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Evaluating Transformer Architecture for the Game of Chess 

Abstract: 

Transformers are state-of-the-art natural language processing models, which have shown 

success in a variety of areas not directly related to natural language. This work evaluates the 

learning capabilities of transformers in the game of chess. The models are trained using an 

unannotated dataset of played chess games in Forsyth-Edwards notation (FEN) and their 

performances are compared with models trained on less comprehensive datasets used in 

prior research. The findings show that the models are not capable of generalizing on the 

richer FEN dataset and demonstrate inferior performance compared to the control models 

across all evaluation metrics. 

Keywords: 
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CERCS: P176 Artificial intelligence 

Transformer-arhitektuuri hindamine males 

Lühikokkuvõte: 

Transformerid on tipptasemel loomuliku keele töötlemise mudelid, mida on efektiivselt ka-

sutatud ka ülesannetes, mis ei ole otseselt seotud keeletehnoloogiaga. See töö hindab trans-

formerite õppimisvõimekust males. Mudeleid treenitakse kasutades ilma märkusteta and-

mestikku male partiidest, mis on Forsyth-Edwards notatsioonis (FEN). Nende tulemus-

likkust võrreldakse mudelitega, mis on treenitud varasemates uuringutes välja pakutud liht-

samate andmestikega. Töö tulemusena leiti, et transformer-mudelid ei ole võimelised komp-

lekssemal FEN andmestikul üldistama ning need näitavad kõigil mõõdukitel nõrgemaid tu-

lemusi võrreldes kontrollmudelitega. 

Võtmesõnad: 

Masinõpe, transformerid, male, enesetähelepanu, juhendamata õpe 

CERCS: P176 Tehisintellekt 
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Introduction 

Self-attention-based transformer architecture (Vaswani, et al., 2017) has become the de-

facto model of choice in natural language processing (NLP). It has also proven to be suc-

cessful as the foundation of large language models in a variety of areas not directly related 

to natural language, like image recognition (Dosovitskiy, et al., 2021), predicting protein 

structures (Jumper, et al., 2021) and music generation (Dhariwal, et al., 2020).  

Transformer-based models have been shown to be capable of learning arithmetic, a task that 

requires rule-based reasoning, to a certain extent with only training data crawled from web-

sites (Brown, et al., 2020). While Nogueira et al. (2021) demonstrated that transformer-

based language models are incapable of learning rules of arithmetic beyond the length of 

numbers seen during training, which implies inherent  limitations arising from the lack of 

information in training data. 

The thesis evaluates, whether state-of-the-art language models are capable of learning the 

rules of chess based only on records of previously played games. In addition to historical 

relevance, the field is also an opportune testing area thanks to large databases of publicly 

available data on online chess servers and evaluation methods based on rules, in addition to 

usual language model evaluation metrics. 

NLP methods have been applied previously to the game of chess to research the rule-learn-

ing mechanisms of the architecture (Noever, Ciolino, & Kalin, 2020), (Stöckl, 2021). This 

thesis explores the problem from a similar perspective, using only unannotated transcripts 

of games to train the models and creating a system that discovers the rules of chess by itself, 

while improving on the methodology of previous research with a richer data format. Finally, 

the work of Stöckl (2021) is replicated and the results are compared to the new model.  

The work is divided into four chapters. The first chapter discusses the background of the 

thesis, related works, and the formulation of the problem. The second chapter describes the 

data and pre-processing methods. Chapter three details the training and evaluation methods 

and chapter four outlines the results, comparing them to the replicated implementation of 

Stöckl (2021). 
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1 Background 

This work is based on artificial neural networks (ANNs), the origin of which dates back to 

the 1940s, when the neurophysiologist Warren McCulloch and logician Walter Pitts (1943) 

proposed the first computational model of a neuron. It is now referred to as the McCulloch-

Pitts neuron. Their neuron had hard limitations though, it had fixed weights, which meant it 

couldn’t learn from data, and it only worked with boolean values.  

A major improvement to their neuron was proposed by Rosenblatt (1958), called the per-

ceptron. Rosenblatt’s perceptron could, compared to the McCulloch-Pitts neuron, work also 

with numerical values and learn its weights from data, using the first supervised learning 

algorithm, which was aptly called “the perceptron learning rule”. Yet it was still limited to 

simple, linear decision boundaries and would come to be replaced by ANNs (Sinai, 2017).  

1.1 Machine Learning 

The three major categories of machine learning (ML) are supervised learning, unsupervised 

learning, and reinforcement learning (RL). Of these three, supervised learning has been 

around the longest (Rosenblatt, 1958), its main characteristic being, that it uses labelled 

datasets to train algorithms to either classify data or predict outcomes based on data (IBM, 

2023). Unsupervised learning, on the other hand, works to discover patterns and groupings 

by analysing and clustering unlabelled datasets, so it does not require human intervention 

nor labelling (IBM, What is Unsupervised Learning?, 2023).  

Reinforcement learning methods differ from the other two. These enable an agent to learn 

through trial and error by freely interacting with its environment and maximizing the total 

cumulative reward from feedback, in the form of rewards and punishments, on its actions 

(Bhatt, 2018). 

While these three are the major techniques in ML, in practice they’re rarely used alone and 

are instead, sometimes inherently, combined with other methods. The form of machine 

learning used in this project can be called deep unsupervised transfer learning, since a pre-

trained deep neural network is fine-tuned to solve a new task on unannotated data. 

1.2 Transformer Architecture 

Transformers (Vaswani, et al., 2017), a type of deep neural network, are based on the mech-

anism of self-attention, which allows the language model to focus on relevant parts of the 

input sequence in order to compute a representation of the sequence. Self-attention is im-

plemented as a scaled dot-product function using query, key, and value matrices generated 

from the embedding of each input token. The output is then computed using the dot product 

of query and key, divided by the square root of the key matrices’ dimension, followed by 

softmax normalization and multiplication with the value matrix, see (1). Instead of a single 

attention function though, the paper further details multi-head attention, which allows the 

model to attend to information from different representation subspaces at different positions 

all at once. Multi-head attention achieves this by linearly projecting all matrices h times with 

different, learned projections to their respective dimensions and performing the attention 

function in parallel (Vaswani, et al., 2017 / ibid.). 
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Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝐾
)𝑉 .                                    (1) 

A comprehensible explanation of the architecture, which the following is based on, was 

written in a blog post by Jay Alammar (2018). At a high structural level, the transformer 

consists of a stack of n encoders and a stack of n decoders. The encoders all share the same 

two sub-layers: a self-attention layer and a feed-forward neural network layer, to which the 

self-attention layers’ outputs are fed. The decoders also have a third layer of attention be-

tween those two. A cardinal component of transformers, in addition to self-attention, is po-

sitional encoding. Positional encoding allows the model to account for the order of words 

in the input sequence. It works by adding to each input embedding an additional vector, 

which helps keep track of the distance between different words in the sequence and provides 

value to dot-product attention (Alammar, 2018 / ibid.). 

One of the types of transformers are causal language models, which a trained in a supervised 

setting by feeding them text as input to guess the next word, e.g. GPT models Radford, et 

al. (2018); (2019) and (Brown, et al., 2020).  

Are attention and memory in a neural network enough to enable rule-based reasoning? In 

2020, the OpenAI team (Brown, et al., 2020) demonstrated with GPT-3 that transformer-

based large language models are capable of learning to perform new tasks with surprisingly 

few examples. They concluded that extensive task-specific data or architecture is not nec-

essary, and simply scaling up the model size and using a few-shot approach is sufficient. 

Among other things, they showed that language models can learn 3-digit arithmetic, a task 

that requires on-the-fly reasoning, just from data crawled from websites (2020 / ibid.). 

Nogueira, Jiang, and Lin (2021) further studied the capabilities of transformers on arithmetic 

tasks. They found that the models are capable of learning addition and subtraction from very 

few examples if the training data is properly encoded, for example using 10e notation. How-

ever, the researchers also found that the models are unable to extrapolate the rules beyond 

the training parameters, except on very large models, which is unlikely to hold for more 

complex tasks (2021 / ibid.). 

1.3 Computer Chess 

As a historical pass-time and game of intellectual prowess, chess has also been one of the 

earliest important AI testing grounds, dating back to the works of Babbage and Turing. In 

1997, IBM’s Deep Blue (Campbell, Hoane, & Hsu, 2002) became the first chess machine 

to defeat a reigning world champion, Garry Kasparov, in a six-game match. It achieved this 

feat by employing a hybrid hardware/software tree-search algorithm that combined alpha-

beta pruning with massive parallelism and a constant-time hardware evaluation function 

(Campbell, Hoane, & Hsu, 2002 / ibid.). The advancements that followed Deep Blue mostly 

focused on improving search algorithms. For example, David-Tabibi and Netanyahu (2008) 

proposed the use of null-move pruning and extended null-move reductions, which leveraged 

null moves (skipping a turn) as a heuristic to improve the lower-bound value for pruning in 

tree-search. 
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While all of its methods had been used before with some success, DeepMind’s AlphaZero 

(Silver, et al., 2017) was the first to achieve state-of-the-art performance using deep neural 

networks with general tabula rasa reinforcement learning (RL), meaning that it learned eve-

rything except for the rules from playing against itself while trying to maximize positive 

outcomes. To work with different games, for example shogi, chess, and go, AlphaZero 

dropped the common alpha-beta search for a general-purpose Monte-Carlo tree search 

(MCTS) algorithm (Silver, et al., 2017 / ibid.), which is a probabilistic algorithm that views 

the game tree more broadly than alpha-beta search and estimates state values based on ran-

dom simulations (Coulum, 2006). 

Yet AlphaZero was not truly tabula rasa, since it still needed the ruleset of the underlying 

game. DeepMind’s successor to Alphazero, MuZero (Schrittwieser J. , et al., 2020) used 

model-based RL, which first uses a neural network to learn a dynamic model of the under-

lying environment and then plans with respect to that model, to make it truly independent 

of prior domain knowledge while matching AlphaZero in strength.  

1.4 Related Works 

This work is based on a parallel approach using fine-tuned natural language processing 

transformer models, which have gained attention in the field in the recent years. The first 

chess transformer model of this kind was built in 2020 (Noever, Ciolino, & Kalin, 2020). 

Noever, Ciolino, and Kalin (2020) trained a GPT-2 model on 2.8 million chess games played 

by players with an ELO rating over 2000. They used a stripped-down implementation of the 

portable game notation (PGN) format, keeping only the gametext and the Result tag, which 

they found useful for training. The model showed promise, as it generated games with an 

average of 67 moves per game, but made illegal moves 10% of the time (Noever, Ciolino, 

& Kalin, 2020 / ibid.). 

Similarly, Stöckl (2021) analysed how many correct moves a GPT-2 model trained on just 

the gametext part of the PGN would make. He also showed, through neuronal analysis, that 

all previous moves influence the next generated move to some extent. In the discussion part 

of his paper, he hypothesised that the model could benefit from a longer string representation 

of the games (Stöckl, 2021 / ibid.). This hypothesis was tested in this thesis, along with a 

replication of his work, which is explained further in the methodology section. 

1.5 Chess Notation 

The standard plain-text computer-readable format for recording games in chess is the port-

able game notation (PGN), which was devised by Steven J. Edwards (1994). It consists of a 

minimum of seven tag pairs: “Event”, “Site”, “Date”, “Round”, “White”, “Black”, and “Re-

sult”, followed by the movetext in standard algebraic notation (SAN). See Appendix I for 

an example. 

In this work, the games are represented in a modified version of the Forsyth-Edwards nota-

tion (FEN), which itself is an extended version of the Forsyth standard from the 19th century 

(Edwards, 1994). It consists of six fields: the piece placement data, the active colour, cas-

tling availability, the en passant target square, halfmove clock, and fullmove number. In the 
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context of this thesis, the halfmove clock and fullmove number have been removed. See 

Appendix I for an example. FEN is not originally intended to represent entire games, but 

rather specific positions with the information necessary to restart the game from them.  

The author of this work speculates that games consisting of tied-together FEN positions 

could better provide the information needed for language models to understand chess. In-

stead of just showing the model a sequence of moves, Forsyth-Edwards positions present 

the model with the entire board and additional information about the active colour, castling 

availability, and possible en passant targets. This allows the model to look at the games 

being played first-hand, instead of being told from a distance what moves have been made. 

The trade-off of this method lies in the longer text representation of FEN compared to the 

SAN gametext in PGN. The longer FEN format is harder for the model to process due to the 

limiting nature of its context length and may cause some informational loss. 
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2 Data and Preprocessing 

The models require a large amount of game data with legal moves, which were sourced from 

the open Lichess database1. The database holds compressed files of standard rated games 

played on lichess.com grouped by month. For this research, the data was sourced from the 

file for January 2023, which consists of over one hundred million played games. The dataset 

was decompressed using Meta’s Zstandard algorithm2 and sorted further with the com-

mand-line programme pgn-extract3. 

To control the quality of the games, the ELO values of the players in the metadata can be 

used to filter them. In online chess, many games are abandoned early on and therefore do 

not provide meaningful data for the model. A minimum length filter can be applied to re-

move these games from the dataset. After sorting with pgn-extract, games with less than 20 

moves and an ELO rating under 2000 were excluded.  

For the PGN replication dataset, all move numbers, variations, comments, results, tags, etc., 

were removed from the games, leaving only a pure string of SAN moves. Each game was 

written to the file on a single line. 

The FEN dataset was further processed using a forked version of the python project pgn-

ToFen4, which had to be reworked to output the standard ordering of the fields and to handle 

all exceptions without crashing. pgnToFen also removed all metadata, keeping only a pure 

string of games states in FEN. Since FEN game states are quite long, the dataset could not 

be handled with standard methods when games were written to one line per game. Therefore, 

the games were split into batches of twelve moves with an overlap of three moves to provide 

shorter inputs while avoiding data loss between the sequences5. 

In both cases there was an additional small dataset, which was held out during training and 

never shown to the model before the testing phase. All the lines of games in the held out 

dataset begin from the starting position. 

 

                                                 
1 https://database.lichess.org/  
2 https://github.com/facebook/zstd  
3 https://www.cs.kent.ac.uk/people/staff/djb/pgn-extract/  
4 https://github.com/0xsinex/pgnToFen/tree/main  
5 A video showcasing pgnToFen conversion: https://owncloud.ut.ee/owncloud/s/N2s92P2bBKAHXqj  

https://database.lichess.org/
https://github.com/facebook/zstd
https://www.cs.kent.ac.uk/people/staff/djb/pgn-extract/
https://github.com/0xsinex/pgnToFen/tree/main
https://owncloud.ut.ee/owncloud/s/N2s92P2bBKAHXqj
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3 Training and Evaluation Methods 

3.1 Hardware and Use of AI-Systems 

All of the computation was performed in the University of Tartu High Performance Com-

puting Center cluster (Tartu, 2018) using NVIDIA Tesla a100 GPUs, each with 32 GB of 

video RAM and 512 GB of main memory. 

ChatGPT (OpenAI, 2023) was used to improve text comprehension and readability with the 

prompt “Are there any mistakes here: [paragraph or subchapter]” and “Would you change 

anything to improve readability: [paragraph or subchapter]”. It was also used to debug error 

messages with the prompt “Please explain the following error: [error message]”. The model 

was not used to generate text, references, or code. 

Grammarly (Grammarly, 2023) was used as a typing assistant to fix grammatical and typing 

errors while writing the thesis. 

3.2 Training Methods 

The models were trained using the Pytorch (Paszke, et al., 2019) implementation of the 

Datasets package (Lhoest, et al., 2021) and the Transformers package (Wolf, et al., 2020) 

from HuggingFace6, specifically utilizing the GPT-2 architecture (Radford, et al., 2019).  

Due to the long nature of the data samples and large dataset size, many of the arguments - 

batch sizes, gradient accumulation, and FP16 mixed-precision training  (Micikevicius, et al., 

2018) – were chosen to just fit on the GPU and maximize training efficiency according to 

HuggingFace efficient training recommendations7. The number of workers for the Data-

loader were set to 0 to fix an error where the training does not start8. The models were saved 

after some steps for evaluation. 

3.3 Evaluation Methods 

Randomness was added to the generation process to avoid repetitive sequences that can 

emerge when the language model always chooses the token with the highest probability. 

This was done with top-p sampling, also known as Nucleus Sampling, which selects a subset 

of tokens that have a total probability of p or greater, and then samples from this subset to 

generate the next token (Holtzman, Buys, Du, Forbes, & Choi, 2020). 

Firstly, the models are evaluated on their perplexity (Brown, et al., 1988), a statistical meas-

ure which shows how well the model predicts a given set of data. Brown et al. formulated 

the measure as the inverse probability of the test set, normalized by the number of words in 

the test set, which means that the lower the perplexity, the better the model’s ability to pre-

dict data. In Transformers (Wolf, et al., 2020), it is calculated as the exponentiated average 

                                                 
6 https://huggingface.co/  
7 https://huggingface.co/docs/transformers/main/en/perf_train_gpu_one  
8 https://github.com/pytorch/pytorch/issues/15808  

https://huggingface.co/
https://huggingface.co/docs/transformers/main/en/perf_train_gpu_one
https://github.com/pytorch/pytorch/issues/15808
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negative log-likelihood of a sequence, where the sequence is considered the i-th token con-

ditioned on its preceding tokens9. 

The other evaluation metrics were the same as in the work of Stöckl (2021) in order to 

replicate his findings and compare results. The researcher proposed using chess-specific 

evaluation methods, calculating the average count of correct moves on games generated in 

three different ways: 

 From a list of typical opening positions after two moves; 

 From positions of games from a game data set after a given number of moves; 

 From randomly-generated positions after a given number of moves. 

 

According to the author, the three chess-specific metrics test different aspects of the model’s 

generalization capabilities. For the first metric, he says, that since all of the opening posi-

tions are found in the training data, the model can choose moves from its memory and won’t 

need any inherent knowledge of the rules until the sequences become very long. 

In the second evaluation method, the model will increasingly encounter more positions that 

it hasn’t seen before, since the original positions are sampled from a game dataset held out 

during training. Stöckl hypothesises that performance on this metric should scale with un-

derstanding of the ruleset. 

The sequence of random moves generated for the third metric will be the most challenging 

metric for the models because most of these moves have never appeared in human games, 

nor in the training data. The move patterns are very different from regular games and there-

fore, the author says, it is very difficult for the model to generate legal moves for these 

sequences (Stöckl, 2021 / ibid.). A widely popular psychology study by Chase and Simon 

(1973) showed that amateur chess players do not perform better at remembering random 

positions than masters, since they cannot rely on the relational structures between the pieces 

that they use ordinarily. Language models with only attention and memory, therefore, will 

also not be able to directly rely on small-scale representations of sequences and would need 

an abstract understanding of the game to make legal moves from random positions. 

                                                 
9 https://huggingface.co/docs/transformers/perplexity  

https://huggingface.co/docs/transformers/perplexity
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4 Results 

A total of four GPT-2 models were trained – the differing factors being format and dataset 

size. The FEN datasets consisted of 1,111,801 games for the larger model and 555,900 

games for the smaller model. The PGN datasets consisted of 1,100,000 games and 550,000 

games respectively. To assess the results, the models were saved after every 500 training 

steps and evaluated according to the methods described in chapter 4.3. A link to the code 

repository can be found in Appendix II. For all of the combinations of models and evaluation 

methods, the results were plotted over the training steps with a logarithmic regression fit 

drawn for each model. 

4.1 Forsyth-Edwards Notation Models 

The perplexity scores of the models, which can be seen on Figure 1., show that the FEN 

models outperformed the PGN models. Still, showing an upwards trend with increasing data 

and training indicates that performance of the FEN models would decrease and likely collide 

with the PGN models further on. While a perplexity score of k means that the model is as 

confused as if it had to choose uniformly among k possibilities (Brown, et al., 1988), this 

may not necessarily be a negative aspect for a chess model. It can imply that the models are 

not learning the rules and are simply memorizing potential moves for the sequence. In the 

context of chess though, it may also mean that the models are capable of generalizing better 

and suggest more potential moves, many of which could be legal. 

 

Figure 1. Perplexity scores over the training period 

Clear and reoccurring patterns emerge when the models are tested on each of the chess-

specific metrics, see the graphs on Figures 2, 3, and 4. Models trained on FEN data would 

consistently make at least one correct move only from typical opening positions, which had 

all certainly appeared in the training data. PGN models, on the other hand, fared much better 

and consistently made less than five correct moves only in positions that resulted from ten 

random moves. 
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Using FEN data does not provide an advantage to the models over using the shorter PGN 

and, in fact, inhibits the model from generating legal moves consistently. Moreover, the 

FEN models do not show improvement after the initial training steps nor do they show any 

remarkable differences in accuracy in respect to dataset size. 

 

Figure 2. Average number of correct moves generated from typical opening positions 

 

Figure 3. Average number of correct moves generated from positions after 10 random moves 
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Figure 4. Average number of correct moves generated from the tenth position of played 

games 

The generated moves of the FEN models are often very similar to legal moves, but the mis-

takes indicate a misunderstanding of the basic underlying rules. For example, the models 

might generate a position with a valid move, but mark a line on the board as having more 

than eight squares or mark more pieces than there are in the game. Further analysis is needed 

to identify potentially emerging patterns of mistakes, which might be worked around. 

The models are not capable of understanding the whole chessboard and its underlying ruleset 

from FEN datasets that are comparable in size to PGN datasets. While longer representations 

of games might be beneficial, the complexity of the whole chessboard for each position, 

rather than simply a move, is too much for a relatively small language model to comprehend. 

Another aspect that could lead to improvement is the use of larger datasets. FEN data is 

more complex than PGN as one move consists of around 50 characters, compared to two to 

seven characters in PGN, and provides much more information about the state of the game. 

It is reasonable to assume that an exponentially larger dataset could help address the chal-

lenges in learning, but it would increase computational complexity beyond what can be 

deemed rational when there are alternative solutions to the problem. 

4.2 Replication 

The medium GPT-2 models trained on 577,202 games and 2,163,417 games by Stöckl 

(2021) are the most comparable to the PGN models, trained with around half of a million 

and one million games respectively, in this thesis. In his work, training hours were used 

instead of steps for the basis of when to evaluate models. In this thesis, the models finished 

training at 14 hours for the smaller and 22 hours for the larger model. The comparisons, 

which can be seen in Table 1, were made at the logarithmic regression value at 20 hours of  
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training for Stöckl’s models and at the logarithmic regression value at the final training step 

of the replicated models. 

 

Table 1. Comparison of the Replication Models 

 

While the comparisons are fairly arbitrary, it can be seen that the replication models 

achieved similar results in generating legal moves after the 10th positions of games, yet were 

significantly outperformed when generating moves from typical opening positions. Since 

the models were trained on identically formatted datasets and evaluated using the same code, 

the differences may arise from the use of different hyper-parameters during the training 

process. 

 
577,202 games 

(Stöckl, 2021) 

2,163,417 

games  (Stöckl, 

2021) 

550,000 games 
1,100,000 

games 

From Opening 

Positions 
28 20 12.5 13 

Position After 

10 Random 

Moves 

2.8 2.9 2.7 3.25 

Position 10 of 

Played Game 
10.4 11 8 11 
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Summary 

To test whether a longer text representation of chess moves would improve a language 

model’s understanding of chess rules, two types of GPT-2-based transformer models, two 

for FEN data and two for PGN data, with comparable numbers of games were trained. The 

models were tested and compared on perplexity and chess-specific metrics. The previously 

suggested PGN models (Stöckl, 2021) outperformed the models proposed in this work by a 

clear margin in each chess-specific category. 

The author concludes that language models are capable of learning to generate correct chess 

moves to a certain extent from seeing unannotated transcripts of games. While this thesis 

explored using a richer text format, which includes a representation of the whole chessboard 

for each move, shorter formats remain a better option for natural language processing mod-

els. 

Further research could explore the internal mechanisms of the models, to see which parts of 

the Forsyth-Edwards notation are most important to the generation of correct moves. In 

other words, it remains to be answered, which parts of the input sequence the transformer 

pays attention to during move generation and how the representations are stored in the 

memory. 
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Appendix 

I. Examples of Formats 

 

The game used for both examples is Efim Keller vs Paul Keres in the USSR Championships 

in 1951, where Keres successfully defended his USSR Champion title10. 

The game in PGN: 

[Event "USSR Championship"] 

[Site "Moscow URS"] 

[Date "1951.11.18"] 

[EventDate "1951.??.??"] 

[Round "4"] 

[Result "0-1"] 

[White "Efim Geller"] 

[Black "Paul Keres"] 

[ECO "C99"] 

[WhiteElo "?"] 

[BlackElo "?"] 

[PlyCount "62"] 

 

1.e4 e5 2.Nf3 Nc6 3.Bb5 a6 4.Ba4 Nf6 5.O-O Be7 6.Re1 b5 7.Bb3 

d6 8.c3 O-O 9.h3 Na5 10.Bc2 c5 11.d4 Qc7 12.Nbd2 cxd4 13.cxd4 

Bb7 14.Nf1 Rac8 15.Bb1 d5 16.exd5 exd4 17.Bg5 h6 18.Bh4 Nxd5 

19.Qd3 g6 20.Bg3 Bd6 21.Bxd6 Qxd6 22.Qd2 Nf4 23.Qxa5 Bxf3 

24.gxf3 Nxh3+ 25.Kg2 Nf4+ 26.Kg1 Nh3+ 27.Kg2 Nf4+ 28.Kg1 Qd5 

29.Ng3 d3 30.Ne4 Qf5 31.Qb4 Rfe8 0-1 

 

The first eight moves of same game in the adapted FEN format used for training: 

 

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq -; 

rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3; 

rnbqkbnr/pppp1ppp/8/4p3/4P3/8/PPPP1PPP/RNBQKBNR w KQkq e6; 

rnbqkbnr/pppp1ppp/8/4p3/4P3/5N2/PPPP1PPP/RNBQKB1R b KQkq -; 

r1bqkbnr/pppp1ppp/2n5/4p3/4P3/5N2/PPPP1PPP/RNBQKB1R w KQkq -; 

r1bqkbnr/pppp1ppp/2n5/1B2p3/4P3/5N2/PPPP1PPP/RNBQK2R b KQkq -; 

r1bqkbnr/1ppp1ppp/p1n5/1B2p3/4P3/5N2/PPPP1PPP/RNBQK2R w KQkq -; 

r1bqkbnr/1ppp1ppp/p1n5/4p3/B3P3/5N2/PPPP1PPP/RNBQK2R b KQkq -; 

 

  

                                                 
10 https://www.chessgames.com/perl/chessgame?gid=1072805  

https://www.chessgames.com/perl/chessgame?gid=1072805
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II. GitHub Repository of the Used Code 

https://github.com/RMarrandi/Chess-GPT2   
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