Network Regressors. ArXiv e-prints. arXiv: 1803.09546 [stat.ML]. (Cit.
on p. 28)

46

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1603.09382
http://arxiv.org/abs/1803.09546

Krause, J., Stark, M., Deng, J., & Fei-Fei, L. (2013). 3d object representations for
fine-grained categorization. In Computer vision workshops (iccvw), 2013 ieee
international conference on (pp. 554–561). IEEE. (Cit. on p. 42).

Krizhevsky, A. (2012). Learning multiple layers of features from tiny images. (Cit. on
pp. 14, 15).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th international conference
on neural information processing systems - volume 1 (pp. 1097–1105). NIPS’12.
Lake Tahoe, Nevada: Curran Associates Inc. (Cit. on p. 30).

Kuleshov, V. & Ermon, S. (2016). Reliable confidence estimation via online learning.
CoRR, abs/1607.03594. arXiv: 1607.03594. (Cit. on p. 27)

Kuleshov, V. & Liang, P. (2015). Calibrated structured prediction. In Proceedings of the
28th international conference on neural information processing systems - volume
2 (pp. 3474–3482). NIPS’15. Montreal, Canada: MIT Press. (Cit. on p. 27).

Kull, M., Silva Filho, T., & Flach, P. (2017). Beta calibration: A well-founded and easily
implemented improvement on logistic calibration for binary classifiers. In Artificial
intelligence and statistics (pp. 623–631). (Cit. on pp. 2, 3, 6, 11, 13, 33).

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2016). Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. ArXiv e-prints. arXiv: 1612.01474
[stat.ML]. (Cit. on p. 27)

LeCun, Y. et al. (1989). Generalization and network design strategies. Connectionism in
perspective, 143–155. (Cit. on p. 17).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. (Cit. on
pp. 6, 18, 42).

Li, W. (2018). Learn deep learning with cifar datasets. accessed 05/14/2018, from
https://github.com/BIGBALLON/cifar-10-cnn. (Cit. on p. 31)

Majumdar, S. (2018a). Densenet implementation in Keras. accessed 05/14/2018, from
https://github.com/titu1994/DenseNet. (Cit. on p. 32)

Majumdar, S. (2018b). Wide residual networks in Keras. accessed 05/14/2018, from
https://github.com/titu1994/Wide-Residual-Networks. (Cit. on p. 32)

Naeini, M. P., Cooper, G. F., & Hauskrecht, M. (2015). Obtaining well calibrated
probabilities using bayesian binning. In Aaai (pp. 2901–2907). (Cit. on p. 9).

47

http://arxiv.org/abs/1607.03594
http://arxiv.org/abs/1612.01474
http://arxiv.org/abs/1612.01474
https://github.com/BIGBALLON/cifar-10-cnn
https://github.com/titu1994/DenseNet
https://github.com/titu1994/Wide-Residual-Networks

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(icml-10) (pp. 807–814). (Cit. on p. 18).

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In Nips workshop on
deep learning and unsupervised feature learning 2011. (Cit. on p. 16).

Niculescu-Mizil, A. & Caruana, R. (2005). Predicting good probabilities with supervised
learning. In Proceedings of the 22nd international conference on machine learning
(pp. 625–632). ICML ’05. Bonn, Germany: ACM. doi:10.1145/1102351.1102430.
(Cit. on p. 7)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
& Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825–2830. (Cit. on p. 33).

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., & Hinton, G. E. (2017). Reg-
ularizing neural networks by penalizing confident output distributions. CoRR,
abs/1701.06548. arXiv: 1701.06548. (Cit. on p. 27)

Platt, J. et al. (1999). Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers, 10(3),
61–74. (Cit. on p. 12).

Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556. arXiv: 1409.1556. (Cit. on p. 30)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15, 1929–1958. (Cit. on p. 27).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in neural information processing systems (pp. 3104–3112).
(Cit. on p. 6).

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., & Perona, P.
(2010). Caltech-UCSD Birds 200 (tech. rep. No. CNS-TR-2010-001). California
Institute of Technology. (Cit. on p. 16).

Yu, F. (2017a). Densenet implementation in keras with imagenet pretrained models.
accessed 05/14/2018, from https://github.com/flyyufelix/DenseNet-Keras. (Cit. on
p. 32)

48

https://dx.doi.org/10.1145/1102351.1102430
http://arxiv.org/abs/1701.06548
http://arxiv.org/abs/1409.1556
https://github.com/flyyufelix/DenseNet-Keras

Yu, F. (2017b). Fine-tune CNN in keras. accessed 05/14/2018, from https://github.com/
flyyufelix/cnn_finetune. (Cit. on p. 31)

Zadrozny, B. & Elkan, C. (2001). Obtaining calibrated probability estimates from
decision trees and naive bayesian classifiers. In Icml (Vol. 1, pp. 609–616). Citeseer.
(Cit. on p. 11).

Zadrozny, B. & Elkan, C. (2002a). Transforming classifier scores into accurate multi-
class probability estimates. In Proceedings of the eighth acm sigkdd international
conference on knowledge discovery and data mining (pp. 694–699). ACM. (Cit. on
p. 12).

Zadrozny, B. & Elkan, C. (2002b). Transforming classifier scores into accurate multi-
class probability estimates. In Proceedings of the eighth acm sigkdd international
conference on knowledge discovery and data mining (pp. 694–699). ACM. (Cit. on
p. 14).

Zagoruyko, S. & Komodakis, N. (2016). Wide residual networks. CoRR, abs/1605.07146.
arXiv: 1605.07146. (Cit. on pp. 24, 25, 32, 41)

Zhang, Z., Ning, G., Cen, Y., Li, Y., Zhao, Z., Sun, H., & He, Z. (2018). Progressive
Neural Networks for Image Classification. ArXiv e-prints. arXiv: 1804.09803
[cs.CV]. (Cit. on p. 27)

Zhou, Y. & Chellappa, R. (1988). Computation of optical flow using a neural network.
In Ieee international conference on neural networks (Vol. 27, pp. 71–78). (Cit. on
p. 18).

49

https://github.com/flyyufelix/cnn_finetune
https://github.com/flyyufelix/cnn_finetune
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1804.09803
http://arxiv.org/abs/1804.09803

Appendix

I. Reliability Diagrams

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-50
Birds (Uncal)
Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-50
Birds (Histo)
Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-50
Birds (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-50
Birds (Temp)
Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-50
Birds (Beta)
Gap
Outputs

Figure 18. Reliability diagrams (M = 15) for ResNet 50 on Birds dataset for various
calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-110
CIFAR-10 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-10 (Beta)

Gap
Outputs

Figure 19. Reliability diagrams (M = 15) for ResNet 110 on CIFAR-10 dataset for
various calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-110
CIFAR-100 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110
CIFAR-100 (Beta)

Gap
Outputs

Figure 20. Reliability diagrams (M = 15) for ResNet 110 on CIFAR-100 dataset for
various calibration methods.

50

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-110(SD)
CIFAR-10 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-10 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-10 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-10 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-10 (Beta)

Gap
Outputs

Figure 21. Reliability diagrams (M = 15) for ResNet 110 (SD) on CIFAR-10 dataset for
various calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-110(SD)
CIFAR-100 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-110(SD)
CIFAR-100 (Beta)

Gap
Outputs

Figure 22. Reliability diagrams (M = 15) for ResNet 110 (SD) on CIFAR-100 dataset for
various calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-152(SD)
SVHN (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152(SD)
SVHN (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152(SD)
SVHN (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152(SD)
SVHN (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152(SD)
SVHN (Beta)
Gap
Outputs

Figure 23. Reliability diagrams (M = 15) for ResNet 152 (SD) on SVHN dataset for
various calibration methods.

51

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DenseNet-40
CIFAR-10 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-10 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-10 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-10 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-10 (Beta)

Gap
Outputs

Figure 24. Reliability diagrams (M = 15) for DenseNet 40 on CIFAR-10 dataset for
various calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DenseNet-40
CIFAR-100 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-100 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-100 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-100 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-40
CIFAR-100 (Beta)

Gap
Outputs

Figure 25. Reliability diagrams (M = 15) for DenseNet 40 on CIFAR-100 dataset for
various calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

WideNet-32
CIFAR-10 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-10 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-10 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-10 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-10 (Beta)

Gap
Outputs

Figure 26. Reliability diagrams (M = 15) for Wide ResNet 32 on CIFAR-10 dataset for
various calibration methods.

52

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

WideNet-32
CIFAR-100 (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-100 (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-100 (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-100 (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

WideNet-32
CIFAR-100 (Beta)

Gap
Outputs

Figure 27. Reliability diagrams (M = 15) for Wide ResNet 32 on CIFAR-100 dataset for
various calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ResNet-152
ImageNet (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152
ImageNet (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152
ImageNet (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152
ImageNet (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ResNet-152
ImageNet (Beta)

Gap
Outputs

Figure 28. Reliability diagrams (M = 15) for ResNet 152 on ImageNet dataset for various
calibration methods.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

DenseNet-161
ImageNet (Uncal)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-161
ImageNet (Histo)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-161
ImageNet (Iso)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-161
ImageNet (Temp)

Gap
Outputs

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

DenseNet-161
ImageNet (Beta)

Gap
Outputs

Figure 29. Reliability diagrams (M = 15) for DenseNet 161 on ImageNet dataset for
various calibration methods.

53

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Markus Kängsepp,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Calibration of Convolutional Neural Networks

supervised by Meelis Kull

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

54

	Introduction
	Background
	Calibration
	Reliability Diagrams
	Scoring Measures
	Logits and Neural Networks
	Calibration Methods
	Multiclass Calibration

	Datasets
	CIFAR-10
	CIFAR-100
	ImageNet
	Street View House Numbers (SVHN)
	Birds

	Neural Networks
	Residual Network
	ResNet SD
	DenseNet
	Wide ResNet

	Related Work
	Necessity of Calibration
	Calibration in Neural Networks

	Methods
	Data Preparation
	CIFAR-10
	CIFAR-100
	ImageNet
	Street View House Numbers (SVHN)
	Birds

	Training
	ResNet
	ResNet SD
	DenseNet
	Wide ResNet

	Results
	ECE
	Reliability Diagrams
	MCE
	Brier Score
	Error Rate
	Negative Log Likelihood
	Computational efficiency

	Discussion
	Problems with Replication
	Contributions

	Conclusion
	References
	Appendix
	I. Reliability Diagrams
	II. Licence

