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Abstract:

Convolutional neural networks serve as primate visual system models and their feature

visualization has intuitive similarities to psychedelic imagery, as well as the effect of features

being similar in both artificial and biological systems. It is explored in this thesis whether the

"psychedelicism" inherent in feature visualizations might signify deeper correspondences

between convolutional neural networks and visual processing, particularly within the realm of

psychedelic imagery.

The main research question of the thesis examines the variance in simulating psychedelic

imagery between effective and ineffective visual system models. The results clarify that the

feature visualizations of the CNN that approximates the visual system effectively are more

accurate. This is speculated to point towards some of the computational mechanisms of effective

visual system models being suitable for explaining the neural mechanisms underlying

psychedelic imagery. Furthermore, the results hint at the heightened influence of endogenous

activity from the primary visual area during psychedelic perception, as well as a pronounced

alignment between artificial and biological systems at the neuronal level for early processing

stages and at a more abstract level for later processing stages.
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Psühhedeelsete nägemuste uurimine konvolutsiooniliste närvivõrkude üksuste

visualiseerimise kaudu

Lühikokkuvõte:

Konvolutsioonilised närvivõrgud mudeldavad primaatide nägemissüsteemi ning nende üksuste

visualiseerimisel on sarnaseid jooni psühhedeelsete nägemustega, kusjuures visualisatsioonide

mõju on analoogne nii tehislikes kui bioloogilistes nägemissüsteemides. Käesolevas

bakalaureusetöös uuritakse, kas konvolutsiooniliste närvivõrkude üksuste visualisatsioonide

psühhedeelsus võib tehislike ja bioloogiliste nägemissüsteemide vahelisele sügavamale

sarnasusele viidata.

Bakalaureusetöö põhiline uurimisküsimus on, kas efektiivsete ja ebaefektiivsete

nägemissüsteemi mudelite üksuste visualisatsioonide psühhedeelsuse vahel on erinevus.

Tulemuste põhjal on efektiivsema nägemissüsteemi mudeli visualisatsioonid psühhedeelsete

nägemustega sarnasemad, mida loetakse sellele viitavat, et efektiivsemate mudelite arvutuslikud

mehhanismid võivad psühhedeelsete nägemuste tekkemehhanisme selgitada. Lisaks osutavad

tulemused sellele, et psühhedeelsete nägemuste kujunemisel mängib rolli esmase nägemisala

aktiivsus, ning tehislike ja bioloogiliste nägemissüsteemide vaheline analoogia on varasemas

töötlusetapis tugevaim neuronite tasandil, kuid hilisemas töötlustapis kõrgemal hierarhiatasandil.

Võtmesõnad:

Konvolutsioonilised närvivõrgud, üksuste visualiseerimine, primaatide nägemissüsteem,

psühhedeelsed nägemused

CERCS: P170, S260

3



Table of Contents

Introduction......................................................................................................................................5
1 Background...................................................................................................................................7

1.1 CNNs as Primate Visual System Models.............................................................................7
1.2 Feature Visualization........................................................................................................... 9
1.3 The Neural Mechanisms of Psychedelic Imagery............................................................. 13

2 Method........................................................................................................................................ 18
2.1 Models................................................................................................................................18

2.1.1 Brain Score................................................................................................................18
2.1.2 ResNet 152 V2..........................................................................................................19
2.1.3 MobileNet V1 0.25................................................................................................... 20

2.2 Feature Visualizations........................................................................................................20
2.3 Experiment.........................................................................................................................22

3 Results.........................................................................................................................................23
4 Discussion...................................................................................................................................27
Conclusion..................................................................................................................................... 30
References......................................................................................................................................31
Appendix........................................................................................................................................39

I. Layer Commitment Data...................................................................................................... 39
II. Experimental Materials....................................................................................................... 41
III. Licence...............................................................................................................................56

4



Introduction

Situated at the crossroads of computer science and psychology, this Bachelor’s thesis aims to

contribute to our understanding of the neural mechanisms underlying the psychedelic state, more

specifically psychedelic imagery. Psychedelic research has seen a renaissance in recent years,

mainly due to the fact that psychedelic therapy has proven to be unexpectedly efficient for

complex mental disorders like depression (Carhart-Harris et al., 2018; Palhano-Fontes et al.,

2019; Kaup et al., 2023) and addiction (Bogenschutz et al., 2015; Garcia-Romeu et al., 2019).

However, the neural mechanisms underlying the psychedelic-induced altered states of

consciousness are still debated.

To strive towards the aim, convolutional neural networks (CNNs), a type of computer vision

models, are leveraged. CNNs can be used for modeling the primate ventral visual stream – the

brain regions predominantly responsible for object recognition (Mishkin et al., 1983). As a

result, they emerge as invaluable tools for formulating and testing hypotheses about the neural

mechanisms underlying psychedelic imagery. Their computations, while sometimes dubbed

"black boxes", offer a relatively comprehensible framework compared to the intricate workings

of the brain. The significance of psychedelic research is highlighted by its potential therapeutic

applications in mitigating symptoms of various mental disorders, as mentioned before, and its

broader contributions to the study of consciousness (Carhart-Harris et al., 2014).

The topic is approached both theoretically and practically – first, a theoretical framework is

introduced, under which psychedelic imagery could be studied with the help of CNNs. Second,

an experiment is conducted, where the information encoded at different CNN levels is visualized

and compared with the imagery experienced under the influence of psychedelic substances.

The main research question of the thesis is:

● How does the capacity of CNNs to simulate psychedelic imagery differ between models

that effectively or ineffectively represent primate visual system activity?

With the hypothesis put to test being:

● The visualizations of the CNN that effectively models the primate visual system activity

exhibit a higher degree of similarity to psychedelic imagery.

It is speculated that if the hypothesis turns out to be true, it is meaningful to explain (some of) the

neural mechanisms underlying psychedelic imagery by leveraging CNNs.
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In addition to that, it is aimed to shed light on which level of CNNs’ hierarchy – artificial

neurons, channels or layers – is most meaningful to use as a basis of comparison with

psychedelic imagery, as it is not straightforward to interpret the mapping between CNN- and

brain units.

The “Background” chapter introduces why CNNs can serve as visual system’s models, the

technique of visualizing the information encoded in different CNN units, and how the

aforementioned could be relevant for understanding the neural mechanisms underlying the

psychedelic state. The “Method” chapter introduces the CNNs whose units were visualized, the

software that was used, and gives a detailed overview of the experiment that was conducted. The

“Results” chapter presents the results of the experiment and the “Discussion” chapter hosts a

discussion over their meaning. The materials that were used to put together the experiment are

added as appendices.
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1 Background

The aim of the background chapter is to convince the reader that it’s meaningful to make use of

CNNs and, more specifically, their feature visualizations, to explain the neural mechanisms

underlying psychedelic imagery. First, the framework of using CNNs to model the primate visual

system is introduced. Then, the technique of feature visualization is delved into. Finally, some

previous studies and possible interpretations for explaining psychedelic imagery with feature

visualizations are presented.

1.1 CNNs as Primate Visual System Models

The usage of CNNs as primate visual system models relies on multiple analogies and

similarities, and should be approached cautiously. The most fundamental similarities go back to

the structural level – an artificial neuron is a simplification of the biological neuron. At its core,

an artificial neuron, labeled at its “birth” a perceptron, linearly combines incoming data to output

a response, if it reaches a certain threshold (Rosenblatt, 1957). This process takes inspiration

from a biological neuron, which roughly operates by gathering signals via its dendrites and

passing them on via its axon, if the signals surpass the threshold potential (Delétang, 2020).

Going a step further, the predecessor of modern computer vision models, a network titled

“neocognitron”, had a structure directly inspired by that of the early visual system (Fukushima,

1980). Namely, the simple cells of the early visual system, which have the orientation-sensitive

ability to detect the edges of objects, and the complex cells of the early visual system, which

combine the responses of the simple cells, making it possible to detect edges regardless of their

spatial location, are functionally replicated in the “neocognitron” (Hubel and Wiesel, 1962). In

other words, the early areas of both biological and artificial visual systems detect the low-level

properties of objects, such as edges and lines (Hubel and Wiesel, 1962; Olah et al., 2020b).

As in the biological brain, the above-described single units are combined into networks in the

artificial systems, allowing for the ability to solve complex visual tasks. A fundamental

difference between these networks, though, is that CNNs have a strictly feedforward and

hierarchical architecture, with the representations encoded in higher layers forming directly

based on those preceding them. The biological visual system, on the other hand, exhibits

recurrent processing, which has been found to be critical for solving more complex image
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recognition tasks (Kar et al., 2019). Importantly, this recurrent activity is poorly accounted for by

the typical feedforward CNNs, but has been found to be somewhat compensated by making these

networks deeper (Kar et al., 2019). The hierarchical formation of representations in the visual

system is challenged by, for example, the neural activity in the visual areas being better predicted

by deep neural networks that do not learn representations in a hierarchical manner (St-Yves et al.,

2022). The absence of strict hierarchical processing in the biological visual areas could also be

reflected in its sub-parts performing distinct (and at times overlapping) functions (Dwivedi et al.,

2021). This would allow us to “treat hierarchy as an emergent property rather than a requirement

for successful vision” (St-Yves et al., 2022, p. 20; Konkle, 2021), and illustrates the

computational complexity and multifaceted relationships in the brain.

Regardless of that, there are several “hierarchical” parallels between CNNs and the visual

system, which hints towards at least somewhat hierarchical processing in the ventral visual

stream. In the spatial domain, the representations encoded in the lower CNN layers are more

similar to the response of earlier visual areas, and the representations encoded in the higher CNN

layers are more similar to the response of later visual areas (Yamins et al., 2014; Cadieu et al.,

2014; Güçlü and van Gerven, 2015; Eickenberg et al., 2017; Dupré la Tour et al., 2021). In the

temporal domain, the earlier visual system response correlates more with the activity of the

lower CNN layers, as does the later visual system response with the activity of higher CNN

layers (Cichy et al., 2016). In the frequency domain, the gamma activity - thought to reflect the

feedforward communication between earlier and later visual areas (van Kerkoerle et al., 2014) -

of the earlier visual areas correlates more with the activity of lower CNN layers, while that of the

later visual areas correlates more with the activity of higher CNN layers (Kuzovkin et al., 2018).

These correspondences between the CNN layers and the visual system areas are usually

estimated by linear regression models predicting the neural responses from the CNN layer

activations or by representational similarity analysis of the neural responses and the CNN layer

activations (Kuzovkin et al., 2018).

One of the strengths of CNNs is their ability to actually solve the same tasks that the visual

system solves. This allows us to directly compare the behavior of the models and the subjects.

Performance-wise, several CNNs have approached human-level accuracy on image classification

(Russakovsky et al., 2015), as well as nearing human-level accuracy on classifying

out-of-distribution data (Geirhos et al., 2021). It has also been shown that the more models
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resemble biological vision systems on a single neuron level, for example by the function of

neurons in the early visual areas, the more they resemble humans on a behavioral level (Marques

et al., 2021). Many researchers have taken an alternative approach, though, and instead compare

the errors that models and humans make. This has led to a discovery that, at a lower, object-level

resolution, models and humans make similar mistakes, but at a higher, single-image-level

resolution, the error behavior of CNNs and humans is distinctly different, with the behavior of

other primates resembling human behavior more than that of CNNs (Rajalingham et al., 2018;

Geirhos et al., 2021). Moreover, a key finding is that CNNs tend to recognize objects based on

their texture, whereas humans recognize objects more readily based on their shape or outline, a

finding that makes sense in the light of the inductive bias of locality of CNNs (Baker et al.,

2018). These findings have been taken to imply that some characteristics of CNNs, such as their

architecture or optimization process, are fundamentally limiting for capturing primate behavior,

and point towards an overall crucial difference between the two systems (Rajalingham et al.,

2018; Baker et al., 2018).

Taking into account the above-described limitations, deep neural networks for computer vision

are still “the closest human engineered system to biological visual system we know” (Willeke et

al., 2023, p. 10). One of the most relevant similarity dimensions to the current study is CNNs’

ability to create maximally exciting images to neurons in specific visual areas and the remarkable

similarity of the groupings of these stimuli to the feature families that evolve in artificial neural

networks (Willeke et al., 2023, Olah et al., 2020b). As the feature visualizations of CNNs are at

the core of the experiment carried out in this study, the knowledge that similar features can

maximally activate both artificial and biological units is important to keep in mind. The process

of creating those maximally activating stimuli for CNNs is described in the following subchapter.

1.2 Feature Visualization

Feature visualization is a tool for increasing neural network interpretability by taking an

approach of zooming in to individual neurons, channels or layers of the network (Olah et al.,

2020a). More specifically, feature visualization implies activation maximization of neural

network units by input optimization. The process involves performing gradient ascent in the

input space (Erhan et al., 2009). Put simply, by calculating the gradients, it can be determined
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how individual pixels of an input image should be changed in order to make a chosen

optimization objective activate more (Lindsay, 2021). The process is visualized in Figure 1.

Figure 1. The process of feature visualization - arrows represent the gradient calculation between

the object of optimization (depicted in orange) and the input image (Lindsay, 2021).

The input can be random noise or an arbitrary image. In the case of random noise, the result

becomes “purely the result of the neural network”, with the visualization depicting what

information exists in the model (Mordvintsev et al., 2015; OpenVis Conference, 2018). In the

case of an arbitrary image, on the other hand, the result contains what the unit “sees” in the

image, with the input biasing the model towards certain interpretations, for example, a horizon

line could get amplified with tower-like features (Mordvintsev et al., 2015; OpenVis Conference,

2018). Generally, optimizing the input to activate units from lower CNN layers results in

visualizations of lines, color contrasts, edges, and textures, and optimizing for units from higher

CNN layers results in visualizations that could contain entire objects (Figure 2).
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Figure 2. An example of the evolution of features in the layers of InceptionV1 (Szegedy et al.,

2015; OpenVis Conference, 2018).

Feature visualization is informative, because “a pattern to which the unit is responding

maximally could be a good first-order representation of what a unit is doing”, meaning it reveals

for which kinds of patterns or objects a unit has learned to “look for” during, in our case, image

classification (Erhan et al., 2009, p. 4). It’s also more informative than looking at dataset

examples of what activates a unit the most, because feature visualization only emphasizes the

cause of the activation, leaving out the correlated, yet unimportant information (Olah et al.,

2017). It should be noted that on its own, feature visualization most probably produces

uninformative results, as several “shortcuts” can be found for maximizing the activity of units,

for example by emphasizing high frequency patterns in images (Yosinski et al., 2015; Olah et al.,

2017). This can be alleviated, though, by using regularization techniques that force the

visualizations to resemble natural images, for example by making neighboring pixels obtain

similar values (Yosinski et al., 2015; Olah et al., 2017). Another limitation of feature

visualization is that it only reveals one facet of a unit – that of maximal activation. This problem

can be alleviated by, for example, enforcing diversity between successive visualization iterations

(Olah et al., 2017).
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Figure 3. Top - an example of maximally activated features at each position of an input image in

3 distinct layers. Bottom - a comparison of primitives for thinking about the world: an RGB

representation of an image, a feature-based representation of an image, and a more

human-familiar representation of an image (OpenVis Conference, 2018).

Features can be understood as neural networks’ attempts to make sense of the natural world, as

they emerge in the course of these networks learning how to classify natural world images

(OpenVis Conference, 2018). With this in mind, it is particularly interesting to refer back to a

theme already mentioned in the previous subchapter – the same features that maximally activate
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CNN units also maximally activate neurons in specific regions of the primate visual system

(Willeke et al., 2023). Features represent a novel primitive for thinking about the world (OpenVis

Conference, 2018), perhaps also having a unique artistic value (Figure 3). However, considering

the impact of features on biological neurons, there is also potential to elucidate currently

ambiguous neural mechanisms, such as the neural coding of information in the ventral visual

stream, using these features.

As feature visualizations are a human interpretable way of representing what neural network

units compute (Erhan et al., 2009), they allow us to compare artificial neural networks and

biological systems on a more intuitive level. For example, by many, feature visualizations are

deemed to resemble the visualizations elicited by psychedelic substances (LaFrance, 2015).

Turns out that this similarity might not only lie on a subjective level, but be revealing of certain

neural mechanisms underlying the psychedelic state. This possibility is further explored in the

following subchapter.

1.3 The Neural Mechanisms of Psychedelic Imagery

Over a significant portion of the past century, psychedelic research remained controversial for

societal and political factors, but has emerged, in recent years, as a profoundly promising avenue

of inquiry. This potential is exemplified by the therapeutic applications attributed to

psychedelics, alongside their pivotal role in advancing our comprehension of consciousness

(Carhart-Harris et al., 2018; Palhano-Fontes et al., 2019; Kaup et al., 2023; Bogenschutz et al.,

2015; Garcia-Romeu et al., 2019; Carhart-Harris et al., 2014). It is already established that CNNs

can effectively model certain neural mechanisms of visual perception, and intriguingly, the

feature visualizations, which maximally activate CNN units, also elicit maximal activation in

biological counterparts while being subjectively perceived as having psychedelic characteristics

(Lindsay, 2021; Willeke et al., 2023; LaFrance, 2015). This prompts the exploration of whether

the "psychedelicism" inherent in feature visualizations might signify deeper correspondences

between CNNs and visual processing, particularly within the realm of psychedelic imagery. This

subchapter delves into the introduction of pertinent neural mechanisms underlying psychedelic

imagery, alongside highlighting previous achievements in investigating the psychedelic state

through the application of feature visualization techniques.

13



There is a consensus that instead of the brain passively receiving sensory inputs, perception is an

active process (Rao et al., 1999; Friston, 2005; Bastos et al., 2012). The hierarchical predictive

coding theory, a prominent framework for "active" perception, suggests a dynamic interplay

between bottom-up and top-down processing. Bottom-up processing integrates sensory

information and prediction errors arising from the contrast between sensory inputs and

"top-down" prior beliefs (Rao et al., 1999; Friston, 2005; Bastos et al., 2012). Prior beliefs can be

understood as world models encoded in higher brain regions, which help to predict and make

sense of the sensory inputs.

There is evidence that the trade-off between bottom-up and top-down information could be

mediated by the serotonergic system, which is the primary locus of action for serotonergic

psychedelic substances, such as LSD, psilocybin, DMT, and mescaline (Nichols, 2016; Azimi et

al., 2020). A possible mechanism underlying psychedelics' impact on this balance is their

interaction with serotonergic receptors on pyramidal cells in the cortex, where prior beliefs are

thought to be encoded (Carhart-Harris and Friston, 2019). This interaction reduces confidence in

prior beliefs, which means that externally or internally sourced bottom-up information wields

greater influence on perception, potentially reshaping top-down priors. In the case of

pathological or limiting priors, this mechanism could underpin psychedelics' therapeutic effects

(Carhart-Harris and Friston, 2019).

Psychedelics are known for inducing various visual effects, including both open- and closed-eye

hallucinations. Physiologically, increased connectivity between the visual cortex and the frontal

and mnemonic areas of the brain, as well as increased activity of the visual cortex itself

following the administration of psychedelics, has been observed (Timmermann et al., 2023;

Carhart-Harris et al., 2016; de Araújo et al., 2012). The connectivity and activity of the visual

cortex are positively correlated with the magnitude of visual hallucinations, as well as subjective

reports indicating an increase in the richness and ability to manifest closed-eye imagery after the

intake of psychedelics (Carhart-Harris et al., 2016; de Araújo et al., 2012). In addition to that, a

decrease in the alpha power is observed, which is thought to serve a general inhibitory function,

being representative of the top-down communication between brain areas (Carhart-Harris et al.,

2016; van Kerkoerle et al., 2014). These physiological findings could be indicative of the

increased influence of exogenously or endogenously stemming bottom-up information on
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perception, which, without the constraining or normalizing effect of top-down processing, could

manifest as visual hallucinations (Carhart-Harris and Friston, 2019; Bressloff et al., 2001).

Figure 4. A natural world image modified with the Deep Dream algorithm (Mordvintsev et al.,

2015); the pictures are acquired by maximizing the activation of different InceptionV1 (Szegedy

et al., 2015) layers by manipulating the original image (Suzuki et al., 2017).

There are several studies aiming to explain the mechanisms underlying psychedelic perception

with the help of CNNs. Studying the effect of a virtual reality program modified with the Deep

Dream algorithm, a feature visualization technique that manipulates an arbitrary image so as to

maximize the activation of a particular layer (Mordvintsev et al., 2015; Greco et al., 2021),
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revealed that the subjective effects elicited by being immersed in that program are broadly

similar to the subjective effects elicited by psychedelic substances (Suzuki et al., 2017).

Moreover, measuring the brain activity of those watching a video that was modified with the

aforementioned algorithm, revealed similar changes in brain activity to those actually occurring

under the influence of psychedelic substances, while also providing additional insights, such as

the connectivity between different brain areas increasing exclusively in the gamma band, which

is thought to reflect bottom-up processing (Greco et al., 2021, van Kerkoerle et al., 2014). An

example of a real world image modified with the Deep Dream algorithm can be seen in Figure 4.

Interpreting the results of studies of this kind is not straightforward. Considering CNNs' capacity

to model some of the processing of the visual system and the intrinsic nature of feature

visualization techniques to modify input while maintaining network integrity, one could

conceptualize the resemblance between feature visualizations and psychedelic imagery as the

latter arising from the imposition of prior beliefs on incoming sensory information (Suzuki et al.,

2017). This interpretation is consistent with the findings about pathological hallucinations, but

not with what we know about the psychedelic mechanisms described in the last paragraphs, such

as the weakening of top-down modulation represented by the decreased alpha power (Teufel et

al., 2015; Carhart-Harris et al., 2016; van Kerkoerle et al., 2014). A possible workaround to this

contradiction could be that the brain can deal with the perturbation of top-down control by

upregulating the priors or predictions represented by the top-down processing (Pink-Hashkes et

al., 2017). The upregulation of priors would then be paralleled with the imposition of the

information encoded in the CNN units to the input image – the underlying mechanism of feature

visualization.

An alternative interpretation would be that psychedelics disturb the bottom-up processing of

exogenous (environmental) information, while inducing the bottom-up processing of endogenous

(internally stemming) information (Schartner and Timmermann, 2020). This means that the

spontaneous neural activity in the visual areas has a stronger effect on perception, illustrated by,

for example, psychedelics increasing the activity of the visual areas during eyes-closed imagery

to comparable levels with the activity of the visual system which actually receives sensory inputs

(de Araújo et al., 2012). The spontaneous activity of the neurons in the primary visual cortex has

been shown to manifest as geometrical hallucinations (Butler et al., 2012), having similarities

with the feature visualizations of units from the lower CNN layers. This interpretation is
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consistent with the assumption that bottom-up neural activity increases after the consumption of

psychedelics, having a greater effect on perception, as well as being supported by the abundance

of serotonergic cells in the visual system (Carhart-Harris and Friston, 2019; Beliveau et al.,

2017). In this case, the bottom-up endogenous activity is paralleled with the imposition of the

information encoded in the CNN units to the input image.

The similarities between psychedelic imagery and feature visualizations are put to test in an

experiment, the process and results of which are introduced in the following subchapters.
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2 Method

The practical part of this Bachelor’s thesis put the similarities between feature visualizations and

psychedelic imagery to test. The aim was to strengthen the ground for understanding and

explaining the neural mechanisms underlying psychedelic imagery, making use of the

computational mechanisms underlying feature visualizations. The main purpose of the

experiment was to study how the capacity of CNNs to simulate psychedelic imagery differs

between models that effectively or ineffectively represent primate visual system activity. It was

speculated that if the visualizations of the CNN that effectively models the primate visual system

activity exhibit a higher degree of similarity to psychedelic imagery, it is meaningful to explain

the psychedelic mechanisms of the visual system with the help of CNNs’ feature visualization.

The results of the same experiment were analyzed further in Lüübek (2023a), where the main

question addressed was different from the focus of the current thesis, being mainly centered on

the more psychological topic of how one’s previous psychedelic experiences influence their

perception of CNNs’ feature visualizations. Generative artificial intelligence (AI) was used to

improve the readability of a handful of paragraphs of the thesis, with the specific prompt being:

“How to make this better: [text]?”, the result being a combination of the original text and certain

AI-enhanced sentences or phrases (OpenAI, 2023).

2.1 Models

The first step was to choose two CNNs that differ in their capacity to represent the primate

ventral visual stream activity. For this, the Brain Score platform1 was leveraged.

2.1.1 Brain Score

Brain Score is an integrative benchmarking platform, the goal of which is to incentivize the

progress of neurally mechanistic visual intelligence models (Schrimpf et al., 2020). Neurally

mechanistic models refer to models built solely of networks of artificial neurons and integrative

benchmarks refer to various neural and behavioral measurements of primates that the models are

being evaluated on. The main idea behind the platform is that by testing the models on

benchmarks that encompass the full span of a domain of intelligence, in this case visual

1 https://www.brain-score.org/
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intelligence, integrative models of that domain of intelligence can be reached, and better models

can be built by combining the right components of different models. Those neurally mechanistic

models then represent hypotheses of how the brain could accomplish that domain of intelligence,

which can be tested, improved, as well as falsified.

The benchmarks are more than mere brain- or behavioral data – they contain the means for

testing the models on the same experiments that subjects took part in. A few examples of the

experimental data constituting the benchmarks include neuronal responses to various stimuli in

different ventral visual stream areas and behavioral signatures of primates in object

discrimination tasks (Marques et al., 2021; Rajalingham et al., 2018). In order to be comparable

with the subjects, models need to fulfill a few requirements, such as having their layers mapped

with certain ventral visual stream areas and their (artificial neuron) activations mapped with

neural responses (such as spike rates). By fulfilling the requirements models become in silico

brain models that can be experimented on, just like an experimental subject can be experimented

on.

The brain models then receive a score for each of the benchmarks included on the platform, and

a leaderboard of current best brain models emerges. This leaderboard was used to guide the

choice of models for the current study. Namely, the best and the worst brain model, which were

concurrently 1) with an underlying CNN structure and 2) available as pre-trained models in the

feature visualization library introduced in one of the following subchapters, were chosen.

2.1.2 ResNet 152 V2

The “effective visual system model” chosen for visualization purposes turned out to be a model

titled ResNet 152 V2, a residual neural network engineered to support a very deep architecture

(He et al., 2015). Very broadly, it’s a convolutional neural network that includes additional

connections between its non-successive layers, which help to improve its image classification

performance, while also adding more layers to the network. Its top-1 accuracy on the ImageNet

Large Scale Visual Recognition Challenge – the most widely used benchmark for computer

vision models – is 77.8%, while its top-5 accuracy is 94.1% (Russakovsky et al., 2015). The

version of the model that was used for visualization was the pre-trained one of the

TensorFlow-Slim image classification model library2. The model placed 9th on the Brain Score

2 https://github.com/tensorflow/models/tree/master/research/slim
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leaderboard at the time of writing, with an average score of 0.432, calculated based on its

performance on all the benchmarks of the platform.

2.1.3 MobileNet V1 0.25

The “ineffective visual system model” chosen for visualization purposes turned out to be a

version of the MobileNet V1 network (Howard et al., 2017). The main goal of MobileNets is to

provide computationally effective, yet sufficiently accurate computer vision models. The

computational cost of MobileNets can be modified by two hyperparameters – a width multiplier,

which reduces the number of channels in each layer of the model, and a resolution multiplier,

which modifies the resolution of the input image and the internal representations of the model.

The TensorFlow-Slim implementation of MobileNet V1 was used for visualization, with the

width multiplier hyperparameter set to 0.25. Its top-1 accuracy on the ImageNet Large Scale

Visual Recognition Challenge is 41.5%, while its top-5 accuracy is 66.3%. The various versions

of MobileNet V1 0.25, differing by their resolution multiplier, ranked 160th-178th on the Brain

Score leaderboard at the time of writing, with their average scores ranging from 0.312 to 0.277,

calculated based on their performance on all the benchmarks of the platform.

2.2 Feature Visualizations

The second step was to visualize the units of the chosen models. This was done by leveraging the

Lucid library3 – an open-source software for neural network interpretability research. It was

decided to only visualize units from the CNN layers that corresponded to the ventral visual

stream areas V1, V2, V4, and IT. The layer commitment data provided by the Brain Score team

guided the selection process (see Appendix I). A complication emerging here was that the

TensorFlow-Slim implementation of the “ineffective visual system model” did not contain all the

exact layers that corresponded to the ventral visual stream areas. The researcher had to thus

decide on, at their best discretion, which of the implementation’s layers to use. All the layers

which units were used for visualization are listed in Appendix II.

To address one of the research questions of the study – which level of CNNs’ structural hierarchy

is most meaningful to use as a basis of comparison with psychedelic imagery – visualizations

were obtained from all the possible levels of hierarchy. This means that visualizations that most

3 https://github.com/tensorflow/lucid
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excited a single artificial neuron, a collection of neurons – a channel, and a collection of channels

– a layer, were obtained. The specific units were chosen so that they spanned the breadth of the

layers and remained at the same relative positions across the layers. It was speculated that this

would enable a more meaningful analysis of the differences between the visualizations from

individual layers, thus potentially allowing for assumptions about the mechanisms underlying

psychedelic visualizations at a greater, single-visual-area resolution.

Figure 5. A selection of the generated feature visualizations.

The process resulted in a dataset of 88 visualizations – 5 neuron- and 5 channel-objective

visualizations, as well as the whole layer’s visualization, were created for both of the models’

every layer that was focused on. A selection of the visualizations is presented in Figure 5. All the

visualizations can be seen in Appendix II.
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2.3 Experiment

The feature visualizations of the effective and the ineffective visual system models were used to

put together a two-part questionnaire4. Participants were recruited via social media, with the only

eligibility criterion being having at least one experience with a serotonergic psychedelic

substance. 35 self-selected participants took part in the experiment, with 32’s results included in

the analysis. Three participants’ results were eliminated because of one’s invalid ratings and the

others’ invalid substance-selection.

In the first part of the experiment, participants were asked to rate each feature visualization based

on how possible they thought it was to experience psychedelic imagery with similar properties.

By properties the overall characteristics, complexity, or intensity of the colors, contrasts, edges,

textures, shapes, and objects in the feature visualizations was meant. The visualizations could be

rated on a scale from 1 to 10, with 1 being impossible and 10 being very possible. Participants

were directed to only base their ratings on their own experiences, not to dwell on an idea of

psychedelic imagery they could have obtained via external mediums.

In the second part of the experiment, participants were asked to provide information about one of

their psychedelic experiences, preferably the most intense one from the ones they relied on while

rating the visualizations. By intensity, mostly that of the imagery was favored, but participants

were free to choose the experience they thought was most relevant for the cause. Questions about

the substance, dosage, overall intensity, and memorability of the experience were asked. The

remaining questions focused more on the visual aspects of the experience, with the ones about

the extent of open- or closed-eye visualizations and their vividness, complexity, richness, and

immersiveness chosen by the example of Timmermann et al. (2023) and Carhart-Harris et al.

(2016). Finally, questions about the prominence or extent of different properties – such as colors,

patterns, and distorted objects – were asked, with the specific properties chosen by the example

of Lüübek (2023b) and Olah et al. (2020b).

4 https://forms.gle/3PHJtde1coEP82Z38

22

https://forms.gle/3PHJtde1coEP82Z38


3 Results

This chapter presents the results obtained from the experiment. The main goal of the experiment

was to find out how the capacity of CNNs to simulate psychedelic imagery differs between

models that effectively or ineffectively represent primate visual system activity. It was

hypothesized that if the visualizations of an effective visual system model are perceived to be

more similar to psychedelic imagery, feature visualization could serve as a meaningful tool for

studying the neural mechanisms underlying psychedelic imagery. Participants who had

experiences with serotonergic hallucinogens rated the feature visualizations of two CNNs,

ResNet 152 V2 – the effective visual system model, and MobileNet V1 0.25 – the ineffective

visual system model, having no information about the origin of the individual feature

visualizations nor about the exact purpose of the experiment. Visualizations were rated on a scale

of 1-10, based on how possible participants deemed it to be to experience psychedelic imagery

similar to the feature visualizations, 1 being impossible and 10 being very possible.

To assess the significance of the difference between the ratings of the two models, a

participant-based analysis was opted for. The reasons for that include the absence of a direct

correspondence between the feature visualizations of the two models and the violation of data

independence due to the same participants rating the visualizations of both models, rendering the

t-tests that could have been performed in a visualization-based analysis irrelevant or invalid. This

means that the mean rating of each participant across visualizations was compared between

conditions. The approximate normality of the data was assessed using the D’Agostino and

Pearson’s normality test. Its results justified the use of a paired t-test, the results of which

indicate a significant difference in the mean ratings of individual participants between the two

models (t(31) = 3.14, p = .004). With a few exceptions, participants found the visualizations of

the effective visual system model more resemblant of psychedelic imagery (Figure 6).
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Figure 6. A comparison of the mean ratings per participant and the ratings’ variance between the

two models.

As the individual feature visualizations differed rather notably in their properties, it was deemed

meaningful to conduct some visualization-based analysis as well. Only the visualizations of the

effective visual system model were focused on, as the participant-based analysis indicated that

those are more similar to psychedelic imagery. The mean rating of each visualization across

participants was calculated. No comparison tests were carried out due to reasons pointed out in

the previous paragraph. To address the second research question of the study – which level of

CNNs’ hierarchy is most meaningful to use as a basis of comparison with psychedelic

visualizations – visualizations were separated by their optimization objectives and layers of

origin (Figure 7). The results pointed towards no notable difference between the average ratings

of the visualizations with different optimization objectives, with the most variance in the case of

neuron-objective visualizations and the least in the case of layer-objective visualizations
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(M(neuron) = 5.31, SD(neuron) = 0.72; M(channel) = 5.30, SD(channel) = 0.66; M(layer) = 5.30,

SD(layer) = 0.59). However, while additionally considering the visualizations’ layers of origin,

the neuron-objective visualizations from the layer corresponding to V1 (M = 6.05, SD = 0.72),

the channel-objective visualizations from the layer corresponding to V4 (M = 5.98, SD = 0.73),

and the layer-objective visualization from the layer corresponding to IT (M = 6.06) received the

highest average ratings.

Figure 7. A comparison of the mean ratings per visualization and the ratings’ variance between

the three optimization objectives. The layers of origin are indicated by the different colors.

Overall, there seemed to be no remarkable differences between the average ratings of the

visualizations from different layers of origin, with the mean of the “V1 ratings” being slightly

higher than of those from the other layers of origin, and the variance of the “V4 ratings” being

the highest (M(V1) = 5.50, SD(V1) = 0.74; M(V2) = 5.22, SD(V2) = 0.55; M(V4) = 5.28,

SD(V4) = 0.85; M(IT) = 5.22, SD(IT) = 0.52) (Figure 8).
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Figure 8. A comparison of the mean ratings per visualization and the ratings’ variance between

the four layers of origin. The optimization objectives are indicated by the different colors.

Data from the second part of the experiment was analyzed in Lüübek (2023a), where correlations

between participant-based mean ratings of the visualizations and the different subjective

measures were investigated. As in Lüübek (2023a) it was deemed necessary to take into account

the results of the current study, specifically how the ratings differ between the visualizations of

the two models, the current results were touched on in that paper as well. It should be mentioned,

however, that the main research question of Lüübek (2023a) was more psychological, namely

how are one’s previous psychedelic experiences related to the perception of CNN feature

visualizations, with the main hypothesis put to test being that the more intense psychedelic

imagery one has experienced, the higher their ratings of the feature visualizations. Thus, the

current thesis is complementary to Lüübek (2023a). The possible implications of the current

results are discussed in the following chapter.
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4 Discussion

The practical part of this thesis aimed to explore whether the widespread opinion that CNNs’

feature visualizations resemble psychedelic imagery could signify deeper correspondences

between CNNs and visual processing (LaFrance, 2015). It was speculated that if the

visualizations of the effective visual system model resemble psychedelic imagery more, there is

potential to investigate the neural mechanisms underlying psychedelic imagery through the

application of feature visualization techniques.

The aim was approached by asking subjects with psychedelic experiences to rate the feature

visualizations of an effective and an ineffective visual system model, based on how possible they

thought it was to experience psychedelic imagery with similar qualities. The results indicate that

on average, participants perceived the visualizations of the effective visual system model to be

more resemblant of psychedelic imagery than those of the ineffective visual system model. It is

known from previous research that during psychedelic imagery, the activity and connectivity of

the visual system are higher than during normal conditions (Carhart-Harris et al., 2016; de

Araújo et al., 2012). Besides feature visualizations resembling psychedelic imagery on a

subjective level, they are created by maximizing the activation of CNN units, having a parallel

with the aforementioned heightened activity of the visual system during psychedelic imagery

(Erhan et al., 2009). Moreover, the stimuli that maximize the activity of CNN units also

maximize the activity of biological units (Willeke et al., 2023). The current results clarify that

not all feature visualizations resemble psychedelic imagery to the same extent, with those of the

CNN that approximates the visual system effectively being more accurate. This could point

towards some of the computational mechanisms of effective visual system models being suitable

for explaining the neural mechanisms underlying psychedelic imagery.

A defining characteristic of the effective visual system model used in this study was its very deep

architecture, which is thought to somewhat approximate the recurrent processing in the brain

(Kar et al., 2019). This could be a possible reason for its visualizations being more resemblant to

psychedelic imagery. Additionally, it must be acknowledged that the effective visual system

model was concurrently a more powerful computer vision model, with its top-1 classification

accuracy on the ImageNet Large Scale Visual Recognition Challenge being almost twice as high

as that of the ineffective visual system model – 77.8% compared to 41.5%. A recommended
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approach for forthcoming research endeavors is to center their analyses on feature visualizations

extracted from CNNs that share more analogous computational or architectural characteristics,

while diverging in their approximation of the visual system. This strategy aims to mitigate

potential confounding influences stemming from varying computational and architectural

attributes.

As explained in “The Neural Mechanisms of Psychedelic Imagery” chapter, a possible

interpretation for explaining the neural mechanisms underlying psychedelic imagery through the

computational mechanisms of feature visualization is that psychedelic imagery stems from the

greater influence of internally sourced bottom-up information on perception (Schartner and

Timmermann, 2020). This is supported by, for example, the spontaneous activity of the primary

visual area V1 manifesting as geometrical hallucinations, which resemble the feature

visualizations of earlier CNN layers (Butler et al., 2012). In this study, feature visualizations

were obtained from the CNN layers that best corresponded to 4 visual system areas – V1, V2,

V4, and IT. While statistical comparison tests between visualizations from different layers of

origin weren't feasible due to the experimental design, the available outcomes show no

substantial discrepancies among them. Nonetheless, the present findings hint that visualizations

stemming from the layer corresponding to the primary visual area V1 might be perceived as most

akin to psychedelic imagery. This appears consistent with the finding that, under the influence of

psychedelics, the activity of the primary visual area during closed-eye imagery parallels its

response to actual sensory inputs (de Araújo et al., 2012). It is suggested to further investigate

the differences between the “psychedelicism” of the feature visualizations originating from CNN

layers tied to different visual system regions, with the current results hinting at the potential

greater influence of endogenous activity from the primary visual area during psychedelic

imagery.

A secondary goal of this study aimed to illuminate the alignment between CNN architecture and

the primate visual system. While existing research has established functional similarities between

artificial and biological neurons (Marques et al., 2021), the task of identifying biological

counterparts for artificial channels or layers is more intricate. One plausible perspective suggests

that artificial activations embody conceptual representations within the neural network, wherein

channel and layer activations encapsulate more abstract notions than those inherent in neurons

(T. Khajuria, personal communication, 20.04.2023). In tackling this issue, visualizations were
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obtained that maximized the activity of artificial neurons, channels and layers. As mentioned

before, no statistical comparison tests could have been performed, and the available results

suggest no remarkable differences between the mean ratings of the visualizations with different

optimization objectives. However, when additionally considering the visualizations' layers of

origin, neuron-objective visualizations from the layer corresponding to the primary visual area,

channel-objective visualizations from the layer corresponding to the area V4, and the

layer-objective visualization from the layer corresponding to the area IT received the highest

ratings. These outcomes may hint at the alignment between artificial and biological systems

being most pronounced at the neuronal level for the earlier stages of both systems, while

manifesting at a more abstract level for the later stages.

CNNs are generally considered to approximate only the initial phases of neural processing in the

primate visual system, with their efficacy diminishing as recurrent processing stages emerge,

which are not adequately captured by CNNs (Lindsay, 2021). Primarily designed for image

classification, the development of features could be conceptualized as the result of CNNs trying

to make sense of the natural world (OpenVis Conference, 2018). While correspondences between

CNNs and the visual system have prompted the notion that "capturing the rich statistics in

images of the world that surrounds us must be a driving principle of the structure of visual

cortex" (Eickenberg et al., 2017, p. 192; Olshausen & Field, 1996), it's crucial to acknowledge

that the visual system's scope extends beyond mere image or scene classification, encompassing,

for example, visual reasoning and navigation (Lindsay, 2021). These limitations of CNNs raise

inquiries about the degree to which feature visualization can approximate psychedelic imagery.

Intuitively, it seems that feature visualization applied to random noise would better capture

closed-eye imagery, as in both cases, the end result depicts the information that is already

encoded in the systems (Mordvintsev et al., 2015). However, the inherent limitation of CNNs to

approximate only the initial phases of visual processing implies that closed-eye imagery could

prove elusive for feature visualization. A pertinent suggestion for future investigations is to

delineate between closed-eye and open-eye visualizations, which would shed light on whether

feature visualization can capture distinct forms of psychedelic imagery.
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Conclusion

The primary objectives of this Bachelor's thesis were twofold: first, to establish a framework for

employing CNN feature visualization techniques to unravel the neural underpinnings of

psychedelic imagery; and second, to practically investigate this phenomenon. This inquiry is,

predominantly, motivated by the interplay between CNNs and the primate visual system, ranging

from neurons to behavior, the capacity of feature visualizations to maximally activate both

artificial and biological units, and the intuitive parallels between the physiological effects of

psychedelic substances and the computational mechanisms underlying feature visualization.

The experiment conducted involved individuals with prior psychedelic experiences rating the

feature visualizations of two CNNs, based on how possible they estimated it to be to experience

psychedelic imagery with similar qualities. The results confirmed the hypothesis that

visualizations from an effective visual system model exhibit a significantly higher resemblance

to psychedelic imagery than those from an ineffective visual system model. This finding suggests

that the computational mechanisms within effective visual system models could offer insight into

the neural processes that drive psychedelic imagery. The correspondence seemed the greatest in

the case of visualizations stemming from the layer corresponding to the primary visual area,

speculated to hint at the greater role of that visual area in constructing perception during

psychedelic imagery. Furthermore, the alignment between artificial and biological systems

seemed the greatest at the neuronal level during the early processing stages of the two systems,

and at a higher abstraction level during the later processing stages of the two systems.

In terms of future investigations, it is suggested to refine the experimental design by visualizing

the units of more computationally similar CNNs, incorporating non-overlapping rating groups,

and introducing control groups. Additionally, applying feature visualization both on random

noise and natural world images could enhance the ecological validity of the results, potentially

providing a more comprehensive understanding of the differences between the neural

mechanisms underlying open-eye and closed-eye visualizations.
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Appendix

I. Layer Commitment Data5

Model Brain Area CNN Layer

ResNet 152 V2

V1 resnet_v2_152/block3/unit_32/bottleneck_v2

V2 resnet_v2_152/block3/unit_30/bottleneck_v2

V4 resnet_v2_152/block3/unit_3/bottleneck_v2

IT resnet_v2_152/block4/unit_1/bottleneck_v2

MobileNet V1
0.25 128

V1 Conv2d_7_pointwise

V2 Conv2d_7_depthwise

V4 Conv2d_5_depthwise

IT Conv2d_12_depthwise

MobileNet V1
0.25 160

V1 Conv2d_6_pointwise

V2 Conv2d_6_pointwise

V4 Conv2d_7_depthwise

IT Conv2d_12_depthwise

MobileNet V1
0.25 192

V1 Conv2d_6_pointwise

V2 Conv2d_8_depthwise

V4 Conv2d_8_pointwise

5 M. Schrimpf, personal communication, 26.04.2023
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IT Conv2d_13_depthwise

MobileNet V1
0.25 224

V1 Conv2d_7_depthwise

V2 Conv2d_6_depthwise

V4 Conv2d_7_pointwise

IT Conv2d_13_depthwise
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II. Experimental Materials

Model
(*as implemented
in the TensorFlow
Slim library
(https://github.co
m/tensorflow/mod
els/tree/master/res
earch/slim))

Layer Objective Unit Visualization

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

neuron 0

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

neuron 256

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

neuron 512

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

neuron 768
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ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

neuron 1023

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

channel 0

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

channel 256

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

channel 512

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

channel 768

ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

channel 1023
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ResNet 152 V2* resnet_v2_152/block3/unit_32
/bottleneck_v2/add

layer -

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

neuron 0

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

neuron 256

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

neuron 512

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

neuron 768

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

neuron 1023
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ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

channel 0

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

channel 256

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

channel 512

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

channel 768

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

channel 1023

ResNet 152 V2* resnet_v2_152/block3/unit_30
/bottleneck_v2/add

layer -
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ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

neuron 0

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

neuron 256

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

neuron 512

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

neuron 768

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

neuron 1023

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

channel 0
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ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

channel 256

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

channel 512

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

channel 768

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

channel 1023

ResNet 152 V2* resnet_v2_152/block3/unit_3/
bottleneck_v2/add

layer -

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

neuron 0
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ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

neuron 256

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

neuron 512

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

neuron 768

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

neuron 1023

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

channel 0

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

channel 256
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ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

channel 512

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

channel 768

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

channel 1023

ResNet 152 V2* resnet_v2_152/block4/unit_1/
bottleneck_v2/add

layer -

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

neuron 0

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

neuron 32
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MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

neuron 64

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

neuron 96

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

neuron 128

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

channel 0

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

channel 32

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

channel 64
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MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

channel 96

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

channel 128

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_6_pointwise/Relu6

layer -

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

neuron 0

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

neuron 32

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

neuron 64
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MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

neuron 96

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

neuron 128

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

channel 0

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

channel 32

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

channel 64

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

channel 96
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MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

channel 128

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_7_pointwise/Relu6

layer -

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

neuron 0

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

neuron 256

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

neuron 512

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

neuron 768
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MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

neuron 1023

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

channel 0

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

channel 256

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

channel 512

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

channel 768

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

channel 1023
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MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_8_pointwise/Relu6

layer -

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_13_pointwise/Relu6

neuron 0

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_13_pointwise/Relu6

neuron 64

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_13_pointwise/Relu6

neuron 128

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_13_pointwise/Relu6

neuron 192

MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_13_pointwise/Relu6

neuron 256
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MobileNet V1
0.25*

MobilenetV1/MobilenetV1/C
onv2d_13_pointwise/Relu6

channel 0

MobileNet V1
0.25*
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