

UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Computer Science

Cybersecurity Masters’ Curriculum

Brice Seiler

Vulnerability of Wi-Fi-enabled Devices to KRACK

Attacks – A Case Study

Master’s Thesis (21 ECTS)

Supervisor: Danielle Morgan, MSc.

Tartu 2023

1

Vulnerability of Wi-Fi-enabled Devices to KRACK Attacks – A Case Study

Abstract:

In 2017, security researchers Mathy Vanhoef and Frank Piessens discovered a serious set of

vulnerabilities in the Wi-Fi Protected Access/Wi-Fi Protected Access 2 (WPA/WPA2) se-

curity protocol that became known as key reinstallation attack, also known as KRACK. This

set of vulnerabilities allowed attackers to replay, decrypt or forge data transmitted over Wi-

Fi. For some Android smartphones, KRACK led to an all-zero key being used, making it

trivial for attackers to manipulate the Wi-Fi communication. Although it was acknowledged

as one of the most important vulnerabilities against WPA/WPA2, no follow-up studies in-

vestigated how devices can be tested against it, and if and how it still affects Wi-Fi-enabled

devices today. This Master’s thesis conducted a comprehensive analysis of the KRACK

vulnerabilities, by investigating their mechanics and detailing how to setup a testing envi-

ronment to research it. This testing environment was used to examine if devices were vul-

nerable to one of Vanhoef’s seven tests. The seven tests were performed on 29 Wi-Fi-ena-

bled devices collected through a convenience sampling method. In total, 203 test results

were gathered. Out of 29 devices, only 2 older smartphones were identified to be vulnerable

to the KRACK attack. Network captures are provided for discussing the tests’ outcomes.

Keywords:

Key Reinstallation Attack, KRACK, 802.11, WPA/WPA2, 4-way handshake, MC-MITM

CERCS:

T120 - Systems engineering, computer technology

2

Wi-Fi võimekusega seadmete haavatavus KRACK rünnakutele - juhtumi-

uuring

Lühikokkuvõte:

2017. aastal avastasid küberturbe spetsialistid Mathy Vanhoef ja Frank Piessens tõsise

haavatavuse Wi-Fi Protected Access/Wi-Fi Protected Access 2 (WPA/WPA2) turvaproto-

kollis, mida edaspidi nimetati võtme taaspaigaldus rünnakuks ehk “key reinstallation at-

tack”, või KRACK rünnakuks. Antud kogum haavatavusi võimaldas ründajatel taasesitada,

dekrüpteerida või võltsida Wi-Fi kaudu edastatud andmeid. Mõne Androidi nutitelefoni pu-

hul viis KRACK selleni, et kasutati kõik nullid võtit (“all-zero key”), muutes ründajate jaoks

Wi-Fi kommunikatsiooniga manipuleerimise triviaalseks. Vaatamata sellele, et seda peeti

olulisemaks haavatavuseks WPA/WPA2 protokollis, ei ole senini järeluuringuid, kuidas

seadmeid antud rünnaku vastu testida või kuidas ja kas see mõjutab veel tänaseid Wi-Fi

võimekusega seadmeid. Käesolev magistri töö viis läbi põhjaliku analüüsi KRACK haava-

tavuste kohta, uurides nende toimemehhanismi ja selgitades, kuidas luua selle uurimiseks

testimiskeskkond. Antud testimiskeskkonda kasutati, et tuvastada seadmeid, mis võivad olla

haavatavad ühele Vanhofi seitsmest testist. Antud teste viidi läbi 29-l Wi-Fi võimekusega

seadmel, mis koguti testimiseks kasutades mugavusvalimi meetodit. Kokku saadi töös 203

testi tulemust 29-lt seadmelt. Ainult kahel vanemal nutitelefonil tuvastati haavatavus

KRACK rünnakule. Töö lõppu on lisatud võrgu pakkettide väljavõtted, mis on toeks uuri-

muse tulemuste üle arutluses.

Võtmesõnad:

Key Reinstallation Attack, KRACK, 802.11, WPA/WPA2, 4-way handshake, MC-MITM

CERCS:

T120 - Süsteemitehnoloogia, arvutitehnoloogia

3

Table of Contents

1 Introduction ... 5

2 Terms and Notions .. 7

3 Background .. 9

3.1 Introduction to Wi-Fi Security ... 9

3.2 The 4-Way Handshake ... 11

3.3 The KRACK Vulnerability ... 20

4 Literature Review .. 29

4.1 Wi-Fi Security History ... 29

4.2 Practical Attacks Against Wi-Fi ... 33

4.3 Assessing Wi-Fi Security through Wardriving .. 35

5 Problem Statement .. 38

6 Methods .. 40

7 Results .. 44

7.1 Setup Procedure .. 44

7.2 Script Analysis .. 47

7.3 Devices tested for KRACK Vulnerability .. 51

8 Discussion ... 57

8.1 General Observations ... 57

8.2 Case Studies of KRACK Tests ... 60

8.2.1 KRACK against Fairphone FP4 (Android v12) ... 60

8.2.2 KRACK against Blackberry Bold 9700 (BlackberryOS v6) 62

8.2.3 KRACK against Samsung S5 (Android v6) ... 66

8.2.3 Replaying Broadcast Frames on Surface 3 .. 68

8.3 Impact and Limits of Results .. 69

9 Conclusion .. 72

4

References .. I

Appendix .. VII

I. Filters used for Wireshark Capture Figures ... VII

II. Step-by-step Process of KRACK Tests .. XI

III. License .. XII

5

1 Introduction

Wi-Fi is one of the most common ways for people to connect to the Internet nowadays,

especially for mobile devices: its traffic is estimated to be 5.4 times bigger than that of mo-

bile networks [1]. Defined as a standard in 1997 [2] by the Institute of Electrical and Elec-

tronics Engineers (IEEE), Wi-Fi’s current economic value is estimated at a staggering 3.3

trillion US$ [3]. In 2025, it is expected to rise to 4.9 trillion US$ according to the Wi-Fi

Alliance [3]. Some of the identified key contributors are free Internet access through open

Wi-Fi networks, consumers accessing the Internet through home routers, and enterprises

digitalising their business functions through Wi-Fi [3]. Especially in recent years notably

since the 2020 Coronavirus pandemic, Wi-Fi has been heavily used as more and more em-

ployees were working remotely [1]. Its main advantage for users resides in its wireless con-

nection, based on radio waves in the 2.4GHz, 5GHz (and now even 6GHz spectra), and its

higher data transfer rates and range than other wireless technologies such as Bluetooth [4].

To protect the confidentiality and integrity of Wi-Fi communications, security protocols

have been used since 1999 [2]. Even though Wi-Fi security continuously improved over

time, a particular set of attacks called “KRACK” (for “Key reinstallation Attacks”) was

discovered by researchers in 2017 [5] and was particularly devastating for Wi-Fi security.

Indeed, these attacks target a core element of the widely used Wireless Protected Access

(WPA/WPA2) security protocols: the 4-way handshake. This process establishes the en-

cryption keys used to secure a connection between a user and a Wi-Fi access point. The 4-

way handshake was among the novelties embedded in the WPA and WPA2 security proto-

cols. Soon after KRACK was discovered, the WPA3 security protocol was published.

The authors of KRACK showed that the attack allows malicious actors to replay, decrypt

and sometimes even forge Wi-Fi frames, without even knowing the Wi-Fi password of the

network. The worst case affects Linux-based operating systems (OSs), such as Android for

smartphones: when performing KRACK, an all-zero encryption key was installed and used

for communications. This completely breaks WPA/WPA2’s security, as the attackers can

forge and decrypt any exchanged frames. As shown in [6], Android made up around 70%

of the worldwide mobile OS market share in 2017. As of early June 2023, WPA2 is esti-

mated to be the most widely used Wi-Fi security protocol overall. Indeed, it would account

for almost 75% of Wi-Fi networks [7] according to wiglet.net (see Figure 1), one of the most

complete cooperative projects for identifying and mapping existing wireless networks in the

6

world (including Wi-Fi, cell towers and Bluetooth). Comparing some countries, WPA2 rep-

resents 72% of the United States’ Wi-Fi networks, 78% of Germany’s, 80% of Estonia’s or

88% of Switzerland’s. It should be noted that these statistics might not be representative, as

they depend on voluntary contributors scanning their environments for Wi-Fi networks.

Figure 1: Worldwide Wi-Fi security protocol statistics (as of 04.06.2023) [7]

Taking both the mobile OSs and the supported Wi-Fi security protocols into account, it can

be deduced that the potential attack surface for KRACK is important, but little research

showcased how to perform this niche attack against Wi-Fi. The findings were perceived as

critical [5], as major media outlets started alerting on how broken WPA2 became, although

this conclusion was exaggerated. The main objective of this thesis will be to present a com-

prehensive focus on the KRACK vulnerability and investigate the following: what is it, how

does it work, how can it be tested, and is it still affecting devices “in the wild”?

As a preliminary introduction to Wi-Fi security theory, Chapter 3 (Background) provides

an overview of the relevant concepts, namely the cryptographic systems used in Wi-Fi, the

underlying steps of the 4-way handshake, as well as the KRACK vulnerability and the re-

lated tactic to abuse it, known as Multi-Channel Man-in-the-Middle. Following this theo-

retical chapter, a literature review on Wi-Fi security and KRACK-related scientific articles

is presented. Chapter 4 (Literature Review) summarises the scientific gap, while Chapter 5

defines the problem statement. This is followed by a description of the methods used to

answer the research questions (Chapter 6). Furthermore, Chapter 7 (Results) presents the

details of this thesis’ analyses, followed by a discussion of the findings (Chapter 8). Finally,

a conclusion summarises this document (Chapter 9). Since many acronyms will have to be

used for conciseness, a list of the important abbreviations can be consulted in Chapter 2,

following this introduction.

7

2 Terms and Notions

AES Advanced Encryption Standard

AP Access Point

ARP Address Resolution Protocol

CBC-MAC Cipher Block Chaining - Message Authentication Code

CCMP Counter mode CBC-MAC Protocol

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

EAPOL Extensible Authentication Protocol over Local Area Network

GCMP Galois-Counter Mode Protocol

GMK Group Master Key

GTK Group Transient Key

HMAC Hash-based Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

ISP Internet Service Provider

IV Initialisation Vector

KRACK Key Reinstallation Attacks

MAC Media Access Control

MIC Message Integrity Check

MITM Man-In-The-Middle (attack)

OS Operating System

OSI Open Systems Interconnection

PBKDF/PBKDF2 Password-Based Key Derivation Function (2)

PMK Pairwise Master Key

PN Packet Number

PRF Pseudorandom Function

8

PSK Pre-Shared Key

PTK Pairwise Transient Key

RC4 Rivest Cipher 4

RSC Receive Sequence Counter

SSID Service Set Identifier

TKIP Temporal Key Integrity Protocol

TK/TEK Temporal Encryption Key

WEP Wired Equivalent Privacy

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

WNIC Wireless Networking Interface Controller

WPA/WPA2 Wi-Fi Protected Access (2)

9

3 Background

3.1 Introduction to Wi-Fi Security

The 4-way handshake was defined in 2004 in the 802.11i amendment of the IEEE 802.11

standard [8], which introduced WPA and WPA2 to replace WEP. This amendment defines

procedures to build so-called Robust Security Networks. WPA was thought of as a tempo-

rary solution for compatibility reasons with legacy hardware: it is based on the Temporal

Key Integrity Protocol (TKIP) as its data-confidentiality protocol, which uses Rivest Cipher

4 (RC4) as its core cipher. RC4 was the same cipher that was used in WEP, whose imple-

mentation was later shown to be weak. In the 802.11i amendment, WPA2 was designed to

last longer, as it would use the newly developed Advanced Encryption Standard (AES) ci-

pher within the CCMP block cipher. CCMP stands for Counter mode Cipher block chaining

Message authentication code Protocol: it combines the Counter mode with CBC-MAC as

its block cipher, and uses AES as its encryption algorithm. The Counter mode is used for

ensuring confidentiality, while the CBC-MAC mode is used for ensuring authentication and

integrity of the communication. Another amendment (802.11ad), established in 2012, added

GCMP (Galois-Counter Mode Protocol) as an optional block cipher. In 2018, yet another

security protocol called WPA3 was defined: its authentication method is slightly different

from WPA/WPA2 and is called “Simultaneous Authentication of Equals”. Indeed, WPA3

uses an additional type of handshake called “dragonfly handshake”, which uses elliptic

curve cryptography and precedes the 4-way handshake. Many attacks that could be used

against WPA/WPA2 networks were handled by WPA3 [2], notably the KRACK vulnera-

bility. Nevertheless, other attack techniques against WPA3 were also found later on by re-

searchers [9].

The Wi-Fi protocol (IEEE standard 802.11) is used in both Layer 1 and Layer 2 of the Open

Systems Interconnection (OSI) model [10, p. 21]. Layer 1 (or “Physical Layer”) notably

defines the frequencies and modulation types used for the radio waves. In Layer 2 (or “Data

Link Layer”), concepts like the Media Access Control (MAC) address or the BSS (Basic

Service Set) are defined and used. The MAC address is a 12-digit hexadecimal number as-

signed to each device connected to a network and is determined by the network interface

card (NIC). For Wi-Fi communications, a wireless NIC is used (WNIC). Nowadays, devices

like smartphones might also use a temporary (random) MAC address instead of the card’s

MAC address when connecting to a Wi-Fi network (i.e., a Wireless Local Area Network or

10

WLAN), for privacy reasons. The BSS corresponds to “a group of stations that communi-

cate with each other” [10, p. 24]. When a user wants to associate its device with a wireless

access point (“AP”) to have network connectivity, the BSS is said to be an “infrastructure

BSS”. Typically, to connect to such a WLAN, a user will contact the AP and end up having

access to the network or the Internet. The Basic Service Set Identifier (BSSID) is the iden-

tifier of an AP and by convention, it is its MAC address [11, p. 52]. In 802.11, it is also

possible to chain multiple BSSs together to make an Extended Service Set (ESS), so that a

user can connect (or keep staying connected) to the same underlying WLAN, although it

associates itself to different APs [10, p. 25]. Concerning Wi-Fi security, it’s in Layer 2 that

the Wi-Fi encryption mechanism takes place. As stated before, the Wi-Fi protocol uses radio

waves to send frames: each frame can be summarised as having a header and a payload, the

latter representing the data that will be encrypted.

In Figure 2, the general structure of an encrypted WPA/WPA2 frame is presented. The Layer

2 header is shown at the top, with the encrypted payload (“Payload Data”) delimited as

“ciphertext” below it. The 802.11 standard defines different types of frames: Management

frames, Data frames and Control frames. Management frames are typically used for estab-

lishing a Wi-Fi connection to an AP, the Data frames to transmit data (as expected) while

Control frames are used in conjunction with Data frames for acknowledging that the trans-

mission was correctly performed [12, p. 62]. Only Data frames will be encrypted.

Figure 2: Summarised structure of a WPA/WPA2 frame1

1 Source: https://securityboulevard.com/2019/10/wpa2-packet-frame-format/ (Accessed 26.04.2023).

https://securityboulevard.com/2019/10/wpa2-packet-frame-format/

11

The two lines following the “Link Header” part of the frame essentially constitute the data-

confidentiality protocol’s header. For each frame, a packet number is defined and used by

Wi-Fi encryption schemes (or “data-confidentiality protocols” in the 802.11i standard [13])

to add randomness to the final ciphertext. Note that “packet” and “frame” will be used in-

terchangeably in this thesis. As will be shown in subchapter 3.3, Wi-Fi security protocols

implement a unique key for each packet (also called a “per-packet key”), based on the afore-

mentioned packet number. Packet numbers are at the heart of the KRACK attacks and will

be discussed thoroughly throughout this thesis.

To get both the client and the AP to use the same encryption key, 802.11i defined an au-

thentication and session key generation process called the 4-way handshake, used in WPA

and WPA2. To encrypt data symmetrically, both parties need to exchange information that

will prove that they hold the same password, without actually sending it through the com-

munication channel. Using this password, the 4-way handshake will make both parties com-

pute the same session key, which will be used to encrypt communications. This is to protect

against attackers who would have cracked previously used session keys, but not the pass-

word. The procedure to agree on this session key is described next.

3.2 The 4-Way Handshake

The 4-way handshake was originally developed in the WPA/WPA2 protocols after critical

vulnerabilities were discovered in WEP only a few years after its release. WPA is based on

the same cryptographic algorithm (RC4) as WEP but in an improved cryptosystem (TKIP).

It was thought to be a good intermediate solution to replace the broken WEP, while still

being usable by legacy hardware. WPA2 uses a more modern cryptosystem (CCMP), which

uses a stronger encryption scheme than TKIP called AES. By default, WPA uses TKIP,

while CCMP is WPA2’s default, although it can optionally handle TKIP as well. It is also

relevant to outline that WPA and WPA2 both can be used in two different authentication

modes: one uses a password (a pre-shared key, or “PSK”) while the other uses an infrastruc-

ture that will add another layer of authentication (called “Enterprise”). For example, WPA-

PSK uses a password for authentication, while WPA-Enterprise uses a centralized authenti-

cation server (also called RADIUS for “Remote Authentication Dial-In User Service”) to

authenticate clients. For a given username, the RADIUS server checks if the provided user

password is correct, while in PSK mode, all WLAN clients share the same password. The

12

PSK mode is commonly used at home, while the Enterprise mode is mostly used in larger

networks such as in universities.

As the encryption process is symmetric (i.e., each device must have the same password

beforehand), it is important to keep the PSK secret. A session key called Pairwise Transient

Key (PTK) will be derived from the PSK. The PTK will be unique to the session of a specific

client connecting to a specific AP and will be split into subkeys, one of them being the actual

key used for encrypting data. Before being able to encrypt the communications, steps need

to be taken by a client. The WPA/WPA2 general connection process of a client to an AP is

performed in 4 phases [14] pictured in Figure 3. These are:

1. the Network Discovery phase,

2. the Authentication phase,

3. the Association phase,

4. the 4-way handshake.

Figure 3: Wi-Fi connection phases [14]

13

The network discovery (phase 1) consists of APs periodically sending beacons which in-

clude among other things, the SSID (Service Set Identifier, i.e., the ESS identifier and more

commonly known as the “name” of the Wi-Fi network), the MAC address, and the radio

channel it operates on. Clients will scan the channels looking for available APs and provide

a list to the user, who will then select the desired Wi-Fi network it wants to use. For that,

clients will send a Probe Request frame to the AP to check if the specific network is availa-

ble, while the AP will answer with a Probe Response frame to acknowledge its availability.

In phase 2 and phase 3 (respectively, authentication and association), Open System Authen-

tication is used, which can sometimes be misunderstood: this allows any client to start a

connection with an AP, without actually proving its identity (except for its MAC address).

It is a relic of WEP. Checking if a user (client) has the right password will indirectly be

performed during the 4-way handshake. Following the (open) authentication, association

frames will be exchanged telling the other device which cipher suites it will support [14].

Phase 4 is where the security of WPA and WPA2 lies: a mutual authentication is made of 4

messages, thus the name “4-way handshake”. The authentication protocol is based on the

IEEE 802.1X standard (also known as Extensible Authentication Protocol or EAP), which

implements EAP over LAN (or EAPOL) for Wi-Fi. This is why the 4 messages will also be

called EAPOL frames in this thesis. In this standard, the roles are differentiated into a “sup-

plicant” (the client) and an “authenticator” (the AP).

A Wireshark2 network capture summarises the four phases in Figure 4. It shows the Probe

Request/Response exchange between the AP (starting with “Shenzhen”) and the client (with

MAC address 22:61:71:23:de:e6). Then, the Authentication phase is taking place, followed

by the Association Request/Response frames. Finally, the four messages of the 4-way hand-

shake are exchanged.

Figure 4: Wireshark capture of a client’s Wi-Fi connection to an AP

2 Wireshark is a well-known network analysis tool. More information can be found on this tool at

https://www.wireshark.org/ (Accessed 22.07.2023).

https://www.wireshark.org/

14

Before going into each message of the 4-way handshake, the hierarchy of keys used in

WPA/WPA2 should be understood. Figure 5 summarises it: the password (sometimes called

“passphrase”) is used to define the Pre-Shared Key (PSK). Using the PSK, both the AP and

the client compute the Pairwise Master Key (PMK) using the PBKDF2 function. PBKDF2

stands for Password-Based Key Derivation Function 2 and needs five inputs: a pseudoran-

dom function (PRF), a password (PSK), a random value (called “salt”), the number of PRF

iterations to perform, and finally the desired length of the outputted key (in bytes). In

WPA/WPA2, the PRF used is the Hash-based Message Authentication Code (HMAC), the

salt value is the SSID, the number of PRF iterations is 4096, and the length of the PMK is

32 bytes, or 256 bits [15].

Figure 5: WPA2 Key hierarchy3

The session key (PTK) is computed using the PMK and the MAC addresses of the client

and the AP, as well as two random values exchanged between the client and the AP. The

PTK can only be computed during the session as these two random values are session spe-

cific. In brief, using PBKDF2, the PSK gets expanded into a larger random output, which is

the PMK. This can be performed before the 4-way handshake starts. Then, using a PRF

again, a PTK specific to the connection of a device and its MAC address will be determined.

To be more precise, the PTK is split into different subkeys, the subdivision depending on

the Wi-Fi security protocol (WPA or WPA2). In WPA2, the PTK is only split into three

subkeys, namely the Key Confirmation Key (KCK), the Key Encryption Key (KEK), and

the Temporal Encryption Key (TK or TEK, named “CCMP Key” in Figure 5). In WPA, the

3 Source: https://praneethwifi.in/2019/11/09/4-way-hand-shake-keys-generation-and-mic-verification/ (Ac-

cessed 22.07.2023)

https://praneethwifi.in/2019/11/09/4-way-hand-shake-keys-generation-and-mic-verification/

15

PTK is split into five subkeys: the KCK, KEK, TK, the MIC4 Tx Key, and the MIC Rx Key.

These last two subkeys are specifically used for TKIP in WPA. A summary of the core

cryptographic elements used in both WPA and WPA2 is displayed in Table 1.

Table 1 – Keys and Ciphers used in WPA and WPA2

Parameters per Wi-Fi security protocol WPA WPA2

Core Encryption algorithm (default) RC4 AES

Cryptosystem (default) TKIP CCMP

PSK “Pre-shared (master) key” WPA/2-PSK mode is used when the client and the AP share a

master password (the PSK) before the connection starts.

PMK

“Expanded and randomized ver-

sion of the PSK”

The PMK is computed by expanding the PSK with PBKDF2,

with the SSID and the PSK as inputs.

PTK “Session key (unicast)” The PTK is the general session key that is agreed upon during

the 4-way handshake.

PTK subkeys

Purpose of subkey

Five subkeys make up the

PTK (512 bits):

Three subkeys make up the

PTK (384 bits):

1. Key to compute EAPOL Message 2’s MIC, 1. KCK (128 bits), 1. KCK (128 bits),

2. Key to encrypt GTK in EAPOL Message 3, 2. KEK (128 bits), 2. KEK (128 bits),

3. Session key used to encrypt 802.11 frames, 3. TK (128 bits), 3. TK (128 bits).

4. Key to compute TKIP’s MIC for 802.11

frames sent by the AP (only for WPA),

4. MIC Tx key (64 bits),

5. Key to compute TKIP’s MIC for 802.11

frames sent by the client (only for WPA).

5. MIC Rx key (64 bits).

GMK “Master key (multicast/broadcast)” The GMK is generated by the AP.

GTK “Session key (multicast/broadcast)” The GTK is an expanded and randomized version of the GMK.

To encrypt unicast frames, the TK is used. For multicast or broadcast frames, another set of

keys is used: the Group Master Key (GMK) is defined by the AP alone and is used during a

session to compute a Group Transient Key (GTK). Therefore, the AP will transmit an en-

crypted version of the GTK for the client during the 4-way handshake for it to use. The

4 MIC stands for “Message Integrity Check” and is computed using either the Michael algorithm in WPA, or

a Hash-based Message Authentication Code (HMAC) for WPA2. TKIP also uses MICs in its algorithm [15].

16

usage of each key will be clarified when presenting the messages exchanged during the 4-

way handshake.

In Figure 6, details of the exchanges and computations of the EAPOL messages are dis-

played. Each message is summarised as “Msg n” in Figure 6 (n representing the EAPOL

Message number), with added details on the content of each EAPOL message. Note that it

represents the 4-way handshake of a WPA-PSK network, where the PTK is subdivided into

subkeys in a different way than for WPA2-PSK as shown before, thus the mention of Tx

and Rx MIC keys for the PTK and GTK.

Figure 6: Detailed WPA 4-way handshake and key generation process [2]

Now, let’s get into the 4-way handshake process itself, following Figure 6. The 4 EAPOL

messages of the handshake are as follows [2]:

1. EAPOL Message 1 contains the ANonce (“AP Nonce”), a random value generated

by the AP5. At this point, the client already has all the necessary data to compute the

PTK, which will be the session key. Remember that the actual key used to encrypt

data will be a subpart of the PTK, namely the TK.

5 In cryptography, a nonce is a “number-used-once”, meaning a random value, which is often used to add

randomness in key-generation processes [2].

17

2. EAPOL Message 2 contains the SNonce (“Supplicant Nonce”) and the MIC value

computed with a subkey of the PTK, the KCK. Now, the AP is also able to deduce

the PTK that will be used for this session. Computing the PTK, the AP will then

check if the MIC is valid, and if so, send EAPOL Message 3 to the client.

3. EAPOL Message 3 contains the Group Transient key (GTK) with another MIC

(let’s name it MIC*). The GTK is the session key used for broadcast and multicast

communications inside the local network and is computed with the Group Master

key (GMK), pre-generated by the AP. Using the KEK6 (another subkey of the PTK),

the client will decrypt the message and have the GTK and the computed MIC* value.

The client will have to check if the MIC* matches the HMAC value (i.e., the hash)

of the GTK. If that’s the case, it will send Message 4 to the AP.

4. EAPOL Message 4 contains an “acknowledgement” to confirm that it will use the

computed PTK and GTK for further communications. This ends the 4-way hand-

shake. Further Data frames should now be encrypted.

Given the four messages, the PMK is static until the SSID or the PSK is modified, while the

PTK (TK) and GTK are static for a given session (i.e., a particular client connected to a

specific SSID).

If the wrong password was entered by the user, an incorrect EAPOL Message 2 will be

received by the AP, which will send again EAPOL Message 1. A simplified view of the

structure of an EAPOL frame is shown in Figure 7. Each EAPOL message (frame) contains

a replay counter, which isn’t the same as the packet number, as it is specific to EAPOL

frames. It will also play a role in the KRACK vulnerability, which will be explained in

subchapter 3.3.

Figure 7: Simplified structure of an EAPOL frame [5]

The AP will increment the replay counter after transmitting an EAPOL frame, and the client

will use the same replay counter it received for its response [5]. The EAPOL “nonce” value

represents the random nonce the AP (ANonce) and client (SNonce) picked for the 4-way

6 Note that on Figure 6, “PTK” is displayed for encrypting the GTK, while it is in fact the KEK.

18

handshake, if present in the EAPOL message. Terminology can be confusing, as after the

handshake has been completed, the packet number used in each frame by CCMP to protect

against replay attacks is sometimes also called a “nonce”. In this thesis, “nonce” will refer

to the data-confidentiality protocol’s packet number. The Receive Sequence Counter (RSC)

value, sent in EAPOL Message 3 by the AP, is the starting packet number related to the

transmitted GTK, used for encrypting multicast/broadcast communications. Any transmit-

ted multicast/broadcast frame during the connection session will have to increment the RSC

value. The RSC value is always determined by the AP. If a broadcast/multicast frame con-

tains a packet number lower than the current RSC, then it shall be dropped by the receiver.

This will be relevant to a variant of KRACK targeting multicast/broadcast communications.

Furthermore, “MIC” represents the MIC value (if transmitted, as in the EAPOL Messages

2 and 3) used to verify the authenticity of the message. Finally, “Key Data” stands for the

EAPOL frame’s transmitted key (if a group key is transmitted, like in EAPOL Message 3),

which would be encrypted using the KEK. Figure 8 displays the ANonce, SNonce, RSC and

related MIC values, as well as the replay counter of the 4 EAPOL messages.

Figure 8: The 4 EAPOL frames and relevant data for the 4-way handshake

After the 4-way handshake is performed, all 802.11 Data frames exchanged between the

client and the AP will be encrypted. The general encryption scheme is shown in Figure 9. It

shows how encrypted frames are constructed after the 4-way handshake was performed.

Figure 9: Simplified encryption scheme in WPA/WPA2 [14]

Note that the packet number (PN) is related to the key used: the PTK and GTK will have

different ones. Also, the PTK is not the key that will be used to encrypt payloads, but the

TK as seen previously. To summarise the process, a binary “exclusive OR” (“XOR”) logical

19

operation is performed between a (per-packet) keystream and the frame’s payload. This

means that even if the same payload was encrypted twice, the encryption process would use

two different keystreams since the packet number will be incremented for every frame [5].

This is true only if packet number is not reused. The packet number, concatenated to the

sender’s MAC address and additional flags, which are available in the frame’s header, will

be used as the Initialisation Vector (IV) of the cryptosystems (CCMP, TKIP). This value

acts as a nonce for the security protocols [15]. This should typically ensure that the key-

stream will be unique to each packet. Since the IV (or nonce) mostly depends on the PN [5],

the two will be used interchangeably in this document. The PN gets reinitialised when a new

4-way handshake is established, which should also mean using a new PTK and GTK. The

PTK and GTK have their separate PN: the PTK starts with a PN set at 0 (in CCMP) or 1 (in

TKIP), while the GTK starts with a PN set at the RSC value given by the AP [5]. For iden-

tification reasons, these two types of IVs will be differentiated into “PTK-IVs” and “GTK-

IVs” from now on, to make it easier for the reader to follow along.

In brief, the encrypted frames can be summarised as an XOR operation between a per-packet

keystream and the packet’s payload. The data-confidentiality protocols are considered se-

cure only if the keystream is unique, which is the case if the IV is not repeated for a given

key [5]. If the same packet number is reused, then two encrypted payloads will have used

the same keystream. Given the XOR operation’s definition, if two plaintexts P1 and P2 were

encrypted with the same keystream C into the encrypted payloads E1 and E2, then it means

that that it is possible to decrypt one of the plaintexts (e.g., P1) knowing the other plaintext

(e.g., P2)7. As will be shown in the next subchapter, the actual XOR operation can be per-

formed between a known plaintext and its encrypted version to retrieve the keystream. De-

pending on the data-confidentiality protocol used, IV reuse allows more than that: one can

either replay, decrypt or even forge legitimate frames. For this, the session keys needs to be

reinstalled, which leads to the reinitialisation of the packet number, meaning to a keystream

reuse. This trick is at the core of the KRACK vulnerability, presented next.

7 This is well explained in [2]. First, let’s define the variables: Px represents packet x, Ex represents the en-

crypted version of packet x, and that Cx represents the keystream (or cipher stream) used in conjunction with

packet x. The symbol ⊕ is used as the XOR operator. Now, if E1 = P1 ⊕ C1, E2 = P2 ⊕ C2, and if C1 = C2

then we have that E1 ⊕ E2 = P1 ⊕ P2 ⊕ C1 ⊕ C2 = P1 ⊕ P2. Since E1 and E2 are known to the adversary, it

is sufficient for them to know P1 to find P2 (compute P1 ⊕ E1 ⊕ E2) or vice-versa (compute P2 ⊕ E1 ⊕ E2).

20

3.3 The KRACK Vulnerability

Now that the different keys and their usage should be more familiar to the reader, the concept

of the Key Reinstallation Attack (KRACK) vulnerability is presented. It encompasses a list

of 10 Common Vulnerabilities and Exposures (CVE) codes. CVE codes are vulnerability

identifiers and are widely used to assign criticality scores based on various factors. The scale

goes from 1 (“Low”) to 10 (“Critical”). As a pre-emptive note, the concepts related to CVE-

2017-13081 (IGTK), CVE-2017-13084 (PeerKey handshake), CVE-2017-13086 (TDLS),

and CVE-2017-13087/8 (WNM) won’t be discussed further in this thesis.

The full list is as follows [16]:

- CVE-2017-13077: Reinstallation of the pairwise encryption key (PTK-TK) in the 4-

way handshake.

- CVE-2017-13078: Reinstallation of the group key (GTK) in the 4-way handshake.

- CVE-2017-13079: Reinstallation of the integrity group key (IGTK) in the 4-way

handshake.

- CVE-2017-13080: Reinstallation of the group key (GTK) in the group key hand-

shake.

- CVE-2017-13081: Reinstallation of the integrity group key (IGTK) in the group key

handshake.

- CVE-2017-13082: Accepting a retransmitted Fast BSS Transition (FT) Reassocia-

tion Request and reinstalling the pairwise encryption key (PTK-TK) while pro-

cessing it.

- CVE-2017-13084: Reinstallation of the STK key in the PeerKey handshake.

- CVE-2017-13086: Reinstallation of the Tunnelled Direct-Link Setup (TDLS)

PeerKey (TPK) key in the TDLS handshake.

- CVE-2017-13087: Reinstallation of the group key (GTK) when processing a Wire-

less Network Management (WNM) Sleep Mode Response frame.

- CVE-2017-13088: Reinstallation of the integrity group key (IGTK) when processing

a Wireless Network Management (WNM) Sleep Mode Response frame.

The attacks against the group key handshake (CVE-2017-13080) and FT handshake (CVE-

2017-13082) will be briefly presented further in this subchapter, after having explained the

concept behind the KRACK attacks. Also, the group key handshake will be summarised. As

can be seen in the list, all these vulnerabilities consist of a type of key reinstallation. The

main CVE is considered, according to Vanhoef, to be CVE-2017-13077 as it is the most

critical one in terms of potential harm against a Wi-Fi user. Based on the Common Vulner-

ability Scoring System version 3 (CVSSv3), it received a score of 6.8 (“Medium”) from the

National Institute of Standards and Technology (NIST), a US governmental agency,

21

following the article of Vanhoef and Piessens [5]. Before their paper, the most efficient way

to attack WPA and WPA2 networks directly was to run dictionary attacks8 against them,

meaning that the Wi-Fi password (PSK) could be easily guessed or found using lists of

possible passphrases to test against the AP [2]. More details on the evolution of Wi-Fi at-

tacks are presented in the literature review (Chapter 4). This type of attack usually needs to

capture the 4-way handshake between the client and the AP to work, as the encrypted com-

munication that will follow uses the TK (a subkey of the PTK representing the “session”

key), and not the PSK nor the PMK. Plain brute forcing is hardly feasible with current tech-

nologies and strong passwords [2]. Capturing the 4-way handshake was the main type of

attack against WPA/WPA2 (also called “offline dictionary attacks”) until the various key

reinstallation attacks were observed under certain conditions. With KRACK, an attacker

doesn’t need to capture a 4-way handshake or retrieve the PSK but only needs to be in the

range of both the client and AP. It uses an adversarial technique called a Multi-Channel

Man-In-The-Middle (MC-MITM) attack. The core elements behind KRACK are explained

first, followed by a brief explanation of the MC-MITM attack.

The core vulnerability resides in the machine state of devices. The supplicant goes through

various states depending on conditions during the 4-way handshake (Figure 10).

Figure 10: Informal supplicant (client) machine state during the 4-way handshake [5]

As explained in Vanhoef and Piessens’ article [5], this state machine of the supplicant (i.e.,

the client) concerning the 4-way handshake was specified in the 802.11r amendment in

8 A dictionary attack is a technique that aims at improving brute-force attacks by giving a list of possible

wordlists to test (and possibly, combinations of these words by defining rules), instead of going over all pos-

sible values.

22

2016. First, the supplicant enters the “PTK-INIT” state when starting the 4-way handshake,

after the Authentication and Association steps were performed. The PMK is computed as

detailed in the previous subchapter. Then, when EAPOL Message 1 is received by the sup-

plicant, the PTK’s computation is performed. The supplicant will move to the “PTK-

START” state. In Figure 10, “TPTK” stands for “Temporary PTK” and is used because the

supplicant still needs confirmation from the authenticator that it will be the valid PTK. The

supplicant’s last action in this state is to send EAPOL Message 2 to the authenticator. If this

message is not received by the authenticator, it will resend EAPOL Message 1 to the sup-

plicant. If EAPOL Message 1 is received again, the supplicant will stay in the same state.

Following this, the supplicant will switch to the “PTK-NEGOTIATING” state if the follow-

ing conditions were satisfied: it received EAPOL Message 3, the authenticator’s MIC was

successfully verified, and the EAPOL replay counter is validated. In this state, the supplicant

will confirm its PTK (switching from a TPTK to PTK) and send EAPOL Message 4 to the

authenticator. Automatically, the supplicant will then move to the PTK-DONE state where

it will install the session keys, namely the PTK and GTK. It also enables the 802.1X logical

port for the supplicant, used for sending and receiving encrypted frames. If EAPOL Message

3 is sent again (and it is valid, meaning it has a correct MIC and a valid replay counter

value), then the supplicant goes back to the “PTK-NEGOTIATING” state, thus resetting the

PTK to the TPTK. On the authenticator’s side, the 802.11i standard states that to accept

EAPOL Message 4 (i.e., the EAPOL replay counter was validated), the AP should check

that “[the replay counter] was one used in the handshake” [5]. Finally, the retransmission of

EAPOL Messages 1 and 3 by the AP can also happen if it respectively didn’t receive

EAPOL Messages 2 and 4. Note that this can happen also because of background noise.

The vulnerability resides in the fact that the supplicant can still accept EAPOL Message 3

being retransmitted to it even when it is in the last state (“PTK-DONE”), with the PTK and

GTK already installed using the MLME.SETKEYS primitive function. This will lead to the

following scenario: after the client sends EAPOL Message 4, it will automatically install the

agreed PTK. It also means that it will normally9 start encrypting any Wi-Fi frame it will

9 The wording “normally” is selected here on purpose because, as shown by Vanhoef and Piessens [5], the

exact implementation of 802.11i is not uniform across operating systems, supplicants, and APs. The paper also

discusses the case where the retransmission of EAPOL Message 3 to the supplicant will be discarded if the

retransmitted EAPOL Message 3 is not encrypted using the previously agreed PTK. For the same reasons, it

23

send to the AP using its PTK, most of the time also including the first transmission of

EAPOL Message 4 according to [5]. To perform the attack, the adversary must block the

arrival of EAPOL Message 4 from the client to the AP, so that the latter resends EAPOL

Message 3 to the client, as per the 802.11 standard. The attacker will transfer this message

to the client. When this happens, the client will reinstall the (same) session keys, with the

nonce (packet number) used by the data-confidentiality protocol (TKIP, CCMP, GCMP)

also being reset. As a result, the client will send EAPOL Message 4 to the AP again, but this

time encrypted using the previously agreed PTK. This leads to an example of keystream

reuse that an adversary can use against the cryptosystem, as shown in Figure 11.

Figure 11: Example of attack using the KRACK vulnerability with a MC-MITM position [14]

Indeed, by accepting the retransmission of EAPOL Message 3 (the pink arrows in Figure

11), the client will reset the packet number. In Figure 11, keystream reuse is exemplified

when EAPOL Message 4 is first transmitted unencrypted at the end of the handshake, with

its encrypted version being transmitted by the client after having received EAPOL Message

3 again. Therefore, an attacker can use the invertible XOR operation on the encrypted pay-

load with the plaintext payload (here, EAPOL Message 4) to retrieve the keystream for this

packet number. More generally, Vanhoef found that this keystream reuse allowed him to

is also possible that the AP rejects the encrypted EAPOL Message 4 sent by the supplicant, since it didn’t

install its keys yet (i.e., because the plaintext EAPOL Message 4 wasn’t received yet).

24

either replay, decrypt or forge packets depending on the data-confidentiality protocol (see

Figure 12).

Figure 12: KRACK impact by data-confidentiality protocol used [5]

As was shown in the list of CVEs, one targeted the FT handshake (CVE-2017-13082). As

Vanhoef developed a test for the FT handshake vulnerability, it is worth briefly summarising

it now. The FTK handshake also consists of four steps (stage “1” in Figure 13).

Figure 13: KRACK10 against the FT handshake [5]

To allow for a faster transition between APs of the same Wi-Fi network (i.e., part of the

same ESS), the 802.11r amendment was developed and defined the FTK handshake. The

10 In stage “3”, the first frame should be ReassoReq and not ReassoRep (see Vanhoef’s Erratum in [5]).

25

first two messages are an Authentication Request (AuthReq), and an Authentication Re-

sponse (AuthResp), which carry randomly generated nonces used to derive a fresh PTK.

Following this, the client sends a Reassociation Request (ReassoReq), and the AP replies

with a Reassociation Response (ReassoResp). A MIC is used to authenticate the two reas-

sociation messages. Furthermore, no replay counter is used in the FT handshake. Instead, it

relies on the (random) SNonce and ANonce values to provide replay protection between

different handshake sessions. The 802.11r amendment also states that the PTK must be in-

stalled after the AuthResp message is sent or received. Additionally, the 802.1X logical port

is opened only after sending (or receiving) the ReassoReq message. This ensures that the

AP and client will only transmit or accept 802.11 data frames after a handshake got com-

pleted, even if the PTK was already installed. As such, the FT handshake should in theory

be protected against KRACK. According to Vanhoef, this was apparently not the case in

reality: the PTK (and GTK) are reinstalled when replaying a ReassoReq message. It can be

replayed since there are no replay counters and the MIC is valid. The AP will accept and

process this replayed frame, and thus reinstall the keys and reset the related IVs.

The last handshake presented in this subchapter is the group key handshake. CVE-2017-

13080 targets this handshake. While the GTK is first installed during the 4-way handshake,

it can be periodically refreshed by the AP during the so-called group key handshake [13, p.

220]. It only consists of two EAPOL messages: the EAPOL “group” message 1 is sent by

the AP to all clients, while the second “group” message is sent by a client to the AP, ac-

knowledging this change. If the AP didn’t receive a reply to its request, it will retransmit

EAPOL “group” message 1. The EAPOL “group” message 1 contains the new GTK to use,

and normally the RSC value of the last used GTK-IV. In reality, the AP determines which

RSC value to send to clients: the client will accept it if the RSC value “has not yet been seen

before” [13, p. 221]. In response, the client will send the second group message with an

incremented RSC. The idea behind the attack of this handshake is to collect a retransmitted

EAPOL “group” message 1, block it from arriving at the client, and forward it to the client

at a later stage. This will trick the client into reinstalling the GTK, and thus reinitialise the

GTK-IV of the installed group key. When clients want to send broadcast or multicast frames

(i.e., group frames), they will essentially send unicast frames to the AP, who will then use

the GTK to send actual encrypted broadcast/multicast frames on the WLAN. For clients, the

GTK is therefore only used to decrypt AP-encrypted multicast/broadcast frames. Since the

key reinstallation targets the client, no nonce reuse can be forced. Instead, the GTK

26

reinstallation makes it possible for the attacker to replay frames from the AP since the RSC

value can still be reset [5]. The impact might be indirect but nonetheless important: as men-

tioned by Vanhoef in [5], taking the Network Time Protocol11 operated in broadcast mode

as an example, replaying frames could compromise time reliability and result in target de-

vices being stuck at a certain time if the replay is periodical. Vanhoef mentions that unreli-

able clock time can impact other security systems like TLS certificates, DNSSEC, or Ker-

beros authentication.

As mentioned previously, the adversary performs an MC-MITM attack to set itself between

the client and the AP. As thoroughly explained in [14], this attack allows the previously

established and secured connection between a client and the AP to remain untouched by the

adversary. Instead, it will use two Wi-Fi channels, thus the name “Multi-Channel”. The

attacker will spoof the real AP for the client on another channel while spoofing the client on

the initial channel for the AP, as summarised in Figure 14.

Figure 14: General configuration of an MC-MITM attack [14]

To perform an MC-MITM, an adversary first must set up (rogue) interfaces to spoof the

client and the AP, and secondly, force them to switch to the selected rogue channels. To

perform the first step, the adversary needs to clone the AP on another channel than the cur-

rently used one, meaning that it will set up a rogue AP using, among other things, the same

MAC address and the SSID as the legitimate AP. To seem legitimate to the AP, the adver-

sary needs to modify the firmware of its second Wi-Fi interface to send acknowledgement

Wi-Fi frames when it receives unicast frames from the AP (sent to the legitimate client),

thus impersonating the real client. The result should be that a rogue client (interface 2) lis-

tens on channel A for the real AP, while a rogue AP (interface 1) communicates on channel

B with the legitimate client. This technique allows an attacker to stay stealthy, as the only

11 This protocol is used as a networking protocol helping computers’ clock times to be synchronized inside of

a network.

27

visible change is the channel used (for communications with the legitimate client). The two

interfaces used by the adversary will just transfer frames from one to the other. The previ-

ously secured communication channel remains intact, as the goal is to move the client to the

new channel and to impersonate the legitimate client for the AP on the same Wi-Fi channel

as before.

Figure 15: Steps to perform an MC-MITM attack [14]

To get the client to move to the new channel, beacons from the legitimate AP are retrans-

mitted (Figure 15). This can be performed using Channel Switch Announcement frames and

work if the attacker’s signal is stronger than the AP’s. To push the client to the new channel,

the attacker can temporarily jam the legitimate channel so that the client sees the beacons of

the rogue AP. The client, trying to find the AP by scanning other channels, will find (re-

played) Beacon frames from the legitimate AP with the correct SSID on another channel,

and will in practice end up sending a Probe Request on this channel, in fact, to the attacker’s

AP. An easier alternative is to send Channel Switch Announcement frames to the client with

a stronger signal than the ongoing communications to and from legitimate AP, which will

also move the client to channel B [14].

Following this, the rogue AP sends a custom Probe Response to the client on the new chan-

nel B to have the client continue the process with an Authentication Request frame sent to

the rogue AP. Then, the rogue AP can collect this Authentication Request frame and re-

transmit it to the true AP on the legitimate channel, using the rogue client. The real AP

should accept it, and in response, will send an Authentication Response frame on channel

A. This leads to the rogue client collecting and retransmitting this response on the new chan-

nel. Analogously, Association frames are retransmitted through the two interfaces. The 4-

way handshake can take place following the completed association step. In summary, the

communication channel is only interrupted for a short period of time so that the client starts

28

communicating on the new channel and sends an authentication request frame, which will

be sent to the legitimate AP on the previous channel [14].

29

4 Literature Review

The present chapter aims at giving a literature overview of the available research on Wi-Fi

security and KRACK-related research questions. First, the history of Wi-Fi security preced-

ing and surrounding the KRACK discovery is presented, supplemented by articles on the

perception of Wi-Fi-related risks. This is meant to present a historical overview of previous

research on Wi-Fi security challenges to the reader, as well as the user-perceived risks of

using Wi-Fi under certain conditions. Then, a summary of practical attacks against Wi-Fi

security mechanisms is suggested. This subchapter showcases articles that explain ways to

find new attacks or implement already known attacks, against Wi-Fi networks. Finally, it is

followed by a presentation of articles that assessed the nearby Wi-Fi security environment,

mainly through wardriving. It seems to be the most popular technique to collect large

amounts of data on Wi-Fi-enabled devices and helps to assess the Wi-Fi security environ-

ment. As will be shown, some research groups looked at how ISPs (Internet Service Provid-

ers) provide (or do not) Wi-Fi security measures to their customers, while others mainly

focused on Wi-Fi security statistics.

4.1 Wi-Fi Security History

Previous studies already showed ways to get around some of the Wi-Fi security measures

put in place, starting with WEP. A few years after its release, WEP’s core encryption

scheme, RC4, was shown to have various vulnerabilities embedded in it [17]. Exploiting

these, researchers developed attacks against the WEP encryption key, which would need the

collection of encrypted Wi-Fi frames [18]. This is always possible as Wi-Fi frames are radio

waves and thus physically reachable if an attacker is in range. Studies continued to imple-

ment more efficient techniques, with the peak of this development being the attacks de-

scribed by research groups in 2007 [19] and 2008 [20]. They showed that WEP cracking

could take less than 1 minute, because of its weak cryptosystem.

This called for a quick replacement, which was presented by the IEEE committee responsi-

ble for 802.11. They proposed two new security protocols: WPA, which would still use RC4

but in a different way (thus, remaining compatible with legacy hardware), and WPA2, which

would use the more secure AES algorithm for future use in hardware. The fact that WPA’s

security was still using RC4 made it vulnerable to similar WEP attacks, as showed by the

same German research group in [20] in 2008, although they needed the password to be

“weak”.

30

While WEP and WPA attacks were already discussed in various papers, another Wi-Fi se-

curity certification meant to be easier to set up was soon shown to be also easier to hack: the

Wi-Fi Protected Setup (WPS) system, released in 2007. It was developed by Cisco and im-

plemented as an alternative way of connecting clients to a Wi-Fi router that uses

WPA/WPA2. Indeed, a PIN code is used to authenticate clients instead of a password. A

couple of years after its release, a security expert showed how poorly the WPS system was

designed and implemented. He showed that brute-forcing the PIN was possible given its

short length, leading to a maximum of 11’000 possible values [21]. The attack wouldn’t be

affected by the length of passwords, and thus, if no blocking scheme was implemented on

the router’s software, the attack could take less than 5 seconds. He originally designed a

program in Python as a proof-of-concept, described in his article. Soon, tools hacking WPS

would be developed and included in the Kali OS as well12.

As presented in subchapter 3.2, the WPA and WPA2 protocols are using the so-called 4-

way handshake, with the security of the system thoroughly analysed in [22]. Given its key

generation scheme, just capturing packets wouldn’t suffice to find the encryption key, alt-

hough it will be later shown that specific attacks could still be run against it. The attention

was moved to the 4-way handshake itself, as it included all the needed elements to recover

the password by brute-forcing the handshake, which is feasible when the PSK is weak. The

most popular technique was thought to be launching a so-called dictionary attack on the

captured handshake to uncover the initial password. This is so because WPA and WPA2’s

schemes to derive the PTK and PMK using the PSK are time-consuming processes, thus

making plain brute-force attacks almost unfeasible. A well-known tool package for diction-

ary attacks against WPA/WPA2 is the aircrack-ng suite13, but it isn’t the only one. Next to

WPA-PSK and WPA2-PSK Wi-Fi configurations, there are also the WPA-Enterprise and

WPA2-Enterprise networks, which use a per-user password to derive a session key. The

literature on attacks targeting these systems was found to be less abundant than for the PSK

systems. Nevertheless, studies showed that the Enterprise mode also has its vulnerabilities,

as it will be briefly shown later.

12 The main tool to hack WPS on Kali is called Reaver and is included by default in the OS. For more infor-

mation, see https://www.kali.org/tools/reaver/.

13 See https://www.aircrack-ng.org/ for more details.

https://www.kali.org/tools/reaver/
https://www.aircrack-ng.org/

31

As shown previously, the KRACK vulnerability was discovered by Vanhoef and Piessens

in 2017 [5]. This attack allows a user to replay, decrypt captured messages and sometimes

even forge messages (unless CCMP is used). The authors discovered that most Wi-Fi-ena-

bled devices (using various OSs) were vulnerable to this attack. For Linux-based OSs, typ-

ically Android for smartphones, the attack was even worse as the reinstalled key (TK) was

always an all-zero-byte key. This is due to a mechanism that was thought to be good for

security: after having been installed, the PTK was deleted from memory by setting its cor-

responding value to 0 bytes to reduce the possibility of malicious access to it. By doing so,

when KRACK is performed, the PTK (and thus the TK) is set to all-zero bytes. The vulner-

ability resides in the wpa.c file as explained in [23], referring to the commits that were per-

formed by the authors of the wpa_supplicant and hostapd packages14. Vanhoef also raised

the specific issue of the wpa_supplicant client on the Chromium OS reinstalling all-zero

keys in 2017, showcasing how to check for vulnerable devices [24]. This vulnerable behav-

iour affects wpa_supplicant v2.4, v2.5 and v2.6. Vanhoef also published another study, writ-

ten in 2018, describing improvements in performing the KRACK attacks, in particular at

the implementation level of these attacks [25], but also showing that other types of related

handshakes were vulnerable to KRACK.

In 2019, a Master’s thesis performed at the Czech Technical University in Prague also thor-

oughly discussed KRACK and detection mechanisms [26]. Its listed goals were to develop

a testing tool, study generated traffic while KRACK is performed, as well as analyse detec-

tion mechanisms. Also, testing KRACK against Wi-Fi-enabled devices was performed. The

development of a KRACK-exploitation tool was reduced to a detection system, similar to

the scripts Vanhoef published later on his GitHub repository [27]. The code was written in

Python and is not publicly available. Also, the same Vanhoef scripts were used in this thesis

to test KRACK on devices. Out of 21 devices, 4 devices were reinstalling the PTK, all using

Android v6 or below. Interestingly, all the devices were apparently reinstalling the GTK

during the 4-way handshake. It seems that only the main testing script was tested. The group

key handshake wasn’t tested for example. The script to test the FT handshake was tested on

two university APs. None of them were vulnerable.

14 Actually, the specific commit number ad00d64e7d8827b3cebd665a0ceb08adabf15e1e, available at

https://w1.fi/cgit/hostap/commit/?id=ad00d64e7d8827b3cebd665a0ceb08adabf15e1e (Accessed

11.06.2023), was used for the analysis in [23].

https://w1.fi/cgit/hostap/commit/?id=ad00d64e7d8827b3cebd665a0ceb08adabf15e1e

32

Another important 2022 paper [14] concerns the technique which Vanhoef and Piessens’

used for discovering KRACK in [5], namely the MC-MITM. The researchers present a re-

view of the technique, which is at the core of KRACK exploitation, and discuss the various

ways it can be used to attack Wi-Fi networks in general. The authors have a subchapter on

the KRACK vulnerability. Reviewing types of MC-MITM attacks and patching statistics,

the authors cite tests from a cybersecurity company done in 2019, from which they deduced

interesting statistics: testing multiple Wi-Fi-enabled devices (wireless networking cards,

Wi-Fi client software, AP, OS, etc.), around 90% of them were still vulnerable to KRACK

(although the vulnerabilities were 2 years old). Using the same MC-MITM technique,

Vanhoef found new vulnerabilities related to packet fragmentation, which he nicknamed

“FragAttacks” [28]. Although the conditions for it to work are stricter than for KRACK, he

found that it affected all wireless security protocols, from WEP to WPA3.

Another vulnerability similar to KRACK was later published in 2020 by a Slovak research

team working at ESET, a company specialising in IT security software [29]. While the at-

tack, named Kr00k, is similar to KRACK, the vulnerability resides at a different level. In

fact, the Kr00k vulnerability exists because when disassociating, some wireless network

cards (of clients and Wi-Fi routers included) were “flushing” the current encryption key,

setting it back to all-zero bytes. At the same time, the device will also empty its memory,

sending the remaining data encrypted with the key, which became an all-zero key. This

means that some remaining frames will be encrypted using this all-zero key, similar to the

Linux-Android vulnerability to KRACK.

To conclude this subchapter with the user perception of Wi-Fi-related risks, a 2020 research

paper [30] qualitatively analysed the Wi-Fi security awareness of users, with a specific em-

phasis on KRACK. Their qualitative method consisted of semi-structured interviews with

Wi-Fi router owners in the area of Munich, with a small sample of 16 participants, a majority

being male students. The authors found that 37.5% of Android devices (6/16) and 62.5% of

iOS devices (5/8) were vulnerable to KRACK, although how this was determined is un-

known. Also, they concluded that although most participants were aware of Wi-Fi-related

risks, they didn’t implement security best practices when using or managing their Wi-Fi

infrastructure, such as changing factory default settings or having strong passwords. An-

other research group pursued similar research objectives in Japan in 2018, by setting up

open Wi-Fi networks and looking at the traffic of users that would connect to them [31].

They observed that women, and more generally people with higher education, were more

33

likely to use public Wi-Fi and that the main motivation for taking this risk was to preserve

their mobile data allowance, especially for people with a low monthly data allowance. They

also noticed that many user applications still didn’t add encryption for their communica-

tions, which would indicate that Wi-Fi security is still relevant to this day to ensure confi-

dentiality. It should be pointed out that these results might encompass cultural and regional

biases that aren’t addressed thoroughly in their discussion.

4.2 Practical Attacks Against Wi-Fi

With time, research studies started to develop specialised attacking tools and techniques.

For example, one paper written in 2015 [32] presented a way to attack WPA2-PSK without

capturing the handshake. It speeds up the dictionary attack on WPA2-PSK by creating mul-

tiple virtual wireless clients (VWC) that would “act” as real clients. Each of the VWCs

would then make password guess trials: each VWC will reply to the AP’s EAPOL Message

1 with an EAPOL Message 2, and if the password was wrong (i.e., a new EAPOL Message

1 is sent by the AP), then it would try another password, until a Deauthentication frame is

sent by the AP. The authors tested their script live on various wireless router models, and

only needed one WNIC. They saw that they could speed up the process by a factor of 100.

The issue with this methodology is that it was heavily dependent on the routers’ processing

power, although being an interesting alternative if no 4-way handshake can be captured.

Other such examples are the various side-channel attacks against WPA-TKIP developed by

Schepers, Ranganathan, and Vanhoef in 2019 [33]. First, the research looked at the imple-

mentation of TKIP at several levels of the Wi-Fi stack, such as the hardware (the WNIC),

the OS (i.e., the driver or Wi-Fi subsystem) and the Wi-Fi client. Then, focusing on the

attack on TKIP discovered in 2009 by [20], they aimed for ways around the deployed coun-

termeasures and successfully found them on numerous elements of the Wi-Fi stack. Finally,

the research group also considered the attack surface of their attacks and compared it be-

tween different regions, namely Boston (USA), Hasselt (BE), and Leipzig (DE). To collect

the APs’ data, they used wardriving, a methodology consisting of driving around in towns

in a car with Wi-Fi dongle-connected hardware (usually, compact ones like an Arduino or

Raspberry Pi system). The goal of this method is to quickly gather information about sur-

rounding APs, such as the SSID, the channel the Wi-Fi network is using, or the type of

security protocols it supports. They found that on average, almost 50% of identified routers

were configured with WPA-TKIP, with stark differences between regions (+30% in Hasselt

34

compared to Leipzig). Their side-channel methods allowed them to decrypt and forge Wi-

Fi frames in a matter of minutes, according to the researchers.

Of course, methods to circumvent the Wi-Fi security protocols also can be developed and

used, as shown in [34]–[36]. Typically, [34] tested the efficiency of a self-built phishing

tool, written in Python. This tool would send an email with an attached file (i.e., a script)

which, if run, would return all stored Wi-Fi passwords and related SSIDs stored on the vic-

tim’s machine to the attacker. Another well-known technique is the Man-in-the-Middle at-

tack (or MITM), which consists of the attacker putting its machine in between the commu-

nication of the client and the AP to actively collect or modify Wi-Fi traffic. MITM can also

lead to phishing attempts to gather the credentials. This method is thoroughly discussed and

put into practice in [35] against wireless networks, and automated against Wi-Fi clients spe-

cifically in [36]. The first study analysed how Kali Linux (also called “Kali”), probably the

most widely used OS to test the security of IT Systems, could be used to teach about MITM

by describing the setup and launch of this attack. The second study developed a tool called

WifiMitm, written in Python, which they successfully tested against 5 various environments

(with variations relating to the laptop or smartphone model, OS, and Wi-Fi security proto-

col) which were compared. The MITM technique is one among many alternative penetration

testing techniques that can be tested against Wi-Fi using Kali, which includes a default set

of Wi-Fi hacking tools as summarised by [37]. In [37], they also tried to run some of the

well-known Wi-Fi attacks that can be performed using Kali, notably the aircrack-ng suite

that was mentioned previously to crack the Wi-Fi PSK after having captured the

WPA/WPA2 handshake.

Giving a broader overview of the Wi-Fi attack paths, the study by Kohlios and Hayajneh

[2] from 2018 is recommended for its completeness and quality. The authors present a com-

prehensive view of known Wi-Fi attacks, and the multiple attacking phases attackers have

to go through. It provides a precise and structured vision of various attack pathways an

attacker can perform, from WEP to WPA3 networks with an extensive overview of at-the-

time available attack methods, such as the KRACK vulnerability.

When looking for studies specifically on KRACK, one research group also found the related

vulnerability unintentionally. Indeed, the study led by Garbelini et al [38], describes how

they developed an automated tool that tries various kinds of Wi-Fi tests. Their core tech-

nique was to use fuzzing to uncover non-compliant behaviour (or at least, unexpected re-

sponses within the Wi-Fi protocols). As the researchers explain, fuzzing is a technique that

35

aims at sending various values to an IT system to see how it reacts. The goal of this attack

is usually to see how the IT system would handle malformed or unusual inputs. These non-

compliant behaviours were either inconsistencies with the protocol specifications, crashes,

or plain vulnerabilities. They tested their tool on real-world Wi-Fi-enabled devices, which

allowed them to test Wi-Fi clients and AP implementations of the 802.11 standards. It dis-

covered new Wi-Fi vulnerabilities, which were assigned common vulnerability and expo-

sure (CVE) identifiers, and discovered KRACK as well, which was already known at the

time.

Until now, different attacks targeting the PSK mode of WPA/WPA2 were discussed but the

Enterprise mode also has shown to be vulnerable to attacks, if not implemented securely.

For example, Abo-Soliman and Azer [39] compared the vulnerabilities affecting WPA2 in

Enterprise mode and PSK mode. They noted that the password used for a certain username

in an Enterprise mode can also be brute forced, as the usual Enterprise implementation is

that the username is sent in plaintext (thus the attacker knows which user exists) and that

the number of wrong authentications is usually unlimited. In [40], another research group

performed an Evil Twin attack on a university campus WPA2 Enterprise network, meaning

that they set up an AP that would broadcast itself as being the legitimate AP clients need to

connect to. The interesting aspect of Evil Twin is that it doesn’t necessarily need victims to

interact with their “fake” AP: by broadcasting itself as the legitimate AP, with the “auto-

mated connection” feature enabled on devices, clients may connect directly to an AP without

user interaction, thus providing the victim’s credentials (used in an Enterprise system). The

authors roamed the campus with their attacking system and estimated to have gathered

around 7% of the credentials of the 2’700 users connected to the university network.

4.3 Assessing Wi-Fi Security through Wardriving

Moving away from practical implementations of Wi-Fi attacks, a whole set of studies took

an interest in estimating the Wi-Fi environment security level in their respective regions,

using the previously mentioned wardriving method. The first study found on this topic was

the analysis by Schreuders and Bhat in 2013 in Leeds (UK) titled “Not All ISPs Equally

Secure Home Users - An Empirical Study Comparing Wi-Fi Security Provided by UK ISP”

[41]. They aimed to compare the default security settings of the routers provided by major

ISPs. They performed wardriving in town, collecting the broadcasted data of around 8’000

APs and compared the ISPs. As an example, they showed how one telecommunication

36

company still provided routers with WEP in almost 40% of the cases, and how another one

set the default password of the provided routers to “sky”, a very easily guessable one. A

meta-review of such studies was performed by a 2022 study containing a very thorough

literature review of articles focusing on assessing the Wi-Fi security of geographical re-

gions, mainly through wardriving [42]. This research team also performed wardriving to get

a better overview of the Wi-Fi security level in a town located in North Cyprus. They col-

lected data on more than 20’000 routers, among which around 50% used WPS, an easily

hackable protocol. Overall, their results showed that while WEP was rarely used, some

WLANs were using no security at all (25%). Also, they discovered that WPA/WPA2 (mean-

ing both were supported) was used in 32% of cases, while most (43%) routers would use

WPA2 only.

Another such analysis was [43], which performed wardriving in Riga (LV) in 2017. They

also tested attacks on WEP, WPA/WPA2-PSK protocols, and the WPS security feature on

various routers. Their aim was also to estimate the overall attack surface, by first gathering

information on the security put in place on clients’ routers, and then testing specific attacks

on selected routers. The data collected consisted of approximately 2’000 APs. Around 80%

of them were supporting WPA2. Also, interesting to note is that while they gathered data

with their tool, they also performed an online survey asking participants to indicate which

Wi-Fi security protocol they were using for their routers: almost 50% responded that they

didn’t know, while most (50%) shared that they have WPA or WPA2.

Other related studies were the analyses by Sebbar et al [44], Hossain et al [45], and Delija

et al [46]. The research of Sebbar’s team took place in Rabat (MA) in 2016. They showed

that almost 80% of routers had WPA/WPA2 enabled, and also did a brief analysis of the

market share of the different ISPs. To do this, they looked at the broadcasted name of the

APs, which often includes the ISP’s brand, allowing them to link the routers to the corre-

sponding ISP. Unfortunately, the authors didn’t go further in comparing which ISP was

implementing which security protocol. Hossain’s study in 2019 took place on a university

campus in Dhaka (BD) to gather information about the Wi-Fi routers’ vulnerabilities to raise

awareness of Wi-Fi security. What made their study, particularly novel is the use of Nessus,

a known vulnerability scanner, on the Wi-Fi routers, which allowed the researchers to pro-

vide a list of detected vulnerabilities for the identified APs. The KRACK vulnerability

wasn’t mentioned in the paper. Finally, another wardriving analysis was performed by

Delija et al [46] in 2021 in Karlovac (HR) which determined that almost 90% of routers

37

were using WPA2 out of around 1’250 APs. This study also discussed the legal and ethical

aspects of their methodology, which added interesting insights into these rarely discussed

points in Wi-Fi security-related research papers.

38

5 Problem Statement

As suggested in the literature review, Wi-Fi security was and is still being investigated by

research groups at many levels. At every step of the development of Wi-Fi security proto-

cols, it was shown that new vulnerabilities were discovered, with tools to abuse them in their

wake. Concerning KRACK, it seems that although the set of vulnerabilities is already 6

years old, no research paper presented a clear walkthrough on how to perform and test it,

except on a theoretical level in the original paper written by Vanhoef and Piessens [5].

Overall, looking at ways to assess the Wi-Fi security environment, it seemed that research

groups often preferred quantitative collecting methods such as wardriving on Wi-Fi APs,

instead of checking if Wi-Fi-enabled devices were vulnerable to certain attacks such as

KRACK. While allowing for an overview of the proportion of WPA/WPA2 in Wi-Fi net-

works, their methods couldn’t detail if performing the KRACK attacks “in the wild” would

be successful, and if so, how and which devices would be vulnerable. To analyse the Wi-Fi

security environment, mostly wardriving was used, and often only to evaluate the Wi-Fi

security protocols used on Wi-Fi routers, without actually testing the APs for various vul-

nerabilities.

The Czech Master’s thesis [26], while thoroughly describing KRACK, only tested parts of

the KRACK vulnerabilities. In addition, it was written 4 years ago and updating its results

would be useful to assess the current relevance of KRACK. Furthermore, only one example

of traffic capture was presented in the thesis, giving little for the reader to analyse in terms

of results. Rewriting a set of detection or testing scripts is considered time inefficient: the

author of KRACK already published scripts for them to be tested. Indeed, Mathy Vanhoef

published a set of scripts to test if clients and APs are vulnerable to it on GitHub [27]. Given

his expertise, it is assumed that these are the most effective ones publicly available, which

is why they will be selected for testing devices. He also shared scripts to specifically perform

the so-called MC-MITM technique, which can be accessed at [47]. Besides, he wrote a

Proof-of-Concept script for the specific case of Linux-Android cases of a zero key reinstal-

lation [48]. Other repositories were found based on the original one, such as [49] and [50].

The first one is a fork of Vanhoef’s original repository focusing on all-zero key reinstalla-

tion, while the second one explains in general terms how to perform the MC-MITM attack

with the all-zero key KRACK attack only (i.e., only against Linux hosts or Android

smartphones). Given that already in 2019, only 1 out of 21 devices was affected by the all-

39

zero key reinstallation [26], this test is considered to be too exclusive to evaluate KRACK,

even more 4 years later. Note that Vanhoef didn’t make his attacking scripts used for his

discoveries public. This was done on purpose, as stated on the official KRACK webpage

[16]. Because of thesis time constraints but also because of related ethical questions, reverse-

engineering scripts to perform it was discarded as a goal. Developing an attacking tool un-

doubtedly poses questions, such as the respect of the author’s non-disclosure intent and the

case of potential illegitimate use of such a tool. The only relevant scripts currently identified

are either verifying if devices (APs and clients) are vulnerable or showing how to perform

an MC-MITM attack.

Therefore, this Master’s thesis aims at documenting the KRACK testing scripts of Vanhoef

[27] on Wi-Fi-enabled devices. Following this documentation process, the main goal is to

test them on a set of devices, to suggest a reassessment of KRACK’s relevance. At the same

time, with an “attacker’s perspective”, this thesis will show if vulnerable devices can be

found, and if so, display which models (laptop, smartphone, and their OS), if any, were

affected by the attacks. The thesis will present multiple Wi-Fi communication captures to

support the findings.

The core research objective for this thesis is to estimate how prone Wi-Fi-enabled devices

are vulnerable to KRACK. Thus, the following research questions are stated:

Q1. Given the identified available GitHub repositories, is it possible to successfully scan

Wi-Fi-enabled devices for the KRACK vulnerability?

Q2. If that is the case, what are the struggles to perform the vulnerability test?

Q3. What’s the current relevance of KRACK given obtained results with this tool?

For this study, documenting the identified testing scripts will also be key, in order to make

the analysis reproducible. This is considered as one of the important added values of this

thesis, as no simple and clear walkthrough exists for testing KRACK, and understanding

how the attack works and can be performed. Embedded in these research questions are the

following hypotheses:

H1. A tool to test KRACK attacks can be run successfully against Wi-Fi-enabled de-

vices.

H2. This tool only works with an alignment of specific conditions.

H3. As KRACK was discovered in 2017, it will be difficult to find vulnerable devices.

40

6 Methods

This chapter provides a brief overview of the selected methods used to address the three

research questions. First, to understand if Vanhoef’s official testing scripts [27] are efficient

at detecting KRACK on devices, the installation of the GitHub repository’s scripts is per-

formed, followed by a code analysis. A testing setup will be defined, with details on the

required configuration. Then, to successfully test the scripts, the list of tested commands is

also defined. Furthermore, a code analysis is conducted to understand the outputs of said

commands. Moreover, the method for sampling the tested devices is defined.

All these steps will help answer the second research question, aiming at identifying the chal-

lenges of testing KRACK against Wi-Fi-enabled devices. It will also be possible to assess

KRACK’s relevance (i.e., the third and last research question) after having analysed the

results of the tested devices. The analysis will consist of running all designated commands

against each device, the exact commands being described further in this chapter. To reduce

false positive rates, if a test shows up as positive, it is run two more times. This means that

all test-positive results will have to be tested three times before concluding it is vulnerable

to the test. The model, OS type and OS version will be documented for each device. To have

a stronger understanding of the results, network analysis is applied using Wireshark.

Now concerning the tests specifically, two scripts are at the heart of Vanhoef’s GitHub re-

pository [27]: krack-test-client.py and krack-ft-test.py. The tests which can be performed

using these scripts are listed by Vanhoef and summarised in Table 2 (p. 41). The first column

shows the script, with the command to run for each test. As can be seen, most of them are

meant to test clients and not APs. The unique test for APs can be performed only if the AP

supports 802.11r, as it targets the FT handshake. This is more often the case in corporate

environments, as suggested by Vanhoef in [5]. For time and sampling relevancy reasons,

the krack-ft-test.py script targeting APs implementing 802.11r will be discarded from this

thesis’ scope, but is nonetheless included in the table for completeness.

The reason for discarding it is that to answer the third research question, it was decided that

sampling, testing, and thus comparing tested devices would be more relevant for clients than

for specific types of APs. Indeed, the population of clients is widespread and diverse, while

the scarcer 802.11r APs will not help as much in assessing today’s KRACK relevance. An

additional reason for this decision is that there was no access to 802.11r APs, making a

potential sampling of such APs, at the time of writing, unfeasible.

41

Table 2 – Summary of Vanhoef’s seven tests for KRACK [27]

Script Test

No.

Full Command Test Details

krack-test-

client.py

(to test a client)

1. krack-test-client.py Resends encrypted EAPOL Message 3 to

check for PTK reinstallation (CVE-2017-

13077) and GTK reinstallation (CVE-2017-

13078).

2. krack-test-client.py

--tptk

Same15 as test 1 (no option), except that a

forged message 1 is sent before retransmit-

ting the encrypted EAPOL Message 3.

3. krack-test-client.py

--tptk-rand

Same as test 2 (--tptk), except that the

forged message 1 contains a random

ANonce.

4. krack-test-client.py

--replay-broadcast

Checks if the client accepts replayed broad-

cast frames.

5. krack-test-client.py

--gtkinit

Checks if the client installs the GTK with

the given Receive Sequence Counter (RSC)

during the 4-way handshake.

6. krack-test-client.py

--group

Checks if the GTK gets reinstalled during

the group key handshake (CVE-2017-

13080).

7. krack-test-client.py

--group

--gtkinit

Checks if the GTK is installed with the

given Receive Sequence Counter (RSC)

during the group key handshake.

krack-ft-

test.py

(to test an 802.11r

AP)

krack-ft-test.py Retransmits ReassoReq frame of the FT

handshake to the AP to check for PTK rein-

stallation (CVE-2017-13082).

15 According to Vanhoef, this variant is important as some clients are only vulnerable to KRACK in the 4-

way handshake when a forged EAPOL Message 1 is injected, before resending EAPOL Message 3. Vanhoef

cites wpa_supplicant v2.6 used on Linux-based OSs as an example.

42

For the sampling of devices, the selection process follows a convenience sampling process,

where devices are selected by asking relatives, friends and coworkers to provide Wi-Fi-

enabled devices (smartphones, computers, tablets) for testing. This is considered suitable as

the end goal is to test as many different devices as possible (model, OS, and version). Part

of the objective is also to showcase if, as a potential attacker, it would be feasible to find

vulnerable devices in direct proximity. Indeed, gathering a higher number of devices to test

(e.g., in a public place) would be far more complex for ethical reasons (i.e., as the permission

of device owners would be needed) and technical reasons (i.e., as device owners need to

manually connect to the test AP, and stay connected without any Internet connection). Hav-

ing briefly analysed the main script (krack-test-client.py), it seems possible to test multiple

devices at once, although it isn’t stated as such, probably because of potential radio inter-

ference issues. Also, to check for which device (i.e., model and OS) the result is printed out,

the MAC address of each device would still need to be manually registered. Finally, the

exact phone models and OS versions are documented for this study, which could rapidly

become tedious with a higher number of tested devices.

Regarding the KRACK vulnerability, the following assigned CVEs will be tested on clients,

with dedicated commands:

- CVE-2017-13077 (CVSSv3 score of 6.8, “Medium”): reinstallation of the PTK.

o Tested with: krack-test-client.py

▪ Variations with additional options: --tptk, --tptk-rand

- CVE-2017-13078 (CVSSv3 score of 5.3, “Medium”): reinstallation of the GTK in

the 4-way handshake.

o Tested with: krack-test-client.py

▪ Variations with additional options: --tptk, --tptk-rand

- CVE-2017-13080 (CVSSv3 score of 5.3, “Medium”): reinstallation of the GTK in

the group key handshake.

o Tested with: krack-test-client.py --group

Note that the --replay-broadcast and --gtkinit additional options don’t have specific

CVEs assigned to them but are used to detect malfunctioning Wi-Fi clients. Indeed, they

still showcase common vulnerabilities (e.g., accepting replayed messages). Also, the tests

only support CCMP, which means only WPA2. This is considered acceptable as it is the

most widely observed Wi-Fi security protocol (see [7] as cited in Introduction).

43

The described methods used for this thesis have their limitations, the major ones described

below:

- The age of the KRACK vulnerability:

o It has been 6 years since the public disclosure of KRACK, which allowed

for time to patch devices. This potentially resulted in a strong reduction in

the number of vulnerable devices, which, although a positive sign, would

reduce the analysis potential of this thesis.

- The representativity of sampling:

o The selected sampling method doesn’t allow for a representative overview

of the type of devices that an attacker might encounter, which makes it im-

possible to generalise the results. Nevertheless, the representativity of the

tests is not crucial as it is a case study, showcasing what an attacker could

find “in the wild”. Also, diversity is considered when selecting devices,

meaning that the tests won’t be applied to the same types of devices multiple

times.

- The dependencies of the testing setup:

o It might be the case that the KRACK scripts work well in certain test cases,

such as against specific OSs or Wi-Fi client software, or running the tests

with specific WNIC models. Indeed, the authors of the KRACK attacks

showed that they don’t get the scripts to work against all types of devices.

- The reliability of the script:

o As warned by Vanhoef, some tests are not always reliable (e.g., the --

gtkinit option). Wi-Fi traffic captures can be used to verify such results.

Also, to understand the reliability of the script, an analysis of the code will

help in providing potential answers to understand the obtain results.

Note that for grammatical reviewing, the Generative AI tool “Grammarly” was also used.

For more details on the tool, see the official website at https://www.grammarly.com/ (last

accessed on the 8th of August 2023).

https://www.grammarly.com/

44

7 Results

This chapter begins with a subchapter presenting the procedure to install the testing setup

for KRACK, followed by a subchapter on a code analysis of the tests performed. Finally, a

summary of devices and related test results will be presented.

7.1 Setup Procedure

Starting with the testing setup, the selected host machine has Windows 10 with VirtualBox16

installed, with a Kali Linux virtual machine17 (VM) set up. This is following Vanhoef’s

advice on his GitHub repository: he only tested his scripts on Kali Linux. When inserting a

WNIC in a USB port, it should be noted that to be successfully used in the VM on a Win-

dows machine, it needs to be added as a USB device in the VM’s settings (under “USB”).

Also, as the tests are sensitive to background noise, it is advised to run them in a place with

as little radio (Wi-Fi, Bluetooth) interference as possible.

Before any test execution, it was observed that only particular WNICs were compatible with

Vanhoef’s scripts. Indeed, he doesn’t specify which work and which don’t, but only shares

with which WNICs his tests were successfully tested in the “Issues” section of his reposi-

tory. This was the first (but consequent) struggle: to find a compatible WNIC. For example,

it was found that the two WNICs selected beforehand for this analysis couldn’t be worked

with, after many various attempts to reverse-engineer the issues. The tested WNICs were

the AWUS036ACH (FCCID 2AB8788121) by ALFA Network Inc. and the TL-WN822N

(EU) v5.0 (FCCID TE7WN88NV4) by TP-Link Corporation. The former uses a

RTL8812AU chipset, while the latter operates with a RTL8192EU chipset. To save time, a

search was conducted online for the same Wi-Fi chipset as Vanhoef’s (AR9271). As men-

tioned by Vanhoef himself18, it is now difficult to find them as it has been a long time since

their release. This might be the reason why vendors don’t provide them anymore as easily.

In the end, a WNIC with the AR9271 chipset by Qualcomm Atheros was ordered online

16 See https://www.virtualbox.org/ (Accessed 08.08.2023).

17 The pre-built image source can be retrieved from the official webpage of the Kali Linux project, available

at https://www.kali.org/get-kali/#kali-platforms (Accessed 11.06.2023).

18 This refers to a reply of Vanhoef to another user on the KRACK GitHub repository, publicly available at

https://github.com/vanhoefm/krackattacks-scripts/issues/94#issuecomment-1428601663. He mentions that

the following WNICs should work: WNICs with the RT5572 chipset, the TP-Link TL-WN722N and Techno-

ethical N150 HGA (both using the AR9271 chipset), and finally WNICs with the RTL8188CUS chipset.

https://www.virtualbox.org/
https://www.kali.org/get-kali/#kali-platforms
https://github.com/vanhoefm/krackattacks-scripts/issues/94#issuecomment-1428601663

45

from a Chinese manufacturer, with no visible FCC ID on the outside of the hardware (see

Figure 16).

Figure 16: Selected WNIC with Atheros AR9271 chipset

The subsequent procedure to install the scripts can be summarised in two steps. First, the

required packages need to be installed on the VM, and the GitHub repository cloned locally.

Secondly, commands need to be run to finalise the environment’s configuration before each

test session.

In the first step, installation files (build.sh and pysetup.sh) need to be run, and hardware

encryption has to be disabled. The exact flow of commands is shown below:

The build.sh script compiles a clean, modified hostapd daemon, written in C. Hostapd is a

daemon used to create a Wi-Fi AP on Linux. It will run an AP, and tested devices will

connect to it to undergo KRACK detection. The pysetup.sh file will create a virtual Python

environment and read the requirements.txt file to install the correct Python packages and

versions, namely pycryptodome (version 3.9.9) and scapy (version 2.4.4).

sudo apt update

sudo apt install libnl-3-dev libnl-genl-3-dev pkg-config libssl-dev net-

tools git sysfsutils virtualenv

git clone https://github.com/vanhoefm/krackattacks-scripts.git

cd krackattacks-scripts/krackattack

./build.sh

./pysetup.sh

cd krackattack

sudo ./disable-hwcrypto.sh

46

Hardware encryption must be deactivated as it might interfere with the scripts. Vanhoef

mentions that it would be safer (in terms of reliability) to run the tests when transferring

(“offloading”) the encryption/decryption operations directly to the software and not the

hardware of the WNIC. In a comment inside of the krack-test-client.py code, he notes that

“On some kernels, the virtual interface associated to the real AP interface will return frames

with an already decrypted payload (this happens when hardware decryption is used)” (lines

116-117)19.

To reenable hardware encryption, one can run the reenable-hwcrypto.sh script provided in

the repository, which will revert the options set for the defined WNICs, i.e., the

“nohwcrypt=1” parameter in the newly created /etc/modprobe.d/nohwcrypt.conf file will be

removed. Modprobe is a utility used to load or offload modules of the Linux kernel. This is

the path where Vanhoef adds a “nohwcrypt” (“no-hardware-encryption”) configuration for

the selected WNIC. For optimal results, rebooting the VM is recommended.

Another extra step suggested by Vanhoef is to verify if the hardware encryption is indeed

disabled, by checking that the nohwcrypt value is set to “1” when running the systool -

vm ath9k_htc command20 (see Figure 17). The option “-m” is used to specify a module,

while “-v” is used to show all attributes and related values of the module. To verify that the

ath9k_htc module is installed, one can verify that it is in the output of the lsmod command

when the WNIC is plugged in. The lsmod command is used for listing kernel modules.

Figure 17: Hardware encryption is disabled on the ath9k_htc kernel module

19 Vanhoef explains this in more details when he tested his script with the ath9k_htc: “With the ath9k_htc it

was not possible to detect the usage of an all-zero key when using hardware decryption. It seems as if the

hardware tries decryption, thereby scrambling the contect (N.B. “context”) of the frame, and then sees that

decryption failed. This means userspace doesn't receive the original frame, but a frame where the (encrypted)

data is scrambled.” (Lines 336-340 of krack-test-client.py).

20 Note that here, ath9k_htc is the needed kernel module for the Atheros AR9271 WNIC chipset.

47

To identify which driver a WNIC different from the Atheros AR9271 different needs to

communicate with the Linux kernel, the WNIC’s manufacturer and model need to be iden-

tified. Usually, the kernel will automatically load the corresponding module (or driver) when

plugging in the WNIC. Besides, to check USB connectivity, the lsusb command can be

run and the WNIC should be displayed. Finally, to check if the wireless interface is up, the

iwconfig or ip link commands will confirm that a given interface name is activated (if

not, running the sudo ifconfig wlan0 up command will activate it, ‘wlan0’ being the

interface’s name in this example). In case of doubts, unplugging and re-plugging the WNIC

will help identify the wireless interface name corresponding to the WNIC. Inside of the

./hostapd/hostapd.conf (line 8), the wireless interface name must also be set.

After this first step, a second and final “configuration” step needs to be performed, each

time before a test session. It consists of disabling Wi-Fi in the network manager (for exam-

ple, using the nmcli networking off command), followed by the below commands:

The first line will turn Wi-Fi transmissions on, while the following lines are used to enable

the virtual Python environment needed for running the test scripts. This concludes the con-

figuration. Now that the virtual environment is activated, we can run multiple tests one after

the other on different client devices.

7.2 Script Analysis

This subchapter will give an overview of the reviewed script, i.e., krack-test-client.py, and

the various options that can be tested against client devices. Before going into the details of

the script, the way a test can be run is as follows: first, launch the krack-test-client.py script,

then connect the Wi-Fi-enabled device to the Wi-Fi network named “testnetwork” and enter

the password (“abcdefgh”). These are the default values defined in the ./hostapd/hos-

tapd.conf file (inside the krackattacks-scripts folder). The SSID is configured at line 88 and

the PSK at line 1249 of the hostapd.conf file. It can also be seen at line 1240 that the

sudo rfkill unblock wifi

cd krackattack

sudo su

source venv/bin/activate

48

supported Wi-Fi security protocol is WPA2. After entering the correct password, a normal

4-way handshake between the client and the AP is performed. The test will start from there.

The script bases its network packet handling capabilities on the well-known scapy Python

package. Also, Vanhoef uses a personally developed Python package called libwifi (inspired

by the C libwifi library), which handles Wi-Fi communications with the help of two other

self-written libraries (wifi.py and crypto.py). Additionally, the krack-test-client.py script im-

ports the local wpaspy package, used to control the operations performed on hostapd. Of

course, other more common Python libraries like socket, time, logging or sys are also used

in this script. The logging library is used by scapy to output messages, which make most of

the printed messages during the test execution. To get the most of the logger’s usage in the

script, one can run the script with the --debug option to have access to more details on

background operations. Additionally, the -dd -K option prints all debug outputs of hostapd,

for extra-detailed information of all exchanged frames.

To summarise the script, 3 Python classes were written by Vanhoef, in addition to a few

helper functions. These classes are TestOptions, ClientState and KRAckAttackClient. As

the name reveals, the first TestOptions class retrieves the test options provided by the user.

These are split into 2 categories:

1. the target or type of the attack (ReplayBroadcast, ReplayUnicast, Fourway which

targets the PTK and GTK reinstallation in the 4-way handshake, and Grouphs

which targets GTK reinstallation in the group key handshake),

2. and the variant of TPTK attack (if performed), explained further in the subchapter.

Note that the ReplayUnicast test option isn’t used throughout the code, for unidentified rea-

sons. By default, the Fourway option is selected, the TPTK variant set to 0 (TptkNone), and

the additional gtkinit attribute set to “False”. This last attribute checks if the provided RSC

(Receive Sequence Counter) value used when installing the GTK is used (which is good),

or if the client resets it to 0 (which would be bad) during either the 4-way handshake or the

group key handshake.

The ClientState class differentiates the test state and the client state, which can be “UN-

KNOWN”, “VULNERABLE”, or “PATCHED”, and keeps track of changes in the client

state depending on the results of the tests. Multiple class methods are needed to either assess

if the client is vulnerable or patched, or to just set the encryption key. To verify if a device

is vulnerable, class methods are used to identify IV/nonce reuse. This is done by setting an

49

IvCollection object (imported from the libwifi library, more specifically the wifi.py li-

brary), and then using class methods to identify and track any IV (nonce) reuse. Note that

in this chapter, the terms “IV” and “nonce” will be used interchangeably. Remember also

that the PTK and the GTK have separate IV incrementations, meaning that if multiple

unicast frames were exchanged (thus incrementing the IV linked to the PTK), it won’t affect

the IV used for the next multicast/broadcast frame. Indeed, the RSC is the starting packet

number (IV) for the GTK, which gets incremented for each encrypted multicast/broadcast

frame sent. The most important class method is probably check_pairwise_reinstall().

In this method, multiple PTK reinstallations will be waited for before assuming that the

client is patched21, while the actual PTK reinstallation occurs in the KRAckAttackClient

class. To check for a group key reinstallation from the client, the AP will send replayed

broadcast ARP (Address Resolution Protocol) requests on the network, and check if clients

will respond to it. Even though the GTK is not used to encrypt frames by the client as men-

tioned earlier, if it replies to a replayed encrypted ARP request (i.e., encrypted with the GTK

and reusing a GTK-IV), it means that the client accepted the frame. It is also in the Client-

State class that various class methods for group key reinstallation detection reside.

The class running the simulated attack is the KRAckAttackClient class. In its constructor

class method, the hostapd configuration will be read to get the WNIC’s interface name.

Also, the WNIC’s MAC address is grabbed using scapy. The main class method is run(),

used to launch the test (line 463), as can be seen in the last line of the script (line 663) inside

of the main() function. It starts by setting the options used for the test by declaring a Tes-

tOptions class. Furthermore, a Ctrl object is declared to communicate with hostapd (using

the wpaspy library mentioned earlier) at line 481. The following lines are used for further

AP configuration, like having the scapy library handle Dynamic Host Configuration Proto-

col (DHCP) requests which will be sent by the connecting clients to get their IP address22.

After having finished setting up the AP, the actual testing can be performed. This is done

through an endless loop, which needs to be terminated manually. Each loop can be

21 As mentioned by Vanhoef [27], it could be that frames are lost due to important background noise, and thus

the client state remains unknown. In practice, the script checks for 5 “IV reuse cycles”, where a cycle takes

longer each round (i.e., the time interval is doubled each round before resending EAPOL Message 3).

22 This is the assumed reason why Vanhoef insists that for the tests to be successful, clients need to request

their IP through DHCP [27]. In our tests, it was observed that by default, smartphones have this configuration

enabled.

50

represented as a cycle of actions. Per cycle, an ARP request will be sent with the tested

device’s MAC address, looking for a GTK reinstallation (which could have occurred in the

4-way handshake or the group key handshake). Depending on the options used, the script

will either perform a new 4-way handshake and track PTK-IVs or launch a new group key

handshake and test if a replayed ARP request (i.e., where a GTK-IV was reused) gets a

response. The Appendix (section II) can be consulted to understand the general cycle for

each test. More details on the process followed by the script are given now.

First, if the gtkinit attribute is set, should it be when testing the 4-way handshake or the

group key handshake, then the script will start by making hostapd reinitialise the GTK. The

commands used to communicate with the hostapd daemon are simple to read but not always

straightforward for interpretation, as can be seen in the below example (line 531).

hostapd_command(self.hostapd_ctrl, "RENEW_PTK " + client.mac)

Here, it seems to be renewing the PTK, while in reality, it is asking hostapd to restart a new

handshake with a specific client, using its MAC address. This is assumed to originate from

the ctrl_iface.c file contained in the hostapd folder. For the GTK renewal, a similar syntax

is used, as shown in the below example. Note that since the GTK renewal is unilaterally

performed by the AP, the command below doesn’t imply going through another 4-way hand-

shake (line 520), nor a group key handshake. The latter will only be used to share the new

GTK with clients.

hostapd_command(self.hostapd_ctrl, "RENEW_GTK”)

If the gtkinit option isn’t used, the script will first reinitialise the RSC value (i.e., the counter

for GTK-IVs) of the current GTK. Then, it will look at the selected TPTK option:

- if the --tptk option was used, then EAPOL Message 1 is replayed (with the same

ANonce as before), followed by a replayed EAPOL Message 3,

- if the --tptk-rand option was used, then EAPOL Message 1 is sent again (with a

new ANonce), followed by a replayed EAPOL Message 3,

- if no additional option was used, only EAPOL Message 3 is replayed.

The reason for sending EAPOL Message 1 before was documented in an online Addendum

of Vanhoef and Piessens [16], and cited by Vanhoef again in a follow-up study on KRACK

[25]. According to their research, wpa_supplicant v2.6 (and other clients) are only vulnera-

ble to KRACK if an EAPOL Message 1 is replayed (or sent again with a new ANonce)

before retransmitting EAPOL Message 3. In all cases, after EAPOL Message 3 is sent again,

51

the script expects an encrypted EAPOL Message 4 from the client. This is the frame in

which IV reuse is analysed. Since the vulnerable client accepts this new EAPOL Message

3, it should also reinitialise its IV, leading to PTK-IV reuse. The script keeps track of all IVs

used. As stated before, when using the --debug option, a user can follow all “debug-level”

log messages of the script. In such a case, the tester can see which PTK-IV was used (for

which frame, identified by a sequence number).

Following the transmitted EAPOL message(s), the script will then check for the client’s

behaviour concerning replayed ARP requests (checking for group key reinstallation). This

is done by using the broadcast_check_replies() method (of the ClientState class). If the

ClientState is not in the “VULNERABLE” state, it will use the broadcast_send_re-

quest() method (of the KRAckAttackClient class) to send the ARP requests. In this

method, if the --group option was used, a new group key handshake message will first be

sent, i.e., an EAPOL “group” message 1. In any case, the method will then replay a broadcast

ARP request with the client’s MAC address, looking for an ARP response. As mentioned in

“The KRACK Vulnerability” subchapter (3.3), a GTK reinstallation only allows an attacker

to replay broadcast/multicast frames. If the client is vulnerable, after having reinstalled the

GTK (either through the 4-way handshake or the group key handshake), it will reset its RSC

counter. When receiving a replayed ARP request, it will accept the GTK-IV used and reply

to the request. In the script, at least 5 out of all replayed ARP requests needs to be replied

to state that the client is vulnerable. If the client is patched, it should ignore the requests.

7.3 Devices tested for KRACK Vulnerability

In total, 29 Wi-Fi-enabled devices were analysed. Table 3 (see pages 53 to 54) presents the

overview of tested devices with the seven tests (options) of the krack-test-client.py script.

This sums up to 203 tests performed in total. As can be seen, computers, tablets, and mostly

smartphones were analysed. The main goal was to test a variety of hardware and OSs, and

document as thoroughly as possible the models and OS versions (such as the kernel version)

which was overall successful. Some device owners didn’t have a lot of time for sharing their

personal smartphone, which made this documentation sometimes less comprehensive. In

any case, the most important data could be retrieved.

The results of the tests can be seen in Table 3, with a colour legend summarising the results:

a device should either be vulnerable (red) or not vulnerable (green). In practice, it was ob-

served that some tests were unsuccessful (yellow), usually because the client would

52

disconnect and reconnect after a short period of time in the course of testing. This might be

a security feature that prevents a device from staying connected to an AP sending unex-

pected frames. “N.A.” (grey) indicates that for unknown reasons, the script would run for-

ever without printing out a result. Finally, “Possibly Vuln.” (orange) refers to the fact that

if the device accepts replayed broadcast frames, then the group-related tests (i.e., Tests 5, 6

and 7, see below) are considered unreliable. This is stated on the GitHub repository of the

tests: “If the client accepts replayed broadcast frames, this must be patched first. If you do

not patch the client, our script will not be able to determine if the group key is being rein-

stalled (because then the script will always say the group key is being reinstalled).” [27]

As a reminder for Table 3 (pages 53 to 54), the test number represents the command run:

• Test 1: krack-test-client.py

• Test 2: krack-test-client.py --replay-broadcast

• Test 3: krack-test-client.py --tptk

• Test 4: krack-test-client.py --tptk-rand

• Test 5: krack-test-client.py --gtkinit

• Test 6: krack-test-client.py --group

• Test 7: krack-test-client.py --group –gtkinit

Tests 1, 3 and 4 check both PTK (CVE-2017-13077) and GTK (CVE-2017-13078) reinstal-

lation in the 4-way handshake. Therefore, the colour code for the result applies for both PTK

and GTK, unless specified otherwise. Test 6 verifies if the device was vulnerable to CVE-

2017-13080. In total, only 2 devices (devices no. 3 and 4) were test-positive to CVE-2017-

13077, respectively the BlackBerry device and the Samsung S5 Plus. This means that the

tests state that the devices are reinstalling the PTK when an EAPOL Message 3 is sent again.

The BlackBerry and Samsung S5 Plus are also vulnerable when a new EAPOL Message 1

is transmitted first with a random ANonce (Test 3), followed by a transmission of a new

encrypted EAPOL Message 3. Also, only 3 devices were positive for CVE-2017-13080.

Other test-positive results for Tests 2, 5 and 7 were also detected and will be discussed in

the next chapter.

53

Table 3: Devices tested for KRACK (𝑛 = 29)

 Not Vuln. Vuln. Possibly Vuln. Test Unsuccessful N.A. Tests

No. Device Model OS version 1 2 3 4 5 6 7

1. Surface 3 Win10 (build 10.0.19045)

2. Dell Inc Latitude E7450 Ubuntu 22.04.2 LTS

3. Blackberry Bold 9700 BlackBerry OS v6.0 Bundle 2949 23 24

4. Samsung Galaxy S5 Plus (Model SM-G901F) Android 6.0.1

5. Samsung Galaxy S6 Edge (Model SM-G928F) Android 7.0

6. Samsung Galaxy Note 9 (Model SM-N960F) Android 10

7. Xiaomi Redmi Note 9 Android 10

8. Asus ZenFone 6 Android 10

9. Xiaomi Mi A3 (Model M1906F9SH) Android 11

10. Samsung Galaxy S10 (Model SM-G973U) Android 11

11. OnePlus 6 (Model A6003) OxygenOS v11.1.2.2 (Android 11)

12. Fairphone 4 (FP4) Android 12

13. Vivo Model V2023 Funtouch OS12 Global (Android 12)

14. Samsung Galaxy S20 FE 5G Android 13

15. Samsung Galaxy S23+ Android 13

16. Sony Xperia 1 Mark 3 Android 13

17. Oppo Find X5 Pro ColorOs (Android 13)

18. Oppo Reno 8 Pro 5G ColorOs (Android 13)

19. MacBook Air (Early 2015) macsOS Catalina (v10.15.7)

20. iPod Touch 1 (Model MC547LL/A) iOS 6.1.6

21. iPad 2 (Model MC982FD/A) iOS 9.3.1

22. iPad 2 (Model MD366LL/A) iOS 9.3.5

23. iPhone 5 iOS 10.3.4

24. iPhone 5S (Model ME432KN/A) iOS 11.4.1

25. iPhone SE (Model MP8822FD/A) iOS 13.4

23 Test 1’s output states that the PTK was reinstalled but not the GTK.

24 Test 3’s output states that the PTK was reinstalled but not the GTK.

54

 Not Vuln. Vuln. Possibly Vuln. Test Unsuccessful N.A. Tests

No. Device Model OS version 1 2 3 4 5 6 7

26. iPhone 14 Pro iOS 16.5.1

27. iPhone XR iOS 16.5

28. iPhone 12 iOS 16.5.1

29. iPad Air (5th Gen) iPadOS 16.2

 Total of “Vuln.” results 2 1 2 0 13 3 6

(Table 3: Devices tested for KRACK (𝑛 = 29))

To verify the results and understand what is happening in the background, Wireshark was

used to capture transmissions with specific devices. Since the testing script already creates

a virtual monitoring interface (in this case, called monwlan0), it can be used on Wireshark

to detect IV reuse (and replies to ARP frames reusing GTK-IVs). The CCMP Header is

where the IV can be found (i.e., the PN). Before detecting IV reuse, the CCMP header con-

taining the IV needs to be briefly understood first (see Figure 18). In Wireshark, it can be

found in encrypted frames under the “CCMP Header” field, as will be shown later.

Figure 18: CCMP Header [13, p. 180]

The CCMP header contains the IV, split into 6 bytes (from PN0, the least significant byte

or LSB, to PN5, the most significant byte or MSB). Note that just like the PN, the KeyID

byte must be reordered from the MSB to LSB (from bit 7 to bit 0). To complete the CCMP

header, the “Rsvd” (i.e., “Reserved” for future use) parts are always ‘0’ bits, the “ExtIV”

value is always a ‘1’ bit for CCMP-encrypted payloads, and the “KeyID” value will identify

one of four possible encryption keys used.

55

Now, using Wireshark, the CCMP Header field can be inspected. It will appear when a Wi-

Fi frame is encrypted and used to identify IV reuse (Figure 19). While running the krack-

test-client.py script, the monwlan0 virtual interface is launched is selected when capturing

transmissions on Wireshark.

Figure 19: Wireshark capture with CCMP Header column with device no. 12 (start of Test 1)

In Figure 19, a portion of the capture between the Fairphone FP4 (device no. 12) and the

Atheros AR9271 (used by hostapd) is displayed while running Test 1. This device was not

vulnerable to the test. The displayed MAC address of the AP starts with “Shenzhen”. The

view is filtered for the AP’s and the Fairphone’s MAC addresses. Note that the display filters

(if used) for each presented Wireshark capture can be consulted in the Appendix (section I).

Sometimes, a local IPv4 address is also shown instead of the MAC address, such as

“192.168.100.254” (which would be the AP), or “192.168.100.2” (i.e., the client). More

rarely, IPv6 addresses are used, such as in frame no. 168. Also noteworthy is that EAPOL

Message 4’s were not encrypted for this device, although it was suggested in [5] that this

often happens.

The starting 4-way handshake is performed, with the EAPOL replay counter values shown

under the “Replay Counter” column. The “CCMP Ext. Initialization Vector” column repre-

sents the IV value of the frame, extracted from the CCMP Header. Following the 4-way

handshake, 802.11 Data frames are encrypted either using the GTK, or the TK. The “Key

Index” column indicates this: a Key Index value of “0” means that the TK was used, while

“1” implies that the GTK was used. The case of the client encrypting a unicast frame (using

the TK) and sending it to the AP, for it to re-encrypt it (using the GTK) and send it on the

WLAN, can be seen, such as in frames no. 168-169. To understand such procedures, the

CCMP Header needs to be deconstructed further. Indeed, the IV value contained in the

CCMP Header can be extracted, to identify the IVs that are used by the client and the AP.

Remember that the IVs are incremented for each use of the TK and GTK separately.

56

Figure 20: Detailed look at the CCMP Header of frame no. 168

In Figure 20, the CCMP Header of frame no. 168 is deconstructed to understand how the

real value of the IV is determined. Here, the CCMP Header is “01 00 00 20 00 00 00 00”

(in hexadecimal), with the PN bytes in green, the Reserved byte in purple and the KeyID

byte in red. Joining the 6 bytes of the packet number (i.e., from PN5 to PN0) gives us the

following bytes for the IV (in hexadecimal): “00 00 00 00 00 01”, which corresponds to “1”

in decimal.

The TK and PMK values are also indicated in Figure 20 only because the Wi-Fi network

password was entered in Wireshark to allow frame decryption, to show which key was used

for CCMP encryption. These keys are never transmitted on the channel between the client

and the AP. The ExtIV and the KeyID values can also be extracted from the 4th byte of the

CCMP Header (“20” in hexadecimal). For frame no. 168, the following values are extracted:

“20” (in hexadecimal) becomes “0010 0000” (in bits), therefore, the KeyID equals “00” (bits

7 and 6) and the ExtIV is “1” (bit 5). The KeyID indicates that the TK was used and the

ExtIV is “1”, as defined in the 802.11 standard [13].

Now that the collected results and the IV identification were presented, further discussion

on the obtained results is provided in the next chapter.

57

8 Discussion

This chapter discusses the obtained results and goes deeper into the analyses to assess their

relevance. As a first general observation, the results showed that it was difficult to find Wi-

Fi-enabled devices vulnerable to the core of KRACK, meaning PTK and GTK reinstalla-

tions (i.e., Test 1 and Test 6). Only older devices like the BlackBerry or Samsung S5 were

positive to key reinstallations in the 4-way handshake. The OS and its version appear to be

key elements in identifying vulnerable devices, while the year of device release doesn’t

seem to play a role. This is overall an encouraging outcome for Wi-Fi users. Nevertheless,

it was found that devices reacted in different ways to the tests, should it be positive (i.e.,

vulnerable) or not. The chapter will be split into subchapters, starting with a general discus-

sion of the obtained results, followed by a comparison between an overall non-vulnerable

device and devices which tested positive for some of the commands. The chapter will be

completed by a broader discussion including the research questions, as well as the impact

and limits of this thesis’ results.

8.1 General Observations

As mentioned earlier, there was a variety of responses from the devices being tested. For

example, some smartphones would rapidly produce a pop-up message stating that no Inter-

net connection was detected. This might be a security measure to protect against similar

MITM attacks. Typically, the Sony Xperia smartphone (device no. 16) would show this pop-

up message, and automatically disconnect by default if the user didn’t confirm the connec-

tion after a few seconds. The manual confirmation of the user was needed to keep the

smartphone connected to the network. In contrast, some devices would reconnect automat-

ically to the network between 2 tests.

Test 2 came out positive only once, namely for a Windows 10 device. This will be investi-

gated further in this chapter. No other device accepted replayed broadcast frames. Moving

to the variants of the “basic” KRACK attack, Test 3 was positive only for the devices which

were already vulnerable to Test 1, i.e., the Blackberry and Samsung S5 devices. The only

test which was mostly inconclusive was Test 4. Indeed, it was observed that several

smartphones would disconnect automatically after some time when testing the KRACK var-

iant performed with the --tptk-rand option.

58

Figure 21: tptk-rand variant of KRACK and Disassociation as a response by device no. 12 (Test 4)

As seen in Figure 21 (see highlighted frame), the --tptk-rand test would make some de-

vices send a Disassociate (management) frame with an “Unspecified reason” code after hav-

ing received EAPOL Message 1 and EAPOL Message 3 in a row. This also occurred for

some devices with the –tptk and the --gtkinit options (Tests 3 and 5). It seems that the

unexpected transmission of the EAPOL messages makes the client disconnect from the

WLAN. Further in the communication, the device then reconnects to the network going

through a new 4-way handshake. For the Sony Xperia phone (device no. 16), this “discon-

nect cycle” behaviour was repeated throughout most of the tests.

Test 5 is described as being rather “unreliable” by Vanhoef in [27], “because any missed

handshake messages cause synchronization issues”. It tests if the device installs the given

RSC value in the 4-way handshake. When inspecting Wireshark captures of this test, an

anomaly was observed: the RSC value set in the EAPOL Message 3 by hostapd should have

been set to a higher value. In practice, it was observed that this wasn’t the case: the provided

RSC was always a zero-byte value for all EAPOL messages (see Figure 22).

Figure 22: Wrong behaviour by hostapd for Test 5 (device no. 12)

Debugging this issue wasn’t clear until the code was reviewed again: a logic bug seems to

reside at line 541 of the run()method. Indeed, the previous conditional statement (line

59

533) explicitly excludes the case where the “gtkinit” option is on. Therefore, this option can

never be acknowledged to set a higher RSC value when sending another EAPOL Message

3, as shown in Figure 23. An issue was raised on the GitHub repository to address this.

Figure 23: Broken logic in the run()method

Considering this script malfunction, the code was manually corrected to allow the “gtkinit”

option to work as expected during the GTK reinstallation test of a 4-way handshake. For

unknown reasons, recapturing the traffic generated by Test 5 on the Fairphone gave a similar

output: it seems that the 4-way handshake is performed (as expected with the “gtkinit” op-

tion), but retransmitting EAPOL Message 3 is on the other hand rarely performed. As the

origin of this issue remains unidentified, the “gtkinit” test (Test 5) is set aside. For some

devices, the test started the “disconnect cycle” mentioned previously.

Moving to Test 6, only 3 devices were detected as being vulnerable to GTK reinstallation

in the group key handshake: the Samsung S5 (device no. 4), one iPad 2 (device no. 22) and

the iPhone 5 (device no. 23). Most of the devices were not vulnerable to this test.

Finally, 5 devices were declared test-positive to Test 7, meaning that they reinstalled the

RSC value during the group key handshake to 0. This test correctly assigned a high RSC

value in EAPOL group message 1, to the contrary of Test 5. Given the previous issue with

the “gtkinit” option, the test is briefly investigated here for the Fairphone FP4 (Figure 24).

Figure 24: RSC value in EAPOL group message 1 is not set by the client (device no. 12, Test 7)

60

The command line output states that the device installs the provided RSC in the group key

handshake (which would be good). However, this appeared to be incorrect. The AP sends

EAPOL group message 1 to the Fairphone with a high RSC value. As for the PN bytes in

the CCMP Header, the value is read in reverse order, meaning that the RSC value sent is

“00 00 00 00 00 02 FF FF” (in hexadecimal, or 196’607 in decimal). Instead of responding

with an incremented RSC value, the client responds each time with an all-zero RSC.

8.2 Case Studies of KRACK Tests

Going further in the discussion of results, this subchapter will present a selection of cases

where the traffic was captured. First, the example of a device protected against the main

KRACK attack (Test 1) is presented. Then, various examples of test-positives results are

discussed.

8.2.1 KRACK against Fairphone FP4 (Android v12)

The case of the Fairphone FP4 (device no. 12) is described first. In Figure 25, the EAPOL

Messages exchanged during the performance of Test 1 against the FP4 are displayed.

Figure 25: Test 1 on device no. 12 (Fairphone FP4) with the first KRACK attempt highlighted

It shows the multiple EAPOL Message 3s which are sent again and again by the AP, and

the corresponding EAPOL Message 4s sent by the Fairphone in response. The first retrans-

mission of an EAPOL Message 3 takes place on the (highlighted) 207th frame, meaning that

it is the first occurrence of a key reinstallation test. Although the EAPOL Message 3s of the

AP are always encrypted using the TK (see “Key Index” column), none of the EAPOL Mes-

sage 4s are encrypted by the Fairphone. It can be now checked if encrypted messages sent

by the client (starting from the 208th frame) reused PTK-IVs, which would indicate a PTK

61

reinstallation occurred. In Figure 26, the PTK-IV incrementation is correctly done by the

Fairphone. It is not true for frames sent by the AP though, as replayed broadcast ARPs are

sent on purpose to test for GTK reinstallation for example.

Figure 26: No PTK reinstallation, as no PTK-IV was reused on device no. 12 (with Test 1)

Note that for GTK reinstallation, it can be deduced from the presence (or absence) of replies

to the replayed ARP requests. To confirm that the GTK didn’t get reinstalled, the replayed

ARP frames must be investigated (see Figure 27).

Figure 27: No replies from device no. 12 to replayed ARP requests (Test 1)

When inspecting these, only non-replayed ARP requests were replied to by the client. Such

a response can be found for example in frames no. 520-521 or frames no. 2967-2969. May

replayed broadcasted ARP requests have the GTK-IV value of “1” here (see IV values for

frames with “1” in the “Key Index” column).

62

8.2.2 KRACK against Blackberry Bold 9700 (BlackberryOS v6)

Looking at a selection of positive tests, the BlackBerry (device no. 3) is the first one pre-

sented. Both the command line and the Wireshark capture confirm that a PTK-IV was re-

used. The script’s output with debug option on is shown, stating that it is the PTK-IV value

of 7 which was first reused (Figure 28). A Wireshark capture was also recorded during Test

1 (see Figure 29) for this device, showing that the IV value of 7 was the first reused nonce.

Although it is not clear why precedent KRACK attempts succeeded in making the client

reinstall the PTK, later attempts showed that other PTK-IVs were reused (such as the IV

value of 8, in frames no. 9331 and 9859).

Figure 28: IV reuse statement on the command line by device no. 3 (Test 1)

Figure 29: IV reuse by device no. 3 (Test 1)

Note that according to the 802.11i standard, even a valid replayed encrypted frame should

increment its packet number (i.e., IV). Indeed, “The decryption processing prevents replay

of MPDUs by validating that the PN in the MPDU is greater than the replay counter main-

tained for the session.” [13, p. 184], with the MPDU standing for the MAC Protocol Data

Unit, which can be simplified as the frame here.

Continuing the investigation, the GTK was not reinstalled according to the script (Figure

30, p. 63). In fact, the Blackberry device never replied to any ARP request according to the

Wireshark capture (Figure 31, p. 63).

63

Figure 30: No GTK reinstallation in the 4-way handshake for device no. 3 (Test 1)

Figure 31: Absence of replies to replayed ARP requests for device no. 3 (Test 1)

Concerning PTK reinstallation, the same pattern occurred when performing Test 3 (TPTK

variant) on the device, as can be seen in Figure 32 and Figure 33 (p. 64). PTK-IVs reuse

was observed, but not GTK reinstallation.

Figure 32: tptk variant of KRACK is successful on device no. 3 (Test 3)

64

Figure 33: Multiple IV reuse due to repeated PTK reinstallations on device no. 3 (Test 3)

The first tptk variant attack worked (i.e., the successive transmission of EAPOL Message 1

and EAPOL Message 3) and lead to nonce reuse. The second and third highlighted pairs of

frames represent a standard EAPOL Message 3 retransmission vulnerability. This occurred

because the script already detected after the first tptk test that the device was vulnerable, and

thus didn’t send EAPOL Message 1 anymore. This observation confirms the previous result

of Test 1.

The last reviewed test for the Blackberry device is the “group-gtkinit” test (Test 7). On one

hand, device no. 3 always sets its RSC value to 0 in EAPOL group message 2, although the

AP sets it at a high value in EAPOL group message 1 (Figure 34). On the other hand, the

command-line states that the Blackberry correctly resets the GTK counter (Figure 35, p. 65).

Figure 34: As for the Fairphone, the RSC value is not incremented for the Blackberry (Test 7)

Given that the “gtkinit” option (Test 5) already produced unexpected behaviour, this addi-

tional observation for the “group-gtkinit” (Test 7) diminishes the confidence one can have

in these 2 tests.

65

Figure 35: Blackberry device allegedly uses the given RSC value according to Test 7 (device no. 3)

To compare previous results of the Fairphone and the Blackberry devices for the “group-

gtkinit” test, 2 other devices, which were detected as vulnerable, are presented to underline

the issue with the test. These are the Redmi Note 9 (device no. 7) and the Asus Zenfone 6

(device no. 8). For these 2 devices, the results stated that they were not installing the pro-

vided RSC, as shown in Figure 36 for the Redmi Note 9 device. Looking at the Wireshark

capture of Test 7, Figure 37 shows that the Redmi Note 9 phone indeed reinstalls an all-zero

RSC value, while it should take the counter value given by the AP.

Figure 36: Test-positive result for the Redmi Note 9 (Test 7)

Figure 37: Constant RSC reset to 0 by Redmi Note 9 during the group key handshake (Test 7)

The same was observed for device no. 8 (Figure 38), which would confirm the script’s out-

put. Overall, it seems that the script output for Test 7 is less reliable given the various

Wireshark captures taken. Nevertheless, the traffic captures seem to indicate that devices

don’t install the provided RSC value in the group key handshake.

Figure 38: RSC is also not incremented in the group key handshake for Asus Zenfone 6 (Test 7)

66

8.2.3 KRACK against Samsung S5 (Android v6)

Another quite interesting case study is the Samsung S5 device (device no. 4). It was almost

positive on all tests, which was less surprising than for other devices as its OS is Android

v6.0.1. This OS was the one at the centre of Vanhoef’s analyses, which he found to be

vulnerable to KRACK [5, p. 5]. Starting with the general Test 1, PTK-IV reuse was detected,

indicating PTK reinstallation (Figure 39). As opposed to the Blackberry device, the Sam-

sung S5 was also reinstalling the GTK during Test 1 (Figure 40).

Figure 39: Samsung S5 being vulnerable to KRACK and performing PTK reinstallation (Test 1)

Figure 40: GTK reinstallation in the 4-way handshake for device no. 4 (Test 1)

The Wireshark capture confirms that a PTK reinstallation occurred in frame no. 7452, after

the second retransmission of EAPOL Message 3 (Figure 41). Note that for this device, the

group key was also reinstalled, as the Samsung S5 device replied to replayed ARP requests

multiple times (see Figure 42 on p. 67). The tptk variant of KRACK (Test 3) also produced

the same outcomes for device no. 4. Still, although Vanhoef found that Android v6.0.1 de-

vices were reinstalling an all-zero TK, the captured frames showed that device no. 4 wasn’t.

Figure 41: IV reuse highlighted due to PTK reinstallation on Samsung S5 (Test 1)

67

Figure 42: Device no. 4 repeatedly replies to ARP requests, indicating GTK reinstallation (Test 1)

Responses to replayed ARP requests were also detected during the group key handshake

(Figure 43) and proven during traffic capture (Figure 44). Note that in Figure 44, all ARP

frames or frames which were encrypted by the AP (i.e., “Key Index” column shows “1”) are

filtered for. Even if the client’s IP address is sometimes shown, it is the AP who retransmit-

ted the client’s broadcast frame. If just looking at ARP frames isn’t enough to identify GTK

reinstallation, this display can help follow the GTK-IVs more precisely and show that high-

lighted IVs were already used previously by the AP.

Figure 43: Samsung S5 reinstalls the GTK during the group key handshake (Test 5)

Figure 44: Multiple ARP responses to replayed ARP requests by device no. 4 (Test 5)

Out of all 29 devices, the Samsung S5 seems therefore to be the most vulnerable to KRACK

attacks.

68

8.2.3 Replaying Broadcast Frames on Surface 3

The last example presented for this subchapter is the Surface 3 tablet (device no. 1), the only

device where Test 2 came out positive. It should be remembered that the test looks for re-

plies to replayed ARP messages based on GTK-IVs. For this test, no KRACK attempts are

performed (meaning that no GTK is reinstalled, unlike for the other options). The Surface 3

tablet replied to a replayed broadcasted ARP request, as can be seen in Figure 45. The re-

played frames are highlighted in red, while the response is marked in green.

Figure 45: A replayed ARP request accepted by device no. 1 (Test 2)

Since the Surface 3 device has seen (i.e., responded to) other ARP frames with higher GTK-

IVs, it should have dropped frame no. 2211. Multiple examples can be seen in the capture.

Interestingly, the device answered to other frames where the GTK-IV was lower than that

of previously accepted ones. For example, frame no. 1341 used a GTK-IV of “5”, but it was

a GTK-IV of “3” for frame no. 1515. Therefore, frame no. 1515 should have been dropped.

Instead, it replied to it. Figure 46 shows the GTK-IV incrementation of the AP, and high-

lights frames encrypted using GTK-IVs of “1” by the AP.

Figure 46: Expanded view of traffic with the Surface 3 device to follow GTK-IVs (Test 2)

69

8.3 Impact and Limits of Results

Having reviewed the relevant test cases, the significance of obtained results is discussed,

considering the research questions. As a reminder, they are listed below:

Q1. Given the identified available GitHub repositories, is it possible to successfully scan

Wi-Fi-enabled devices for the KRACK vulnerability?

Q2. If that is the case, what are the struggles to perform the vulnerability test?

Q3. What’s the current relevance of KRACK given obtained results with this tool?

Answering the first research question, it appears that a KRACK-scanning tool indeed allows

for successful detection of the KRACK vulnerability on devices in most cases. Nevertheless,

there are multiple reasons why it is imperfect. Note that the specific tests cited in the Results

chapter are targeted here. To begin with, the script understandably can’t handle all types of

device behaviours: some devices break out of the connection, and it was shown that it is

sensitive to background noise. Also, some obtained results were hard to verify, such as the

tests resetting the RSC counter for the GTK (in the group key and 4-way handshakes). For

some test, it would be correct while for others, the command line output would contradict

the Wireshark capture. Although Vanhoef warns about their reliability issue on its GitHub

repository [27], the exact reason behind them remains unclear. Undoubtedly, there was also

a logical bug in Vanhoef’s script which made the “gtkinit” option (Test 5) not set the RSC

value properly in EAPOL Message 3. The impact of this, although being corrected after-

wards, was unknown as it appeared that some devices were still stated as responding cor-

rectly while they weren’t. A similar issue occurred for the “group-gtkinit” option (Test 7),

while this one didn’t suffer such a bug. For the main tests which target the most important

vulnerabilities (Tests 1-3-4 and Test 6), the script was successfully identifying vulnerable

devices. Overall, the script seemed efficient for marking devices which would be vulnerable

to CVE-2017-13077, CVE-2017-13078 and CVE-2017-13080.

To answer the second research question, the following struggles for the testing process were

therefore identified:

1. Finding a suitable WNIC for setting up the testing AP can be challenging.

2. The tests are sensitive to background noise.

3. Some device behaviour couldn’t be handled by the script.

4. Some tests aren’t performing correctly (Test 5 and Test 7).

70

Finally, the assessment of the KRACK vulnerabilities’ current relevance, in light of the tests

performed with the tool, answers the third and last research question. Given the comprehen-

sive analyses presented in this thesis, it would seem that KRACK’s main vulnerabilities

were patched in modern OSs. Performing a KRACK attack against a victim to read its com-

munications with an AP seems hard enough to deter attackers from choosing this attack

vector though. First, an attacker would probably have to gain in-depth knowledge of how

WPA/WPA2 works to fully recreate a tool able to exploit KRACK. Although the MC-

MITM tool [47] and the all-zero key reinstallation Proof-of-Concept [48] written by

Vanhoef are available, no tool or script was found to be able to chain the two elements

together to perform KRACK. If older WNICs are also needed, as was the case with the

KRACK testing scripts of [27], then the attacker may also have difficulties finding the right

hardware. Then, the attacker is limited by the Wi-Fi range, and even more so by the attack

which needs to move the client and AP to communicate with its malicious MITM device.

Furthermore, the client must be vulnerable to the attack, which was shown to happen in rare

cases.

On top of all these elements, other less technical attacks might be as efficient as KRACK in

fulfilling the attacker’s objective(s), as described in [2]. Typically, if the attacker aims for

credentials, it could simply put its machine in a MITM position in case the data is not en-

crypted at a higher level of the OSI model (e.g., HTTPS or using a Virtual Private Network,

or VPN). Of course, this wouldn’t be as stealthy as the MC-MITM, but nonetheless efficient.

The seemingly difficult exploitation of KRACK is supported by the Exploit Prediction Scor-

ing System (EPSS) score, which estimates how likely a vulnerability is to be exploited in

the next 30 days [51]. Its scale goes from 0 to 100%, and the estimated EPSS score for CVE-

2017-13077 was 0.16% in March of 2023, according to [52]. Overall, all KRACK-related

CVEs had a score below 3%. The CVSSv3 Exploitability subscore of CVE-2017-13077 also

indicates that exploitation is unlikely to occur, as it was set at 1.6 (out of 10) by NIST. The

two scores suggest that KRACK is difficult to exploit. Although affecting the core of the

WPA/WPA2’s security, it seems that vendors and manufacturers patched the most problem-

atic vulnerabilities correctly. As [2, p. 17] also notes, most of the attack techniques against

Wi-Fi in 2018 were solved by moving to WPA3, including KRACK.

Still, the results of this analysis also show that more “minor” issues might remain unpatched

or uncorrected in modern devices and OSs, such as accepting replayed broadcast frames or

71

ignoring the RSC reset performed for a GTK renewal. As WPA/WPA2 is still widely used,

the presented results show that these issues should be addressed.

Closing this chapter, the assessed limits of the selected methods (see Methods, p. 40) are

discussed to present ideas for future work. It was indeed discovered that, given the time that

passed since KRACK’s discovery, very few devices were found to be reinstalling their keys

(PTK, GTK), and thus reusing cryptographic nonces. Then, the representativity of the sam-

pling was considered to be reasonably diverse. The selection process could have targeted

Android/Linux-based devices more, as they were the main ones thought to be vulnerable to

KRACK. Nevertheless, it was found that some Apple devices also had issues with some

tests, which wouldn’t have been discovered if only Android/Linux-based devices were se-

lected.

The number of tested devices could be improved with more resources at disposal, and scripts

to automate running the tests could be written to speed up the data collection process. Since

connecting to a Wi-Fi network needs the manual approval of the device owner most of the

time, a fully automated testing process is considered difficult to achieve. Further investiga-

tion into this option would be beneficial to similar studies aiming at detecting devices vul-

nerable to Wi-Fi attacks. Also, finding and sampling 802.11r APs to perform Vanhoef’s test

on them would also be an interesting continuation of this thesis. At a more general level, it

would be interesting to develop a tool which could screen Wi-Fi-enabled devices for various

Wi-Fi-related vulnerabilities, proving its result through traffic captures.

72

9 Conclusion

KRACK is a complex set of vulnerabilities affecting WPA/WPA2, two Wi-Fi security pro-

tocols still widely used in the world. It has been six years since its release, yet researchers

have shown little attention to it, except for citing the discovered vulnerabilities as a potential

type of attack against Wi-Fi. As shown, KRACK has been well patched over the years and

it seems that WPA2 has still some years left before being fully replaced by WPA3, the cur-

rent Wi-Fi security standard.

This thesis aimed to explain KRACK as thoroughly as possible. The contributions of this

study was to detail the steps to install a testing environment, to review Vanhoef’s testing

script, to showcase how to run the tests against devices, as well as presenting traffic captures

proving vulnerable behaviour. A convenience sampling was performed, collecting test re-

sults for 29 devices. For each device, a set of 7 tests based on Vanhoef’s script was per-

formed, totalling 203 outcomes. Only 2 older devices were identified as being vulnerable to

the main KRACK vulnerabilities (CVE-2017-13077 and CVE-2017-13078). The devices

reinstalled the PTK and GTK after retransmission of EAPOL Message 3, leading to nonce

reuse. For this, variants of the simple retransmission of EAPOL Message 3 were also tested,

with limited success. Also, 3 devices suffered from CVE-2017-13080, meaning that they

reinstalled the GTK and reinitialise the related counter during the group key handshake. The

script commands examining the reinitialisation of the RSC to a higher value were not effi-

cient in revealing if devices were vulnerable to the tested malfunction. This analysis also

discovered a logical bug which prevented one of Vanhoef’s tests from running correctly,

although this was not the reason why related results were unreliable. On top of device test-

ing, this thesis provided Wireshark captures performed during the tests, deep diving into the

traffic and related behaviour of examined devices. This allows the reader to get insights on

the exchanged frames when KRACK is performed against a Wi-Fi-enabled device.

For future studies, developing scripts to automate the testing process could be written to

speed up data collection, resulting in more representative analyses. Finally, a novel and

broader research project could be the development of a general vulnerability detection sys-

tem for Wi-Fi systems, which would screen devices with various test and proving the vul-

nerable behaviour through traffic capture.

I

References

[1] S. P. Bonacci and R. Wood, ‘Wireless network data traffic: worldwide trends and

forecasts 2021–2026’, Analysys Mason. Accessed: May 07, 2023. [Online]. Available:

https://www.analysysmason.com/conten-

tassets/63ab4d5ecf364c60a558dcca49ee801f/analysys_mason_wireless_traffic_fore-

cast_oct2021_samples_rdnt0.pdf

[2] C. Kohlios and T. Hayajneh, ‘A Comprehensive Attack Flow Model and Security

Analysis for Wi-Fi and WPA3’, Electronics, vol. 7, no. 11, p. 284, Oct. 2018, doi:

10.3390/electronics7110284.

[3] R. Katz, J. Jung, and F. Callorda, ‘The Economic Value of Wi-Fi A Global View

2021-2025’, Accessed: Mar. 19, 2023. [Online]. Available: https://www.wi-fi.org/dow-

nload.php?file=/sites/default/files/private/The_Economic_Value_of_Wi-Fi-A_Glo-

bal_View_2021-2025_202109.pdf

[4] E. Ferro and F. Potorti, ‘Bluetooth and wi-fi wireless protocols: a survey and a

comparison’, IEEE Wireless Commun., vol. 12, no. 1, pp. 12–26, Feb. 2005, doi:

10.1109/MWC.2005.1404569.

[5] M. Vanhoef and F. Piessens, ‘Key Reinstallation Attacks: Forcing Nonce Reuse in

WPA2’, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, Dallas Texas USA: ACM, Oct. 2017, pp. 1313–1328. doi:

10.1145/3133956.3134027.

[6] P. Taylor, ‘Global mobile OS market share 2023’, Statista. https://www.sta-

tista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-

2009/ (accessed Jul. 22, 2023).

[7] ‘WiGLE Stats’. https://wigle.net/stats#geostats (accessed Jul. 22, 2023).

[8] ‘IEEE Standard for information technology-Telecommunications and information

exchange between systems-Local and metropolitan area networks-Specific requirements-

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) speci-

fications: Amendment 6: Medium Access Control (MAC) Security Enhancements’. 2004.

doi: 10.1109/IEEESTD.2004.94585.

[9] M. Vanhoef and E. Ronnen, ‘Dragonblood: Analyzing the Dragonfly Handshake of

WPA3 and EAP-pwd’, in Proceedings of the IEEE Symposium on Security and Privacy,

2020- May, 517–533, May 2020, pp. 517–533. doi: 10.1109/SP40000.2020.00031.

II

[10] ‘Chapter 2. Overview of 802.11 Networks’, in 802.11 Wireless Networks: the de-

finitive guide; [creating and administering Wireless Networks], 1. ed.in Creating and ad-

ministering wireless networks. Beijing Köln: O’Reilly, 2002, pp. 20–34.

[11] ‘Chapter 3. The 802.11 MAC’, in 802.11 Wireless Networks: the definitive guide;

[creating and administering Wireless Networks], 1. ed.in Creating and administering wire-

less networks. Beijing Köln: O’Reilly, 2002, pp. 35–61.

[12] ‘Chapter 4. 802.11 Framing in Detail’, in 802.11 Wireless Networks: the definitive

guide; [creating and administering Wireless Networks], 1. ed.in Creating and administer-

ing wireless networks. Beijing Köln: O’Reilly, 2002, pp. 62–94.

[13] ‘Standard 802.11-2007, Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications, Subsection 8.3-RSNA data confidentiality pro-

tocols’. 2007.

[14] M. Thankappan, H. Rifà-Pous, and C. Garrigues, ‘Multi-Channel Man-in-the-Mid-

dle attacks against protected Wi-Fi networks: A state of the art review’, Expert Systems

with Applications, vol. 210, p. 118401, Dec. 2022, doi: 10.1016/j.eswa.2022.118401.

[15] ‘Chapter 7. 802.11i: Robust Security Networks, TKIP, and CCMP’, in 802.11

Wireless Networks: the definitive guide; [creating and administering Wireless Networks],

1. ed.in Creating and administering wireless networks. Beijing Köln: O’Reilly, 2002, pp.

184–203.

[16] M. Vanhoef, ‘KRACK Attacks: Breaking WPA2’. https://www.krackattacks.com/

(accessed Jul. 22, 2023).

[17] S. Fluhrer, I. Mantin, and A. Shamir, ‘Weaknesses in the Key Scheduling Algo-

rithm of RC4’, in Selected Areas in Cryptography, S. Vaudenay and A. M. Youssef, Eds.,

in Lecture Notes in Computer Science, vol. 2259. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2001, pp. 1–24. doi: 10.1007/3-540-45537-X_1.

[18] A. Stubblefield, J. Ioannidis, and A. D. Rubin, ‘Using the Fluhrer, Mantin, and

Shamir Attack to Break WEP’, AT&T Labs Technical Report TD-4ZCPZZ, 2001.

[19] E. Tews, R.-P. Weinmann, and A. Pyshkin, ‘Breaking 104 Bit WEP in Less Than

60 Seconds’, in Information Security Applications, S. Kim, M. Yung, and H.-W. Lee,

Eds., in Lecture Notes in Computer Science, vol. 4867. Berlin, Heidelberg: Springer Ber-

lin Heidelberg, 2007, pp. 188–202. doi: 10.1007/978-3-540-77535-5_14.

[20] E. Tews and M. Beck, ‘Practical attacks against WEP and WPA’, in Proceedings

of the second ACM conference on Wireless network security - WiSec ’09, Zurich, Switzer-

land: ACM Press, 2009, p. 79. doi: 10.1145/1514274.1514286.

III

[21] S. Viehböck, ‘Brute forcing Wi-Fi Protected Setup’, CERT Vulnerability Note VU

723755., 2011.

[22] C. He and J. C. Mitchell, ‘Analysis of the 802.11i 4-way handshake’, in Proceed-

ings of the 2004 ACM workshop on Wireless security - WiSe ’04, Philadelphia, PA, USA:

ACM Press, 2004, p. 43. doi: 10.1145/1023646.1023655.

[23] M. Cunche, ‘Comprendre les attaques KRACK’, no. 99 (HS), Nov. 2018. Ac-

cessed: Jun. 11, 2023. [Online]. Available: https://connect.ed-diamond.com/GNU-Linux-

Magazine/glmfhs-099/comprendre-les-attaques-krack

[24] M. Vanhoef, ‘Chromium Bug Tracker: WPA1/2 all-zero session key & key rein-

stallation attacks.’ 2017. Accessed: Aug. 29, 2017. [Online]. Available: https://bugs.chro-

mium.org/p/chromium/issues/detail?id=743276

[25] M. Vanhoef and F. Piessens, ‘Release the Kraken: New KRACKs in the 802.11

Standard’, in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security, Toronto Canada: ACM, Oct. 2018, pp. 299–314. doi:

10.1145/3243734.3243807.

[26] J. Ernekerová, ‘Analysis and Detection of KRACK Attack Against WiFi In-

frastracture’, Master’s thesis, Czech Technical University in Prague, Faculty of Infor-

mation Technology, 2019.

[27] M. Vanhoef, ‘krackattacks-scripts’. Jul. 20, 2023. Accessed: Jul. 23, 2023.

[Online]. Available: https://github.com/vanhoefm/krackattacks-scripts

[28] M. Vanhoef, ‘Fragment and Forge: Breaking Wi-Fi Through Frame Aggregation

and Fragmentation’, 30th USENIX Security Symposium, 2021.

[29] M. Čermák, Š. Svorenčík, R. Lipovský, and O. Kubovič, ‘KR00K - Serious vulner-

ability deep inside your wi-fi encryption’, ESET White Paper, 2020.

[30] J. Freudenreich, J. Weidman, and J. Grossklags, ‘Responding to KRACK: Wi-Fi

Security Awareness in Private Households’, in Human Aspects of Information Security

and Assurance, N. Clarke and S. Furnell, Eds., in IFIP Advances in Information and Com-

munication Technology, vol. 593. Cham: Springer International Publishing, 2020, pp.

233–243. doi: 10.1007/978-3-030-57404-8_18.

[31] N. Sombatruang, Y. Kadobayashi, M. A. Sasse, M. Baddeley, and D. Miyamoto,

‘The continued risks of unsecured public Wi-Fi and why users keep using it: Evidence

from Japan’, in 2018 16th Annual Conference on Privacy, Security and Trust (PST), Bel-

fast: IEEE, Aug. 2018, pp. 1–11. doi: 10.1109/PST.2018.8514208.

IV

[32] O. Nakhila, A. Attiah, Y. Jin, and C. Zou, ‘Parallel active dictionary attack on

WPA2-PSK Wi-Fi networks’, in MILCOM 2015 - 2015 IEEE Military Communications

Conference, Tampa, FL: IEEE, Oct. 2015, pp. 665–670. doi: 10.1109/MIL-

COM.2015.7357520.

[33] D. Schepers, A. Ranganathan, and M. Vanhoef, ‘Practical Side-Channel Attacks

against WPA-TKIP’, in Proceedings of the 2019 ACM Asia Conference on Computer and

Communications Security, Auckland New Zealand: ACM, Jul. 2019, pp. 415–426. doi:

10.1145/3321705.3329832.

[34] H. Musthyala and P. N. Reddy, ‘Hacking wireless network credentials by perform-

ing phishing attack using Python Scripting’, in 2021 5th International Conference on In-

telligent Computing and Control Systems (ICICCS), Madurai, India: IEEE, May 2021, pp.

248–253. doi: 10.1109/ICICCS51141.2021.9432155.

[35] B. Pingle, A. Mairaj, and A. Y. Javaid, ‘Real-World Man-in-the-Middle (MITM)

Attack Implementation Using Open Source Tools for Instructional Use’, in 2018 IEEE In-

ternational Conference on Electro/Information Technology (EIT), Rochester, MI: IEEE,

May 2018, pp. 0192–0197. doi: 10.1109/EIT.2018.8500082.

[36] M. Vondráček, J. Pluskal, and O. Ryšavý, ‘Automated Man-in-the-Middle Attack

Against Wi‑Fi Networks’, JDFSL, 2018, doi: 10.15394/jdfsl.2018.1495.

[37] M. Denis, C. Zena, and T. Hayajneh, ‘Penetration testing: Concepts, attack meth-

ods, and defense strategies’, in 2016 IEEE Long Island Systems, Applications and Tech-

nology Conference (LISAT), Farmingdale, NY, USA: IEEE, Apr. 2016, pp. 1–6. doi:

10.1109/LISAT.2016.7494156.

[38] M. E. Garbelini, C. Wang, and S. Chattopadhyay, ‘Greyhound: Directed Greybox

Wi-Fi Fuzzing’, IEEE Trans. Dependable and Secure Comput., vol. 19, no. 2, pp. 817–

834, Mar. 2022, doi: 10.1109/TDSC.2020.3014624.

[39] M. A. Abo-Soliman and M. A. Azer, ‘A study in WPA2 enterprise recent attacks’,

in 2017 13th International Computer Engineering Conference (ICENCO), Cairo: IEEE,

Dec. 2017, pp. 323–330. doi: 10.1109/ICENCO.2017.8289808.

[40] A. Bartoli, E. Medvet, and F. Onesti, ‘Evil twins and WPA2 Enterprise: A coming

security disaster?’, Computers & Security, vol. 74, pp. 1–11, May 2018, doi:

10.1016/j.cose.2017.12.011.

V

[41] Z. C. Schreuders and A. M. Bhat, ‘Not All ISPs Equally Secure Home Users - An

Empirical Study Comparing Wi-Fi Security Provided by UK ISPs’:, in Proceedings of the

10th International Conference on Security and Cryptography, Reykjavík, Iceland: SCITE-

PRESS - Science and and Technology Publications, 2013, pp. 568–573. doi:

10.5220/0004600405680573.

[42] V. O. Etta, A. Sari, A. L. Imoize, P. K. Shukla, and M. Alhassan, ‘Assessment and

Test-case Study of Wi-Fi Security through the Wardriving Technique’, Mobile Infor-

mation Systems, vol. 2022, pp. 1–21, Jun. 2022, doi: 10.1155/2022/7936236.

[43] R. Kalniņš, J. Puriņš, and G. Alksnis, ‘Security Evaluation of Wireless Network

Access Points’, Applied Computer Systems, vol. 21, no. 1, pp. 38–45, May 2017, doi:

10.1515/acss-2017-0005.

[44] A. Sebbar, Se. Boulahya, G. Mezzour, and M. Boulmalf, ‘An empirical study of

WIFI security and performance in Morocco - wardriving in Rabat’, in 2016 International

Conference on Electrical and Information Technologies (ICEIT), Tangiers, Morocco:

IEEE, May 2016, pp. 362–367. doi: 10.1109/EITech.2016.7519621.

[45] I. Hossain, M. M. Hasan, S. Faisal Hasan, and Md. R. Karim, ‘A study of security

awareness in Dhaka city using a portable WiFi pentesting device’, in 2019 2nd Interna-

tional Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangla-

desh: IEEE, Dec. 2019, pp. 1–6. doi: 10.1109/ICIET48527.2019.9290589.

[46] D. Delija, Z. Petrovic, G. Sirovatka, and M. Zagar, ‘An Analysis of Wireless Net-

work Security Test Results provided by Raspberry Pi Devices on Kali Linux’, in 2021

44th International Convention on Information, Communication and Electronic Technology

(MIPRO), Opatija, Croatia: IEEE, Sep. 2021, pp. 1219–1223. doi: 10.23919/MI-

PRO52101.2021.9596954.

[47] M. Vanhoef, ‘Multi-Channel Machine-in-the-Middle’. Jul. 05, 2023. Accessed: Jul.

23, 2023. [Online]. Available: https://github.com/vanhoefm/mc-mitm

[48] M. Vanhoef, ‘krackattacks-poc-zerokey’. 2018. Accessed: Jul. 23, 2023. [Online].

Available: https://github.com/vanhoefm/krackattacks-poc-zerokey/blob/research/krack-

attack/krack-all-zero-tk.py

[49] L. Couto, ‘fork of krackattacks-scripts’. Nov. 19, 2021. Accessed: Jul. 23, 2023.

[Online]. Available: https://github.com/lucascouto/krackattacks-scripts

VI

[50] M. Thankappan, ‘Multi Channel Man-in-the-Middle Attacks Against Protected

Wi-Fi Networks’. Mar. 31, 2022. Accessed: Jul. 23, 2023. [Online]. Available:

https://github.com/maneshthankappan/Multi-Channel-Man-in-the-Middle-Attacks-

Against-Protected-Wi-Fi-Networks-By-Improved-Variant

[51] ‘Exploit Prediction Scoring System (EPSS)’, FIRST — Forum of Incident Re-

sponse and Security Teams. https://www.first.org/epss (accessed Aug. 04, 2023).

[52] ‘Vulnerability Details: CVE-2017-13077’. https://www.cvedetails.com/cve/CVE-

2017-13077/ (accessed Aug. 04, 2023).

VII

Appendix

I. Filters used for Wireshark Capture Figures

Figure 20: Detailed look at the CCMP Header of frame no. 168 (p. 56)

Wireshark filter used:

(wlan.sa == c0:1c:30:2f:f6:f0) || (wlan.sa == 22:61:71:23:de:e6)

Explanation: It filters for the Source address (“sa”) respectively using the AP’s and the de-

vice no. 12’s MAC address. The logical OR symbol is represented by “||” (which is used

here), while the AND symbol is represented by “&&”. For each Wireshark capture (i.e.,

figure), the filters used for the display are defined.

Figure 21: tptk-rand variant of KRACK and Disassociation as a response by device no. 12

(Test 4) (p. 58)

Wireshark filter used:

(wlan.sa == c0:1c:30:2f:f6:f0) || (wlan.sa == 22:61:71:23:de:e6)

Figure 22: Wrong behaviour by hostapd for Test 5 (device no. 12) (p. 58)

Wireshark filter used:

eapol

Explanation: As suggested by its name, this filter only displays EAPOL messages.

Figure 24: RSC value in EAPOL group message 1 is not set by the client (device no. 12,

Test 7) (p. 59)

Wireshark filter used:

eapol

Figure 25: Test 1 on device no. 12 (Fairphone FP4) with the first KRACK attempt high-

lighted (p. 60)

Wireshark filter used:

eapol

Figure 26: No PTK reinstallation, as no PTK-IV was reused on device no. 12 (with Test 1)

(p. 61)

VIII

Wireshark filter used:

(wlan.wep.key == 0) && (wlan.ta == 22:61:71:23:de:e6)

Explanation: It filters for the Transmitter address (“ta”) of the device no. 12’s MAC address

(and not the Source address), as well as frames encrypted using the TK. The reason for

selecting “ta” instead of “sa” is to ignore the broadcast frames sent by the client and avoid

confusion.

Indeed, these “broadcast” frames are, in fact, a combination of “unicast (by client) + broad-

cast (by AP)” frames, as stated before. Using the “ta” filter skips these frames.

Figure 27: No replies from device no. 12 to replayed ARP requests (Test 1) (p. 61)

Wireshark filter used:

arp

Explanation: Only ARP frame will be displayed.

Figure 29: IV reuse by device no. 3 (Test 1) (p. 62)

Wireshark filter used:

((wlan.sa == c0:1c:30:2f:f6:f0) || (wlan.sa == f4:0b:93:66:fc:9f)) && (wlan.fc.type == 2)

Explanation: The last parameter filters for Data frames to give a clearer but still relevant

view to the reader.

Figure 31: Absence of replies to replayed ARP requests for device no. 3 (Test 1) (p. 63)

Wireshark filter used:

arp

Figure 33: Multiple IV reuse due to repeated PTK reinstallations on device no. 3 (Test 3)

(p. 64)

Wireshark filter used:

eapol

Figure 34: As for the Fairphone, the RSC value is not incremented for the Blackberry (Test

7) (p. 64)

Wireshark filter used:

arp

IX

Figure 37: Constant RSC reset to 0 by Redmi Note 9 during the group key handshake (Test

7) (p. 65)

Wireshark filter used:

eapol

Figure 38: RSC is also not incremented in the group key handshake for Asus Zenfone 6

(Test 7) (p. 65)

Wireshark filter used:

eapol

Figure 41: IV reuse highlighted due to PTK reinstallation on Samsung S5 (Test 1) (p. 66)

Wireshark filter used:

((wlan.wep.key == 0 || eapol) && wlan.sa == 60:af:6d:f9:69:c0) || (eapol && wlan.sa ==

c0:1c:30:2f:f6:f0)

Explanation: To summarise this filter, TK-encrypted or EAPOL frames sent by the client

are displayed, as well as EAPOL frames sent by the AP.

Figure 42: Device no. 4 repeatedly replies to ARP requests, indicating GTK reinstallation

(Test 1) (p. 67)

Wireshark filter used:

arp

Figure 44: Multiple ARP responses to replayed ARP requests by device no. 4 (Test 5) (p.

67)

Wireshark filter used:

arp || ((wlan.ta == c0:1c:30:2f:f6:f0) && (wlan.wep.key == 1))

Explanation: The filter here expands the view which just showed ARP frames: it also in-

cludes GTK-encrypted frames for which the Transmitter address is the AP's.

Figure 45: A replayed ARP request accepted by device no. 1 (Test 2) (p. 68)

Wireshark filter used:

((arp.src.hw_mac == b4:ae:2b:2c:b7:e9) || (arp.src.hw_mac == c0:1c:30:2f:f6:f0))

X

Explanation: It filters for ARP requests sent by these 2 MAC addresses (which are, respec-

tively, the Surface’s (device no. 1) and the AP’s MAC address.

Figure 46: Expanded view of traffic with the Surface 3 device to follow GTK-IVs (Test 2)

(p. 68)

Wireshark filter used:

arp || ((wlan.ta == c0:1c:30:2f:f6:f0) && (wlan.wep.key == 1))

XI

II. Step-by-step Process of KRACK Tests

This additional section aims at summarising the steps and checks each test goes through25.

Attempts targeting the 3 KRACK CVEs which were tested are highlighted in orange, while

the yellow forms highlight the cause of the malfunction.

25 “BCAST_VULN” checks if replayed ARPs received replies. “4WAY_VULN” checks if PTK-IVs were

reused.

XII

III. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Brice Seiler,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Vulnerability of Wi-Fi-enabled Devices to KRACK Attacks – A Case Study,

supervised by Danielle Morgan,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 11.08.2023

