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Medical Image Classification with Limited Data

Abstract: Advancements in computational methods have greatly influenced medical
imaging, facilitating the development of advanced diagnostic tools. One of the many
tasks in this field is classifying images to determine whether they contain disease. This
task is challenging because of the scarcity of annotated medical data, as it is harder to
annotate because it requires an expert.

Lately, the problem of limited annotations has often been addressed by a group
of learning approaches that utilize unannotated data, known as unsupervised learning.
Typically, models are pretrained on an artificial task that exploits the properties of images,
rather than their annotations, and then fine-tuned on annotated data. Despite the recent
success of these methods, they remain minimally explored in the field of medical imaging,
particularly in medical image classification.

This thesis investigates the effectiveness of various unsupervised pretraining ap-
proaches in enhancing the classification of medical images, specifically focusing on
kidney tumor classification from CT (computed tomography) scans, which represents a
distinct challenge within medical image classification. In our experiments, these methods
do not significantly improve model performance, but offer insights into the limitations
and possibilities of unsupervised learning in this area. Contrary to prior expectations
about the transformative impact of unsupervised pretraining, the benefits appear depen-
dent on specific contexts and tasks. This work illustrates the complexity of enhancing
model performance in this field, emphasizing the need for a comprehensive approach to
tackling these challenges.

Keywords:
deep learning in medical imaging, unsupervised learning, self-supervised learning, data
augmentation, explainable artificial intelligence, image classification

CERCS: T111 - Imaging, image processing; P176 - Artificial intelligence
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Meditsiiniliste piltide klassifitseerimine piiratud andmetega
Lühikokkuvõte: Arvutuslike meetodite edu on märkimisväärselt mõjutanud meditsiini-
list kujutamist ning on aidanud kaasa piltdiagnostika vahendite arengule. Üheks keskseks
väljakutseks selles valdkonnas on haiguste tuvastamine piltidelt. Selle ülesande teeb
keeruliseks märgendatud andmete vähesus, mis on osalt põhjustatud asjaolust, et andmeid
saavad märgendada vaid valdkonna eksperdid.

Viimasel ajal on andmete nappuse probleemi proovitud lahendada juhendamata õppe
meetoditega, kus kasutatakse mudelite treenimiseks märgendamata andmeid. Tavaliselt
selliste metoodikate puhul eeltreenitakse mudel tehislikel ülesannetel, mille puhul kasu-
tatakse ära piltide omadusi ja struktuuri märgenduste asemel. Seejärel peenhäälestatakse
mudel väikesel märgendatud andmestikul. Vaatamata nende meetodite hiljutisele edule,
on neid meditsiinilise kujutamise valdkonnas vähe uuritud, eriti meditsiiniliste piltide
klassifitseerimisel.

Magistritöös uuritakse erinevate juhendatamata eeltreenimismeetodite tõhusust me-
ditsiiniliste piltide klassifitseerimisel, keskendudes eelkõige neerukasvajate tuvastamisele
kompuutertomograafia piltidelt. Töö tulemused näitavad, et sellised meetodid ei paranda
oluliselt mudelite täpsust. Samuti annavad tulemused ülevaate juhendamata õppe meeto-
dite piirangutest ja võimalustest selles valdkonnas. Vastupidiselt eelnevatele ootustele
juhendamata meetoditele, paistab et selliste meetoditest saadav kasu sõltub tugevalt
konkreetsetest kontekstidest ja ülesannetest. Käesolev teadustöö ilmestab mudelite täpsu-
se parandamise keerukust meditsiinilise kujutamise valdkonnas ning rõhutab vajadust
tervikliku lähenemisviisi järele nende väljakutsetega toime tulemiseks.

Märksõnad:
sügav õppimine, tehisnärvivõrgud, süvaõpe meditsiinilises kuvamises, järelevalveta õpe,
iseõppiv õpe, andmete augmentatsioon, seletatav tehisintellekt, pildi klassifikatsioon

CERCS: T111 - Pilditehnika; P176 - Tehisintellekt
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1 Introduction
Kidney cancer represents a significant global health challenge, diagnosed in over 430,000
individuals annually and responsible for approximately 180,000 deaths each year [1].
This statistic highlights the critical need for advancements in diagnostic methods that
can improve early detection and treatment outcomes. Medical imaging plays a crucial
role in the diagnosis and management of kidney cancer, providing essential insights that
inform clinical decision-making.

Using deep learning in medical image analysis is challenging due to the limited
availability of annotated medical data. Annotating medical data is more expensive
than other tasks because it requires high precision and can typically only be done by
individuals with medical education. Additionally, obtaining medical images, especially
those containing diseases, is difficult due to privacy concerns and regulatory restrictions.

These challenges make this a suitable area for applying unsupervised learning, which
enables models to learn useful representations from data without the need for annotations.
Unsupervised learning generates synthetic annotations that pre-train the model, which
is then fine-tuned using the annotated part of the dataset. While unsupervised learning
has been popular and effective outside the medical image classification domain, its
application in this field remains less explored.

This thesis investigates various unsupervised pretraining methods to evaluate their
effectiveness in enhancing the classification of CT scans. In addition to exploring
unsupervised learning, data augmentation techniques were used to artificially enlarge the
dataset, proving beneficial in improving model accuracy.

The findings presented in this thesis provide a grounded perspective on their effective-
ness. The results indicate that while unsupervised pretraining can offer some benefits, its
advantages are highly context-dependent and may not be as transformative as previously
anticipated.

In the subsequent sections, the thesis elaborates on various aspects of the study.
Background section provides a detailed overview of the background technologies and
methodologies fundamental to this research. Methods section outlines the dataset and
experimental setup used to evaluate the unsupervised pretraining techniques. In Results
section, a thorough analysis of the experimental results is presented, showcasing the
impact and efficacy of the applied methods. Conclusion section summarizes obtained
results. Finally, Discussion section talks about broader implications of the findings and
proposes potential directions for future research, aiming to further the application of
deep learning in medical image analysis.
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2 Background
This section introduces fundamental neural network architectures and their pivotal role in
medical image analysis. Starting with an overview of key architectures like ResNet and U-
Net, which are essential for tasks such as image segmentation, the discussion progresses
to Self-Supervised Learning (SSL). SSL and its specific approaches are explored for their
ability to utilize unlabeled data, addressing the notable shortage of annotated medical
datasets. This section also covers data augmentation strategies, another critical method
to overcome the limitations of scarce training data. Finally, it delves into explainable
AI techniques, focusing on their importance in ensuring the reliability and transparency
of automated medical image analysis. This structured approach lays a comprehensive
foundation for the detailed experimental investigations that follow.

2.1 Neural Network Architectures in Machine Learning
Neural networks, particularly Convolutional Neural Networks (CNNs), form the back-
bone of many modern machine learning applications, notably in fields requiring pattern
recognition such as computer vision and medical image analysis. These computational
models are highly effective in recognizing complex patterns and making intelligent
decisions from vast amounts of data.

2.1.1 Convolutional Neural Networks (CNNs)

CNNs are specialized neural networks designed to process data with a grid-like topology,
such as images. Their capability to capture spatial hierarchies in data stems from their
unique architecture, particularly the convolutional layers, which apply filters to the
input data. These filters move across the image, detecting local patterns such as edges,
textures, and shapes at various levels of abstraction. By stacking multiple layers, CNNs
can learn complex representations, starting from simple features in the initial layers to
more complex structures in the deeper layers. CNNs are thus well suited for capturing
important features such as edges and textures, which are crucial for tasks such as image
classification, segmentation, and object recognition. Pooling layers, often interspersed
between convolutional layers, further help by reducing the spatial dimensions, thereby
enhancing the network’s ability to recognize patterns irrespective of their position within
the image.

The significant advancement in CNNs was marked by the introduction of AlexNet in
2012, which utilized deep layers, ReLU activations, and dropout to reduce overfitting,
substantially outperforming existing models in the ImageNet competition [2]. Building
on this, the ResNet architecture innovated with residual blocks that incorporate skip
connections, facilitating the training of even deeper networks by enabling more effective
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gradient flow [3]. These developments have established deep CNNs as foundational in
advancing computer vision.

2.1.2 U-Net for Medical Image Segmentation

U-Net is a CNN variant specifically designed for biomedical image segmentation. Its ar-
chitecture features a symmetric structure with a contracting path to capture context and an
expansive path to enable precise localization. U-Net is particularly noted for its efficiency
in training with limited data—a common challenge in medical imaging—leveraging
extensive data augmentation to maximize the utility of available annotated samples [4].

DecoderEncoder

INPUT IMAGE
SEGMENTATION

MASK

Figure 1. Simplified architecture of the U-Net. The network consists of three main
components: the encoder, the decoder, and the skip connections. The encoder, shown in
scarlet, is a series of convolutional layers that progressively capture increasingly complex
features of the input image while downsampling the spatial dimensions. The decoder,
illustrated in purple, is responsible for upsampling the encoded features to reconstruct
the image’s spatial dimensions. It gradually refines and reconstructs the output, aiming
to restore the original image resolution. The skip connections, indicated by arrows, link
corresponding layers of the encoder and decoder, allowing the transfer of high-resolution
features directly from the encoder to the decoder. This mechanism helps retain detailed
spatial information that is crucial for accurate image segmentation.

U-Net’s design allows it to excel in capturing both local and global contextual
information, which is essential for detailed segmentation tasks in medical imaging. This
has led to significant improvements in automated segmentation of medical images such
as CT scans, MRI, and microscopy images, and has spurred numerous adaptations and
enhancements in the domain.
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2.2 Pretext Tasks & Transfer learning
In the advancement of machine learning applications for medical imaging, particularly
CT image classification, the advent of self-supervised learning (SSL) presents a paradigm
shift. SSL, a branch of unsupervised learning, leverages the vast amounts of unlabeled
data to learn robust representations without the need for human annotation, thus address-
ing the scarcity of annotated medical datasets [5]. This approach is embodied in the
formulation of pretext tasks, which are designed to learn predictive features from the
data itself, fostering the development of models that can predict certain properties or
patterns inherent in the data.

Pretext tasks are ingeniously formulated such that the learning process leverages
inherent data characteristics to predict certain properties, patterns, or parts of the data.
These tasks can be predictive [6, 7], where the model might predict the missing part of an
image or the next frame in a sequence, generative [8, 9], where the model reconstructs or
generates new data points from the learned distribution, or contrastive [10, 11], focusing
on differentiating between similar and dissimilar pairs of data samples. Each of these
approaches teaches the model to understand and encode vital features of the data, crucial
for the subsequent task-specific applications.

The efficacy of SSL and pretext tasks in medical imaging has been demonstrated
in various studies. Models pretrained on large-scale unlabeled datasets have shown
remarkable success in disease detection, segmentation, and classification tasks, demon-
strating the potential of SSL to mitigate the challenges posed by limited labeled datasets
in medical imaging [12, 13].

Through the strategic implementation of pretext tasks within the self-supervised
learning framework, researchers can pretrain models to learn complex, generalizable
features from expansive, unlabeled datasets. These features, when refined through fine-
tuning, has proven to sometimes noticeably improve medical image analysis tasks [5].

Following the pretext task phase is the transfer learning process, encompassing pre-
training and fine-tuning stages. Initially, models are pretrained on large-scale unlabeled
datasets through the selected pretext tasks. This pretraining endows the model with a
broad understanding of the data’s features. Subsequently, the model undergoes fine-
tuning on a smaller, task-specific labeled dataset. This fine-tuning process adjusts the
pretrained model’s parameters to optimize performance for the specific CT image classi-
fication task at hand. The transition from generalized pretraining to targeted fine-tuning
exemplifies the core of transfer learning, leveraging learned representations from one
task to enhance performance on another.

2.2.1 Predictive Approaches

The predictive self-supervised learning approach is centered on developing robust rep-
resentations from unlabeled data. This process involves assigning each image, or a
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portion thereof, a pseudo-label. These labels are directly derived from the data, for
instance, by utilizing structural information of the image. Subsequently, this task is
approached as either a classification or regression challenge, where the objective is to
accurately predict these pseudo-labels. The effectiveness and strength of the features
learned during this pretraining phase heavily rely on the strategy used for generating
pseudo-labels, especially considering the specific downstream tasks at hand. A variety of
predictive pretraining strategies have been implemented in the domains of medical image
classification and segmentation; this section will further explore several such methods in
greater detail.

Rotation Prediction was initially introduced by Gidaris et al. [14] as a means to
acquire visual representations through self-supervised learning. This task involves
training a convolutional model to identify the geometric rotation applied to an input image,
effectively framing this challenge as a straightforward classification task. Specifically,
images are rotated with steps of 90 degrees, resulting in possible rotations of [0°, 90°,
180°, 270°], as can be seen in Figure 2. The idea of rotation prediction is the connection
between the model’s capacity to discern the applied rotation and its proficiency in
identifying key features within the image. The model must learn the types and orientations
of objects relative to the rotation, mirroring the human process of recognizing rotated
objects. For example, understanding a body slice orientation after a 90° rotation involves
recognizing the arrangement of all of its organs: kidneys, backbone, etc. Consequently,
rotation prediction facilitates the learning of semantic features by teaching the model to
understand image orientations.

In the context of medical imaging, rotation prediction has been explored by various
studies [15, 16], with mixed outcomes ranging from no noticeable performance gains—or
even decreases—to notable improvements. These varied results highight the challenge
of applying rotation prediction in medical settings, where the orientation of anatomical
structures may not always provide clear discriminative signals for learning.
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Figure 2. Illustration of Rotation Prediction Task. An image is rotated by 0°, 90°, 180°,
and 270°, and the CNN is tasked to predict the rotation angle. P are probabilities of
predicted classes C. Image adapted from [17].

Relative position prediction was devised by Doersch et al. [6] as an innovative self-
supervised learning approach to cultivate visual representations from unlabeled images.
This method trains a model to anticipate the relative position of a second image patch
with respect to a first, randomly selected patch from a large collection of unlabeled
images. Such training necessitates the CNN to discern the appearance of objects and
their parts, promoting the learning of meaningful visual features. The fundamental
premise is that successfully predicting the relative positions of patches within images
compels the model to understand and recognize the compositional structure of objects
and their spatial relationships, as shown in Figure 3. For instance, discerning that a
patch depicting a section of a kidney is above a patch showing a tumor, all without
any additional contextual information, indicates a sophisticated understanding of the
anatomical features and spatial configurations pertinent to medical imaging, such as CT
scans. This method effectively converts the unsupervised challenge of learning from
unlabeled images into a supervised problem by utilizing the inherent spatial context
within images as a self-supervisory signal.

In the field of medical image analysis, the relative position prediction prediction
approach as well as similar approaches that were later derived from it have found several
applications [18, 19]. Despite showing improvement, leveraging spatial relationships
as self-supervision in medical images, while promising, often results in less noticeable
improvements.

11



Query patch

Anchor patch

Encoder

Encoder

5

2 31

87

4

6

0.08

0.06

0.03

0.62

0.01

0.06

0.02

0.12

3

2

4

5

6

7

1

8

P C

Figure 3. Illustration of self-supervised learning by relative position prediction task.
(left): An image is divided into nine patches where the central patch (the one without
number) represents the anchor patch and the remaining eight patches (delineated in
dashed yellow lines) represent the query patches. (right): a training example that consists
of an anchor patch and query patch is passed to a late-fusion convolutional model which
shares weights between the two branches to predict the position of the query patch with
respect to the anchor patch. P are probabilities of predicted classes C. Image adopted
from [17].

2.2.2 Generative Approaches

Generative approaches in self-supervised learning have gained significant traction due
to their capacity to model complex data distributions. Central to these methods is the
principle of learning to generate or reconstruct instances that mirror the training dataset,
without requiring explicit labels. These methods typically involve training generative
models, such as Autoencoders [20], Variational Autoencoders (VAEs) [21] or Generative
Adversarial Networks (GANs) [22], to recreate the input data. Models are trained to
capture the distribution of the data within a latent space, which is construed to retain the
most salient features of the data. The quality of these learned features is often contingent
upon the generative model’s ability to accurately reconstruct the input data while also
preserving the richness of the latent representation.

Early explorations in generative self-supervised learning predominantly utilized
autoencoders, where the encoder component maps inputs into a latent space and the
decoder reconstructs the input from this latent representation [23]. The optimization of
these models is driven by the fidelity of the reconstruction to the original input. Later
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advancements saw the introduction of VAEs, which added a probabilistic twist to the
encoding process, enabling the generation of new data instances by sampling from the
learned distribution [21].

The advent of GANs introduced a novel competitive dynamic to the training process,
where a generator network competes against a discriminator network that judges the
authenticity of the generated images [22]. The discriminator, in the process of distin-
guishing real from fake, acquires a nuanced understanding of the characteristics of the
data. Below, we will discuss various generative methods and their applications to medical
image analysis.

Image Inpainting employed as a self-supervised learning strategy, proposed by Pathak
et al. [8], involves training models to accurately predict and reconstruct missing or
damaged sections of images, as shown on Figure 4. This method requires the model
to interpret the remaining parts of an image and use this context to fill in the gaps,
effectively teaching the model to understand and replicate the underlying data structures
and relationships. By compelling the model to restore lost image parts, it not only learns
to identify visual patterns and intricate details essential for whole image interpretation
but also enhances its ability to generalize from limited data.

This approach has proven to be very efficient in the field of medical image segmenta-
tion, allowing the extraction of the most useful context from usually limited data [24, 25].
However, in the domain of medical image classification, inpainting approaches are a less
popular choice than for segmentation-related tasks[19].

MASKED REGION RECONSTRUCTED 
IMAGE

INPUT IMAGE

DecoderEncoder

Figure 4. Schematic representation of usual inpainting framework. Part of the input
image is removed by masking it with black pixels (outlined in orange). The context
encoder is then tasked with reconstructing the occluded segment, thereby learning to
infer missing content based on the surrounding visual context, as can be seen from the
rightmost image.

The more advanced approach, which shares the same principle, is called Model
Genesis. It is a self-supervised learning framework introduced by Zhou et al. [26],
specifically designed for 3D medical imaging. Building upon the concept of context
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restoration, Model Genesis employs four unique distortion operations to train models:
non-linear transformations using the Bézier transformation function, local pixel shuffling,
in-painting (similar to the context encoder method), and out-painting, which is essentially
the inverse of in-painting, meaning that the outside pixels are masked out. Notably, each
input volume is subjected to the first two operations followed by either of the last two
operations, but not both. This structured approach to applying transformations enables the
generative model to effectively learn from and restore the distorted images back to their
original context. The illustrations of the distortion operation, as well as the framework,
can be seen on Figure 5. Model Genesis has been extensively evaluated across six
downstream tasks, demonstrating its efficacy in both segmentation and classification
tasks within medical image analysis. The framework’s ability to generalize from intrinsic
image features learned through these self-supervised tasks makes it particularly valuable
for enhancing performance on specific medical imaging applications. Even though the
framework was mainly devised for 3D applications, it has been shown to provide a slight
performance boost when used on 2D slices of medical images, namely slices of lung CT
scans.
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Figure 5. Schematic representation of the Model Genesis transformations and framework.
The upper image showcases the diverse transformations employed by the Model Genesis
framework for 2D medical imaging. Each panel represents a transformation applied
to an original medical image: I) Non-linear transformation, II) Local pixel shuffling,
III) Out-painting, and IV) In-painting. Notably, transformations I and II are applied
consistently, while either III or IV is selected for a given image, as in-painting and
out-painting are mutually exclusive. This framework’s encoder-decoder architecture,
shown on the lower image, is trained to revert these transformed patches to their original
state, thereby learning to reconstruct and understand complex medical image structures
without manual labeling. The process is demonstrated on both Genesis Chest CT and
Chest X-ray (2D) images, highlighting the framework’s adaptability to different medical
imaging modalities. Images were taken from the original paper [26].
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2.2.3 Contrastive Approaches

The contrastive approach in self-supervised learning emphasizes the differentiation
between representations of data samples, often by bringing closer the features of similar
(positive) pairs while pushing apart those of dissimilar (negative) pairs. This method
relies on constructing pairs or sets of data points where some inherent relationship exists,
such as different augmentations of the same image or semantically related images, to
teach the model what features are essential for identifying similarities or differences.
The core of this approach is a contrastive loss function, which quantifies the degree to
which the learned representations adhere to these relational expectations. By optimizing
this loss, the model learns to encode rich, discriminative features without the need for
explicit labeling, making it particularly adept for tasks where labeled data is scarce but
where capturing the nuances between data samples is crucial. This section delves into
the details of some popular contrastive approaches and their usage in medical image
analysis.

Simple Framework for Contrastive Learning of Representations (SimCLR) [10]
utilizes data augmentation to generate multiple views of the same image, thereby creating
pairs of correlated samples. These samples are then transformed through operations such
as cropping and color distortion to produce augmented images that, while visually distinct,
share the same semantic information. These images are encoded into representations via
a CNN and a projection head, facilitating the application of a contrastive loss function,
as shown in Figure 6.

Central to SimCLR’s effectiveness is the contrastive loss function, particularly the
normalized temperature-scaled cross-entropy loss (NT-Xent loss), which is formulated to
minimize the distance between representations of positive pairs (i.e., different augmenta-
tions of the same image) while maximizing the distance between those of negative pairs
(i.e., different images). The loss for a pair of positive samples i, j is given by:

LNT-Xent = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(1)

where zi and zj denote the representations of two augmented views of the same
image, sim(u, v) represents the cosine similarity between vectors u and v, N is the batch
size of distinct images, τ is a temperature scaling parameter, and 1[k ̸=i] is an indicator
function that is 1 if k ̸= i. Through optimizing this loss, SimCLR trains to capture the
semantic essence of images, showcasing its utility in downstream tasks such as image
classification with minimal labeled data.

SimCLR has been applied across various medical imaging contexts with varying
degrees of success [27, 28]. When integrated with additional methodologies [28], it
demonstrates a significant enhancement in performance. However, as a standalone
approach, SimCLR does not exhibit substantial improvements when compared to models
trained with full supervision.

16



D
en

se
R

eL
U

D
en

seh 1 z 1

L 
N

T-
X

en
t

h 2 z 2

g(.)

g(.)

x 1

x 2x

f(.)

f(.)

D
en

se
R

eL
U

D
en

se

D
en

se
R

eL
U

D
en

se

Figure 6. Schematic representation of SimCLR framework. An input image x undergoes
a series of transformations to produce two correlated images, x1 and x2, which serve
as positive pairs. Each image is processed through a feature extractor f(·) to obtain
representations h1 and h2. These are then passed through a projection network g(·),
composed of dense layers with ReLU activation, resulting in embeddings z1 and z2.
The model is trained using the NT-Xent loss to minimize the distance between these
embeddings, thereby encouraging the network to learn invariant features from augmented
versions of the same image.

Contrastive Predictive Coding (CPC), proposed by van den Oord et al. in 2018 [29],
offers a method for unsupervised learning of representations from diverse data forms,
including images, text, and audio. Unlike generative models that predict future data
samples from their context, CPC aims to create a compact representation that enhances
the mutual information between the context (C) and the target (X). This approach
allows for the learning of representations that overlook low-level details of the input data,
focusing instead on capturing more abstract, informative features.

The CPC framework comprises three main components: an encoder network, an
autoregressive network, and the InfoNCE loss function, as can be seen from the Figure 7.
The encoder network converts input data into a latent variable (Zt), capturing essential
features of the input. The autoregressive network then uses these latent variables to pro-
duce a context (Ct) for predicting future latent variables. The key to CPC’s effectiveness
is the InfoNCE loss, derived from the Noise-Contrastive Estimation (NCE) [30] loss,
which encourages the model to distinguish between the true future samples and randomly
selected negative samples. The InfoNCE loss is expressed as:
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LInfoNCE = −E
[
log

exp(sim(c, x+))∑
x− exp(sim(c, x−))

]
(2)

Here, c indicates the context, x+ is a positive sample that follows the context, and
x− are negative samples chosen randomly from the dataset. The function sim(c, x)
measures the similarity between the context and each sample, usually by a dot product.
Through the optimization of the InfoNCE loss, CPC learns to produce representations
that predict future states of the input, enriching the model’s understanding and processing
of sequential data.

Building upon the original CPC framework, CPCv2 [31] introduces several key
improvements over its predecessor: it incorporates a larger and more effective set of data
augmentations, utilizes a deeper and wider architecture for the encoder network, and em-
ploys a modified contrastive loss function that facilitates learning from a greater number
of negative samples, significantly improving the quality of the learned representations.

CPC has seen limited application in the field of medical imaging. However, its
adaptation for analyzing 3D CT scans [32] demonstrated some improvements over
baseline models trained from scratch. The same study also compared this to a 2D version
of CPC, which underperformed relative to the baseline. It’s important to note that this
decrease in performance may be attributed to the difference in dimensionality, as the
baseline model was designed for 3D data.

gar
z t-2

z t-1

z t

z t+1

C t

LATENT
REPRESENTATIONSINPUT PREDICT  NEXT

genc

Figure 7. Schematic representation of the Contrastive Predictive Coding (CPC) frame-
work. An input image is divided into a grid and is processed through an encoder network
(genc), resulting in a grid of latent representations. A subset of these representations
(highlighted in yellow and purple) is selected to act as the context (Ct) for the autore-
gressive model (gar). This model uses the context to predict future latent variables (zt+1),
aiming to maximize the mutual information between context and predictions. Training
involves a contrastive loss that discriminates between true future representations and a
set of negative samples.
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2.3 Data Augmentation
Data augmentation technique is often used to artificially expand the training dataset
and introduce a variety of conditions under which a medical event might be imaged.
Techniques often used include geometric transformations like rotations and flips, which
can mimic the various orientations of patients during imaging, and intensity variations
that account for different machine calibrations or contrast levels.

Specific to medical imaging, augmentation techniques must be applied with particular
care. Unlike natural images, slight alterations in medical images can change the diagnosis
or obscure critical features. For example, random noise or color shifts that are commonly
used in augmenting natural images may not be suitable for medical datasets, as they
could obscure subtle but clinically significant features. Thus, augmentation strategies
are often tailored to the specific medical imaging modality and analysis task, ensuring
that the augmented data remains representative and useful for clinical purposes. Properly
implemented, these techniques not only improve model robustness but also enhance
performance in diagnostic tasks, ensuring that models trained on augmented datasets are
better equipped to handle real-world variability in medical images [33].

2.4 Explainable AI
Explainable AI (XAI) has become an essential component in the field of medical imaging,
aiming to make the decision-making processes of AI models transparent and understand-
able to human users. With the increasing integration of AI in diagnostic tools, it is crucial
that practitioners can interpret and trust the recommendations provided by these systems.

In the context of medical imaging, XAI offers the potential to demystify the outputs of
complex models, particularly deep learning architectures, which often operate as ’black
boxes’. Given that medical decisions can have profound implications on patient care, the
ability to explain and validate these decisions is not merely a matter of academic interest
but a clinical necessity. Explainable models can illuminate the features within medical
images that are most influential in a model’s predictions, thus providing clinicians with
valuable insights that may corroborate their expertise or reveal new diagnostic patterns.

In this thesis, XAI was specifically utilized to delve into and compare the performance
of various models, looking for explanations behind their differing effectiveness.

2.4.1 Class Activation Mapping

Class Activation Mapping (CAM) was introduced by Zhou et al. in 2016 [34] as a
method to identify regions in an image that influence a model’s decision for a given
task. It operates by mapping the activations of specific layers in a convolutional neural
network (CNN) to the output predictions, highlighting important areas in the image that
contribute to the final decision.

19



Building on CAM, Gradient-weighted Class Activation Mapping (GradCAM) utilizes
the gradients of any target output flowing back into the final convolutional layers to
produce a heatmap [35]. This method refines the visual explanation by indicating where
the CNN is focusing its attention for each class in a classification task.
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Figure 8. Illustration of the GradCAM process within a CNN. Starting with an input
image, such as a CT slice, the image is forward propagated through the CNN to extract
feature maps that capture essential visual patterns relevant to the task. For all classes
of interest (Normal, Cyst, Tumor), the model computes a raw score by passing feature
maps through a fully connected (FC) layer. The gradients are set to zero for all classes
except the target class, which is set to 1. This targeted signal is backpropagated to the
rectified convolutional feature maps, emphasizing areas crucial for decision-making.
These maps are then weighted (W1, W2, W3) based on gradient information flowing
back from the output layer. The weighted feature maps are combined and passed through
a ReLU function to produce a coarse Grad-CAM localization, highlighting where the
model focuses while making the decision. [35]
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3 Methods
This section provides a comprehensive overview of the methodologies employed in this
study. It begins with a description of the dataset used, followed by the rationale for
selecting the baseline model and details of its implementation. Next, the section outlines
each pretext task tested, including the data augmentation strategies applied. Finally, it
details the evaluation procedures and the metrics used to assess model performance.

3.1 Dataset
The primary dataset utilized for all experiments conducted in this thesis was the 2023
Kidney and Kidney Tumor Segmentation Challenge dataset (abbreviated as KiTS23) [36].
The KiTS23 competition challenges teams to create the most effective system for the
automatic semantic segmentation of kidneys, renal tumors, and renal cysts, marking the
third iteration of the challenge following the 2019 and 2021 competitions. The dataset
comprises 599 cases, divided into 489 training and 110 test cases. Each case represents
a three-dimensional CT scan of the kidneys, which for the purpose of this study, was
processed into transverse (axial, perpendicular to the spinal column) 2D slices to facilitate
the experiments on 2D image data.

The dataset annotates three types of segmentation: kidney (encompassing all kidney
parenchyma and non-fat tissue within the renal hilum), tumor (kidney masses suspected
to be malignant pre-operatively), and cyst (kidney masses identified as cysts either
radiologically or pathologically, when available). For the scope of this research, only
tumor segments were considered. Given the variable sizes of tumors across slices, the
study focused on slices featuring sufficiently large tumors, establishing a minimum area
threshold of 1000 pixels for inclusion. This threshold not only facilitated empirical
analysis but also allowed for visual identification of tumors in slices, simplifying the
experimental results’ interpretation as depicted in Figure 9. Additionally, it was assumed
to support the models that did the inpainting-related tasks, as bigger tumors are easier to
encode and not to miss during the reconstruction. This will be described in more details
in the corresponding section.

To mitigate model bias and ensure a balanced training dataset, slices were selected to
maintain a 2:1:1 ratio among three categories: slices with tumors, slices without tumors
but with kidneys, and slices with neither. The compiled dataset for experimentation
included 11,980 slices for training and 3,149 slices for testing.
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(a) (b)

Figure 9. Tumor sizes scale: (a) On the right is a slice that contains a big tumor; on the
left is its annotation mask, where white pixels signify the tumor. (b) Slice with a tumor
of smaller size and its annotation.

All images were uniformly resized to 512x512 pixels for consistency and underwent
normalization tailored to highlight tumor intensities, diverging from conventional meth-
ods that uniformly treat all pixels. This approach, inspired by the nnUnet framework [37],
adjusts the contrast based on the specific intensity range of tumors. Generally, CT scans
encompass a wide range of Housefield Units (HU), from -1000 HU (air) to approximately
3000 HU (dense bone). However, the intensity values relevant to kidneys and kidney
tumors are much narrower. Typically, soft tissues like kidneys are observed within the
-150 to 250 HU range, while renal tumors might exhibit slightly different intensities due
to their composition and the presence of contrast agents. This specificity in HU ranges
for kidneys and tumors underlines the necessity of targeted normalization to effectively
contrast-enhance these areas within the broader HU spectrum of CT scans. This ap-
proach was informed by analyzing tumor-associated pixel intensities across the dataset
to determine the 0.5th and 99.5th percentile values, mean (µ), and standard deviation (σ).
The initial normalization stage, aimed at adjusting image contrast to emphasize tumor
areas within the extensive HU range, is represented by the following equation:

Inorm =
clip(I, [P0.5, P99.5])− µ

σ
, (3)

where Inorm is the normalized image, I is the original image, and P0.5 and P99.5 denote
the 5th and 99.5th percentile values, respectively. The subsequent stage, not included in
the nnUnet’s normalization method, applies min-max normalization to adjust intensity
values to a [0,1] range, essential for the inpainting tasks:

Ifinal =
Inorm − Imin

Imax − Imin

, (4)

This two-step normalization process, especially with the addition of the second stage not
found in the nnUnet framework, is crucial for maintaining consistency across experiments
by focusing on renal tumor intensities.
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3.2 Architecture and setup
The cornerstone model for all experiments conducted within this thesis was ResNet18 [3],
chosen for its balance between accuracy and computational efficiency. Despite experi-
menting with larger models from the same family, such as ResNet34 and ResNet50, their
increased complexity did not translate to significantly better performance in tasks related
to classification and inpainting. This observation underscores the thesis’s objective:
to explore the performance impact of various methodologies rather than seeking the
pinnacle of model accuracy. The ResNet18 architecture is notable for its four residual
blocks, designed to downscale the input image progressively, culminating in a fully
connected layer followed by a sigmoid activation for binary classification tasks.

The utilization of weights pretrained on the ImageNet dataset [38] proved instrumen-
tal. ImageNet, a large-scale dataset designed for object recognition in natural images,
encompasses over 14 million images categorized into thousands of classes. Despite the
absence of medical imagery within ImageNet, initializing ResNet18 with these pretrained
weights significantly enhanced its performance. This effect shows the transferability of
learned features from natural to medical image contexts.

3.3 Baseline classfier training
The baseline training for the binary classification task was conducted using a modified
version of the torchvision ResNet18 model. The dimensions of the fully connected (FC)
layer were adjusted from [256, 1000] to [256, 1] with subsequent Sigmoid to suit binary
classification. The model was trained over 30 epochs with a batch size of 64, utilizing the
Adam optimizer with L2 regularization. The Binary Cross Entropy (BCE) loss, suitable
for binary classification tasks, was the chosen loss function and is defined as:

LBCE = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)], (5)

where N is the number of samples, yi is the ground truth label, and ŷi is the predicted
probability for the i-th sample. This loss function is designed to measure the discrepancy
between the predicted probabilities and the actual binary labels.

Additionally, several basic data augmentation techniques were applied, including
rotation, horizontal and vertical flipping, slight color distortions, and cropping. However,
these augmentations did not yield a positive impact, likely due to the uniformity of CT
scan images. The consistency in patient positioning and organ locations within scans
renders such transformations less meaningful.
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3.4 Pretraining Approaches
The pretraining methods examined include predictive, generative, and contrastive ap-
proaches, each with unique strategies to derive synthetic annotations and improve feature
learning. The subsequent subsections provide detailed descriptions of the implementation
and evaluation of these pretraining approaches.

3.4.1 Predictive Pretraining

The Rotation classification pretraining was the predictive method of choice for the
experiments conducted in this thesis. The model was trained on the original training set.
The dataloader of the model was modified to rotate input images by an arbitrary angle
from [0, 90, 180, 270] degrees and was assigned the corresponding label from [0, 1, 2, 3]
as was shown on Figure 2. All the other preprocessing was identical to the one of the
baseline training. The model backbone architecture was left intact, and the final FC layer
of the classifier head was changed in dimensions from [512, 1] to [512, 4] to adjust to
the 4-class classification task. The optimizer, learning rate, training length, and other
parameters were unchanged compared to the baseline training. During the fine-tuning
stage, the pretrained backbone was not frozen, so the whole model was trained for the
same amount of epochs and with the same hyperparameters as the baseline model.

3.4.2 Generative Pretraining

Inpainting Pretraining tasks were devised with a focus on feature learning. The first
method involved blanking out a 20% by 20% square section of the input image at random.
The second method, aiming to target the kidney region more precisely, used the same size
square but placed it within an area predetermined from dataset analysis to most likely
contain kidneys across various slices. Images were processed to eliminate any black
pixels outside the body contour for standardization, as indicated in Figure 10. The third
method involved swapping regions from the right to the left kidney, training the model to
reconstruct the original image and thus encouraging the encoder to concentrate on these
specific areas. The kidney regions were determined by looking through a big portion of
the dataset. They were chosen to be big to contain kidneys with high confidence.
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(a) Original image (b) After crop and resize

Figure 10. Image processing to ensure uniformity. The image was first treated with
morphological operations to remove all the pixels outside of the body, that include
random noise and parts of the CT machine. Then, the image was cropped to a rectangle
that contains all the non-zero values and resized to the original size.

The original ResNet backbone was employed as an encoder in a U-Net architecture,
with skip connections and upsampling convolutions suitable for the inpainting tasks.
Training spanned over 50 epochs, using a ReduceLROnPlateau scheduler from the
PyTorch library, which reduces the learning rate once learning stagnates. This approach
allows more detailed learning over time, which is less sensitive to the risk of overfitting in
a pretraining context. Two loss functions, LMSE for Mean Squared Error and Ldice for Dice
loss, were used, the latter of which is typically employed for binary segmentation but here
adapted for continuous-valued images in the range [0, 1]. The losses are mathematically
formulated as:

LMSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, (6)

Ldice = 1− 2× |Ŷ ∩ Y |
|Ŷ |+ |Y |

, (7)

where Ŷ and Y represent the predicted output and the ground truth, respectively. Results,
including visualizations and model predictions, are detailed in Section 4.

Model Genesis was also chosen for use in this work. The method followed was the
same as described by Zhou et al. in their paper [26] and the code they shared on GitHub.
Like in the original work, the MSE loss was used for training. The main change made
was using a U-Net with a ResNet-18 encoder for the model, the same type that was used
in the inpainting experiments. This kept the model’s setup consistent across this study.
Training was done for 300 epochs, which is the same length as what was done in Model
Genesis.
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As in all other experiments, during the fine-tuning stage, the pretrained backbone,
extracted from U-Net, was not frozen, so the whole model was trained for the same
amount of epochs and with the same hyperparameters as the baseline model.

3.4.3 Contrastive Pretraining

SimCLR was selected as one of the two contrastive learning methods evaluated in this
study. The SimCLR framework was shown on Figure 6. The implementation was based
on a PyTorch version of SimCLR, which can be found in the repository [39]. Unlike the
typical use of a standard ResNet-based feature extractor with layer-wise normalization,
this experiment utilized a ResNet18 backbone equipped with batch normalization to
simplify the fine-tuning process. Additionally, the conventional data augmentation
pipeline, notably Color Jitter, was modified for medical imaging applications to reduce
the intensity of color adjustments, thus minimizing the risk of overly distorting the
medical images.

Contrastive Predictive Coding (CPC), shown on Figure 7, the second contrastive
learning method tested in this study, drew on an existing PyTorch implementation found
online [40]. The code underwent several adjustments to make it compatible with a
ResNet18 backbone used throughout these experiments.

3.5 Data Augmentation
In this work, two fundamentally different data augmentation approaches were employed:
Supervised and Unsupervised. Supervised Augmentation utilized the tumor annotations
that were available. The idea was inspired by the Copy-Paste Data augmentation [41]
technique, which was originally proposed for instance segmentation. The main concept
of this method involves copying instances from one image and pasting them into another,
thereby creating additional ground truth instances in a completely different context.
Building on this, the following approach was implemented: on the slices containing a
tumor, there was a 50% chance to randomly select a 20% by 20% square to be removed
in such a way that the tumor remains unaffected. Additionally, with a 35% probability,
the tumor was covered by a 20% by 20% black square, but this was only done if the
tumor was relatively small (area less than 2500 pixels). This restriction was imposed
because large tumors often cause deformations in surrounding organs and covering such
tumors could still leave visible deformations, potentially leading the model to unlearn
that deformations can also be an indicator of a tumor. An example of this augmentation
is shown in Figure 11.
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(a) An image where a tumor is present (marked with red). On the left pair of images, a
random 20% by 20% non-tumor region is removed; on the right, the tumor is covered by
a black square. Removed regions are marked with yellow.

(b) An image without any tumor. On the left pair of images, a random 20% by 20% non-
tumor region is removed; on the right, a tumor region (marked in yellow) is introduced
to an image.

Figure 11. Supervised data augmentation examples.

Unsupervised Augmentation does not rely on dataset annotations. Similar to the
approach described for inpainting, this method utilizes data-specific prior information.
Regions most likely to contain kidneys—and potentially tumors—were identified by
examining numerous dataset slices. The augmentation process operates as follows: first,
areas presumed to contain kidneys are copied from the image. Then, three rectangles,
randomly chosen and varying in size from 0% to 50% of the image’s dimensions, are
removed. Finally, the initially copied regions, containing the kidneys, are pasted back
into the image. This ensures that the key kidney regions remain unaltered. The steps of
this process are illustrated in Figure 12.
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Figure 12. Unsupervised Augmentation Pipeline. Initial steps involve copying regions
potentially containing kidneys (yellow rectangles) from the original image. Subsequently,
three randomly selected and sized areas of the image are blacked out. The copied regions
are then pasted back to preserve the integrity of the kidney areas, ensuring they are not
impacted by the random removals.

3.6 Evaluation
The performance of the trained models was compared based on the highest achieved
Accuracy and F1 scores on a testing set. The Accuracy reflects the proportion of correct
predictions, both true positives and true negatives, in relation to the total number of
predictions:

Accuracy =
TP + TN

TP + FP + FN + TN
, (8)

where TP, FP, FN and TN are the numbers of True Positive, False Positive, False
Negative and True Negative predictions, respectively. The F1 Score is particularly
insightful when dealing with class imbalances, as it provides a balance between the
precision and recall in a single metric:

F1score =
2× TP

2× TP + FP + FN
, (9)
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3.7 Implementation Details
All methods and models were developed using Python 3.8.3 [42], PyTorch 2.2.0 [43],
and CUDA version 12.1 [44]. The experiments were conducted on the High-Performance
Computing (HPC) facilities at the University of Tartu, utilizing the same NVIDIA Tesla
V100 GPU equipped with 32GB of VRAM. The text of this thesis was written using
the Overleaf editor [45]. For brainstorming ideas, straightening, and debugging certain
portions of the code, ChatGPT version 3.5 [46] was employed. The grammatical accuracy
of the thesis was ensured through the use of Grammarly [47] and ChatGPT [46].
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4 Results
The model trainings were carried out as detailed in Methods. Table 1 lays out the
outcomes when different strategies were used to initialize the baseline model. Results
from fine-tuning, after employing predictive, generative, and contrastive tasks as pretexts,
are compared against the baseline in Table 2. Furthermore, Table 3 displays a comparison
in performance between the baseline model’s straightforward training and both supervised
and unsupervised data augmentation strategies.

4.1 Model Initialization Comparison
In this study, two different methods of weight initialization were explored and their
performance compared: random weight initialization and initialization with pretrained
weights from the ImageNet dataset. Random initialization assigns weights in the model
randomly at the start of training. In contrast, using pretrained ImageNet weights involves
starting with weights that the model learned from a broad and diverse set of non-medical
images in the ImageNet database. Despite the non-medical nature of the ImageNet
dataset, the model initialized with these pretrained weights achieved a 0.20 higher
accuracy and 0.23 higher F1 score, as detailed in Table 1. Thus, the model initialized
from ImageNet weights was chosen as a baseline for this study.

Initial weights Accuracy F1
Random 0.69 0.66
Pretrained on ImageNet 0.89 0.89

Table 1. Comparison of the results of the model with different initialization weights.

4.2 Predictive Pretraining
The training for the rotation prediction task itself achieved an accuracy of 99.8%. How-
ever, when using the weights derived from this task to fine-tune the tumor classifier
model, the performance deteriorated compared to the baseline. As detailed in Table 2,
there was a 3% drop in accuracy, which was consistently observed across both classes.
This uniform decrease in performance suggests that the decline was not due to bias in
model learning.

4.3 Generative Pretraining
As mentioned earlier, three distinct inpainting tasks were implemented in this work: in-
painting of randomly removed squares, inpainting squares removed from kidney regions,
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and switching kidney regions. Illustrations of these image perturbation methods and
the results from the trained models are displayed in Figure 13. The models managed
to achieve satisfactory results, performing inpainting with considerable precision and
quality, despite the models’ constrained size.
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Random Inpainting

Perturbed Ground Truth Restored

Kidney Inpainting

Perturbed Ground Truth Restored

Kidney Switch Inpainting

Perturbed Ground Truth Restored

Figure 13. Inpainting Methods and Results. From left to right: Perturbed image, ground
truth annotation, and the restored image by the trained model.
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As discussed previously in Generative Pretraining section, the inpainting was con-
ducted using two different loss functions for comparison: MSE and Dice. Although
Dice loss is typically used for segmentation tasks with binary values, it proved more
effective than MSE for these inpainting tasks, leading to less blurry outcomes as shown
in Figure 14. The MSE tended to produce blurrier results due to its averaging effect on
pixel values.

MSE loss Ground truth Dice loss

Figure 14. Comparison of MSE and Dice Loss Functions. The left image was inpainted
using MSE loss, which resulted in blurriness, whereas the right image was treated with
Dice loss, showing clearer and more precise inpainting results. The inpainted regions are
highlighted in yellow. The original image is shown in the center for reference.

Despite achieving very good results in the pretext tasks, the classification models
fine-tuned from weights obtained through random inpainting, kidney inpainting, and
kidney switch inpainting performed 13%, 10%, and 11% worse in terms of accuracy,
compared to the baseline model, respectively.

Although the image perturbations used in Model Genesis were more severe than
those in the inpainting experiments described above, the model was still able to recover
the initial images with good quality, as illustrated in Figure 15. Despite achieving very
good results in the pretext task, the classification model, fine-tuned from the backbone
extracted from the U-Net used in Model Genesis, achieved accuracy and F1 scores that
were 5% lower than those of the baseline model.
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Perturbed Ground Truth Restored

Figure 15. Example of Model Genesis Perturbations and the restored results by the
trained model. The input image is shown in the center, the perturbed image on the left,
and the restored image on the right.

4.4 Contrastive Pretraining
Assessing the SimCLR training was challenging because the only available metric was
the loss. However, since the loss consistently decreased, it is reasonable to infer that
the training was effective. Despite this, the classification model fine-tuned from the
SimCLR-trained weights showed slightly lower accuracy than the baseline model, as
detailed in Table 2.

Like SimCLR, the loss for Contrastive Predictive Coding decreased throughout the
training, suggesting that the training process was effective. Nonetheless, the model
fine-tuned from this training performed 11% worse in terms of accuracy and F1 score
compared to the baseline. This indicates that while the loss metrics suggested efficient
training, they did not directly translate to improved predictive performance on the target
tasks.
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Method Accuracy F1
Baseline 0.89 0.89
Rotation Prediction 0.87 0.86
Inpainting (Random) 0.76 0.74
Inpainting (Kidney) 0.79 0.76
Inpainting (Switch) 0.78 0.79
Model Genesis 0.84 0.82
SimCLR 0.87 0.86
CPC 0.78 0.78

Table 2. Comparative performance metrics of classification models fine-tuned from
various pretraining methods. Accuracy and F1 score are calculated based on the binary
classification outcomes for each method.

4.5 Data Augmentation
The supervised augmentation approach showed a 0.02 increase in accuracy and a 0.01
decrease in F1 score compared to the baseline model.

The unsupervised augmentation approach demonstrated a 0.03 increase in accuracy,
while the F1 score remained unchanged.

Method Accuracy F1
Baseline 0.89 0.89
Supervised Augmentation 0.91 0.88
Unsupervised Augmentation 0.92 0.89

Table 3. Comparison of performance metrics between the baseline model and models
trained with supervised and unsupervised data augmentation techniques.

4.6 Activation Visualization
Explainable AI approaches were utilized to investigate why none of the pretraining
strategies, particularly inpainting, yielded positive results as initially expected. GradCAM
was employed to illuminate the differences between models, revealing what activates
them and investigating any potential biases that could have led to a drop in model
performance. As depicted on Figure 16, Figure 17 and Figure 18, the activation maps
generated by GradCAM clearly show that the models are focusing on tumors and kidneys
in cases of positive predictions, which serves as a sensible validation of model behavior.

Despite the clear focus on relevant anatomical features, the activation regions and
underlying reasons for model responses were consistent across different models, with
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no consistent erroneous activations observed during an extensive review of the results.
Consequently, GradCAM was applied to only a limited set of models, as it did not
provide further insights into the differences between models.

TP TN

TP FP

Figure 16. GradCAM Visualizations for the Baseline Model. Each pair consists of the
original input image on the left, where tumors, if present, are highlighted in red, and the
corresponding activation map on the right, which uses a color gradient from blue (least
activation) to red (most activation). Captions below each image identify the case as TP
(True Positive), FP (False Positive), FN (False Negative) and TN (True Negative).
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TP FP

FN FP

Figure 17. GradCAM Visualizations for the model fine-tuned from the Kidney Inpainting
pretraining.

TP TN

FN FP

Figure 18. GradCAM Visualizations for the model fine-tuned from the Kidney Switch
Inpainting pretraining.
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5 Discussion
The results reveal that the pretraining methods explored did not enhance model perfor-
mance significantly. Specifically, methods like Rotation Prediction and Inpainting not
only failed to improve performance but actively deteriorated it. Inpainting, for instance,
led to a sharp decline in model accuracy. Conversely, while Model Genesis and SimCLR
also did not improve performance, they were less detrimental compared to the more
direct approaches like Inpainting and CPC. This distinction highlights the importance
of the context and specificity of pretraining tasks in medical imaging: even seemingly
similar tasks like Inpainting and Model Genesis resulted in different levels of efficacy.

These results underscore the importance of the context and specificity of pretraining
tasks in medical imaging. For instance, despite both employing image perturbation
strategies, Inpainting and Model Genesis yielded divergent efficiencies, suggesting that
the nature of the pretext tasks needs to be closely aligned with the ultimate diagnostic
tasks. Similarly, the disparity in performance between CPC and SimCLR, both contrastive
learning methods, further illustrates that subtle differences in task design can significantly
affect outcomes.

An intriguing aspect of the study was the baseline model’s superior performance,
which was pretrained on ImageNet. Despite being a non-medical dataset, this approach
outperformed other strategies, indicating that universal features learned from broader
contexts might be more beneficial than inaccurately targeted features learned directly
from medical data. This observation suggests that the quality of features learned is
more critical than the dataset specificity, pointing to the potential superiority of generic
pretraining over bespoke but less effective approaches.

Data augmentation methods, though not the primary focus of the thesis, showed
consistent improvements in model performance. Both supervised and unsupervised
augmentation techniques proved effective, enhancing the robustness and generalization
of the models, which contrasts with the limited success of pretraining strategies. The
unsupervised data augmentation success can be attributed in part to the utilization of
spatial prior information. By manually identifying regions more likely to contain kidneys
through an examination of numerous CT slices, the augmentation process was tailored to
enhance the model’s exposure to relevant variations. This strategy of leveraging specific
prior information extracted by humans helped improve model generalization. However,
the ultimate goal in machine learning is to develop models that can autonomously
identify and utilize such prior information without extensive human intervention. The
progress made with unsupervised augmentation suggests that embedding domain-specific
knowledge into the learning process is beneficial, but future research should focus on
methods that enable models to extract and apply this knowledge independently.

In conclusion, while unsupervised pretraining approaches like Model Genesis and
SimCLR showed some promise, none surpassed the efficacy of the baseline model
pretrained on ImageNet. This thesis contributes to the ongoing discourse in medical
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image analysis by demonstrating that while pretraining can be beneficial, its success
is highly contingent on the careful design of pretext tasks that are well-suited to the
specific challenges of medical imaging. Future work should focus on exploring more
sophisticated data augmentation techniques and machine learning approaches that can
more effectively harness the rich, yet often underutilized, information present in medical
images. This approach may provide a more fruitful avenue for achieving significant
advancements in the field of medical diagnostics.

6 Conclusion
This thesis explored the effectiveness of various unsupervised pretraining approaches to
improve the classification of medical images, focusing on CT scans for kidney tumor
detection. Despite the potential benefits, their application in medical image classification
remains minimally explored.

Multiple unsupervised pretraining methods were implemented and evaluated for their
impact on model performance. The findings indicate that these methods did not enhance
model performance. While unsupervised pretraining was expected to provide significant
improvements, the results suggest its benefits are task-limited and context-dependent.

The study also demonstrated the positive effects of data augmentation techniques
on model accuracy and robustness. Both supervised and unsupervised augmentation
strategies showed improvements.

In summary, this thesis contributes to understanding the use of unsupervised pretrain-
ing methods in medical image classification. It highlights the challenges of enhancing
model performance in this area and the need for continued research to address the
limitations of sparsely annotated medical data.
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