
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Data Science (MSc) Curriculum

Dmitri Rozgonjuk

Towards Automated Machine Learning:
Hyperparameter Optimization in Online

Clustering

Master’s Thesis (15 ECTS)

Supervisor: Radwa El Shawi, PhD

Tartu 2023

Towards automated machine learning: hyperparameter optimization
in online clustering

Abstract
Machine Learning (ML) has demonstrated significant potential in data-driven applica-
tions, particularly in real-time use cases through online ML, which processes data streams
and handles concept drift (changes in data distribution) dynamically. Automated ML
(AutoML) seeks to streamline ML pipeline tasks like hyperparameter optimization (HPO)
and model selection for improved performance. While some efforts have been made
to integrate online ML and AutoML, research on automated online clustering remains
limited. This thesis focuses on developing a potential HPO solution in online clustering
settings. The aim was to propose an ensemble-based approach that leverages more than
one internal clustering validation index (CVI) to address the evaluation problem in online
clustering. HPO was implemented on top of the river framework. To compare the
performance of HPO in online clustering, two online clustering algorithms were used
on six synthetic datasets with ground truth labels. In HPO, models were separately
optimized towards two internal CVIs, the Silhouette score and the Calinski-Harabasz
Index, and models were compared by using an external CVI, the Adjusted Rand Index. In
the experiments, (a) default online clustering algorithms with default parameters, (b) the
best optimized online clustering algorithms, and (c) the ensemble of the best optimized
models were compared. The findings revealed that the efficacy of HPO varies depending
on the data type. In k-centroid-based datasets, the Silhouette-optimized model and the
ensemble model outperformed other clustering solutions, while HPO and ensembling
did not yield superior results in S-curve datasets.

Keywords: autoML; online ML; online clustering; hyperopt; river
CERCS: P170 - Computer science, numerical analysis, systems, control)

2

HPO (especially towards the
best Silhouette) generally
outperformed default
models in k-center datasets
Ensembling produced
comparable results to best
Silhouette-optimized models
Nature of the data matters -
HPO was useful in k-center
datasets but not with S-curve
datasets
The results indicate that HPO
may be useful - but it likely
depends on the suitability of
algorithms for data

Towards automated machine learning:
hyperparameter optimization in online clustering

Dmitri Rozgonjuk
Data Science (MSc) 2023

Institute of Computer Science
University of Tartu

Supervisor: Radwa El Shawi, PhD

ResultsWorkflow Insights

#UniTartuCS

Automatiseeritud masinõppe suunas: hüperparameetrite optimeeri-
mine online-klasterdamises

Lühikokkuvõte
Masinõpe (ingl k machine learning; ML) on näidanud suurt potentsiaali andmepõhistes,
eriti reaalajas kasutatavates rakendustes, kasutades online-ML-i, mis töötleb andmevooge
ning kohandub dünaamiliselt andmejaotuste muutusega. Automatiseeritud ML (AutoML)
püüab automatiseerida mitmeid ML töövoos sisalduvaid ülesandeid nagu hüperpara-
meetrite optimeerimist (HPO) ning (parima) mudeli valikut. Kuigi on teadustöid, mis on
püüdnud ühendada online-ML-i ja AutoML-i, on automatiseeritud online-klasterdamise
alase töö hulk piiratud. Käesoleva magistritöö fookuses on potentsiaalse HPO lahenduse
arendamine online-klasterdamises. Eesmärgiks oli arendada mudelite ansamblimisel
põhinev lähenemine, mis kasutab rohkem kui ühte sisemist klastrivalideerimisindeksit
(KVI), et adresseerida mudeli hindamise probleemi online-klasterdamises. HPO ra-
kendamiseks kasutati river raamistikku. HPO tulemuste testimiseks on rakendatud
kahte online-klasterdamise algoritmi kuuel sünteetilisel andmestikul koos klastrikuu-
luvuse märgenditega. HPO-s optimeeriti mudeleid eraldi KVI-ga (Silhouette-i skoor
ning Calinski-Harabaszi Indeks) ning mudeleid võrreldi omavahel välise KVI, Kohan-
datud Randi Indeksi abil. Eksperimentides võrreldi (a) vaikimisi hüperparameetritega
online-klasterdamisalgoritme (b) parimate optimeeritud online-klasterdamisalgoritmide
ning (c) parimatest optimeeritud mudelitest kokku pandud ansambel-mudeli sooritusega.
Tulemustest selgus, et HPO sooritus võib sõltuda andmete tüübist. K-tsentroidide põhis-
tes andmestikes näitasid parimat sooritust parimad Silhouette-iga optimeeritud mudelid
ning ansambel-mudelid. Samas aga ei olnud HPO-l ning mudelite ansamblil sooritust
parandavat efekti S-kõvera põhistes andmestikes.

Võtmesõnad: autoML; online-ML; online-klasterdamine; hyperopt; river
CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhti-

misteooria)

4

HPO (eriti Silhouette-i puhul)
mudelid sooritasid üldiselt
paremini kui vaikimisi
mudelid k-keskmistega
andmestikel
Mudelite ansamblite
sooritused olid võrreldavad
parimate Silhouette-
optimeeritud mudelitega
Andmete omadused loevad:
HPO oli kasulik k-keskmistega
andmestikel, kuid mitte S-
kurvidega andmestikel
Tulemused näitavad, et HPO
võib olla kasulik - kuid oleneb
ilmselt sobivate algoritmide
valikust

TulemusedTöövoog Leiud

Automatiseeritud masinõppe suunas:
hüperparameetrite optimeerimine online-

klasterdamises

Dmitri Rozgonjuk
Andmeteadus (MSc) 2023

Arvutiteaduste Instituut
Tartu Ülikool

Juhendaja: Radwa El Shawi, PhD

#UniTartuCS

Contents
1 Introduction 7

1.1 Automated Machine Learning (AutoML) 9
1.1.1 Problem Definition . 9
1.1.2 AutoML tasks . 9
1.1.3 Offline AutoML Frameworks 12
1.1.4 AutoML systems for offline supervised ML 13
1.1.5 AutoML systems for offline unsupervised ML 14

1.2 Online Machine Learning . 15
1.2.1 Use Cases of Online ML . 16
1.2.2 Online ML frameworks . 17
1.2.3 AutoML systems for online supervised ML 17
1.2.4 AutoML systems for online unsupervised ML 19

1.3 Present Work . 21
1.3.1 Scope and Contributions of the Present Thesis 21
1.3.2 Proposed Solution . 21
1.3.3 Hypotheses . 23

2 Methods 24
2.1 Experiment Design . 24

2.1.1 Data . 24
2.1.2 Configuration . 25
2.1.3 Baselines and Search Space 26
2.1.4 Statistical Analysis for Model Comparisons 26

3 Results 28

4 Discussion 31
4.1 Main Findings . 31
4.2 Contribution . 32
4.3 Limitations and Future Perspective . 32

5 Conclusions 33

6 Acknowledgments 35

References 36

Appendix 43
I. Glossary . 43
II. Licence . 44

6

1 Introduction
The amount of data generated by humans and machines is ever-increasing. It has been
estimated that by 2025, the amount of data created will exceed 180 zettabytes [64]. The
major technological advancements over the past decades, especially those powered by
the Internet (e.g., social media, e-commerce platforms, mobile applications, etc.), have
been pivotal in this data generation. Additionally, many contemporary applications and
technologies, especially those including or relying on sensors (e.g., Internet of Things or
IoT devices, autonomous systems such as vehicles, etc.) can produce large volumes of
data in real-time. Assuming that there will be more such devices implemented in everyday
life in the foreseeable future, the need for solutions for data storage and management,
as well as extracting knowledge via analysis, is increasing. Here, the utilization of
machine learning (ML) and artificial intelligence (AI) – data-driven frameworks aimed at
improving the performance of given tasks [43] – come into play, as these techniques can
be used to process the generated data for knowledge extraction, insights, and decision-
making.

However, there may be several challenges when using ML. Creating optimal models
can be a complex and time-consuming process, as it may involve data preprocessing
(e.g., handling missing values, ensuring the right data types for models, scaling the data),
feature engineering and extraction (e.g., aggregating features, dimensionality reduction,
selecting meaningfully impactful features), as well as choosing the ML algorithm for
optimal task performance, tuning the (hyper)parameters in various steps, and deployment
[42]. This process is commonly known as constructing an ML pipeline [28], and as can
be inferred from the description, may require a high level of expertise from the pipeline
engineer.

To that end, over the recent years, the development of automated machine learning
(AutoML) systems has been on the rise. The primary task of AutoML systems is
to automatically set the hyperparameters of ML pipelines for optimized performance
[33]. As discussed in [33], the main use cases for using an AutoML system are to
improve the ML pipeline performance, reduce human effort, and make ML pipeline
construction more accessible for people with less ML-domain knowledge (the so-called
"democratization" of ML), and allowing comparison and benchmarking of ML pipelines
(improving reproducibility). Consequently, for example, a data scientist who spent a lot
of time on manually tuning an ML pipeline could gain more time for other tasks, while
AutoML aims to find an optimal model.

Because data sources are becoming more ubiquitous and faster compared to earlier
decades, ML as a field has also been evolving from working with static to handling
dynamic data [30]. Yet dynamic data – also known as data streams – introduce additional
challenges. In the more traditional ML approach, data is typically processed as a batch,
meaning that the entire dataset is analyzed at once. However, because data streams can
be generated in real-time at a high rate as a continuous flow, often one instance at a

7

time, ML algorithms would need to be, at least theoretically, updated with every new
data instance [13]. This could pose several limitations, such as running into issues like
insufficient memory or long model training times. In addition, the distribution of the
streaming data could change over time and introduce outlier instances; an ML framework
working with these problems should be able to take these possibilities into account. To
address these issues, the so-called "online" algorithms have been proposed [35]. In other
words, Online ML is designed to work with data streams [48]. An Online ML framework
enables continuous model updating with the arrival of new data, typically requires fewer
computational resources, and makes the learning process more efficient than when using
batch-based ML. Because of this, the framework can be suitable for data applications
that require real-time decision-making, as in the Online ML settings, the models are
dynamically updated with the most recent data.

Although several AutoML as well as online ML frameworks have been developed
over the past years, typically focusing on supervised learning, i.e., classification and
regression problems (see Section 1.1.3), research on Online AutoML is still scarce,
especially for clustering. This may be explained by the complexity of the task, as well as
a potentially limited set of (obvious) use cases and application areas. Nevertheless, the
ubiquity, volume, and velocity of data generation, and the potential need for knowledge
extraction are not ignored, motivating many researchers to invest time, resources, and
effort to improve Online AutoML (also in clustering problems).

The aim of this work is to contribute to the research domain of online automated
unsupervised ML, specifically, in clustering. While the scope of this thesis does not
encompass every aspect of automated online clustering, it offers comprehensive back-
ground information on various facets of this approach. The primary objective is to
provide context for the thesis and showcase numerous opportunities for expanding upon
this work or developing one’s own framework within the realm of automated online
clustering. In essence, it is hoped that interested readers will find this thesis to be a
valuable resource for building their own AutoML systems.

This said, the present thesis is organized as follows: In the Introduction section, an
overview of AutoML as well as Online ML tasks and characteristics as well as various
frameworks is provided. In addition, some potential use cases of Online ML are outlined.
The last part of the Introduction provides an overview of the scope and the contributions
of the thesis, as well as how the solution is planned, and what are the expected results.
In the Methods section, experiment design and configuration are described, followed
by an overview of datasets used for the present study’s experiments, the algorithms and
their search spaces implemented in this thesis, and a description of how the results of
models are compared. In the Results section, the main findings are presented, followed
by the Discussion where the findings are analyzed in the context of the study’s goals.
The main contributions derived from the findings are discussed alongside limitations and
future perspectives. Finally, in the Conclusions, the main insights of the present thesis

8

are summarized.

1.1 Automated Machine Learning (AutoML)
Automated machine learning, or AutoML, has been defined as the process in which an
ML pipeline – which may include data preprocessing, feature engineering and extraction,
model hyperparameter tuning, and selection – is constructed in a data-driven way [28]. In
other words, AutoML should minimize the manual work that a person needs to do when
constructing such a framework. In turn, this would help to facilitate the democratization
of ML, or making a wide variety of ML-related tools, platforms, and data sources more
(easily) accessible to more people [15].

1.1.1 Problem Definition

Although the typical tasks of AutoML are described in the next subsection, it is also im-
portant to define the main problem that AutoML aims to solve: the Combined Algorithm
Selection and Hyperparameter Optimization, or the CASH problem [22]. This problem
can be summarized with the following formula:

A∗, λ∗ = argmin
Ai∈A, λi∈Λ

L(Ai(λi), D) (1)

In Formula 1, D represents a fixed data set, A is a set of ML algorithms {A1, . . .,
Am} - in the context of present work, clustering algorithms -, and λi represents the
hyperparameters of a given algorithm Ai. Altogether, L(Ai(λi), D) denotes the loss of
Ai, given the hyperparameters λi ∈ Λ on D. Then, as can be seen from the formula, the
solution to the CASH problem is to find the joint algorithm and hyperparameter settings
that minimize that loss.

The CASH problem can also be adapted for online ML settings (Formula 2).

A∗, λ∗ = argmin
Ai∈AOL

L(Ai(λi, t), Dt−1, Dt) (2)

Here, AOL denotes the set of online (clustering) algorithms. A∗
λ,t is continuously

trained on the previous data batch Dt−1 and evaluated on the present data batch Dt. It is
worth noting that t here denotes a time window that could either be a batch of data or
a continuously arriving number of instances that would trigger training. In the context
of clustering, the loss metric is either an internal or external clustering validity index
(please see the section 1.2.4 for more details on clustering evaluation).

1.1.2 AutoML tasks

A given AutoML system may aim to optimize a particular task or a set of them. In a
review paper [69], eight specific tasks that various developed AutoML frameworks aimed

9

to automate, as well as seven methods to achieve optimally automated task outcomes
are outlined. The vast majority of published AutoML systems identified in the review
included aiming to solve the CASH problem. In addition, many frameworks also aimed
to automate data preparation, feature engineering, and model estimation. Finally, pipeline
post-processing and explainability options should also be taken into account. Below is a
brief overview of some of the AutoML tasks:

• Hyperparameter optimization (HPO). Typically, ML models’ hyperparameters
need to be set before fitting the model. However, in some cases, the number of
hyperparameters, as well as their broad range, can mean spending a lot of time
on exploring the optimal hyperparameter configuration. Hence, it may not be
surprising that HPO is one of the most explored topics in AutoML research [69]. In
the literature, the challenge of finding the best set of hyperparameters for a model
is known as the HPO problem. There are several techniques for this task [22]1:

– Exhaustive Grid Search is considered the most basic HPO method, as it spec-
ifies a finite set of values for each parameter and the idea is to search through
the entire grid of these value combinations. Generally, the advantages of this
method are the ease of implementation, taking advantage of parallelism, and
the possibility of implementing all parameter types. The limitation of this
method is that the search space grows exponentially and that some continuous
values need to be discretized. Grid search is an unguided search technique,
as there is no reliance on solutions found in previous search runs.

– Random Search is an alternative to grid search where the configurations are
sampled randomly from the entire hyperparameter search space. Random
search allows for spotting more promising search space areas earlier than grid
search. Random search has the same advantages as Grid Search; moreover,
random search allows for flexibility in computation budget, i.e., the user of
this framework can allocate the computation budget and explore the promising
hyperparameter search space areas. The limitation of this technique is poor
scalability - when there is a high number of hyperparameters, there are still
many samples that need to be covered. Like grid search, random search is an
unguided search technique.

– Population-based methods (e.g., genetic and evolutionary algorithms, particle
swarm optimization, ant colony optimization, etc.) are optimization algo-
rithms that maintain a set of configurations ("populations") to be improved
upon in the next iterations by applying local perturbations ("mutations") and
combinations of different optimization model solution parts ("crossover")

1The overview of the list of HPO techniques, along with descriptions, is primarily based on [22]. Hence,
if other sources are not referenced, it can be assumed that the outlined source was used.

10

to obtain a "new generation" of better configurations. The advantages are
conceptual simplicity, the possibility of all parameter types, and paralleliza-
tion. However, these methods may introduce difficulty in getting the balance
between exploration (discovering promising hyperparameter areas) and ex-
ploitation (refining the promising search space) and may not be well-suited
for problems like HPO where a high number of evaluations may be needed
until appropriate convergence [2].

– Bayesian Optimization (BO) is a global optimization (i.e., finding the optimal
solution across the entire search space) framework which is especially useful
in optimizing complex and expensive functions. It has two components:
(a) a surrogate model and (b) an acquisition function. The former is an
approximation of the objective function. The latter refers to a function that
is used for guiding the search process; it also aims to balance exploration
and exploitation. The main advantages of BO are data-efficient optimization
(especially in comparison to grid or random search), balancing exploration
and exploitation, implementing prior knowledge from previous searches,
and handling noise. The disadvantages are that BO may be computationally
expensive (especially if the search space is large) and it does not guarantee
finding the global optimal solution.

• Model Selection and Hyperparameter Tuning. This is also known as the CASH
problem (discussed in section 1.1.1), and it can be viewed as an extension to
the HPO problem [22]. In addition to aiming to optimize the parameters of a
given model for a given dataset and task, this problem also implies that there are
several models which need their hyperparameters to be tuned, and then the best-
performing model needs to be selected. In addition to BO and population-based
methods mentioned above, the following approaches have been used for solving
the CASH problem:

– Meta-learning leverages meta-data on how ML models learn in order to
learn new tasks faster [68]. Its general advantages are faster model selection,
data efficiency (as it learns from previous experience), and adaptability to
new tasks. However, the disadvantages may arise when there is limited
information on previous models. Additionally, when the learned tasks do not
represent new data well, the learner can produce misleading results.

– Portfolio-based methods approach the algorithm selection problem by first
creating a diverse "portfolio" of various algorithm parameter settings, which
is then followed by using an algorithm selector to choose the parameter
settings that have previously shown good performance [6]. Portfolio-based
methods can be generally divided into two subgroups: (a) static and (b)

11

dynamic portfolios [60]. Static portfolios are assembled offline (the models
are chosen and fixed before deployment), whereas dynamic portfolios are
ensemble methods that are adaptive and typically used in online ML. Static
portfolios are typically simple to implement and computationally efficient;
dynamic portfolios, however, are highly adaptive and suitable for continuous
model updates. On the other hand, static portfolios are not as flexible and
typically not suitable for adapting to changes, while dynamic models may be
complex to implement and could be computationally less efficient.

• Data pre-processing, feature engineering, and feature selection. One of the
challenges in data analysis is the variety of data types and quality of data [69].
Especially in cases involving real-life data, it is seldom that raw data does not
need cleaning, transformations, etc. Here, questions like if (and what kind of) data
scaling (method) should be used, how should the missing data be handled, and
how to represent categorical variables in the models are highly relevant. Finally, in
some cases, not all features in the model are equally informative (i.e., useful). A
selection of appropriate features could significantly affect model performance.

• Other tasks. AutoML may also aim to implement post-processing: for instance,
after several candidate models are trained, one may ensemble the best solutions
together to improve the total performance [18]. Instead of doing it manually, a
data scientist should be able to use automated solutions. Additionally, in some
cases, a stakeholder may be interested in acquiring explanations for how the model
functions or how it made the predictions [73].

1.1.3 Offline AutoML Frameworks

Below is a (roughly-chronological) overview of various AutoML systems developed until
the writing of this thesis (Spring 2023). Each framework is described briefly, and the
interested reader has the possibility to get a more in-depth view of a particular framework
from the referred publication. It should be noted, however, that this list may not be
exhaustive because it is likely that many (new) frameworks are in the development
stage, hence, may not be published or at all accessible. While it can be acknowledged
that various parties may have or are presently developing proprietary AutoML systems,
the present work only covers openly accessible, i.e., open-source, frameworks. In
addition, only the frameworks used for classification/regression/clustering tasks are
mentioned, excluding frameworks for non-tabular data (i.e., images, audio) as well as
deep and reinforcement learning. The interested reader can find some information on
these systems in [20]. Several other papers have provided a more in-depth description of
the below-described frameworks (for instance, see dedicated chapters in [33] or [20], for
a concise overview).

12

1.1.4 AutoML systems for offline supervised ML

In this section, the AutoML frameworks for supervised ML (e.g., classification and
regression) are outlined.

• Auto-Weka [66]. Written in Java, Auto-WEKA is considered to be the pioneering,
first AutoML framework. It implements Bayesian optimization for model selection
and hyperparameter tuning.

• Hyperopt-Sklearn [36]. Hyperopt-Sklearn implements hyperopt [7] which
supports different data pre-processing and regression and classification algorithms,
as well as a number of optimization techniques, such as random search and
Bayesian optimization techniques.

• Auto-Sklearn [23]. In Auto-Sklearn, meta-learning is used for the initializa-
tion of combined algorithm selection and hyperparameter tuning. Sequential
Model-based Algorithm Configuration (SMAC) is used as a Bayesian optimization
technique. Additionally, ensembles are used for improving the performance. Auto-
Sklearn has also been further developed to PoSH (POrtfolio Successive Halving)
[24], also called as Auto-Sklearn 2.0, where budget allocation as a complementary
design choice to model selection was introduced.

• TPOT [53]. TPOT (Tree-based Pipeline Optimization Tool) is based on genetic pro-
gramming and, in essence, it explores various possible pipelines which include data
pre-processing, feature engineering, and regression and classification algorithms.

• RECIPE [62]. In RECIPE (REsilient ClassifIcation Pipeline Evolution), custom clas-
sification pipelines are built from grammar-based genetic programming algorithms
(utilizing predefined rules to create structured programs).

• MLPlan [44]. In MLPlan, a hierarchical task network algorithm is used, where the
search space is depicted as a large tree graph with each node as a goal node of a
full pipeline.

• Auto-MEKAGGP [61]. Auto-MEKAGGP implements grammar-based genetic program-
ming and is primarily designed for multi-class classification problems. Since the
original paper [61], several additions have been developed for the MEKA project
[59] for multi-class classification.

• AutoStacker [14]. AutoStacker is an ensemble method where different pipelines
are combined (as opposed to a single model) to find the best-performing combina-
tion. Evolutionary search algorithms are used as the optimization method.

13

• SmartML [41]. SmartML was the first AutoML package for use in the R language
and statistical computing environment. Hyperparameter tuning used is based on
SMAC Bayesian optimization, and meta-learning is also implemented.

• Autocompboost [16]. Autocompboost (Automatic Componentwise Boosting) is
a system that can construct an interpretable additive model, which can be fitted
using a scalable componentwise boosting algorithm.

• GAMA [29]. GAMA (General Automated Machine learning Assistant) was developed
for end-users and AutoML researchers. The tool provides the possibility to gener-
ate optimized ML pipelines, which contain data pre-processing, hyperparameter
tuning, and classification and regression algorithms.

• FLAML [70]. FLAML does not implement meta-learning or ensembling in order to
provide faster computation. It uses Estimated Cost for Improvement (ECI) based
sampling of learners, randomized direct search, and ECI-based choice of sample
size.

1.1.5 AutoML systems for offline unsupervised ML

In this section, the AutoML frameworks for clustering are outlined.

• AutoClust [58]. AutoClust implements meta-learning for algorithm selection,
Bayesian optimization for hyperparameter tuning, and the optimization process
combines ten internal clustering validity indices (CVIs). In this proprietary frame-
work, two phases can be outlined: (a) the offline learning phase and (b) algorithm
selection. In the former, a set of meta-features is extracted for each dataset, different
clustering algorithms are applied with various configurations, and the performance
(CVIs) of the algorithms is stored. In the algorithm selection phase, the k-nearest
neighbor method is implemented to identify the most similar meta-features to
the data at hand. The best-performing clustering algorithm is obtained from the
meta-knowledge repository.

• AutoML4Clust [67]. AutoML4Clust is an automated clustering system where the
hyperparameters of k-center based clustering algorithms are tuned; specifically,
only the number of clusters is tuned while using one CVI. Three internal metrics for
the evaluation phase are used: Silhouette score, Davies-Bouldin Index (DBI), and
Calinski-Harabasz Index (CHI), but they are not ensembled. In the optimization,
Random search, Bayesian optimization, Hyperband, and Bayesian Optimization
and Hyperband (BOHB) are the options for best model search.

• AutoCluster [40]. AutoCluster leverages meta-feature extraction. This frame-
work implements several clustering techniques (e.g., KMeans and DBSCAN)

14

and allows for iterative clustering solution improvement. In AutoCluster, meta-
features are extracted, and an ensemble of multiple CVIs (Silhouette score, Davies-
Bouldin Index, and Calinski-Harabasz Index) are used.

• cSmartML [19]. cSmartML implements meta-learning for algorithm and evaluation
criteria selection in combination with an evolutionary algorithm for hyperparameter
tuning and optimization of several CVIs. The framework consists of the following
stages: (a) input, (b) algorithm and metric selection, (c) HPO, and (d) output
computation and knowledge base update. The algorithm and metric selection
consists of two parts: at first, meta-features are extracted, followed by meta-
learning recommendation (i.e., which algorithm and evaluation metric are likely
to perform well). For optimization, a genetic algorithm (Non-dominated Sorting
Genetic Algorithm II; NSGA II [17]) is implemented. In order to parallelize the
HPO process, hyper-partitioning (subsetting hyperparameter trees with main and
conditional hyperparameters) is used. Upon the computation of best solutions, the
knowledge base is updated.

• TPE-AutoClust [21]. TPE-AutoClust is an end-to-end automated clustering sys-
tem that optimizes feature preprocessors and clustering algorithms. It implements
meta-learning and an ensemble of CVIs. The process in TPE-AutoClust is as
follows: first, meta-features are extracted, and the similarity between the new and
the previous datasets is computed. In case there are well-performing pipelines
in the store, they can be used to warm-start the optimization process where the
NSGA-II is used to optimize the model towards multiple internal CVIs (Silhouette
score, CHI, DBI). Once best solutions for each CVI are retrieved, a consensus
function (majority voting) is used for ensembling the partitions into an optimal
data partition.

1.2 Online Machine Learning
The way how ML models are trained and the outputs (i.e., predictions) received could be
categorized to offline and online approaches. The main difference in these processes is
how the model learns from data [30]: Offline ML (also known as batch learning) uses
a fixed dataset to train the model once and typically requires the entire dataset to be
available upfront. Online ML, also known as streaming (or sometimes: incremental2)
learning, on the other hand, is characterized by the model learning from a continuous
stream of data.

2Although one could find literature where "online" and "incremental" learning are treated synonymously,
a distinction should be noted. In online learning, the model is updated with each incoming data instance
without storing the data, whereas incremental learning involves training the model on batches of new data,
rather than instance-by-instance [50].

15

An important factor in online ML is concept drift which stands for change in data
distribution [71]. Concept drift is a major potential problem in online ML, because it can
affect model accuracy. This, in turn, might also increase the number of false positives or
false negatives, and this could lead to decreased trust in the model. Additionally, changes
in data may require re-training the model to address the accuracy problems, potentially
increasing effort for model maintenance.

Generally, the following drift types are differentiated: abrupt, gradual, incremental,
and recurrent [63]. Abrupt drift means that the data distribution changes suddenly.
Gradual drift refers to slow and steady change in the underlying data distribution over
time. Incremental concept drift can be noticed when the data distribution changes over
time in small increments. Finally, recurrent drift means that the data distribution changes
periodically.

In order to take action against concept drift, drift detectors are commonly imple-
mented in online ML. Drift detectors are algorithms that monitor and detect changes
in the underlying data distribution during online ML [27]. In supervised ML, where
the data has ground truth labels, (one of the) two drift detectors are commonly used:
Early Drift Detection Method (EDDM) [3] and ADaptive WINdowing (ADWIN) [9].
The former observes the average distance between classification errors, while the latter
monitors the data distribution over a defined window of instances (i.e., the latest batch of
data of defined size). EDDM is generally considered to provide better drift detection,
especially in gradual drift instances [13].

EDDM is most useful when ground truth is available - this is rarely the case in
clustering. For unsupervised drift detection, the Page-Hinkley test can be used. It is a
change-point detection technique that can be advantageous in situations where ground
truth labels are unavailable or unreliable [49]. Unlike ADWIN or EDDM, which rely
on classification errors or data windows, the Page-Hinkley test is based on analyzing
the data distribution itself. By detecting shifts in the mean of the underlying data, the
test allows clustering algorithms to adapt their models in response to changes in data
distribution.

Another key characteristic of online learning is prequential evaluation, or interleaved
test-then-train evaluation [26]. With each data instance, the model first makes a prediction,
evaluates the prediction (e.g., by an error measure), and then updates the model. The
advantage of this approach is that the model is always tested on unseen data (similar to
test data in offline ML), it is computationally efficient, and is useful in drift detection,
i.e., changes in error distributions between the predicted and ground truth values can help
with timely adaptation when drift is present (in supervised online ML).

1.2.1 Use Cases of Online ML

As the nature of online ML implies, it is highly suitable for situations where there is a
continuous stream of (real-time) data which would make the (re-)training of the original

16

(offline) ML model not feasible. In addition, online ML models can adapt to changes in
data distribution which can occur in real-time. To this end, online ML provides several
application opportunities. Below are some of the examples - certainly not an exhaustive
list of applications, but it should provide insights into the potential of online ML.

• Anomaly, outlier, and fraud detection [5, 37]: online clustering can be applied for
detecting abnormal data instances that do not fit into identified clusters in contexts
like financial transactions (detecting potential fraud), or network activity.

• Customer segmentation [11]: customer segments can be very volatile, and online
clustering could be used to adapt to these changes in real-time.

• (Human) Movement patterns [38]: clustering can help with identifying different
movement patterns in humans (can also be used for anomalous movement pattern
detection), potentially in real-time applications.

• Traffic congestion estimation [45, 56]: online clustering could help with tracking
real-time network traffic to, e.g., identify congested areas in traffic.

1.2.2 Online ML frameworks

• MOA (Massive Online Analysis) [10]. It is a framework designed for online learning
from data streams, specifically for classification and clustering.

• Vowpal Wabbit [39]. Vowpal Wabbit has several ML techniques, including
online, hashing, allreduce, reductions, learning2search, active, and interactive
learning.

• River [47]. River is an online AutoML framework that combines the previously-
developed Scikit-multiflow [48] and creme [31] libraries. It includes methods
for supervised (regression, classification) as well as unsupervised (clustering)
learning. It is built to take into account online ML specifics, such as concept drift
and model evaluation in online learning settings. River is also designed to be
resource-efficient and user-friendly. Of note, River is the first open-source project
that includes online clustering [46]. The algorithms and metrics of relevance to the
present work are discussed in sections 2.1.2 and 2.1.3.

1.2.3 AutoML systems for online supervised ML

By the time of writing the present work, there is a limited number of AutoML systems
that have been developed for online ML. In the frameworks (listed below), there are
presently no modules for unsupervised ML – though they do typically support regression
and classification-based algorithms and approaches.

17

• Cha-Cha (Champion-Challengers) [72]. The Champion-Challengers, or Cha-Cha,
framework aims to balance computational effort by categorizing choices based on
their learning cost and assigning resources only to the most promising algrorithm
search spaces. Cha-Cha considers one base learning algorithm at a time and tries
to find promising hyperparameter settings for the algorithm. The main idea behind
Cha-Cha is as follows: a data instance is used as input to the "live" model pool
(collection of model variants, the pool size is defined by the user). The instances
are then predicted and compared to ground truth, starting with the "Champion"
model (i.e., the model with the best performance). In case the model performance
is significantly worse than the performances of other models in the pool (the
"Challengers") based on a statistical test, the better model is "promoted" to be the
"Champion", and its search space is further expanded based on the pre-defined
resource budget (e.g., run time). At any given time point, the number of models in
the "live" pool is constant (e.g., k = 5); this means that as soon as better models
are found, the model pool is updated so that the worse models are excluded from
the pool.

The architecture of Cha-Cha is relatively complex, and the main limitation of this
framework is that although it aims to solve the HPO problem on the go, it is not
capable of solving the CASH problem, as Cha-Cha does not support optimization
of complete ML pipelines (with pre-processing), because it does not explore the
large space of learning algorithms.

• Online AutoML (OAML) [13]. The Online AutoML, or OAML, is a framework that
aims to combine AutoML with the adaptability of online learning algorithms.
The search space includes online learning algorithms, ensembling methods, and
preprocessors. OAML simultaneously selects and optimizes hyperparameters by
using optimization techniques, such as an asynchronous evolutionary algorithm
and asynchronous successive halving. Additionally, the system includes backup
ensembles and model stores to counter concept drift.

The system itself relies on both offline and online learning phases. In the offline
phase, the best pipeline is searched based on the allocated resource budget (e.g.,
runtime) on a batch of streaming data. Once the best pipeline is found, it is fitted
on the available data and passed to the online learning phase. In the online learning
part, data instances are assumed to arrive one at a time. Here, the prequential
evaluation approach is used. By using the performance of the model per each
instance, concept drift detection is implemented. If no drift is detected, the model
continues instance-by-instance learning; however, in case concept drift is detected,
the entire learning process goes back to the offline phase (i.e., searching for the
best pipeline).

OAML supports three methods to update the old model: basic, ensemble, and model

18

store approach. The basic method is suitable for abrupt concept drift, and in this
case, the old model is completely disregarded, and a new one is built from scratch.
In the ensemble approach, when concept drift occurs, the old pipeline is compared
to a backup ensemble of pipelines based on predictive values of the sliding window.
If the ensemble is better, it replaces the old pipeline. Finally, the model store
refers to keeping a user-defined number of individual best pipelines in memory. In
essence, it is a history of the best pipelines.

In their work [13], the authors demonstrated that there is no single approach that
outperforms others in all cases. For instance, the ensemble approach performed
consistently well with various kinds of concept drift, while using a model store
seemed to perform the best with recurrent concept drift.

1.2.4 AutoML systems for online unsupervised ML

Developing automated online ML systems for unsupervised learning is challenging. In
addition to concept drift in online learning, unsupervised learning settings typically lack
the ground truth labels that are needed for error measurement. To address this, several
works (please see section 1.1.5) rely on (a combination of) clustering validity indices.
There are generally two types of validation approaches [32]: external validation refers
to using previous knowledge about the data (e.g., having ground truth labels), whereas
internal validation is based only on the intrinsic information retrieved from the data.

Clustering validity indices generally rely on the combination of compactness and
separability [32]. Compactness refers to the closeness of cluster elements, and it is
commonly assessed with variance. Separability, on the other hand, aims to depict how
distinct two given clusters are; typically, the distance between two different clusters is
used as the measure. Based on these concepts, there is a large number of various internal
and external CVIs. Below is a list of some commonly used internal CVIs [32]:

• Silhouette Score: This index evaluates the similarity within clusters and the dissim-
ilarity between clusters. Typically, the score ranges between [-1; 1] with higher
scores indicating that the data instance fits the cluster better. However, in the river
implementation, a Silhouette score of 0 indicates a better fit.

• Calinski-Harabasz Index (CHI): This index assesses the ratio of between-cluster
dispersion to within-cluster dispersion. Larger values indicate better cluster defini-
tions.

• Davies-Bouldin Index (DBI): This metric calculates the average similarity between
clusters, aiming to identify sets of clusters that are compact and well-separated.
Lower values indicate a better clustering solution.

19

• Dunn Index: This index assesses the proportion of the smallest inter-cluster distance
to the largest intra-cluster distance. Larger values correspond to a good clustering
solution.

As mentioned, it is rarely the case that there are ground truth labels in real-life
datasets. Hence, researchers have either used some commonly known real-life datasets
with ground truth labels (usually from multi-classification problems) or synthetic data
(e.g., see [21] or [12], for examples). In these cases, external CVIs are used. In essence,
these indices compare the clustering assignments to true labels to evaluate how well a
given clustering algorithm maps the patterns of the data. Below is a list of commonly
used external CVIs [32]:

• Adjusted Rand Index (ARI): By considering all data points, ARI assesses the
agreement between two clusterings. The range of this index is between [-1; 1], and
1 indicates perfect agreement.

• Adjusted Normalized Mutual Information (ANMI): This index assesses the re-
lationship between two clustering assignments while accounting for chance and
normalizing cluster sizes. The range of values is [0; 1]; 1 indicates a perfect
solution.

• Purity: This metric shows how much a single cluster contains data instances from
a single class. The range for Purity is [0; 1], with 1 reflecting perfect purity.

• Jaccard Index: This index evaluates the overlap between two clusterings, dividing
the number of shared instances by the total number of unique clusters. The values
are in the range [0; 1], with higher scores indicating a better clustering solution.

• Fowlkes-Mallows Index (FMI): This index computes the geometric mean of pre-
cision and recall and uses this to assess the similarity between two clusterings.
The values are in the range [0; 1], with higher scores indicating a better clustering
solution.

To the best of the knowledge of the author of this thesis at the time of executing
this project and writing the thesis, there has been one proposed framework to address
automated algorithm selection and configuration in clustering with evolving data streams.
This framework is called ConfStream and it is the first proof-of-concept for online
clustering with AutoML properties [4, 12]. Implemented in Java and based on the
MOA framework [10], ConfStream evaluates different configurations of available online
clustering algorithms, selects the best configurations, and ensembles them into the
optimal clusterer for online learning. Periodically, the ensemble is updated with a better-
performing ensemble if one exists. One potential limitation of this framework is that it
evaluates models using only the Silhouette score and does not consider a combination

20

of multiple CVIs. Relying on a single metric in online clustering settings may limit the
understanding of clustering structure, especially regarding sensitivity to noise, outliers,
and cluster characteristics. Therefore, implementing multiple CVIs could provide a
more comprehensive clustering solution [21, 67]. Another limitation of ConfStream is
relying on a single algorithm when a promising algorithm is found from the model pool.
However, a single algorithm may not be suitable for all types of data, hence, an ensemble
of best algorithms could have a higher potential for a better clustering solution [21].

1.3 Present Work
1.3.1 Scope and Contributions of the Present Thesis

The present work is part of a larger project aimed at developing an automated online
clustering framework that addresses the CASH problem in online clustering settings. In
this thesis, the main tasks are as follows:

(a) Building a workflow for automatically optimizing the hyperparameters of a given
clustering algorithm for a specific internal CVI.

(b) Finding a solution for ensembling the best-optimized online clustering models.

(c) Providing preliminary performance comparison results by contrasting the external
CVI scores of:

(i) Algorithms with default hyperparameter values,

(ii) Optimized algorithms,

(iii) Ensemble of the best-optimized algorithms.

1.3.2 Proposed Solution

While an AutoML framework can encompass both offline and online phases, the main
focus of this thesis is on the offline part, where models are trained and optimized based
on internal CVIs. In the online phase, the models are evaluated using an external CVI.
The general workflow of the present work is depicted in Figure 1.

Importantly, for both the Learning and Prequential Evaluation parts of the
process, N = 1001 data instances were used both in the learning and prequential
evaluation phases (similarly to [13]). The rest of the data (i.e., N = 10000 − 1001 −
1001 = 7998 instances; more details on datasets are provided in Table 1) were used for
the model evaluation part (computing ARI scores).

As shown in Figure 1, the framework includes two online clustering algorithms.
Specifically, there are two separate workflows: one for default models and another for
models with optimized hyperparameters. In the case of (a) default models, they are

21

Figure 1. The general workflow overview: model training, optimization and model
selection, followed by online evaluation and analytical comparison of results.

applied for online learning using a specific number of samples corresponding to the
learning and prequential evaluation parts. In the case of (b) models with optimized
hyperparameters, both algorithms are used to optimize the hyperparameters based on
an internal CVI (either Silhouette score or CHI). The workflow includes a learning
phase, followed by prequential evaluation where clustering labels are predicted, the
metric (internal CVI) is updated, and the model is updated accordingly. Once the best
scores are computed for each algorithm and metric, the best models for the given internal
CVIs are selected based on the last metric value. Additionally, an ensemble clusterer
is built based on these best models. Subsequently, all models (defaults, best optimized
algorithms, and ensemble) are evaluated against an external CVI (Adjusted Rand Index)
with the remaining data, and the results are saved. Finally, these results are compared via
statistical testing.

22

1.3.3 Hypotheses

To test the effectiveness of the proposed solution, hypothesis testing is conducted. The
hypotheses of this work are as follows:

• Hypothesis 1: Best optimized models perform better than models with default
hyperparameters.

• Hypothesis 2: The ensemble model performs better than models with default
hyperparameters.

• Hypothesis 3: The ensemble model performs better than the individual best
optimized models.

The proposed framework will be implemented on each dataset used in this thesis
for N = 100 iterations. The average external CVI (ARI) scores will be calculated for
each model on each iteration; the goal of the model is to produce the highest ARI scores
possible. Since the 100 runs will be performed on the same dataset, Friedman’s test is
appropriate for testing the differences in averages among models that are dependent on
the same data. Additionally, Nemenyi’s post-hoc tests will be used to determine which
models, if any, differ from each other statistically significantly.

23

2 Methods
Below, the experiment design, data set, and other configurations are presented.

In accordance with the Master’s thesis guidelines, I acknowledge utilizing contem-
porary tools during the writing of the thesis and development of the framework and
experiments. Specifically, I made use of ChatGPT [54] for various tasks such as spell
and grammar checking, bug fixes, code refactoring and formatting (e.g., docstrings), and
providing conceptual and technical explanations.

2.1 Experiment Design
In this section, the performance of the automated online clustering framework is evaluated
by using data streams in order to provide an overview of its capabilities. The code and
details of these experiments can be found in the associated GitHub repository 3.

2.1.1 Data

In order to simulate an online learning context, synthetic datasets were created by
implementing instance-by-instance learning, where each data row is processed one at
a time. For this purpose, modified versions of the make_blobs() and make_s_curve()
functions from the sklearn.datasets module [57] were utilized. The "blobs" datasets
consist of groups of normally distributed points in a multi-dimensional space with k-
centers, while the "S-curves" datasets exhibit a non-linear structure where data points
form an S-shape in a three-dimensional space. For this thesis, I created the following
datasets, aiming to vary the number of clusters and features and include both k-center-
based ("blobs") and non-linear ("S-curves") datasets. The dataset descriptions can be
found in Table 1.

Table 1. Properties of data sets

Name Type N samples N Features N Clusters
SET1 Blobs 10000 10 6
SET2 Blobs 10000 3 8
SET3 Blobs 10000 3 19
SET4 Blobs 10000 10 19
SET5 S-curves 10000 3 3
SET6 S-curves 10000 3 8

Notes: For SETS 5 and 6, the N Clusters column refers to the number of S-curves.

3Project code: https://github.com/qetdr/online-autoclust-hpo

24

https://github.com/qetdr/online-autoclust-hpo

2.1.2 Configuration

Below, the configuration of the framework used in the present study is described.
Online ML framework: river v0.14.0 was used for online ML in the present

work, as described in section 1.2.2. This choice was based on its active development,
open-source nature, user-friendliness, and its previous application in supervised online
AutoML system development [13].

Optimization configuration: Hyperopt v0.2.7 [7] was employed for hyperpa-
rameter optimization. It is a Python library that can perform complex hyperparameter
optimization for virtually any Python model (given the hyperparameter search space).
Several optimization techniques can be implemented within this framework, such as
random search, grid search, and Tree Parzen Estimation (TPE). The main advantages of
hyperopt are compatibility with a range of models (in Python) and it is open-source.
With regards to the configuration in the present project, TPE was used as the optimization
technique. TPE is an efficient technique that converges faster than grid and random
search [8]. In each instance of model optimization, the allocated budget was 50 trials per
model; upon the depletion of this allocated budget, the best model was retrieved.

Internal CVIs (model optimization): The Silhouette score and Calinski-Harabasz
Index (CHI) were implemented for internal CVI evaluation. These metrics are com-
monly used in clustering research and have demonstrated superior performance com-
pared to other internal CVIs [1]. The Silhouette score and CHI are implemented as
(Silhouette() and CalinskiHarabasz() from the river and river-extra libraries,
respectively). 4

External CVI (model evaluation): The Adjusted Rand Index (ARI) was used as the
external CVI for model evaluation. ARI is a widely used metric in clustering evaluation
works [65]. It offers interpretability, chance correction, insensitivity to label permutations
and cluster sizes, and suitability for scenarios where clusters may overlap.

The number of experiments: Each dataset was evaluated in N = 100 experiments.
Each experiment involved running the default models, optimizing two models based on
Silhouette and CHI scores, and creating an ensemble model from the best optimized
models. Subsequently, all five models were evaluated using ARI. The ARI scores from
each iteration were recorded and aggregated to calculate the average ARI score for
each model. The experiments were parallelized using the multiprocessing library for
improved efficiency.

Hardware and operating system. The present MSc thesis experiments were con-
ducted with a 2020 Apple MacBook Pro (macOS Ventura 13.2.1) an Apple M1 chip

4It should be noted that, typically, a third CVI is commonly used alongside the Silhouette Score and
CHI: the Davies-Bouldin Index. However, in the present implementation (in the river-extra v. 0.14.0
library), the metric is experiencing unexpected behavior, leading to errors. Hence, this metric was excluded
from use in the previous MSc thesis but will be included in the future in the larger project once the bug
fixes are applied.

25

(8-core CPU) and 16 GB RAM, using Python 3.10.9.

2.1.3 Baselines and Search Space

Below, the algorithms used in the present project are described. Additional details about
these algorithms can be found in the provided links. 5

• KMeans6: This algorithm is an online version of the traditional KMeans clustering
algorithm. It iteratively partitions data points into k clusters based on the mean
of the data points within each cluster. The implementation in the river library
adopts a mini-batch approach, updating the cluster centroids incrementally using
small batches of data points instead of the entire dataset.

• STREAMKMeans7: This algorithm serves as an alternative to the STREAMLSEARCH
algorithm [52]. STREAMKMeans operates on temporary data chunks comprising
new data instances. Once a temporary data chunk reaches its maximum size,
KMeans processes the chunk and derives the new cluster centers. When a pre-
diction request is made, the algorithm utilizes the centers retrieved at the time of
prediction retrieval.

Table 2 provides comprehensive information about the default parameter values,
search spaces, and explanations of the clustering algorithms.

Regarding the baselines, the primary focus of this work is to compare the performance
of the optimized solutions against that of the default clustering algorithms. The default
values for the online clustering algorithms can be found in the Default column of Table
2.

2.1.4 Statistical Analysis for Model Comparisons

Each experiment run provides an average ARI score across all evaluation timepoints,
resulting in a total of 100 scores for each data set and model. To compare the performance
differences between models, the Friedman test [25] was employed, considering the same
underlying data and ensuring result robustness. Additionally, Nemenyi post-hoc tests
[51] were conducted to analyze pairwise model differences. These tests were performed
separately for each dataset, with a significance level of 0.05.

5Although there is potential for implementing more algorithms and expanding the search spaces, the
scope of the present work is limited in terms of the number of clustering algorithms and their associated
search spaces. This limitation arises from the fact that during the development of the framework for
this study, certain algorithms in the river library behaved in an unexpected manner and exhibited errors
that were hard to trace. The OAML paper [13] also acknowledges that while the river library has great
potential for developing online ML systems, it presently contains bugs that prevent the full utilization of
its larger capabilities.

6https://riverml.xyz/dev/api/cluster/KMeans/
7https://riverml.xyz/dev/api/cluster/STREAMKMeans/

26

https://riverml.xyz/dev/api/cluster/KMeans/
https://riverml.xyz/dev/api/cluster/STREAMKMeans/

Table 2. Hyperparameter search spaces for given algorithms in the present work.

Algorithm Hyperparameter Search
Space

Default Explanation

KMeans n_clusters [3; 20] 5 Maximum number of clusters to assign.

halflife [0.01; 1] 0.5 Amount by which to move the cluster cen-

ters, a reasonable value if between 0 and

1.

mu [0.01; 2.0] 0 Mean of the normal distribution used to

instantiate cluster positions.

sigma [0.01; 2.0] 1 Standard deviation of the normal distribu-

tion used to instantiate cluster positions.

p [1, 2] 2 Power parameter for the Minkowski met-

ric. When p=1, this corresponds to the

Manhattan distance, while p=2 corre-

sponds to the Euclidean distance.

seed - None Random seed used for generating initial

centroid positions.

STREAMKMeans chunk_size [5; 49] 10 Maximum size allowed for the temporary

data chunk.

n_clusters [3; 20] 2 Number of clusters generated by the algo-

rithm.

halflife [0.01; 1] 0.5 Amount by which to move the cluster cen-

ters, a reasonable value if between 0 and

1.

mu [0.01; 2.0] 0 Mean of the normal distribution used to

instantiate cluster positions.

sigma [0.01; 2.0] 1 Standard deviation of the normal distribu-

tion used to instantiate cluster positions.

p [1, 2] 2 Power parameter for the Minkowski met-

ric. When p=1, this corresponds to the

Manhattan distance, while p=2 corre-

sponds to the Euclidean distance.

seed - None Random seed used for generating initial

centroid positions.

27

3 Results
The results for the data sets are presented below. Friedman’s tests were conducted to
investigate whether there were significant differences in model performance (opera-
tionalized as the average ARI score) among the models for each data set. Furthermore,
Nemenyi’s post hoc tests were performed to examine specific pairwise model differences.
The total computation time for all experiments, using the configuration described in the
Methods section, was approximately 8 hours and 18 minutes.

The distribution of model performances across all data sets is illustrated in boxplots
in Figure 2.

Figure 2. The model evaluation results (average ARI scores) for each clustering solution
across each data set (SET1-SET6). Notes. DEF = model with default hyperparameters;
HPO = best optimized model; Sil = Silhouette Score, CHI = Calinski-Harabasz Index.

28

Several observations can be made from Figure 2. Firstly, there is no single model
that consistently outperforms all other models across all data sets. Secondly, the results
suggest the relevance of the data set itself. In Sets 1 to 4, the model optimized towards the
Silhouette score and the ensemble model tend to perform better than other models, while
this is not the case for Sets 5 and 6. The former sets consist of k-center-based "blobs"
data, while the latter sets are three-dimensional S-curves with varying numbers of these
curves. Thirdly, the model optimized towards the Silhouette score and the ensemble
model appear to perform similarly overall. Fourthly, the model optimized towards the
best CHI score tends to perform relatively poorly and is sometimes outperformed by the
default models.

In addition to visual inspection, Friedman tests with Nemenyi post-hoc tests were
conducted to determine the statistical significance of the observed differences between
models for each data set. The results of the Friedman tests are presented in Table 3,
indicating statistically significant model performance differences in all case

Table 3. Results of the Friedman test in each data set (N = 100).

Dataset Friedman χ2 df p
SET1 329.121 4 < .001
SET2 354.000 4 < .001
SET3 367.976 4 < .001
SET4 368.538 4 < .001
SET5 229.457 4 < .001
SET6 214.54 4 < .001

To identify pairwise differences between models for each data set, Nemenyi post-hoc
tests were performed, and the results are presented in Table 4. Notably, as observed in
Figure 2, the best model optimized towards the Silhouette score and the ensemble model
outperform other clustering solutions in Sets 1 to 4. Although the ensemble models
have slightly higher average ARI scores than the Silhouette-optimized models, the post-
hoc test results indicate that the differences in model performances are not statistically
significant. In other words, for "blobs"-type data sets, comparable results can be achieved
by optimizing a model towards the best Silhouette score and when ensembling it with
the CHI-optimization based model.

Interestingly, in the "S-curves" data sets (Sets 5 to 6), which have notably lower
average ARI scores compared to "blobs" data sets, ensembling the best hyperparameter-
optimized models yielded the poorest performance. In fact, the STREAMKMeans algorithm
with default values outperformed all other models in the "S-curves" data sets.

29

Table 4. Averages (M) and standard deviations (SD) for ARI scores for each model in
each data set across 100 experiments, and p-values for Nemenyi post-hoc test results.

Dataset Model M (ARI) SD (ARI) Post-hoc p-values
1 2 3 4

SET1 1. DEF: KM .828 .000 1
2. DEF: SKM .801 .040 .015 1
3. HPO: BEST SIL .986 .047 .001 .001 1
4. HPO: BEST CHI .938 .083 .001 .001 .047 1
5. ENSEMBLE .995 .029 .001 .001 .900 .010

SET2 1. DEF: KM .673 .000 1
2. DEF: SKM .568 .022 .001 1
3. HPO: BEST SIL .816 .048 .001 .001 1
4. HPO: BEST CHI .659 .042 .900 .001 .001 1
5. ENSEMBLE .825 .039 .001 .001 .796 .001

SET3 1. DEF: KM .316 .00 1
2. DEF: SKM .293 .024 .003 1
3. HPO: BEST SIL .644 .041 .001 .001 1
4. HPO: BEST CHI .171 .050 .001 .001 .001 1
5. ENSEMBLE .655 .044 .001 .001 .263 .001

SET4 1. DEF: KM .311 .000 1
2. DEF: SKM .294 .023 .239 1
3. HPO: BEST SIL .821 .038 .001 .001 1
4. HPO: BEST CHI .155 .013 .001 .001 .001 1
5. ENSEMBLE .834 .038 .001 .001 .381 .001

SET5 1. DEF: KM .361 .015 1
2. DEF: SKM .404 .044 .001 1
3. HPO: BEST SIL .276 .053 .001 .001 1
4. HPO: BEST CHI .295 .145 .542 .001 .003 1
5. ENSEMBLE .253 .050 .001 .001 .001 .001

SET6 1. DEF: KM .359 .019 1
2. DEF: SKM .409 .052 .001 1
3. HPO: BEST SIL .279 .057 .001 .001 1
4. HPO: BEST CHI .289 .136 .015 .001 .477 1
5. ENSEMBLE .253 .052 .001 .001 .001 .001

Notes: ARI = Adjusted Rand Index; DEF: KM = default KMeans model; DEF: SKM
= default STREAMKMeans model; HPO: BEST SIL = best model optimized for Sil-
houette score; HPO: BEST CHI = best model optimized for Calinski-Harabasz Index;
ENSEMBLE = ensemble model of the best optimized models. Statistically significant
p-values (p < .05) are highlighted in bold font. The average ARI scores for best models
for each data set are underlined.

30

4 Discussion
The main aim of the present thesis was to develop the hyperparameter optimization part
for AutoML research in online clustering settings. In this regard, the focus of the thesis
was primarily on the AutoML (offline) phase, specifically aiming to develop a framework
for automated hyperparameter optimization (HPO) and model selection. To achieve
this, the ARI scores of default models were compared against the ARI scores of best
optimized models (based on the Silhouette score and CHI) and the ARI scores of the
ensemble of the named best optimized models. The key findings, implementation details,
and limitations and future perspectives are discussed below.

4.1 Main Findings
In the first part of the thesis, three hypotheses were posed. Overall, it can be said that
none of the hypotheses received full support from the data. However, as discussed below,
certain circumstances may be necessary for the hypotheses to be accepted.

According to Hypothesis 1, it was expected that the models with automatically
optimized hyperparameters would outperform the default clustering algorithms. This
was indeed the case in three out of six data sets (SETS 1, 3, and 4). However, in SET
2, only the Silhouette-optimized model outperformed all the default algorithms, while
there was no significant difference in performance between the model optimized towards
optimal CHI and the default KMeans. Surprisingly, the optimized models performed
worse than the default online clustering algorithms in two data sets (SETS 5 and 6).

For Hypothesis 2, it was expected that the ensemble model would outperform the
default algorithms. The findings were similar to Hypothesis 1, with the ensemble
outperforming the default configurations in four out of six data sets (SETS 1 to 4).
However, it should be noted that in SETS 5 and 6, the ensemble model was surpassed by
the default configurations.

Finally, according to Hypothesis 3, it was expected that the ensemble clusterer
formed from the best optimized models would outperform both of these individual
models. Here, the ensemble only outperformed the models optimized towards optimal
CHI in SETS 1 to 4. However, the ensemble models were not statistically significantly
better-performing than the Silhouette-optimized models. This suggests that the ensemble
may have been more influenced by the best Silhouette model, incorporating primarily its
clustering solution. In the future, experimenting with model weights, i.e., determining the
contribution of each model to the ensemble formation, could be explored. Interestingly,
the ARI scores for ensembles were the poorest in the "S-curves" data sets.

Based on the findings, it can be inferred that HPO can be leveraged but within certain
limitations that include the suitability of specific algorithms for particular data types.
In general, the performance was better for data sets with distinct centers, such as the
"blobs" data sets. In contrast, for non-linear manifold data structures like the "S-curves,"

31

the performance of all models, including HPO, was poorer compared to the default
models. One potential reason for these findings may be that the "blobs" data sets are
well-separated, roughly spherical, and have similar densities, which align well with algo-
rithms like KMeans and STREAMKMeans, as these algorithms are designed to handle
clearly-separable linear data with relatively clear boundaries and shape [34]. Hence, a
potential extension of these experiments could involve including other algorithms, such
as DBSCAN, to handle non-linear data more effectively [55].

4.2 Contribution
This thesis has both practical and theoretical merit. From the theoretical perspective,
the main contribution is providing insights into the possible benefits of automated HPO
in online clustering (by implementing the hyperopt framework). In this study, default
online clustering algorithms were compared against their optimized counterparts, and
an ensemble of the latter. The results demonstrated that while optimization may help to
improve the performance of the default algorithms, this may be so in particular data and
algorithm types.

In terms of practical contributions, the thesis provides a code repository that can be
valuable for advancing HPO in the context of online clustering. The repository allows
for potential users to explore and modify configurations, such as incorporating additional
algorithms or expanding the search spaces. By automating the process, the framework
developed in this thesis can save time and effort for users.

Furthermore, the thesis offers a broader overview of AutoML and online machine
learning. It serves as a starting point for interested readers to delve into additional
learning resources and explore the capabilities of AutoML and online ML beyond the
scope of this study.

4.3 Limitations and Future Perspective
The framework proposed in this thesis has a limited scope, and there are several oppor-
tunities for further improvement and development. Here are some potential ways to
enhance the automated online clustering framework:

Expanding the search space: The current framework can be extended by incorporating
a wider range of algorithms, hyperparameter configurations, and search duration (e.g.,
number of trials in hyperopt). Algorithms specifically designed for evolving data
streams should be explored and made compatible with the framework. Additionally, the
framework should consider efficient optimization techniques and explore ensembling
methods suitable for algorithms with temporal solutions, such as those utilizing micro-
clusters. Furthermore, distribution-based clustering algorithms can be investigated for
inclusion.

32

Expanding capabilities in the online clustering pipeline: The framework should be
enhanced to include data pre-processing steps. Data scaling, handling missing data, and
transformations should be considered as integral parts of an automated online clustering
workflow.

Alternative optimization and model selection techniques: While the present work uti-
lized the hyperopt library for optimization, alternative methods like genetic programming-
based approaches (e.g., GAMA) can be explored. The inclusion of a class like ClustGAMA
(as a reference to the presently-implemented ClustHyperopt) in the optimization code-
base could be considered to provide additional optimization capabilities.

Handling concept drift: Although handling concept drift is an important part in online
ML, dealing with concept drift was not within the scope of the present thesis. Solutions
for adapting to frequent and recurrent drifts can be explored, as well as considering
the necessity and utility of explicit drift detection mechanisms. Recent work on drift
adaptation in online clustering can provide valuable insights in this area [74].

Improving scalability: Although the ultimate goal of this framework would be
usability in real-time (or with minimal lag) context, the present solution is not quite
there yet. The model training part may take a considerable amount of time and is not,
hence, suitable for real-time applications. The present framework could be improved
in later iterations by implementing the use of continuous sliding window batch training
outlined in Formula 2. In addition, presently, the ensembling part of the workflow is
time-consuming. Future work could also improve the present framework by including a
more efficient, faster ensembling method.

Different data types: the present work only utilized synthetic datasets generated with
the sklearn module for basic functionality comparison. Although the larger project
aims to include more complex datasets, including real-world data, additional work may
be necessary to provide a compatible framework. It may be fruitful to include additional
data sets that differ in distribution. Additionally, when it comes to drift detection, it may
be also a good idea to test the framework by including drift in the data.

It is important to note that addressing all of these aspects is beyond the scope of
an MSc thesis. The present work might serve as a preliminary foundation and takes
steps towards developing an automated online clustering framework, but future iterations
and research are required to fully realize the potential of an automated online clustering
framework.

5 Conclusions
The aim of the present work was to contribute to the field of online automated machine
learning by developing an automated hyperparameter optimization and model selection
solution in online clustering settings. The experiments focused on two algorithms,
namely KMeans and STREAMKMeans. The performance of the default algorithms

33

was compared against the best-optimized models, where one model was selected based
on the optimal Silhouette score and the other based on the optimal CHI. Additionally,
an ensemble clusterer was created from these best models. A total of five clustering
solutions were evaluated on six different data sets, four of which were variations of
spheric "blobs" with clear cluster boundaries, and two data sets were three-dimensional
"S-curves" (with a varying number of "S-curves").

The results of the study showed that the Silhouette-optimized model and the ensemble
clusterer generally outperformed the other models in the "blobs" data sets. Importantly,
there was no statistically significant difference in performance between these two clus-
tering solutions. On the other hand, the CHI-optimized models did not demonstrate
particularly strong performance. Interestingly, the default STREAMKMeans algorithm
outperformed all other models in the "S-curves" data sets, while the ensemble clusterers
had the lowest performance among all the models in those data sets.

These findings highlight the potential for automated hyperparameter optimization
in online clustering, although the effectiveness may depend on the choice of algorithm,
internal clustering validity index (loss metric), and data set characteristics.

34

6 Acknowledgments
I would like to extend my gratitude to my thesis advisor, Dr. Radwa El Shawi, for
her unwavering support and guidance throughout this journey. Her invaluable insights,
expertise, and encouragement have been instrumental in shaping my domain knowledge.
Thank you for your patience and dedication in nurturing my academic development.

Ich möchte meine tiefe Dankbarkeit zum Ausdruck bringen, dass ich auf dieser Reise
nicht allein war und stets die Unterstützung meiner Partnerin Nana hatte. Es ist schwierig,
das volle Ausmaß meiner Dankbarkeit für die Hilfe, die du mir entgegengebracht hast,
in Worte zu fassen – von der ersten Frage "Soll ich mich im Master-Programm ein-
schreiben?" bis zum Abschluss des Programms, in dem ich während der Arbeit an meiner
Thesis eine Achterbahnfahrt aus Erfolgen und Herausforderungen erlebt habe. Ich bin
überzeugt, dass diese Reise ohne dich – wenn nicht unmöglich – weitaus schwieriger
und weniger erfüllend gewesen wäre.

In diesem Zusammenhang möchte ich mich auch herzlich bei der Familie Löchner
(Eva, Rüdiger, Nico) bedanken, für die entspannten Momente, die wir gemeinsam
verbracht haben. Zum Schluss möchte ich auch den zahlreichen deutschen Freunden
meinen Dank aussprechen, die mich während meines Studiums tatkräftig unterstützt
haben.

Soovin tänada oma peret ning paljusid sõpru. Eriti suured tänud teile, Max ning
Jana (ja Cezikowski!), et olete olnud sellel teekonnal alati toeks. Olen siiralt rõõmus,
et selle kraadi omandamise algusest on paljud sõbrad olnud asendamatuks toeks - olgu
siis huvitavate ja inspireerivate vestluste, tehniliste nõuannete või öömaja pakkumisega
Tartus. Suured aitähid ka mitmetele kursusekaaslastele (eriti tahaksin välja tuua Heidi,
Triinu ja Marilini), kellega koos oleme paljusid asju arutades kindlasti ühiselt targemaks
saanud. Lõpetuseks soovin tänu avaldada ka paljudele andmeteaduse magistriõppekava
õppe- ja taustajõududele, kel on olnud oluline roll nii domeenialases arengus kui ka kes
on abiks olnud õppekorralduslikes küsimustes.

35

References
[1] Olatz Arbelaitz et al. “An extensive comparative study of cluster validity indices”.

In: Pattern Recognition 46.1 (2013), pp. 243–256. ISSN: 0031-3203. DOI: https:
//doi.org/10.1016/j.patcog.2012.07.021.

[2] Asegunloluwa Eunice Babalola, Bolanle Adefowoke Ojokoh, and Julius Bene-
oluchi Odili. “A Review of Population-Based Optimization Algorithms”. In:
2020 International Conference in Mathematics, Computer Engineering and Com-
puter Science (ICMCECS). 2020, pp. 1–7. DOI: 10.1109/ICMCECS47690.2020.
240856.

[3] Manuel Baena-Garcıa et al. “Early drift detection method”. In: Fourth interna-
tional workshop on knowledge discovery from data streams. Vol. 6. Citeseer. 2006,
pp. 77–86.

[4] Maroua Bahri et al. “AutoML for Stream k-Nearest Neighbors Classification”. In:
2020 IEEE International Conference on Big Data (Big Data). 2020, pp. 597–602.
DOI: 10.1109/BigData50022.2020.9378396.

[5] Maroua Bahri et al. “AutoML: state of the art with a focus on anomaly detection,
challenges, and research directions”. In: International Journal of Data Science and
Analytics 14.2 (Aug. 2022), pp. 113–126. DOI: 10.1007/s41060-022-00309-0.

[6] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. “Generalization in
Portfolio-Based Algorithm Selection”. In: Proceedings of the AAAI Conference
on Artificial Intelligence 35.14 (May 2021), pp. 12225–12232. DOI: 10.1609/
aaai.v35i14.17451.

[7] James Bergstra, Dan Yamins, David D Cox, et al. “Hyperopt: A python library for
optimizing the hyperparameters of machine learning algorithms”. In: Proceedings
of the 12th Python in science conference. Vol. 13. Citeseer, 2013, p. 20.

[8] James Bergstra, Daniel Yamins, and David Cox. “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures”. In: Proceedings of the 30th International Conference on Machine
Learning. Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of
Machine Learning Research 1. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013,
pp. 115–123.

[9] Albert Bifet and Ricard Gavaldà. “Learning from Time-Changing Data with Adap-
tive Windowing”. In: Proceedings of the 2007 SIAM International Conference on
Data Mining (SDM), pp. 443–448. DOI: 10.1137/1.9781611972771.42.

[10] Albert Bifet et al. “Moa: Massive online analysis, a framework for stream classifi-
cation and clustering”. In: Proceedings of the first workshop on applications of
pattern analysis. PMLR. 2010, pp. 44–50.

36

https://doi.org/https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1109/ICMCECS47690.2020.240856
https://doi.org/10.1109/ICMCECS47690.2020.240856
https://doi.org/10.1109/BigData50022.2020.9378396
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1609/aaai.v35i14.17451
https://doi.org/10.1609/aaai.v35i14.17451
https://doi.org/10.1137/1.9781611972771.42

[11] Matthias Carnein and Heike Trautmann. “Customer Segmentation Based on Trans-
actional Data Using Stream Clustering”. In: Advances in Knowledge Discovery
and Data Mining. Ed. by Qiang Yang et al. Cham: Springer International Publish-
ing, 2019, pp. 280–292.

[12] Matthias Carnein et al. “confstream: Automated algorithm selection and configu-
ration of stream clustering algorithms”. In: Learning and Intelligent Optimization:
14th International Conference, LION 14, Athens, Greece, May 24–28, 2020, Re-
vised Selected Papers 14. Springer. 2020, pp. 80–95.

[13] Bilge Celik, Prabhant Singh, and Joaquin Vanschoren. “Online AutoML: an
adaptive AutoML framework for online learning”. In: Machine Learning (Dec.
2022). DOI: 10.1007/s10994-022-06262-0.

[14] Boyuan Chen et al. “Autostacker: A Compositional Evolutionary Learning Sys-
tem”. In: (2018). DOI: 10.48550/ARXIV.1803.00684.

[15] Paul D. Clough and Jahna Otterbacher. “Democratizing AI: from theory to prac-
tice”. In: Handbook of Research on Artificial Intelligence, Innovation and En-
trepreneurship. Ed. by Elias Carayannis and Evangelos Grigoroudis. Edward Elgar
Publishing, Feb. 2023, pp. 402–418. DOI: 10.4337/9781839106750.00039.

[16] Stefan Coors et al. “Automatic Componentwise Boosting: An Interpretable Au-
toML System”. In: (2021). DOI: 10.48550/ARXIV.2109.05583.

[17] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”. In:
IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–197. DOI:
10.1109/4235.996017.

[18] Xibin Dong et al. “A survey on ensemble learning”. In: Frontiers of Computer
Science 14 (2020), pp. 241–258.

[19] Radwa ElShawi, Hudson Lekunze, and Sherif Sakr. “cSmartML: A Meta Learning-
Based Framework for Automated Selection and Hyperparameter Tuning for Clus-
tering”. In: 2021 IEEE International Conference on Big Data (Big Data). Orlando,
FL, USA: IEEE, Dec. 2021, pp. 1119–1126. DOI: 10.1109/BigData52589.2021.
9671542.

[20] Radwa ElShawi, Mohamed Maher, and Sherif Sakr. “Automated Machine Learn-
ing: State-of-The-Art and Open Challenges”. In: (2019). DOI: 10.48550/ARXIV.
1906.02287.

[21] Radwa ElShawi and Sherif Sakr. “TPE-AutoClust: A Tree-based Pipline Ensemble
Framework for Automated Clustering”. In: 2022 IEEE International Conference
on Data Mining Workshops (ICDMW). Orlando, FL, USA: IEEE, Nov. 2022,
pp. 1144–1153. DOI: 10.1109/ICDMW58026.2022.00149.

37

https://doi.org/10.1007/s10994-022-06262-0
https://doi.org/10.48550/ARXIV.1803.00684
https://doi.org/10.4337/9781839106750.00039
https://doi.org/10.48550/ARXIV.2109.05583
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/BigData52589.2021.9671542
https://doi.org/10.1109/BigData52589.2021.9671542
https://doi.org/10.48550/ARXIV.1906.02287
https://doi.org/10.48550/ARXIV.1906.02287
https://doi.org/10.1109/ICDMW58026.2022.00149

[22] Matthias Feurer and Frank Hutter. “Hyperparameter optimization”. In: Automated
machine learning: Methods, systems, challenges (2019), pp. 3–33.

[23] Matthias Feurer, Jost Springenberg, and Frank Hutter. “Initializing Bayesian
Hyperparameter Optimization via Meta-Learning”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 29.1 (Feb. 2015). DOI: 10.1609/aaai.
v29i1.9354.

[24] Matthias Feurer et al. “Auto-sklearn 2.0: Hands-free automl via meta-learning”.
In: Journal of Machine Learning Research 23.261 (2020), pp. 1–61.

[25] Milton Friedman. “The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance”. In: Journal of the American Statistical Asso-
ciation 32.200 (1937), pp. 675–701. DOI: 10.1080/01621459.1937.10503522.

[26] João Gama et al. “A survey on concept drift adaptation”. In: ACM Computing
Surveys (CSUR) 46 (2014), pp. 1–37.

[27] João Gama et al. “Learning with Drift Detection”. In: Advances in Artificial Intelli-
gence – SBIA 2004. Ed. by David Hutchison et al. Vol. 3171. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 286–295. DOI: 10.1007/978-3-540-28645-5_29.

[28] Pieter Gijsbers. “Systems for AutoML Research”. English. ISBN: 978-90-386-
5510-9 Series: SIKS Dissertation Series. PhD Thesis. Mathematics and Computer
Science, May 2022.

[29] Pieter Gijsbers and Joaquin Vanschoren. “GAMA: A General Automated Ma-
chine Learning Assistant”. In: Machine Learning and Knowledge Discovery in
Databases. Applied Data Science and Demo Track. Ed. by Yuxiao Dong et al.
Vol. 12461. Cham: Springer International Publishing, 2021, pp. 560–564. DOI:
10.1007/978-3-030-67670-4_39.

[30] Heitor Murilo Gomes et al. “Machine learning for streaming data: state of the art,
challenges, and opportunities”. In: ACM SIGKDD Explorations Newsletter 21.2
(Nov. 2019), pp. 6–22. DOI: 10.1145/3373464.3373470.

[31] Max Halford et al. creme, a Python library for online machine learning. June
2020. URL: https://github.com/MaxHalford/creme.

[32] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “Cluster validity
methods: part I”. In: ACM Sigmod Record 31.2 (2002), pp. 40–45.

[33] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learn-
ing: methods, systems, challenges. Springer Nature, 2019.

[34] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A Review”. In: ACM
Comput. Surv. 31.3 (Sept. 1999), pp. 264–323. DOI: 10.1145/331499.331504.

38

https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-030-67670-4_39
https://doi.org/10.1145/3373464.3373470
https://github.com/MaxHalford/creme
https://doi.org/10.1145/331499.331504

[35] Richard M Karp. “On-line algorithms versus off-line algorithms: How much”. In:
Algorithms, Software, Architecture: Information Processing 92: Proceedings of
the IFIP 12th World Computer Congress. Vol. 1. 1992, p. 416.

[36] Brent Komer, James Bergstra, and Chris Eliasmith. “Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn”. In: ICML workshop on AutoML.
Vol. 9. Citeseer Austin, TX, 2014, p. 50.

[37] Shanmugam Shan Kulandaivel and Cody Irwin. Use real-time anomaly detec-
tion reference patterns to combat fraud. 2020. URL: https://cloud.google.
com/blog/products/data-analytics/using-automated-ml-streaming-
architecture-to-find-anomalies (visited on 03/12/2023).

[38] Doi Thi Lan and Seokhoon Yoon. “Trajectory Clustering-Based Anomaly Detec-
tion in Indoor Human Movement”. In: Sensors 23.6 (Mar. 2023), p. 3318. DOI:
10.3390/s23063318.

[39] John Langford, Lihong Li, and Alex Strehl. Vowpal wabbit online learning project.
2007.

[40] Yue Liu, Shuang Li, and Wenjie Tian. “AutoCluster: Meta-learning Based Ensem-
ble Method for Automated Unsupervised Clustering”. en. In: Advances in Knowl-
edge Discovery and Data Mining. Ed. by Kamal Karlapalem et al. Vol. 12714.
Series Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 246–258. DOI: 10.1007/978-3-030-75768-7_20.

[41] Mohamed Maher and Sherif Sakr. SmartML: A Meta Learning-Based Frame-
work for Automated Selection and Hyperparameter Tuning for Machine Learning
Algorithms. 2019. DOI: 10.5441/002/EDBT.2019.54.

[42] Fernando Martinez-Plumed et al. “CRISP-DM Twenty Years Later: From Data
Mining Processes to Data Science Trajectories”. In: IEEE Transactions on Knowl-
edge and Data Engineering 33.8 (Aug. 2021), pp. 3048–3061. DOI: 10.1109/
TKDE.2019.2962680.

[43] Tom M. Mitchell. Machine Learning. McGraw-Hill series in computer science.
New York: McGraw-Hill, 1997. ISBN: 978-0-07-042807-2.

[44] Felix Mohr, Marcel Wever, and Eyke Hüllermeier. “ML-Plan: Automated machine
learning via hierarchical planning”. In: Machine Learning 107.8-10 (Sept. 2018),
pp. 1495–1515. DOI: 10.1007/s10994-018-5735-z.

[45] Md. Ashifuddin Mondal and Zeenat Rehena. “Identifying Traffic Congestion Pat-
tern using K-means Clustering Technique”. In: 2019 4th International Conference
on Internet of Things: Smart Innovation and Usages (IoT-SIU). 2019, pp. 1–5.
DOI: 10.1109/IoT-SIU.2019.8777729.

39

https://cloud.google.com/blog/products/data-analytics/using-automated-ml-streaming-architecture-to-find-anomalies
https://cloud.google.com/blog/products/data-analytics/using-automated-ml-streaming-architecture-to-find-anomalies
https://cloud.google.com/blog/products/data-analytics/using-automated-ml-streaming-architecture-to-find-anomalies
https://doi.org/10.3390/s23063318
https://doi.org/10.1007/978-3-030-75768-7_20
https://doi.org/10.5441/002/EDBT.2019.54
https://doi.org/10.1109/TKDE.2019.2962680
https://doi.org/10.1109/TKDE.2019.2962680
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1109/IoT-SIU.2019.8777729

[46] Jacob Montiel et al. “Online Clustering: Algorithms, Evaluation, Metrics, Applica-
tions and Benchmarking”. In: Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. Washington DC USA: ACM, Aug.
2022, pp. 4808–4809. DOI: 10.1145/3534678.3542600.

[47] Jacob Montiel et al. “River: Machine Learning for Streaming Data in Python”. In:
Journal of Machine Learning Research 22.1 (July 2022).

[48] Jacob Montiel et al. “Scikit-Multiflow: A Multi-output Streaming Framework”.
In: Journal of Machine Learning Research 19.72 (2018), pp. 1–5.

[49] H. Mouss et al. “Test of Page-Hinckley, an approach for fault detection in an agro-
alimentary production system”. In: 2004 5th Asian Control Conference (IEEE Cat.
No.04EX904). Vol. 2. 2004, 815–818 Vol.2.

[50] Dinithi Nallaperuma et al. “Online Incremental Machine Learning Platform for
Big Data-Driven Smart Traffic Management”. In: IEEE Transactions on Intelligent
Transportation Systems 20.12 (2019), pp. 4679–4690. DOI: 10.1109/TITS.2019.
2924883.

[51] Peter Nemenyi. “Distribution-free multiple comparisons”. PhD thesis. Princeton
University, 1963.

[52] L. O’Callaghan et al. “Streaming-data algorithms for high-quality clustering”. In:
Proceedings 18th International Conference on Data Engineering. 2002, pp. 685–
694. DOI: 10.1109/ICDE.2002.994785.

[53] Randal S. Olson and Jason H. Moore. “TPOT: A Tree-based Pipeline Optimization
Tool for Automating Machine Learning”. In: Proceedings of the Workshop on
Automatic Machine Learning. Ed. by Frank Hutter, Lars Kotthoff, and Joaquin
Vanschoren. Vol. 64. Proceedings of Machine Learning Research. New York, New
York, USA: PMLR, June 2016, pp. 66–74.

[54] OpenAI. ChatGPT). 2023. URL: https : / / chat . openai . com (visited on
05/06/2023).

[55] Tinghui Ouyang and Xun Shen. “Online structural clustering based on DBSCAN
extension with granular descriptors”. In: Information Sciences 607 (2022), pp. 688–
704. DOI: https://doi.org/10.1016/j.ins.2022.06.027.

[56] Vishwajeet Pattanaik et al. “Smart real-time traffic congestion estimation and clus-
tering technique for urban vehicular roads”. In: 2016 IEEE Region 10 Conference
(TENCON). 2016, pp. 3420–3423. DOI: 10.1109/TENCON.2016.7848689.

[57] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

40

https://doi.org/10.1145/3534678.3542600
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/TITS.2019.2924883
https://doi.org/10.1109/ICDE.2002.994785
https://chat.openai.com
https://doi.org/https://doi.org/10.1016/j.ins.2022.06.027
https://doi.org/10.1109/TENCON.2016.7848689

[58] Yannis Poulakis, Christos Doulkeridis, and Dimosthenis Kyriazis. “AutoClust:
A Framework for Automated Clustering Based on Cluster Validity Indices”. In:
2020 IEEE International Conference on Data Mining (ICDM). Sorrento, Italy:
IEEE, Nov. 2020, pp. 1220–1225. DOI: 10.1109/ICDM50108.2020.00153.

[59] Jesse Read, Peter Reutemann, and Joerg Wicker. MEKA. 2023. URL: http://
waikato.github.io/meka/ (visited on 03/03/2023).

[60] Mattia Rizzini et al. “Static and Dynamic Portfolio Methods for Optimal Planning:
An Empirical Analysis”. In: International Journal on Artificial Intelligence Tools
26.01 (2017), p. 1760006. DOI: 10.1142/S0218213017600065.

[61] Alex G. C. de Sá, Alex A. Freitas, and Gisele L. Pappa. “Automated Selection
and Configuration of Multi-Label Classification Algorithms with Grammar-Based
Genetic Programming”. In: Parallel Problem Solving from Nature – PPSN XV.
Ed. by Anne Auger et al. Vol. 11102. Cham: Springer International Publishing,
2018, pp. 308–320. DOI: 10.1007/978-3-319-99259-4_25.

[62] Alex G. C. de Sá et al. “RECIPE: A Grammar-Based Framework for Automati-
cally Evolving Classification Pipelines”. In: Genetic Programming. Ed. by James
McDermott et al. Vol. 10196. Cham: Springer International Publishing, 2017,
pp. 246–261. DOI: 10.1007/978-3-319-55696-3_16.

[63] Vinicius M. A. Souza et al. “Challenges in benchmarking stream learning algo-
rithms with real-world data”. en. In: Data Mining and Knowledge Discovery 34.6
(Nov. 2020), pp. 1805–1858. DOI: 10.1007/s10618-020-00698-5.

[64] Statista. Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2020, with forecasts from 2021 to 2025. 2022. URL:
https : / / www . statista . com / statistics / 871513 / worldwide - data -
created/ (visited on 02/28/2023).

[65] Douglas Steinley, Michael J. Brusco, and Lawrence Hubert. “The variance of the
adjusted Rand index.” en. In: Psychological Methods 21.2 (2016), pp. 261–272.
DOI: 10.1037/met0000049.

[66] Chris Thornton et al. “Auto-WEKA: combined selection and hyperparameter opti-
mization of classification algorithms”. In: Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. Chicago Illi-
nois USA: ACM, Aug. 2013, pp. 847–855. DOI: 10.1145/2487575.2487629.

[67] Dennis Tschechlov, Manuel Fritz, and Holger Schwarz. AutoML4Clust: Efficient
AutoML for Clustering Analyses. en. 2021. DOI: 10.5441/002/EDBT.2021.32.

[68] Joaquin Vanschoren. “Meta-learning”. In: Automated machine learning: methods,
systems, challenges (2019), pp. 35–61.

41

https://doi.org/10.1109/ICDM50108.2020.00153
http://waikato.github.io/meka/
http://waikato.github.io/meka/
https://doi.org/10.1142/S0218213017600065
https://doi.org/10.1007/978-3-319-99259-4_25
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1007/s10618-020-00698-5
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://doi.org/10.1037/met0000049
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.5441/002/EDBT.2021.32

[69] Hernan Ceferino Vazquez. “A General Recipe for Automated Machine Learning
in Practice”. In: Advances in Artificial Intelligence–IBERAMIA 2022: 17th Ibero-
American Conference on AI, Cartagena de Indias, Colombia, November 23–25,
2022, Proceedings. Springer, 2023, pp. 243–254.

[70] Chi Wang et al. “FLAML: A Fast and Lightweight AutoML Library”. In: Pro-
ceedings of Machine Learning and Systems. Ed. by A. Smola, A. Dimakis, and
I. Stoica. Vol. 3. 2021, pp. 434–447. URL: https://proceedings.mlsys.org/
paper/2021/file/92cc227532d17e56e07902b254dfad10-Paper.pdf.

[71] Gerhard Widmer and Miroslav Kubat. “Learning in the presence of concept drift
and hidden contexts”. In: Machine Learning 23.1 (Apr. 1996), pp. 69–101. DOI:
10.1007/BF00116900.

[72] Qingyun Wu et al. “ChaCha for Online AutoML”. In: Proceedings of the 38th
International Conference on Machine Learning. Ed. by Marina Meila and Tong
Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, July 2021,
pp. 11263–11273.

[73] Feiyu Xu et al. “Explainable AI: A brief survey on history, research areas, ap-
proaches and challenges”. In: Natural Language Processing and Chinese Comput-
ing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October
9–14, 2019, Proceedings, Part II 8. Springer, 2019, pp. 563–574.

[74] Alaettin Zubaroğlu and Volkan Atalay. “Online embedding and clustering of
evolving data streams”. In: Statistical Analysis and Data Mining: The ASA Data
Science Journal 16.1 (2023), pp. 29–44. DOI: https://doi.org/10.1002/sam.
11590.

42

https://proceedings.mlsys.org/paper/2021/file/92cc227532d17e56e07902b254dfad10-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/92cc227532d17e56e07902b254dfad10-Paper.pdf
https://doi.org/10.1007/BF00116900
https://doi.org/https://doi.org/10.1002/sam.11590
https://doi.org/https://doi.org/10.1002/sam.11590

Appendix

I. Glossary
The software code written for this project as well as respective documentation can be
found in the following repository:

https://github.com/qetdr/online-autoclust-hpo

43

https://github.com/qetdr/online-autoclust-hpo

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Dmitri Rozgonjuk,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Towards Automated Machine Learning: Hyperparameter Optimization in
Online Clustering,

supervised by Radwa El Shawi.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Dmitri Rozgonjuk
09/05/2023

44

	Introduction
	Automated Machine Learning (AutoML)
	Problem Definition
	AutoML tasks
	Offline AutoML Frameworks
	AutoML systems for offline supervised ML
	AutoML systems for offline unsupervised ML

	Online Machine Learning
	Use Cases of Online ML
	Online ML frameworks
	AutoML systems for online supervised ML
	AutoML systems for online unsupervised ML

	Present Work
	Scope and Contributions of the Present Thesis
	Proposed Solution
	Hypotheses

	Methods
	Experiment Design
	Data
	Configuration
	Baselines and Search Space
	Statistical Analysis for Model Comparisons

	Results
	Discussion
	Main Findings
	Contribution
	Limitations and Future Perspective

	Conclusions
	Acknowledgments
	References
	Appendix
	I. Glossary
	II. Licence

