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Fact Extraction from Medical Text using Neural Networks

Abstract:
Fact extraction from free text is a challenging task requiring a great deal of human effort
to program regular expressions and build rule-based solutions. It is essential in the
medical field where many care details are only stored as free text and automated fact
extraction is the only way to interpret the large scale medical databases. Such medical
texts represent communication between doctors and the text is often not syntactically
valid, concepts are not represented consistently and the text is rife with misspellings.
The described problems make it challenging to develop rule-based solutions to handle
all the potential ways a fact might be written down. In this thesis, The effectiveness of
neural networks was explored to do the fact extraction on texts from discharge reports
on the Estonian Health Information System. We used the whole dataset of medical
texts to train word embedding models. On the subsets of the data with annotations of
particular facts, different classification models were tested to detect those. We found that
employing pre-trained word embeddings allowed us to efficiently learn new models for
fact extraction using relatively small amounts of annotated data. We managed to achieve
an F1 score of 0.86% for a new tag using 732 samples as the training dataset, validate on
82 samples, and testing over 3258 samples.

Keywords:
Medical Named Entity Recognition, Fact Extraction, Word Embedding, Bi-Directional
Long Short Term Memory, Interpretability

CERCS: P176 Artificial intelligence
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Faktide tuvastus vabast tekstist kasutades sügavaid närvivõrke
Lühikokkuvõte: Faktide tuvastamine vabast tekstist on keeruline ja tööjõumahukas
ülesanne, mida tavaliselt lahendatakse regulaaravaldiste ja reeglipõhiste süsteemidega.
Meditsiini valdkonnas, kus säilitatakse paljusid ravi üksikasju ainult vaba tekstina, on
automatiseeritud faktide väljastamine ainus viis suuremahuliste meditsiiniliste andme-
baaside tõlgendamiseks. Sellised meditsiinitekstid esindavad arstidevahelist suhtlust ja
tekst ei ole sageli süntaktiliselt korrektne, mõisteid ei kasutata järjepidevalt ja tekstis on
palju kirjavigu. Kirjeldatud probleemide tõttu on keeruline välja töötada reeglipõhiseid
lahendusi, et käsitleda kõiki võimalikke viise, kuidas fakte kirja panna. Selles lõputöös
uurime närvivõrkude kasutamisvõimalusi, et eraldada fakte Eesti Tervise Infosüsteemi
epikriisi andmetest. Kasutades suuremat tekstide andmestikku õppisime ELMO mu-
deli mis võimaldas parandada andmete esitust. Väiksematel annoteeritud andmestikel
hindasime erinevate süvanärvivõrgu arhidektuuride täpsust ja tundlikkust. Leidsime, et
eeltreenitud mudelid võimaldasid tõhusalt treenida uusi fakti eraldamise mudeleid suh-
teliselt väikeste annoteeritud treeningandmestike põhjal. Kasutades treeningandmetena
732 näidet, valideerides üle 82 ja testides üle 3258 näite saime F1-s skooriks 0,86.

Võtmesõnad:
rekurrentne võrk, fakti tuvastus, nimega üksuste tuvastamine

CERCS: P176 – Tehisintellekt
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1 Introduction
The volume of health data grows very rapidly worldwide drawing more attention to
clinical research and application development. Although most of the data is gathered
for treating patients, it is often saved as a free text, with questionable quality. Using
variable criteria of writing and standards, all of which makes it difficult to implement
large scale analyses, also building automatic decision support is challenging. Therefore
it is required to build powerful tools, using natural language processing and workflow
techniques, for cleaning the health data and transforming it into a functional format. This
is the area where software technologies and applications competence center (STACC) 1

together with the University of Tartu has worked for over 10 years. The goal is to create
a reliable database of medical facts based on discharge reports from the Estonian Health
Information System that can be used for running clinical studies and would serve as
a basis for new doctors’ medical applications. Since the data is in Estonian, one just
cannot run many of the models trained for other languages. The approaches of this study
have to be trained and tested on Estonian data, to see what methods work the best in this
particular setting and what kind of accuracy could be achieved. Automation is required
to extract the information from the unstructured text.

The Named Entity Recognition (NER) is an important task in the natural language
processing field which can be used in our task to tag the entities of the medical text. The
first approaches applied for the NER task were based on rule-based methods, which need
to be updated and adjusted regularly and also to define rules and patterns takes time, effort
and they cannot be used in new domains. Moreover, rule-based systems only perform
well with the particular purpose on which they have been developed for. Subsequently,
the Support Vector Machine (SVM) and Conditional Random Field (CRF) methods
were introduced, but these require handcrafted features, that can be costly to create, and
huge amounts of manually annotated training data [LSK08]. With the advancement
of neural networks, researchers started utilizing word embeddings and different feed-
forward neural network architectures that can better understand the semantic and syntactic
relationship between words [HWN+17]. However, the feedforward neural network has
the disadvantage of not considering the sequential nature of the text. To overcome that
limitation, the recurrent neural networks were introduced. Especially for text processing,
these networks have the advantage of considering the context of the text. Recently, the
bi-directional Long Short Term Memory (LSTM) model proved to be efficient in the
NER task [CN16], as it takes effectively into account the context of the text from both
sides.

In a bi-directional network, the text passes in a normal sequence to one LSTM layer
and passes in reverse order to another LSTM layer. Convolutional Neural Networks
(CNN) have also been used along with the BI-LSTM [CN16], as these have the benefit

1https://www.stacc.ee/en/
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of extracting the features on the character level. Applying these methods to the fact
extraction on Estonian medical records would allow to turn the task of defining manual
rules, to a machine learning task, where the identification and annotation of a small
training set of the facts of interest had to be done and then it could learn the rules
automatically. As an additional benefit, the machine learning approach would be able to
account for the context of the facts in sentences and be more robust towards misspellings
and other mistakes.

1.1 Structure of the thesis
The history of the neural networks used for natural language processing is illustrated
in section 2. The review of the literature is listed in the related work in section 3. The
experiments that were developed for this thesis along with the setup details are explained
in section 4, while section 5 represents the quantitative and qualitative results of our
experiments. Section 6 addresses the discussions, challenges, and potential future work.
Finally, the conclusions of this work are addressed in section 7.

2 Background
This section provides a technical overview about the RNN, LSTM, BILSTM and NER
techniques.

2.1 Recurrent Neural Networks - RNN
Recurrent Neural Networks (RNNs) are well-known models that work efficiently over
the sequential data, also it has shown tremendous promise for many NLP tasks. The
textual data is considered as sequential data, which can be interpreted by the RNN. The
meaning of recurrent is the ability of the network to perform the same function for
each token of the sequential text. The typical neural networks presume that all inputs
and outputs are independent of each other, whilst in RNN each element of the input is
processed at a time, It also keeps track of the history of the previous elements in the text.
RNN can process the sequential text using common weights shared between the input
elements from the beginning of the training to the end. The RNN has a drawback that
affects its efficiency in text processing which is the vanishing or exploding gradients
[JZS15] that occur due to the back-propagated gradients while training over the network
layers. The vanishing gradients occur due to the presence of many activation layers in
the network where the gradients of the loss functions can approach zero, which leads to
a vanishing gradient, while the accumulation of the gradients throughout the network
layers, leads to an exponential increase of error gradients in the model which leads to
an unstable network. It also has the drawback of not considering the future inputs of
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the current element state. That’s why LSTM and Gated Recurrent Units (GRUs) have
been introduced to cope with traditional (Vanilla) RNN drawbacks. The RNN, in general,
are used in many applications such as the music generation, sentiment classification,
machine translation, and named entity recognition. Figure 1 shows the simple recurrent
neural network [MKB+10], where the output depends on the current input along with
the context of the previous input.

Figure 1. Simple RNN architecture [MKB+10]

2.2 Long Short-Term Memory Networks - LSTM
The LSTM is a variation of RNN that was designed to cope with the vanishing gradients’
problems of traditional RNN [HS97]. Using the mechanism of gating to the input of the
layer to remember the previous inputs where half of the input goes through the memory
cell and the other through the working memory. So it can learn features from previous
inputs while generation outputs, which is very important in the text processing since
a single token from the series of text is related to others and has a sure effect on its
neighbors. The main factor for the RNN’s success is the sharing of parameters which
utilizes the relationship between the input and its context. In short, it can take many input
vectors and produce many output vectors taking into account the weights of the inputs
and also the hidden vectors that represent the context of previous inputs.

Figure 2 shows the gates of the LSTM memory cell, where the forget gate decides
which information to keep or to discard from the previous hidden state by transferring it
with the current input to a sigmoid function and based on the value it decides how much
to ignore and how much to keep. While the input gate acts as the update to the cell state
using the current information. Lastly, the output gate is responsible for deciding what the
next state should be.
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Figure 2. LSTM memory cell with gating units [SSN12]

2.3 Bidirectional Long Short-Term Memory Networks - BI-LSTM
In-text processing, it’s not only about the relationship of the current state with the
previous inputs in the sequence but also it needs the future inputs to repair the past. To
fully grasp the meaning of the new tokens, it is needed to learn what is coming next.
Bi-LSTM consists of a forward layer and a backward layer. The input sequence is fed
to the forward layer in normal sequence, while the text is processed in reverse order by
the backward layer, starting from the last word, until the first word of the sentence. The
hidden states from both layers are concatenated for each word generating an intermediate
representation sequence [ZZHY15]. So that the information from the previous and
forward tokens are taken into account. This means that for each step the network has
access to the complete document and can deduce the right label from that information
because the output of each network at each time step goes through a softmax layer that
uses log-probabilities to decide the tag of each token.

2.4 Named Entity Recognition - NER
The information extraction process involves the recognition of the entities in the text,
those entities could be countries, organizations, or locations. In our case, the entities
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are the measurement results of the patient health tests, such as blood pressure, various
measurements, lab results, etc. Named entity recognition (NER) is a specific task of
information extraction, which is a tagging task for the word-by-word sequence of data.
To detect the entities, the dataset has to be annotated in a specific way, where each word
in the text must have a tag. Whether the tag is the target needed or some random unknown
words (See example Figure 3). Then the goal of a neural network like the Bi-LSTM is
to understand those sequences of tags. Then another layer over it to get the probability
distribution over all NER tags.

Figure 3. An example of the dataset used, where the highlighted words are the objects
that needed to be to recognized.

2.5 Word embeddings
The basic way for text representation is using the one-hot encoding where the presence
and absence of each word in the sequence are translated into 0 and 1 correspondingly.
For text, this representation is not effective since we have many unique words, so
most of the values will be zeros, and the representation will be sparse. To improve
the representation of the text, the word embeddings were introduced, making it more
compact. The aim is to move the high-dimensional word space into a lower-dimensional
area, thus holding identical terms in the new space semantically close to one another. It
helps the neural networks to improve their ability of understanding and learning from
the textual data. The embeddings represent the data as a hidden layer composed of
a lower-dimensional vector. The word embeddings can recognize the semantic and
syntactic meanings of words [LG14]. Furthermore, Word embeddings are used most of
the time in natural language processing tasks including named entity recognition tasks.
There are some static embeddings such as word2vec and glove but they have a problem
that they cannot understand the context of the text so they generate the same embedding
for the same word in different contexts. To overcome the limitations of the static word
embeddings, the dynamic embeddings such as ELMO [PNI+18], BERT [DCLT18], and
FLAIR[ABV18] were developed. These are contextualized word representations as these
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consider the context of words while representing it. The dynamic embeddings have
proved to out-perform the static embeddings [WCZ19]. Word embeddings can be learned
in an unsupervised manner from unannotated and unrelated corpora of text. Thus, by
using word embeddings the transfer learning is essentially done. The pre-trained models
may be used on a large dataset and then fine-tune these models for specific tasks rather
than training a new model from scratch. Word embeddings take into consideration the
context of the words. So each word will have a different embedding if it appeared in
another context.

The dynamic embeddings language model has the objective of predicting the next
token in the sequence while taking into account its context. It’s useful in NLP tasks,
especially, the NER. Moreover, the embedding makes a huge difference when the task
has a small training dataset. With the weights trained on larger external datasets, the
model can "understand" common textual features, and does not have to learn them from
the existing small labeled training set. This process helps to elevate the accuracy of
the model to represent the features of the input text, instead of depending only on the
small input dataset. This approach is effective for the NER task. When using pretrained
word embeddings, there is an option to fine-tune the model until reaching the required
representations.

2.6 CNN for NLP task
It is a special kind of neural network which reflects a feature function that is applied to
words to urge higher-level characteristics from the text. In sentence representation with
CNN, it needs to have the sentences tokenized into words then represented as a word
embedding matrix. The CNN consists of convolutions and pooling layers finely tuned
with some hyper-parameters, those convolutional layers use filters that scan the inputs.
The text is represented as a matrix where each row represents a word, the filters slide
over the rows of the matrix with an outlined window size to provide the feature maps
which then represent the entire sentence. CNN may be applied onto characters of the
text directly needless of pre-trained embeddings. CNN will provide a strong result for
the NLP, as it can derive the character-level features to be included in the NER and grasp
the meaning in the context windows [CN16]. The convolution and max-pooling layer
were used for any term to remove a new vector function from its character embeddings.
Fig 4 below demonstrates how the sentence is seen in the CNN layer.

2.7 Interpretability
Usually, the neural networks and text recognition models are black boxes, with the
internal details uninterpretable as many features are contributing to the prediction. Usu-
ally, we rely on the evaluation metrics to measure the performance of our model, but
we should also seek to understand how the model arrived at the particular prediction.
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Figure 4. Representation of a sentence in convolutional layer.

Especially in text processing, having a good understanding of the semantics of the text
and the reasoning process of the successful model should reflect that. Methods have been
developed to visualize the decision process and that allows us to understand why the
model predicted this class and which features contributed the most.

In this thesis, LIME [RSG16] library was used, which is an algorithm that can
reliably represent any classifier or regressor’s prediction by approximating it locally to
an interpretable model. The purpose of the LIME model is to understand the reasoning
behind the decision made by the black-box model. It probes the model with slight
variations of the input data to understand what features are the most relevant for making
the prediction. More specifically, it generates a dataset that contains some modified
samples of the text that need to be interpreted, and the prediction of the black-box
model for those samples. After that, Lime uses the prepared dataset to train it using an
interpretable model. Ultimately, this interpretable model may more or less clarify the
observations of the black box model for this local prediction.

3 Related work
There is a huge amount of research done in the field of Natural language processing,
One of the sub-fields that received high attention from the researchers is the Named
Entity Recognising. As the purpose of this study is to develop a Medical Named Entity
Recognition, it was, therefore, necessary to review the literature to know the state-of-the-
art approaches used by other researchers in this area. Throughout this section, some of the
most efficient literature research will be presented. Clinical named entity recognition was
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tackled by Yang et.al, [YLQ+19] they developed a bidirectional-LSTM layer along with
a CRF based on multitasking attention, they also used pre-trained Elmo model for word
embeddings and managed to enhance the recall of the clinical named entity recognition
task. Kai et al. [XZHL17] have also used the bi-lstm layers with CRF layer for the
medical named entity recognition, and applied this model over 2 different datasets and
proved its efficiency among the baseline methods, They also demonstrated an interesting
finding which is the consequence of increasing the number of measurements of the
term embedding and the BI-LSTM layer for the Precision, Recall, and F1 ratings. They
observed that the F1 value of the metric improves with the increase in the training set.

Zhang et al. [ZZL15] used character-level convolutional networks for the classifica-
tion of the text, they preferred to use the convolutional layers for text processing, and
applied it to different size datasets and reported the findings, this paper had a target to
enhance the text classification using convolutional layers, and they managed to achieve
it and proved that it outperforms the traditional models as the bag of words, TFIDF
and n-grams. Xishuang et al. [DCQ+19] combined the deep transfer learning with the
multitask bi-directional LSTM for applying the named entity recognition on Chinese
medical electronic records, they mentioned that the tests, diseases, genes in Electronic
medical records (EMR) can be extracted by the NER, but the challenge that faced them
was that there are limited resources for the annotated medical entities. They managed
to solve it by using data augmentation along with neural networks to enhance NER
performance. The evaluation of the model that they developed has proved its efficiency
in terms of F-score.

Mandhan et al. [MN+16] used Stanford Named Entity Recognition NLP libraries to
extract the numerical attributes and values from the clinical texts and then associated the
attributes to values using relation extraction modules. They used the conditional random
fields for the extraction and SVM for relations extractions of the values. And the joint
results had a good accuracy of 95% as mentioned by them. Finally, The one way to grasp
the literature behind a scientific topic is by reading survey papers, one of the most recent
surveys for the NER is [LSHL20]. where Li et.al listed a collection of annotated datasets
for the NER task, they also showed the NER tools on the market. Furthermore, they
presented the NER evaluation metrics which are divided into exact match evaluation and
relaxed match evaluation. The exact match evaluation depends on the boundary detection
of the entity using the confusion matrix whereas the relaxed match evaluation depends
on the correct predictions without considering the boundary of the entity. They have
discussed the traditional approaches for NER followed by the deep learning techniques
for NER. Finally, they reported an efficient summary of the recent studies over NER.
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4 Implementation and Experiments
This section describes the implementation of a baseline model and some improvements
and details about the experiments. The algorithms were implemented using Keras [C+15]
library over Python 3.

4.1 Objective
We explore the use of neural networks to extract the facts from the free text fields of
discharge reports from Estonian hospitals. In other studies, the neural networks have
shown the ability to tag the entities of the text regardless of the misspellings and problems
in the annotation. Transfer learning through training the word embeddings on larger
corpus medical text is also a feature that can be beneficial for our task. The main goal of
the thesis is to evaluate the approaches on Estonian medical data, see how high accurate
these models are, and if the theoretical advantages also realize in the practice.

There is no state of art neural network architecture that works the best with every
dataset, so it is required to try different architectures from the literature to find out the
best model to use on our dataset. Also, it’s interesting to note that the "best results" vary
from one case to another. In the results section, several ways of evaluation for the neural
networks was used. The first way of evaluation that was used is the quantitative evaluation
of the model, which is the confusion matrix and its associated metrics. Secondly, the
qualitative results are presented by manually investigating the wrongly tagged words of
the model results, which helped to know if the model could detect the problems of the
dataset annotation or not. Finally, by using the interpretability methods to understand
the behavior of the model and to decide whether to rely on and trust the model or
not. In the experiments, first, we started with a baseline model of characters tagging
which had a target to predict characters tag, then we moved to use character embeddings
and word embeddings along with a bidirectional LSTM layer, after that we tried using
convolutional layers to represent the input text along with BI-LSTM, and, finally, we
tried using ELMO model to do the embeddings for the text.

4.2 Dataset description
The dataset that was used for this thesis is from the Estonian Genome Bank 2 which has
the patients medical records from the Estonian Health Information System. It consists
of free texts from the discharge reports that have been processed by STACC. The texts
have been processed using EstNLTK [OPT+16], which was also used to extract common
medical facts from the free text. The fact extraction was done using hand-curated sets of

2https://genomics.ut.ee/en/about-us/estonian-genome-centre
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regular expressions for each particular fact type. This set of curated facts provides us an
opportunity for training and evaluating neural network-based fact extraction techniques.

Figure 5 is a snapshot from the source dataset annotation before preparing it for the
NER task which has a text column which contains the patient report, each report has
some text and some readings, Each cell of the dataset contains one object with its start
and end position in the report text. Later on, these positions were used to give labels for
the word whether it is a target object or a regular text

Figure 5. Original Dataset snapshot

4.2.1 General description

The dataset used in this thesis contains Medical Reports about patients, The reports
contain blood measurements, information about patients’ lab analysis results such as
RR, FR, INR, and many other measurements. The original dataset is huge but we
took a subset of it, which is composed of 13643 reports with 27741 unique vocabulary
words. This subset contains the reports with a 150 maximum number of characters, also
the subset contains 3 types of objects Pikkus, RR, and egFR, while the initial dataset
comprises 2125 objects. those three objects were selected to represent different types of
measurements. The eGFR object is a blood measurement that is often shown together
with a range of acceptable values. Measurement "pikkus" has 2 meanings in the Estonian
language, one of them is the height and the other is the length. That is why it has different
measurement units in Table 1. While the RR is a blood pressure measurement that has a
different representation than the others. Here are some examples for the 3 chosen objects
for the training dataset: eGFR examples are shown in Table 2, Pikkus and RR examples

16



are shown in Table 1 for the test set, another object was selected which is FR, the FR
examples are shown in Table 3

Table 1. RR and Pikkus Examples

Object text Object text
RR RR 140/74 mm Hg Pikkus Pikkus 180cm
RR RR114/85 mmHg Pikkus Pikkus: 1.78
RR RR 110-120/60-70 mmHg Pikkus pikkus 10-20 mm
RR RR145/86 mm/Hg Pikkus pikkus <10 mm
RR RR: 115/65 Pikkus pikkus 15
RR RR 110/70 - 102/80 Pikkus Pikkus 50cm

Table 2. eGFR Examples

Object text
eGFR eGFR 98 ( 90mL/min/1.73m2)
eGFR (eGFR) 72 (&gt; 90mL/min/1.73m2 )
eGFR eGFR 82 (> 90mL/min/1.73m2)

Table 3. FR examples

Object text
FR fr 60
FR fr 75 x min
FR fr 83 x’
FR fr 69xÂ
FR fr 70/min
FR fr 82 x/min

From the examples, It can be inferred that the representation of one object has
many ways of writing it. Misspellings in the text are also common, as the text is often
typed by doctors not entered through structured text entry systems. Finally, the textual
representations can be ambiguous, where the true meaning of the text can be inferred only
when taking the context of the text into account. All these reasons make it challenging to
achieve high precision fact extractions using hand-curated regular expressions.

Here are the statistics about the dataset sentences. Treating the sentences indepen-
dently from the report brings a better generalization capability, sentences from different
reports were mixed up and gathered into the same learning batches. This dataset is split
into a training set 60%, a test set 40 % where 10% of them are for the validation set.
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4.2.2 Data annotation quality

Obtaining a sufficient amount of annotated data is the greatest obstacle to the successful
application of deep learning. The number of documents needed depends on many
parameters, mainly on the complexity of the problem and the quality of the annotations.
In our case, the annotation has problems, as many examples have a misplaced location
for the objects, and also the dataset has many misspelling and some words are merged
with no spaces between them, which makes the model building challenging.

4.2.3 Dataset preparation

The processed dataset from STACC has the object and values locations, so based on
those locations the data was prepared for the neural network. Using words splitting based
on spaces, then giving a tag for a word as an object if it’s the location was included in
the range of the regex. The dataset after preparation can be shown in Figure 6.

Figure 6. The dataset after preparation for the NER task

The dataset labeling was not ideal since the regex positions were not accurate to
100%, and some of the words were connected without space. The model was trained over
the dataset, including those problems, such that later on, the model can detect the objects
from the text even though they have a misspelling. The dataset used for the baseline
model is the sentences that have a length of fewer than 150 characters, that is is 16764
objects and 13643 reports. Where the number of words is 27741.

4.2.4 Dataset Preprocessing

The sentences that have a length smaller than 150 characters per sentence were selected
because the dataset has extremely large reports with a small number of targets, so it is
preferred to train the model over a smaller dataset with a better balance between targets
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and the rest of the text. Moreover, the too-long sentences have many other challenges
such as the padding of the tensors and the learning. The statistics of the number of
characters of the original dataset is as shown in Figure 7

Figure 7. Dataset length statistics

4.2.5 Tagging Scheme

The NER task aims at predicting an entity type for each word in the sentence. The output
tags of the dataset were annotated based on the objects and values extracted using the
regular expressions. The locations of the objects and values are presented in the dataset,
which was used to tag the words that are objects and the other words were tagged as a
text. Then to have an equal length sentence in our datasets, a new tag was introduced as
padding, which was post added to the sentences to fill the empty words tags. The dataset
structure after tagging and preparation is represented in Figure 8.

Figure 8. Sentence tagging

4.2.6 New dataset preparation for training over a pretrained model

The target of this new dataset is to train it over a pretrained model as was done in
Experiment 7. Another object was extracted from the reports and annotated it the same

19



way as the dataset that was used for training the model. The new object extracted is the
FR object, which has some examples presented in Table 3. The extracted dataset has
9447 unique words, 4072 sentences. The dataset was split into 80 % test set and 20%
training set, and then loaded the model with character embedding and trained our new
dataset over the pre-trained model, using a validation split 0.1, the number of sentences
used in testing is 3258 and 814 for training which got split to 732 training sample and 82
validation sample.

4.3 Experiments
4.3.1 Common Layers

Time Distributed layer The time distributed layer is essential with the sequential data
as it can apply the same function for each word in the input sequence. It generates
an output per input, where each time-distributed layer should share the same weights.
The Time Distributed layer saves time because if there are 5 tokens in the sentence, the
weights of those tokens will be refined only once and distributed to all the tokens instead
of getting refined 5 times, In the experiments, LSTM layer was used along with the time
distributed layer to handle the tokens in the same sequence. The goal is that was needed
is to know the relation between the sentence tokens in a given time. Lastly, the time
distributed layer produces an output of 1 dimension which is needed for the following
layers after the LSTM.

Embedding layer The embedding layer represents the tokens of the sentence as num-
bers and the sequence of words is padded so that all the sentences in the training examples
get the same length of vectors. This is important in text processing as it will be repre-
sented as a dense vector that needs to be of the same dimensions. Figure 9 shows how
the embedding layer in Keras works. Usually, the embedding layer is used as the first
layer of the model, as it is responsible for representing the inputs. The input dimension
of the embedding layer is the size of the unique vocab that we have in the data set, and
the output dimension of the embedding is the dimension of this dense representation.

Spatial Dropout It is a regularization layer that works like the regular dropout layer,
except that the regular dropout layer drops the individual elements, but here it drops a
1D feature map. The dropout is intended to boost the network generalization efficiency.
Additionally, It is beneficial in case of the high correlation between the feature maps, it
has the ability to drop those features to leave only the independent features. [HSK+12]
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Figure 9. Embedding layer in Keras

4.3.2 Network architecture

Experiment 1: Character level architecture (Baseline Model): In this model, the
input is sentences of the reports, where each sentence is represented as a sequence of
characters, then it passes through a bidirectional LSTM layer to map character sequences
to tag sequences, where the target is to predict a tag for each character. After the
embedding layer regularization layer was used which is spatial dropout with 0.3 rate.
Each character passes into the forward and backward LSTM layers and then the output of
the forward and backward layers are concatenated together to produce the output which
fed into the next layer. The BI-LSTM is followed by a softmax activation function which
is applied to the hidden representation of the final BI-LSTM. The final layer of the model
aims to get the tags of the characters.

The character embeddings that was used includes all the unique characters in the
dataset tokens, while a padding tag is used to have a fixed length of all the sentences,
where the small sentences will have a post-padding with a PAD tag so that it could be
of the same length as the other sentences of the input. The dataset for this model was
annotated character by character as shown in Figure 11, where the character has a tag as
an object if it is in the location between the start and the end positions of the object token.
The layers of this model are presented in Figure 12, while there is a simple representation
for the task of this model presented in Figure 10, where the sentence is represented as
a sequence of characters, those characters are embedded together then go through a
Bi-LSTM layer, and at the end, each character gets a tag using the softmax function.
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Figure 10. Experiment 1 Character Embeddings

Figure 11. Experiment 1 input dataset sample
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Figure 12. Experiment 1 layers
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Experiment 2: Word embedding architecture In this experiment, the word embed-
ding was applied, where the input of the model is the sentences represented by a sequence
of words, the sentences of the reports are padded to have a maximum of 150 words per
sentence, which is a needed step in order to have a fixed size representation of the input.
Afterward, each word is represented as an index, then those indexes are converted into
a dense vector of the same size utilizing Keras embedding layer. Regularization layer
followed the embedding layer which is the spatial dropout of rate 0.3, then the output of
the regularizer is sent to a BI-LSTM layer for sequence processing, and finally, the dense
layer with a softmax activation function was applied to get the outputs of the model,
which has to be one of 3 targets for each word. The configurations of this model have the
same values as indicated in the next subsection. the model layers that were described
above can be shown in Figure 13, while the word embedding is presented in Figure 14.

Figure 13. Experiment 2 summary

Experiment 3: Word Embedding using characters representation architecture
The input for this model is the sentence words represented as a sequence of charac-
ters with a shape of (max_len, max_len_char) where maxlen represents the maximum
length of words in the sentence and max_len_char represents the maximum number of
characters in each word. The maximum number of words employed for this model is 150
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Figure 14. Schematic representation of the word embedding model.

words, the same number as the other experiments, and the maximum number of charac-
ters to be 10 charter per word, those numbers represent the average number of words per
sentence and the average number of characters per word. The embeddings were used
with an LSTM layer over the input. For each word, the character-level representation
passes through an LSTM layer then applying some spatial dropout before passing it to
the BLSTM, and finally, the softmax used to get the tag for each word. The details of the
model are illustrated in Figure 15.

Experiment 4: Word Embedding concatenated with Character Embedding archi-
tecture Character-level representation of sentence words was used, along with the
LSTM layer over the characters of a word to get the context information of each word.
and then concatenated the character embedding with the word embedding, after that the
output goes to a dropout followed by BI-LSTMs. The TimeDistributed layer was utilized
to apply the same layer to every sequence of the sentence. A sequence of characters
was created for every token with a maximum length of 10 characters for a word And
the maximum number of words is 150 words per sentence. Finally, On top of BLSTM,
a dense layer with a softmax activation function was employed to get the labels the
sentence tokens, the embedding of this experiment is illustrated in Figure 16, while the
layers of the model are presented in Figure 17.

Experiment 5: CNN-BILSTM-CRF architecture The input of this experiment is
the sentence with a sequence of words. The neural network layer used to represent the
input of the model is the convolutional neural network (CNN) layer with a kernel of size
5 which defines the size of the sliding window. While 20 filters were used for the CNN
layer which indicates how many different windows we want to have. All of those filters
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Figure 15. Experiment 3 summary
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Figure 16. Experiment 4 character embedding and words representation

have the same length as indicated in the kernel_size. The result will bring 20 different
convolutions. We used word-level representations that came out from the Convolution
layer. Then the same amount of spatial dropout was applied, then fed into a bi-directional
LSTM to get the context information of each word, After that, the output passed through
a time distributed dense layer with softmax as activation function, then CRF layer was
used to get the labels for the input tokens. CRF layer takes the input from the dense layer
and produces a tagging score for each token, and then it selects the tag which has the
highest score for each word. Figure 18 depicts the layers of this experiment.

Experiment 6: Using Elmo embeddings architecture Elmo is a contextualized word
representation model. It represents the tokens of the input by using the character em-
bedding, which is essential for the understanding of the morphological features of the
text, which is usually missed by that word embeddings. It also solves the problem of the
out of vocabulary words (OOV). then this character embedding representation passes
through a convolution neural network layer (Conv) with some filters which allows us to
know the tokens features which contribute to the better understanding of the tokens and
better text representation [PNI+18]. The Conv layer is followed by a max-pooling layer
which summarizes the presence of the features in the input sentence. Then the output
of the pooling layer passes through a Bi-LSTM layer which has 2 layers The forward
layer which has the information about the token current state and the context before it.
while the backward layer has the information about the token and the context after it,
then the output of both layers get combined to produce the output. Finally, the output
of the model was prepared, which is the dimensional vector representation of the input.
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Figure 17. Experiment 4 summary
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Figure 18. Experiment 5 summary
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This output can be used later on to train NLP models for different tasks.
Elmo model has several already pre-trained models that can be used directly in the

NLP tasks, but also Elmo’s implementation allows for customization through training
the model over a custom dataset. Using domain-specific word embeddings for text
representation is much efficient than using a normal Estonian pre-trained word embedding
and Elmo can be customized using a domain-specific dataset. We used some of the
reports that we have in the original dataset, those reports are different than the ones used
in our experiments, but it has the same context. The dataset we extracted for the Elmo
model represents the medical context and we needed to run the Elmo model over this
dataset to have domain-specific word embeddings based on Elmo model representation.

The input for the Elmo model has a special way of data preparation, the training set
needs to be multiple files with 6 sentences in a file, where each sentence is on a separate
line, also the same rules apply for the validation dataset. Then we needed to prepare a
file with all the vocabulary which is a text file that has a word per line which includes
the special tokens as UNK. The vocabulary file should be sorted in descending order by
word count in the training data so that the most commonly used words are placed at the
beginning of the file and the least common words are placed at the end of the file. The
hyperparameters of the model have to be placed in an options file. after the preparation
of those files and folders, the model starts training over them, and at the end, It produces
Tf Checkpoints which are needed to be converted into an hdf5 format. This format is
needed so that we can use it later for embedding the other reports. The Elmo model has
a great advantage of recognizing the new tags based on the context of the word, as the
words are represented differently if found in different contexts.

Configurations of the model We used 3 GPUs, over 1 node, and 450G memory.
The parameters for the Elmo model are:

• Number of tokens in Training data 85529595

• Size of Vocab 3413734

• training files 1192834

• validation files 298209

Elmo model Options: Elmo use a bidirectional LSTM layer and a char convolutional
CNN layer with Relu activation function, the embedding dim is 16 with 7 filters, while
the max characters per token specified are 10, and have a dropout of 0.1, the lstm dim is
4096 with 10 epochs and 32 batch_size. After getting the weights of the Elmo model, we
used it along with an options file to get the embeddings of our dataset. we used the same
options as the options used for Elmo pre-trained model. The dimensions of the Elmo
model are 1024 which is much bigger than the dimensions that we used for embeddings
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in other experiments. To have a reasonable size embeddings we had to use a smaller
dataset for this experiment, we used maxlen of 35 for the sentences instead of 150, which
is the median length of the sentences. Finally, the network that is used for this experiment
is shown in Figure 19.

Figure 19. Experiment 6 summary

Experiment 7: Loading model and predicting a new value In this experiment, we
selected a subset from the original dataset. We choose a new object called FR, we
annotated this dataset subset and did the same pre-processing as we did before in our
training dataset which includes using the sentences of length less than 150 characters then
post-padding the smaller sentences to have a fixed length dataset. Figure 20 demonstrates
the extracted dataset after tagging and preparation. We then loaded the pre-trained word
embedding model which was represented by characters of the word (Experiment 3) to
benefit from the transfer learning. we trained the model after loading it for our new task
which is the FR object tagging. This experiment resulted in an accuracy that is very close
to the pre-trained model evaluations.

Experiment 8: Applying Model 3 to a dataset that has entities as an object, value,
text, PAD In this experiment we annotated the dataset differently, where the entities
are split into 2 tags, one of them is the object and the other is the value. An example is
demonstrated in Figure 21, while figure 22 shows the layers of the experiment. The input
for this model is the sentence words represented as a sequence of characters. the shape
of the input layer is (150,10), which represents the maximum number of words in the
sentence and the maximum number of characters per word. Then the same layers used
here as Experiment 3 architecture.

The difference here in this experiment is the tagging schema and the number of
output tags, as mentioned above, the input was annotated differently, and the output for
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Figure 20. Sample of FR dataset that is used for testing in Experiment 7

Figure 21. Input dataset sample for Experiment 8
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Figure 22. Experiment 8 Summary
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the model has 4 tags since we added a new tag representing the values of the patients’
tests.

4.3.3 Experiments settings

The neural network architectures require certain configurations and parameters to be
adjusted, we used the default values most of the time, although there are several other
common settings that we used in all the experiments, Table 4 indicates those common
values, e.g. the spatial dropout layer was used in all the models with 0.3 rate, while the
validation set only took 0.1% from the training dataset in the model fitting process. we
used a recurrent dropout of rate 0.5 to drop some of the recurrent states in the linear
transformation, which helps to overcome the over-fitting of the layer. And eventually, we
used just one Bi-directional LSTM layer in the model architectures.

Table 4. common configurations across the experiments

Hyperparameter Value
Batch size 32
Learning rate 0.001
Optimizer Adam
Number of epochs 10
Validation split 0.1
Spatial dropout rate 0.3
Recurrent dropout rate 0.5
Number of BILSTM layers 1
Loss Function sparse_categorical_crossentropy

Loss function We used Sparse_categorical_crossentropy since we have more than one
label class, and our target is a sequence of integers and we don’t want to change them to
categorical representation. the old-fashioned way of dealing with the multi-label class
was representing the labels as one-hot vectors.

Evaluation Metrics the evaluation metrics that we used are the precision, recall,
and F1-score. The precision represents the percentage of the selected items that are
correct while the recall represents the percentage of the correct items that were selected.
Using the F1 measure acts as the trade-off between the precision and the recall taking
the weighted harmonic mean between the 2 values, which is usually a balanced way
to evaluate the classes of the model [SJS06]. The assessment of the named entity
recognition has 2 methods to do it, one of which is the token-level approach while the
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other is the evaluation for entities. sklearn_crfsuite library 3 implements the token level
evaluation, As we have a multi-class, the confusion matrix is relevant to measure the
model’s performance. We used the classification report function of sequeval library
metrics 4 for composed tags evaluation. while the Flat classification report function of
sklearn_crfsuite library metrics was used for individual tags evaluation. The support of
the confusion matrix represents the number of occurrences of each class in the true test
set y_true. The entity-level evaluation aims to evaluate how the model predicts the whole
entity not just the separate words. For example, if the entity is composed of 2 words,
then the entity evaluation will take into account the predicted value of both words in the
evaluation so that both of the words has to be predicted correctly to be evaluated as a TP,
and if both words were predicted wrongly then it would be considered as FN.

If one of the tokens is wrong and the other is correct then it will have 2 evaluations
one FN and FP will be added into account. to get the results of the evaluation matrix,
we need to take the average of the results, there are 2 types can be considered, The
macro-average evaluation which works separately for each class treating all of them
equally and then it takes the average of all values of the system on the different tags.
While the other averaging technique is the micro-average evaluation which combines the
evaluation of all classes to get the average measure. it adds up the individual TP, TN FP,
and FN of the different tags and uses them to get the average metric. The micro average
evaluation technique is recommended in the multi-class classification tasks because it
shows the proper results of the imbalanced datasets. The micro, macro, weighted average
results of our models are presented in the GitHub repository mentioned in Appendix
(page 48), where all the implementations and results of the experiments exist.

Optimizer We used Adam [KB14] optimizer for the model training using its default
hyper-parameters in Keras. Adam is an adaptive optimization algorithm that is a devel-
opment of the stochastic gradient descent which is used to update the network weights
during the training process. It is named adaptive since it uses gradients estimations
to improve the learning rate of the network weights. we choose the batch size of 32
sentences so that the sentences get updated each batch size.

5 Results
In this section we will present the quantitative and qualitative results of the experi-
ments, we used the same configuration, settings, and setup in the experiments to allow a
reasonable comparison between them.

3https://sklearn-crfsuite.readthedocs.io
4https://github.com/chakki-works/seqeval
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5.1 Quantitative Results
Results table of objects (Individual Tags evaluation) The assessment of this table

was based on the individual tags, where each token was evaluated independently from the
whole entity. You can see this in Table 5. The architecture that used Elmo Embeddings
(Model 6), has the highest precision, recall, and F1 among all models, which means the
model has been perfectly trained to properly detect the objects. This is a great system to
use when a properly annotated dataset is accessible. The results of model 3 has proved
it’s out-performance to model 2. We can infer that for our dataset, the word embedding
using character representation is better than the word embedding using word indexing.
The recall, also known as true positive rate, is found to have the best values for model 5
after Elmo model, which means that the CNN and the CRF helped the network to be able
to detect the actual positive objects, this architecture can be used if we have a high cost
for the false-negative objects. Model 3 has the highest precision after the Elmo model
which indicates that the random variations of the model results are small compared to
other models. with regard to the F1 score, we may notice that Model 2, 3, and 5 have
similar ratings, implying that the average precision and recall of these models are quite
similar to each other. Lastly, It is clear to see that Experiment 7 has findings that are very
close to the pre-trained model (Model 3), It is an impressive finding, which indicates that
the model has continued to learn over a limited new training sample and is still capable
of generating successful test outcomes.

Table 5. Individual tags evaluation of the tagged object

Architecture Precision Recall F1
Character embedding to target Chars + BILSTM (Model 1) 0.92 0.83 0.87
Word Embeddings (Model 2) 0.95 0.88 0.91
Word Embedding using character representation (Model 3) 0.97 0.89 0.93
Character + word embeddings +BILSTM (Model 4) 0.82 0.81 0.81
CNN + BILSTM + CRF (Model 5) 0.91 0.93 0.92
ElmoEmbedding(Customized + BILSTM) (Model 6) 0.99 0.99 0.99
FR testset using Model 3 (Experiment 7) 0.96 0.89 0.93

Results table of objects (composed tags evaluation) The evaluation of this table was
based on the compound tags, where the whole entity is considered, which implies that
the emphasis of this evaluation is not the specific tokens but the whole entity which
can be composed of 1 token or more. In our situation, we are assessing the named
entity recognition task, so the composed tags evaluation is essential to us. The list of
assessments of the composite tags is provided in Table 6. Elmo model (Model 6) has
also the highest precision, recall, and F1 score in the composed tags evaluation. while
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Model 1 has the very lowest measures, which is expected since the entity of model 1
can be composed of 2 words which can be of length 20 characters, so the evaluation
here needs to consider the results of those 20 characters, which is a harder task with
lower probability of success than considering only 2 tokens. The F-score of Model 3,
and Model 5 have decent and similar values to each other, suggesting that they have a
reasonable overall precision and recall.

The evaluation of the composed tags of Experiment 7 is also close to the pre-trained
model (Model 3) which was predicted, during the experiment we could also work to
improve the metrics of the new data set by fine-tuning the pre-trained model hyper-
parameters and adding some more layers [PRS19]. The strong recall of model 4 means a
low false-negative rate while the poor precision implies a high false-positive rate which
indicates that the model returns a lot of false positives which might not be too terrible
though if a false positive cost is cheap.

Table 6. Composed tags evaluation of the tagged object

Architecture Precision Recall F1
Character embedding to target Chars + BILSTM (Model 1) 0.37 0.41 0.39
Word Embeddings (Model 2) 0.88 0.75 0.81
word Embedding using character representation (Model 3) 0.95 0.83 0.88
Character + word embeddings +BILSTM (Model 4) 0.09 0.95 0.16
CNN + BILSTM + CRF (Model 5) 0.85 0.87 0.86
ElmoEmbedding(Customized + BILSTM) (Model 6) 0.99 0.98 0.98
FR testset using Model 3 (Experiment 7) 0.92 0.80 0.86

Model 8 Results: The quantitative results of the individual tags evaluation of the value
and the object tags were poor. The evaluation of the individual tags is presented in
Table 7, whereas the evaluation of the composed tags is demonstrated in Table 8. The
individual tags evaluation of Model 8 findings is the lowest of all the studies as they
have a very low precision that may be attributed to the unbalanced dataset that we have,
where the percentage of the objects and values is far lower than the text in the dataset.
Furthermore, because the tags were separated into objects and values, this could be an
explanation for inaccuracies, since the value tag reflects a number, and we have several
other numbers in our dataset that could be confusing for the model to differentiate which
of them is a value and which of them is a normal text. Whilst The evaluation results of
the composed tags performed stronger in the object tag than the value tag. This makes
sense, as the object tag reflects the interpreted names of measurement tests as RR, Pikkus,
eGFR which most of the time are written correctly without misspellings and often have
the same pattern, whereas the value tag varies from one object to another, which makes it
more challenging for the model to identify their values.
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Table 7. Individual tags evaluation of Model 8

Precision Recall F1
object 0.14 0.93 0.24
value 0.06 0.91 0.12

Table 8. composed tags evaluation of Model 8

Precision Recall F1
object 0.95 0.89 0.92
value 0.88 0.82 0.85

5.2 Qualitative understanding of the models
There are several methods for understanding the neural networks, one of them is mapping
the predicted class to the actual values and check whether they make sense of not
[MSM18]. Investigating the words that were predicted by Model 8, we observed that the
tags that were labeled incorrect were simply wrong, meaning that the model did identify
the issues of the regular expressions, and also mislabeled the correct objects. Those
incorrectly labeled tokens are presented in Figure 23.

Figure 23. Model 8 incorrectly labeled tokens

Interpretability of the models We used Lime TextExplainer for interpreting our mod-
els. To use it we need to rephrase our task as a multi-class classification task, where we
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create an instance of the text explainer and fit it to our document or text that we want to
know its explanation. It works by generating a fake text similar to the document example
by replacing some words with UNK word, and then train a classifier that is a white box
to predict the output of the black box classifier which is a system where the internal
workings are hidden as the CNN, RNN models. Then try to explain the original example
through parameters of the white-box model. We then select the word that we want to
explain it’s prediction.

After the word embedding-based model of experiment 2 was trained, we used the
TextExplainer class from the lime library so that we could understand it’s decisions. The
NER task needed to be reshaped to fit the model requirements, we treated the NER task as
a text classification task. We configured the TextExplainer with the same configurations
of our model, same inputs, same tags, same padding sequence. Then the TextExplainer
needs a masking text sampler, where the sentence that we want to know why it’s values
were predicted in this way needs to have some more sentences having similar words
like it. So that the TextExplainer tries to learn from those sentences and predict based
on this sample. The original sentence that we chose for the interpretation is shown in
Figure 24, while the sampler example that was created, with a maximum replacement of
0.7 of the original sentence can be shown in Figure 25, the number of sample sentences
generated is 5, having at the end the percentage that indicates how much of the original
sentence was substituted with unknowns tokens. We have to choose a particular word
for the model to interpret it. For illustration, in this Figure 26, we picked "120/80" as
our predictive token index, the figure shows the probability that this token is an entity.
It also displays the features that contributed favorably to the model prediction decision,
while the intensity of the color demonstrates how strongly the token contributed to the
prediction.

Figure 24. Sentence for interpretability

Another indication of interpretability was given for another token with wordindex=7:
RR has seen in Figure 27, This figure illustrates the features that supported the decision of
the model, one of those tokens is the "Kardiovaskulaarsüsteem" which is an Estonian term
means the cardiovascular system, which is found to be a common word for predicting the
RR as an object, which is fair since the RR is a blood pressure reading which is related to
the cardiovascular system measures. It is also noticed that the predictions of the model
are confident with high probability as mentioned, It classified the RR to be an object with
0.99 confidence.
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Figure 25. Sample sentences for interpretability

Figure 26. Interpretability of 120/80 object
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The configurations of the white box classifier used in this experiment are presented
in Figure 28, which is a probabilistic white-box classifier with the default algorithm for
classification which is a logistic regression model. By default, it trains with stochastic
gradient descent and uses elasticnet for regularization. This is an effective regularizer
since it combines L1 and L2 regularizations. The model has some hyper-parameters that
were the default parameters selected by the eli5 lime library. 5 library.

Figure 27. interpretability of wordindex 7 (RR)

Figure 28. Interpretability model parameters

Finally, Figure 29 shows the detailed analysis of the prediction decision of word
"RR", It shows the tokens that contributed to the prediction of each class so that we
can understand the reason behind the decision of the model. The original table is much
longer than the screenshot, but for the quality, we had to crop some of it. The idea of this
table is to show with green color the tokens that contributed positively to the decision of
the model, while the red color represents the bias tokens for the prediction. The figure
also shows the likelihood of this token to be classified in each class. Here in this example,
the model classified RR correctly as an object with almost full trust.

5https://eli5.readthedocs.io/en/latest/autodocs/lime.html
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Figure 29. Detailed Interpretability table of word RR
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6 Discussion
The evaluation results of the models vary, some of them have high precision with a low
recall and some have the opposite, In order to decide which model to use we need to
define the cost for each metric in our use case. The model that used the pre-trained
Elmo embedding resulted in a very good quantitative result, but it requires a significant
amount of resources for the training process, and also a high degree of memory specs
for embedding the dataset. Therefore, based on the specifications that we have and the
accuracy that we need, we should select the best model to use.

It is advised to consider the qualitative results. In our case, we had some issues with
annotation, which means that high accuracy could be an indication that the model trained
to detect the exactly given objects, but it could not detect the improperly annotated tokens.
The figure below 30 shows some examples of cases where the predictions between our
machine learning-based model differed from the annotations in the source data. It is
clear that in some of the cases our model actually made the correct call and the original
annotation was wrong. This shows we can learn a useful model even if the underlying
annotations are not perfect.

Finally, I would like to suggest, while training a new object using a pre-trained
model, try to overcome the catastrophic forgetting by including some old examples of
the training dataset as a revision for the model, so that It can recall the old objects along
with the new objects. Since the NN models when they get trained for a new object they
tend to concentrate on it and neglect the previous targets [Fre92].

Figure 30. Words tagged correctly by the neural network
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6.1 Future work
Most of the pre-trained word embeddings are for other languages and obviously will
not help with Estonian language texts. In this thesis we trained custom ELMO models
on a subset of medical texts we had available, the resulting models had a very good
performance. To apply these models in practice it would be advisable to spend some
effort to train ELMO embeddings on all the available Estonian language medical texts.
Besides, the models built in this study can be conveniently used for numerous medical
entities with specific patterns. The optimal tags for the dataset we used were making
the layout of the entity separated into an object, value, unit, min, max. As potential
research, we need to annotate the dataset accordingly so that those tags can be identified
separately, which is feasible using the pre-trained models we prepared. and then we
could extract all the objects from the predicted dataset, and build out a Fact database of
all the measurements.

7 Conclusion
We developed neural networks for named entity recognition on the medical reports, we
found that the neural networks can detect the complicated features of the data. Also,
it is robust to misspellings and misannotation of the data. Different neural network
architectures were implemented, some of them used pre-trained contextualized word
embeddings, and other built word embeddings based on the input dataset. we used
CNN, RNN as LSTM, BI-directional LSTMs, CRF, and dense layers with regularization
functions. The evaluation of those models has resulted in a very strong quantitative
and qualitative results, where the models managed to correctly account for the context
when predicting features. The best quantitative results were obtained using the BI-LSTM
layers combined with custom ELMO character-level word embeddings.
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Appendix

I. Source code
The implementation of the baseline language model and all the experiments is available
in the GitHub repository: https://github.com/nesmaAlmoazamy/Fact-Extraction-
from-Medical-Text-using-Neural-Networks

48

https://github.com/nesmaAlmoazamy/Fact-Extraction-from-Medical-Text-using-Neural-Networks
https://github.com/nesmaAlmoazamy/Fact-Extraction-from-Medical-Text-using-Neural-Networks


II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Nesma Mahmoud,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Fact extraction from medical text using Neural networks,
( title of thesis)

supervised by Raivo Kolde.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Nesma Mahmoud
15/05/2020

49


	Introduction
	Structure of the thesis

	Background
	Recurrent Neural Networks - RNN
	Long Short-Term Memory Networks - LSTM
	Bidirectional Long Short-Term Memory Networks - BI-LSTM
	Named Entity Recognition - NER
	Word embeddings
	CNN for NLP task
	Interpretability

	Related work
	Implementation and Experiments
	Objective
	Dataset description
	General description
	Data annotation quality
	Dataset preparation
	Dataset Preprocessing
	Tagging Scheme
	New dataset preparation for training over a pretrained model

	Experiments
	Common Layers
	Network architecture
	Experiments settings


	Results
	Quantitative Results
	Qualitative understanding of the models

	Discussion
	Future work

	Conclusion
	References
	Appendix
	I. Source code
	II. Licence


