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Vulnerability of Wi-Fi-enabled Devices to KRACK Attacks – A Case Study 

Abstract: 

In 2017, security researchers Mathy Vanhoef and Frank Piessens discovered a serious set of 

vulnerabilities  in the Wi-Fi Protected Access/Wi-Fi Protected Access 2 (WPA/WPA2) se-

curity protocol that became known as key reinstallation attack, also known as KRACK. This 

set of vulnerabilities allowed attackers to replay, decrypt or forge data transmitted over Wi-

Fi. For some Android smartphones, KRACK led to an all-zero key being used, making it 

trivial for attackers to manipulate the Wi-Fi communication. Although it was acknowledged 

as one of the most important vulnerabilities against WPA/WPA2, no follow-up studies in-

vestigated how devices can be tested against it, and if and how it still affects Wi-Fi-enabled 

devices today. This Master’s thesis conducted a comprehensive analysis of the KRACK 

vulnerabilities, by investigating their mechanics and detailing how to setup a testing envi-

ronment to research it. This testing environment was used to examine if devices were vul-

nerable to one of Vanhoef’s seven tests. The seven tests were performed on 29 Wi-Fi-ena-

bled devices collected through a convenience sampling method. In total, 203 test results 

were gathered. Out of 29 devices, only 2 older smartphones were identified to be vulnerable 

to the KRACK attack. Network captures are provided for discussing the tests’ outcomes. 

Keywords: 

Key Reinstallation Attack, KRACK, 802.11, WPA/WPA2, 4-way handshake, MC-MITM 

CERCS:  
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Wi-Fi võimekusega seadmete haavatavus KRACK rünnakutele - juhtumi-

uuring 

Lühikokkuvõte: 

2017. aastal avastasid küberturbe spetsialistid Mathy Vanhoef ja Frank Piessens tõsise 

haavatavuse Wi-Fi Protected Access/Wi-Fi Protected Access 2 (WPA/WPA2) turvaproto-

kollis, mida edaspidi nimetati võtme taaspaigaldus rünnakuks ehk “key reinstallation at-

tack”, või KRACK rünnakuks. Antud kogum haavatavusi võimaldas ründajatel taasesitada, 

dekrüpteerida või võltsida Wi-Fi kaudu edastatud andmeid. Mõne Androidi nutitelefoni pu-

hul viis KRACK selleni, et kasutati kõik nullid võtit (“all-zero key”), muutes ründajate jaoks 

Wi-Fi kommunikatsiooniga manipuleerimise triviaalseks. Vaatamata sellele, et seda peeti 

olulisemaks haavatavuseks WPA/WPA2 protokollis, ei ole senini järeluuringuid, kuidas 

seadmeid antud rünnaku vastu testida või kuidas ja kas see mõjutab veel tänaseid Wi-Fi 

võimekusega seadmeid. Käesolev magistri töö viis läbi põhjaliku analüüsi KRACK haava-

tavuste kohta, uurides nende toimemehhanismi ja selgitades, kuidas luua selle uurimiseks 

testimiskeskkond. Antud testimiskeskkonda kasutati, et tuvastada seadmeid, mis võivad olla 

haavatavad ühele Vanhofi seitsmest testist. Antud teste viidi läbi 29-l Wi-Fi võimekusega 

seadmel, mis koguti testimiseks kasutades mugavusvalimi meetodit. Kokku saadi töös 203 

testi tulemust 29-lt seadmelt. Ainult kahel vanemal nutitelefonil tuvastati haavatavus 

KRACK rünnakule. Töö lõppu on lisatud võrgu pakkettide väljavõtted, mis on toeks uuri-

muse tulemuste üle arutluses. 

Võtmesõnad: 

Key Reinstallation Attack, KRACK, 802.11, WPA/WPA2, 4-way handshake, MC-MITM 

CERCS: 

T120 - Süsteemitehnoloogia, arvutitehnoloogia 
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1 Introduction 

Wi-Fi is one of the most common ways for people to connect to the Internet nowadays, 

especially for mobile devices: its traffic is estimated to be 5.4 times bigger than that of mo-

bile networks [1]. Defined as a standard in 1997 [2] by the Institute of Electrical and Elec-

tronics Engineers (IEEE), Wi-Fi’s current economic value is estimated at a staggering 3.3 

trillion US$ [3]. In 2025, it is expected to rise to 4.9 trillion US$ according to the Wi-Fi 

Alliance [3]. Some of the identified key contributors are free Internet access through open 

Wi-Fi networks, consumers accessing the Internet through home routers, and enterprises 

digitalising their business functions through Wi-Fi [3]. Especially in recent years notably 

since the 2020 Coronavirus pandemic, Wi-Fi has been heavily used as more and more em-

ployees were working remotely [1]. Its main advantage for users resides in its wireless con-

nection, based on radio waves in the 2.4GHz, 5GHz (and now even 6GHz spectra), and its 

higher data transfer rates and range than other wireless technologies such as Bluetooth [4]. 

To protect the confidentiality and integrity of Wi-Fi communications, security protocols 

have been used since 1999 [2]. Even though Wi-Fi security continuously improved over 

time, a particular set of attacks called “KRACK” (for “Key reinstallation Attacks”) was 

discovered by researchers in 2017 [5] and was particularly devastating for Wi-Fi security. 

Indeed, these attacks target a core element of the widely used Wireless Protected Access 

(WPA/WPA2) security protocols: the 4-way handshake. This process establishes the en-

cryption keys used to secure a connection between a user and a Wi-Fi access point. The 4-

way handshake was among the novelties embedded in the WPA and WPA2 security proto-

cols. Soon after KRACK was discovered, the WPA3 security protocol was published.  

The authors of KRACK showed that the attack allows malicious actors to replay, decrypt 

and sometimes even forge Wi-Fi frames, without even knowing the Wi-Fi password of the 

network. The worst case affects Linux-based operating systems (OSs), such as Android for 

smartphones: when performing KRACK, an all-zero encryption key was installed and used 

for communications. This completely breaks WPA/WPA2’s security, as the attackers can 

forge and decrypt any exchanged frames. As shown in [6], Android made up around 70% 

of the worldwide mobile OS market share in 2017. As of early June 2023, WPA2 is esti-

mated to be the most widely used Wi-Fi security protocol overall. Indeed, it would account 

for almost 75% of Wi-Fi networks [7] according to wiglet.net (see Figure 1), one of the most 

complete cooperative projects for identifying and mapping existing wireless networks in the 



6 

world (including Wi-Fi, cell towers and Bluetooth). Comparing some countries, WPA2 rep-

resents 72% of the United States’ Wi-Fi networks, 78% of Germany’s, 80% of Estonia’s or 

88% of Switzerland’s. It should be noted that these statistics might not be representative, as 

they depend on voluntary contributors scanning their environments for Wi-Fi networks. 

 

Figure 1: Worldwide Wi-Fi security protocol statistics (as of 04.06.2023) [7] 

Taking both the mobile OSs and the supported Wi-Fi security protocols into account, it can 

be deduced that the potential attack surface for KRACK is important, but little research 

showcased how to perform this niche attack against Wi-Fi. The findings were perceived as 

critical [5], as major media outlets started alerting on how broken WPA2 became, although 

this conclusion was exaggerated. The main objective of this thesis will be to present a com-

prehensive focus on the KRACK vulnerability and investigate the following: what is it, how 

does it work, how can it be tested, and is it still affecting devices “in the wild”? 

As a preliminary introduction to Wi-Fi security theory, Chapter 3 (Background) provides 

an overview of the relevant concepts, namely the cryptographic systems used in Wi-Fi, the 

underlying steps of the 4-way handshake, as well as the KRACK vulnerability and the re-

lated tactic to abuse it, known as Multi-Channel Man-in-the-Middle. Following this theo-

retical chapter, a literature review on Wi-Fi security and KRACK-related scientific articles 

is presented. Chapter 4 (Literature Review) summarises the scientific gap, while Chapter 5 

defines the problem statement. This is followed by a description of the methods used to 

answer the research questions (Chapter 6). Furthermore, Chapter 7 (Results) presents the 

details of this thesis’ analyses, followed by a discussion of the findings (Chapter 8). Finally, 

a conclusion summarises this document (Chapter 9). Since many acronyms will have to be 

used for conciseness, a list of the important abbreviations can be consulted in Chapter 2, 

following this introduction. 
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2 Terms and Notions 

AES   Advanced Encryption Standard 

AP   Access Point 

ARP   Address Resolution Protocol 

CBC-MAC  Cipher Block Chaining - Message Authentication Code 

CCMP   Counter mode CBC-MAC Protocol 

CVE   Common Vulnerabilities and Exposures 

CVSS   Common Vulnerability Scoring System 

EAPOL  Extensible Authentication Protocol over Local Area Network 

GCMP   Galois-Counter Mode Protocol 

GMK   Group Master Key 

GTK   Group Transient Key 

HMAC  Hash-based Message Authentication Code 

IEEE   Institute of Electrical and Electronics Engineers 

ISP   Internet Service Provider 

IV   Initialisation Vector 

KRACK  Key Reinstallation Attacks 

MAC   Media Access Control 

MIC   Message Integrity Check 

MITM   Man-In-The-Middle (attack) 

OS   Operating System 

OSI   Open Systems Interconnection 

PBKDF/PBKDF2 Password-Based Key Derivation Function (2) 

PMK   Pairwise Master Key 

PN   Packet Number 

PRF   Pseudorandom Function 
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PSK   Pre-Shared Key 

PTK   Pairwise Transient Key 

RC4   Rivest Cipher 4 

RSC   Receive Sequence Counter 

SSID   Service Set Identifier 

TKIP   Temporal Key Integrity Protocol 

TK/TEK  Temporal Encryption Key 

WEP   Wired Equivalent Privacy 

Wi-Fi   Wireless Fidelity 

WLAN  Wireless Local Area Network 

WNIC   Wireless Networking Interface Controller 

WPA/WPA2  Wi-Fi Protected Access (2) 
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3 Background 

3.1 Introduction to Wi-Fi Security 

The 4-way handshake was defined in 2004 in the 802.11i amendment of the IEEE 802.11 

standard [8], which introduced WPA and WPA2 to replace WEP. This amendment defines 

procedures to build so-called Robust Security Networks. WPA was thought of as a tempo-

rary solution for compatibility reasons with legacy hardware: it is based on the Temporal 

Key Integrity Protocol (TKIP) as its data-confidentiality protocol, which uses Rivest Cipher 

4 (RC4) as its core cipher. RC4 was the same cipher that was used in WEP, whose imple-

mentation was later shown to be weak. In the 802.11i amendment, WPA2 was designed to 

last longer, as it would use the newly developed Advanced Encryption Standard (AES) ci-

pher within the CCMP block cipher. CCMP stands for Counter mode Cipher block chaining 

Message authentication code Protocol: it combines the Counter mode with CBC-MAC as 

its block cipher, and uses AES as its encryption algorithm. The Counter mode is used for 

ensuring confidentiality, while the CBC-MAC mode is used for ensuring authentication and 

integrity of the communication. Another amendment (802.11ad), established in 2012, added 

GCMP (Galois-Counter Mode Protocol) as an optional block cipher. In 2018, yet another 

security protocol called WPA3 was defined: its authentication method is slightly different 

from WPA/WPA2 and is called “Simultaneous Authentication of Equals”. Indeed, WPA3 

uses an additional type of handshake called “dragonfly handshake”, which uses elliptic 

curve cryptography and precedes the 4-way handshake. Many attacks that could be used 

against WPA/WPA2 networks were handled by WPA3 [2], notably the KRACK vulnera-

bility. Nevertheless, other attack techniques against WPA3 were also found later on by re-

searchers [9]. 

The Wi-Fi protocol (IEEE standard 802.11) is used in both Layer 1 and Layer 2 of the Open 

Systems Interconnection (OSI) model [10, p. 21]. Layer 1 (or “Physical Layer”) notably 

defines the frequencies and modulation types used for the radio waves. In Layer 2 (or “Data 

Link Layer”), concepts like the Media Access Control (MAC) address or the BSS (Basic 

Service Set) are defined and used. The MAC address is a 12-digit hexadecimal number as-

signed to each device connected to a network and is determined by the network interface 

card (NIC). For Wi-Fi communications, a wireless NIC is used (WNIC). Nowadays, devices 

like smartphones might also use a temporary (random) MAC address instead of the card’s 

MAC address when connecting to a Wi-Fi network (i.e., a Wireless Local Area Network or 
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WLAN), for privacy reasons. The BSS corresponds to “a group of stations that communi-

cate with each other” [10, p. 24]. When a user wants to associate its device with a wireless 

access point (“AP”) to have network connectivity, the BSS is said to be an “infrastructure 

BSS”. Typically, to connect to such a WLAN, a user will contact the AP and end up having 

access to the network or the Internet. The Basic Service Set Identifier (BSSID) is the iden-

tifier of an AP and by convention, it is its MAC address [11, p. 52]. In 802.11, it is also 

possible to chain multiple BSSs together to make an Extended Service Set (ESS), so that a 

user can connect (or keep staying connected) to the same underlying WLAN, although it 

associates itself to different APs [10, p. 25]. Concerning Wi-Fi security, it’s in Layer 2 that 

the Wi-Fi encryption mechanism takes place. As stated before, the Wi-Fi protocol uses radio 

waves to send frames: each frame can be summarised as having a header and a payload, the 

latter representing the data that will be encrypted.  

In Figure 2, the general structure of an encrypted WPA/WPA2 frame is presented. The Layer 

2 header is shown at the top, with the encrypted payload (“Payload Data”) delimited as 

“ciphertext” below it. The 802.11 standard defines different types of frames: Management 

frames, Data frames and Control frames. Management frames are typically used for estab-

lishing a Wi-Fi connection to an AP, the Data frames to transmit data (as expected) while 

Control frames are used in conjunction with Data frames for acknowledging that the trans-

mission was correctly performed [12, p. 62]. Only Data frames will be encrypted. 

 

Figure 2: Summarised structure of a WPA/WPA2 frame1 

 

1 Source: https://securityboulevard.com/2019/10/wpa2-packet-frame-format/ (Accessed 26.04.2023). 

https://securityboulevard.com/2019/10/wpa2-packet-frame-format/
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The two lines following the “Link Header” part of the frame essentially constitute the data-

confidentiality protocol’s header. For each frame, a packet number is defined and used by 

Wi-Fi encryption schemes (or “data-confidentiality protocols” in the 802.11i standard [13]) 

to add randomness to the final ciphertext. Note that “packet” and “frame” will be used in-

terchangeably in this thesis. As will be shown in subchapter 3.3, Wi-Fi security protocols 

implement a unique key for each packet (also called a “per-packet key”), based on the afore-

mentioned packet number. Packet numbers are at the heart of the KRACK attacks and will 

be discussed thoroughly throughout this thesis. 

To get both the client and the AP to use the same encryption key, 802.11i defined an au-

thentication and session key generation process called the 4-way handshake, used in WPA 

and WPA2. To encrypt data symmetrically, both parties need to exchange information that 

will prove that they hold the same password, without actually sending it through the com-

munication channel. Using this password, the 4-way handshake will make both parties com-

pute the same session key, which will be used to encrypt communications. This is to protect 

against attackers who would have cracked previously used session keys, but not the pass-

word. The procedure to agree on this session key is described next.  

3.2 The 4-Way Handshake 

The 4-way handshake was originally developed in the WPA/WPA2 protocols after critical 

vulnerabilities were discovered in WEP only a few years after its release. WPA is based on 

the same cryptographic algorithm (RC4) as WEP but in an improved cryptosystem (TKIP). 

It was thought to be a good intermediate solution to replace the broken WEP, while still 

being usable by legacy hardware. WPA2 uses a more modern cryptosystem (CCMP), which 

uses a stronger encryption scheme than TKIP called AES. By default, WPA uses TKIP, 

while CCMP is WPA2’s default, although it can optionally handle TKIP as well. It is also 

relevant to outline that WPA and WPA2 both can be used in two different authentication 

modes: one uses a password (a pre-shared key, or “PSK”) while the other uses an infrastruc-

ture that will add another layer of authentication (called “Enterprise”). For example, WPA-

PSK uses a password for authentication, while WPA-Enterprise uses a centralized authenti-

cation server (also called RADIUS for “Remote Authentication Dial-In User Service”) to 

authenticate clients. For a given username, the RADIUS server checks if the provided user 

password is correct, while in PSK mode, all WLAN clients share the same password. The 
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PSK mode is commonly used at home, while the Enterprise mode is mostly used in larger 

networks such as in universities.  

As the encryption process is symmetric (i.e., each device must have the same password 

beforehand), it is important to keep the PSK secret. A session key called Pairwise Transient 

Key (PTK) will be derived from the PSK. The PTK will be unique to the session of a specific 

client connecting to a specific AP and will be split into subkeys, one of them being the actual 

key used for encrypting data. Before being able to encrypt the communications, steps need 

to be taken by a client. The WPA/WPA2 general connection process of a client to an AP is 

performed in 4 phases [14] pictured in Figure 3. These are: 

1. the Network Discovery phase, 

2. the Authentication phase, 

3. the Association phase, 

4. the 4-way handshake. 

 

Figure 3: Wi-Fi connection phases [14] 
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The network discovery (phase 1) consists of APs periodically sending beacons which in-

clude among other things, the SSID (Service Set Identifier, i.e., the ESS identifier and more 

commonly known as the “name” of the Wi-Fi network), the MAC address, and the radio 

channel it operates on. Clients will scan the channels looking for available APs and provide 

a list to the user, who will then select the desired Wi-Fi network it wants to use. For that, 

clients will send a Probe Request frame to the AP to check if the specific network is availa-

ble, while the AP will answer with a Probe Response frame to acknowledge its availability. 

In phase 2 and phase 3 (respectively, authentication and association), Open System Authen-

tication is used, which can sometimes be misunderstood: this allows any client to start a 

connection with an AP, without actually proving its identity (except for its MAC address). 

It is a relic of WEP. Checking if a user (client) has the right password will indirectly be 

performed during the 4-way handshake. Following the (open) authentication, association 

frames will be exchanged telling the other device which cipher suites it will support [14]. 

Phase 4 is where the security of WPA and WPA2 lies: a mutual authentication is made of 4 

messages, thus the name “4-way handshake”. The authentication protocol is based on the 

IEEE 802.1X standard (also known as Extensible Authentication Protocol or EAP), which 

implements EAP over LAN (or EAPOL) for Wi-Fi. This is why the 4 messages will also be 

called EAPOL frames in this thesis. In this standard, the roles are differentiated into a “sup-

plicant” (the client) and an “authenticator” (the AP).  

A Wireshark2 network capture summarises the four phases in Figure 4. It shows the Probe 

Request/Response exchange between the AP (starting with “Shenzhen”) and the client (with 

MAC address 22:61:71:23:de:e6). Then, the Authentication phase is taking place, followed 

by the Association Request/Response frames. Finally, the four messages of the 4-way hand-

shake are exchanged. 

 

Figure 4: Wireshark capture of a client’s Wi-Fi connection to an AP 

 

2 Wireshark is a well-known network analysis tool. More information can be found on this tool at 

https://www.wireshark.org/ (Accessed 22.07.2023). 

https://www.wireshark.org/
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Before going into each message of the 4-way handshake, the hierarchy of keys used in 

WPA/WPA2 should be understood. Figure 5 summarises it: the password (sometimes called 

“passphrase”) is used to define the Pre-Shared Key (PSK). Using the PSK, both the AP and 

the client compute the Pairwise Master Key (PMK) using the PBKDF2 function. PBKDF2 

stands for Password-Based Key Derivation Function 2 and needs five inputs: a pseudoran-

dom function (PRF), a password (PSK), a random value (called “salt”), the number of PRF 

iterations to perform, and finally the desired length of the outputted key (in bytes). In 

WPA/WPA2, the PRF used is the Hash-based Message Authentication Code (HMAC), the 

salt value is the SSID, the number of PRF iterations is 4096, and the length of the PMK is 

32 bytes, or 256 bits [15]. 

 

Figure 5: WPA2 Key hierarchy3 

The session key (PTK) is computed using the PMK and the MAC addresses of the client 

and the AP, as well as two random values exchanged between the client and the AP. The 

PTK can only be computed during the session as these two random values are session spe-

cific. In brief, using PBKDF2, the PSK gets expanded into a larger random output, which is 

the PMK. This can be performed before the 4-way handshake starts. Then, using a PRF 

again, a PTK specific to the connection of a device and its MAC address will be determined. 

To be more precise, the PTK is split into different subkeys, the subdivision depending on 

the Wi-Fi security protocol (WPA or WPA2). In WPA2, the PTK is only split into three 

subkeys, namely the Key Confirmation Key (KCK), the Key Encryption Key (KEK), and 

the Temporal Encryption Key (TK or TEK, named “CCMP Key” in Figure 5). In WPA, the 

 

3 Source: https://praneethwifi.in/2019/11/09/4-way-hand-shake-keys-generation-and-mic-verification/ (Ac-

cessed 22.07.2023) 

https://praneethwifi.in/2019/11/09/4-way-hand-shake-keys-generation-and-mic-verification/
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PTK is split into five subkeys: the KCK, KEK, TK, the MIC4 Tx Key, and the MIC Rx Key. 

These last two subkeys are specifically used for TKIP in WPA. A summary of the core 

cryptographic elements used in both WPA and WPA2 is displayed in Table 1. 

Table 1 – Keys and Ciphers used in WPA and WPA2 

Parameters per Wi-Fi security protocol WPA WPA2 

Core Encryption algorithm (default) RC4 AES 

Cryptosystem (default) TKIP CCMP 

PSK “Pre-shared (master) key” WPA/2-PSK mode is used when the client and the AP share a 

master password (the PSK) before the connection starts. 

PMK

  

“Expanded and randomized ver-

sion of the PSK” 

The PMK is computed by expanding the PSK with PBKDF2, 

with the SSID and the PSK as inputs. 

PTK “Session key (unicast)” The PTK is the general session key that is agreed upon during 

the 4-way handshake.  

PTK subkeys 

Purpose of subkey 

Five subkeys make up the 

PTK (512 bits): 

Three subkeys make up the 

PTK (384 bits): 

1. Key to compute EAPOL Message 2’s MIC, 1. KCK (128 bits), 1. KCK (128 bits), 

2. Key to encrypt GTK in EAPOL Message 3, 2. KEK (128 bits), 2. KEK (128 bits), 

3. Session key used to encrypt 802.11 frames, 3. TK (128 bits), 3. TK (128 bits). 

4. Key to compute TKIP’s MIC for 802.11 

frames sent by the AP (only for WPA), 

4. MIC Tx key (64 bits),  

5. Key to compute TKIP’s MIC for 802.11 

frames sent by the client (only for WPA). 

5. MIC Rx key (64 bits).  

GMK “Master key (multicast/broadcast)” The GMK is generated by the AP. 

GTK “Session key (multicast/broadcast)” The GTK is an expanded and randomized version of the GMK. 

  

To encrypt unicast frames, the TK is used. For multicast or broadcast frames, another set of 

keys is used: the Group Master Key (GMK) is defined by the AP alone and is used during a 

session to compute a Group Transient Key (GTK). Therefore, the AP will transmit an en-

crypted version of the GTK for the client during the 4-way handshake for it to use. The 

 

4 MIC stands for “Message Integrity Check” and is computed using either the Michael algorithm in WPA, or 

a Hash-based Message Authentication Code (HMAC) for WPA2. TKIP also uses MICs in its algorithm [15]. 
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usage of each key will be clarified when presenting the messages exchanged during the 4-

way handshake. 

In Figure 6, details of the exchanges and computations of the EAPOL messages are dis-

played. Each message is summarised as “Msg n” in Figure 6 (n representing the EAPOL 

Message number), with added details on the content of each EAPOL message. Note that it 

represents the 4-way handshake of a WPA-PSK network, where the PTK is subdivided into 

subkeys in a different way than for WPA2-PSK as shown before, thus the mention of Tx 

and Rx MIC keys for the PTK and GTK. 

 

Figure 6: Detailed WPA 4-way handshake and key generation process [2] 

Now, let’s get into the 4-way handshake process itself, following Figure 6. The 4 EAPOL 

messages of the handshake are as follows [2]: 

1. EAPOL Message 1 contains the ANonce (“AP Nonce”), a random value generated 

by the AP5. At this point, the client already has all the necessary data to compute the 

PTK, which will be the session key. Remember that the actual key used to encrypt 

data will be a subpart of the PTK, namely the TK. 

 

5 In cryptography, a nonce is a “number-used-once”, meaning a random value, which is often used to add 

randomness in key-generation processes [2]. 
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2. EAPOL Message 2 contains the SNonce (“Supplicant Nonce”) and the MIC value 

computed with a subkey of the PTK, the KCK. Now, the AP is also able to deduce 

the PTK that will be used for this session. Computing the PTK, the AP will then 

check if the MIC is valid, and if so, send EAPOL Message 3 to the client. 

3. EAPOL Message 3 contains the Group Transient key (GTK) with another MIC 

(let’s name it MIC*). The GTK is the session key used for broadcast and multicast 

communications inside the local network and is computed with the Group Master 

key (GMK), pre-generated by the AP. Using the KEK6 (another subkey of the PTK), 

the client will decrypt the message and have the GTK and the computed MIC* value. 

The client will have to check if the MIC* matches the HMAC value (i.e., the hash) 

of the GTK. If that’s the case, it will send Message 4 to the AP. 

4. EAPOL Message 4 contains an “acknowledgement” to confirm that it will use the 

computed PTK and GTK for further communications. This ends the 4-way hand-

shake. Further Data frames should now be encrypted. 

Given the four messages, the PMK is static until the SSID or the PSK is modified, while the 

PTK (TK) and GTK are static for a given session (i.e., a particular client connected to a 

specific SSID).  

If the wrong password was entered by the user, an incorrect EAPOL Message 2 will be 

received by the AP, which will send again EAPOL Message 1. A simplified view of the 

structure of an EAPOL frame is shown in Figure 7. Each EAPOL message (frame) contains 

a replay counter, which isn’t the same as the packet number, as it is specific to EAPOL 

frames. It will also play a role in the KRACK vulnerability, which will be explained in 

subchapter 3.3.  

 

Figure 7: Simplified structure of an EAPOL frame [5] 

The AP will increment the replay counter after transmitting an EAPOL frame, and the client 

will use the same replay counter it received for its response [5]. The EAPOL “nonce” value 

represents the random nonce the AP (ANonce) and client (SNonce) picked for the 4-way 

 

6 Note that on Figure 6, “PTK” is displayed for encrypting the GTK, while it is in fact the KEK.  
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handshake, if present in the EAPOL message. Terminology can be confusing, as after the 

handshake has been completed, the packet number used in each frame by CCMP to protect 

against replay attacks is sometimes also called a “nonce”. In this thesis, “nonce” will refer 

to the data-confidentiality protocol’s packet number. The Receive Sequence Counter (RSC) 

value, sent in EAPOL Message 3 by the AP, is the starting packet number related to the 

transmitted GTK, used for encrypting multicast/broadcast communications. Any transmit-

ted multicast/broadcast frame during the connection session will have to increment the RSC 

value. The RSC value is always determined by the AP. If a broadcast/multicast frame con-

tains a packet number lower than the current RSC, then it shall be dropped by the receiver. 

This will be relevant to a variant of KRACK targeting multicast/broadcast communications. 

Furthermore, “MIC” represents the MIC value (if transmitted, as in the EAPOL Messages 

2 and 3) used to verify the authenticity of the message. Finally, “Key Data” stands for the 

EAPOL frame’s transmitted key (if a group key is transmitted, like in EAPOL Message 3), 

which would be encrypted using the KEK. Figure 8 displays the ANonce, SNonce, RSC and 

related MIC values, as well as the replay counter of the 4 EAPOL messages.  

 

Figure 8: The 4 EAPOL frames and relevant data for the 4-way handshake 

After the 4-way handshake is performed, all 802.11 Data frames exchanged between the 

client and the AP will be encrypted. The general encryption scheme is shown in Figure 9. It 

shows how encrypted frames are constructed after the 4-way handshake was performed.  

 

Figure 9: Simplified encryption scheme in WPA/WPA2 [14] 

Note that the packet number (PN) is related to the key used: the PTK and GTK will have 

different ones. Also, the PTK is not the key that will be used to encrypt payloads, but the 

TK as seen previously. To summarise the process, a binary “exclusive OR” (“XOR”) logical 
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operation is performed between a (per-packet) keystream and the frame’s payload. This 

means that even if the same payload was encrypted twice, the encryption process would use 

two different keystreams since the packet number will be incremented for every frame [5]. 

This is true only if packet number is not reused. The packet number, concatenated to the 

sender’s MAC address and additional flags, which are available in the frame’s header, will 

be used as the Initialisation Vector (IV) of the cryptosystems (CCMP, TKIP). This value 

acts as a nonce for the security protocols [15]. This should typically ensure that the key-

stream will be unique to each packet. Since the IV (or nonce) mostly depends on the PN [5], 

the two will be used interchangeably in this document. The PN gets reinitialised when a new 

4-way handshake is established, which should also mean using a new PTK and GTK. The 

PTK and GTK have their separate PN: the PTK starts with a PN set at 0 (in CCMP) or 1 (in 

TKIP), while the GTK starts with a PN set at the RSC value given by the AP [5]. For iden-

tification reasons, these two types of IVs will be differentiated into “PTK-IVs” and “GTK-

IVs” from now on, to make it easier for the reader to follow along. 

In brief, the encrypted frames can be summarised as an XOR operation between a per-packet 

keystream and the packet’s payload. The data-confidentiality protocols are considered se-

cure only if the keystream is unique, which is the case if the IV is not repeated for a given 

key [5]. If the same packet number is reused, then two encrypted payloads will have used 

the same keystream. Given the XOR operation’s definition, if two plaintexts P1 and P2 were 

encrypted with the same keystream C into the encrypted payloads E1 and E2, then it means 

that that it is possible to decrypt one of the plaintexts (e.g., P1) knowing the other plaintext 

(e.g., P2)7. As will be shown in the next subchapter, the actual XOR operation can be per-

formed between a known plaintext and its encrypted version to retrieve the keystream. De-

pending on the data-confidentiality protocol used, IV reuse allows more than that: one can 

either replay, decrypt or even forge legitimate frames. For this, the session keys needs to be 

reinstalled, which leads to the reinitialisation of the packet number, meaning to a keystream 

reuse. This trick is at the core of the KRACK vulnerability, presented next. 

 

7 This is well explained in [2]. First, let’s define the variables: Px represents packet x, Ex represents the en-

crypted version of packet x, and that Cx represents the keystream (or cipher stream) used in conjunction with 

packet x. The symbol ⊕ is used as the XOR operator. Now, if E1 = P1 ⊕ C1, E2 = P2 ⊕ C2, and if C1 = C2 

then we have that E1 ⊕ E2 = P1 ⊕ P2 ⊕ C1 ⊕ C2 = P1 ⊕ P2. Since E1 and E2 are known to the adversary, it 

is sufficient for them to know P1 to find P2 (compute P1 ⊕ E1 ⊕ E2) or vice-versa (compute P2 ⊕ E1 ⊕ E2).  
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3.3 The KRACK Vulnerability 

Now that the different keys and their usage should be more familiar to the reader, the concept 

of the Key Reinstallation Attack (KRACK) vulnerability is presented. It encompasses a list 

of 10 Common Vulnerabilities and Exposures (CVE) codes. CVE codes are vulnerability 

identifiers and are widely used to assign criticality scores based on various factors. The scale 

goes from 1 (“Low”) to 10 (“Critical”). As a pre-emptive note, the concepts related to CVE-

2017-13081 (IGTK), CVE-2017-13084 (PeerKey handshake), CVE-2017-13086 (TDLS), 

and CVE-2017-13087/8 (WNM) won’t be discussed further in this thesis.  

The full list is as follows [16]: 

- CVE-2017-13077: Reinstallation of the pairwise encryption key (PTK-TK) in the 4-

way handshake. 

- CVE-2017-13078: Reinstallation of the group key (GTK) in the 4-way handshake. 

- CVE-2017-13079: Reinstallation of the integrity group key (IGTK) in the 4-way 

handshake. 

- CVE-2017-13080: Reinstallation of the group key (GTK) in the group key hand-

shake. 

- CVE-2017-13081: Reinstallation of the integrity group key (IGTK) in the group key 

handshake. 

- CVE-2017-13082: Accepting a retransmitted Fast BSS Transition (FT) Reassocia-

tion Request and reinstalling the pairwise encryption key (PTK-TK) while pro-

cessing it. 

- CVE-2017-13084: Reinstallation of the STK key in the PeerKey handshake. 

- CVE-2017-13086: Reinstallation of the Tunnelled Direct-Link Setup (TDLS) 

PeerKey (TPK) key in the TDLS handshake. 

- CVE-2017-13087: Reinstallation of the group key (GTK) when processing a Wire-

less Network Management (WNM) Sleep Mode Response frame. 

- CVE-2017-13088: Reinstallation of the integrity group key (IGTK) when processing 

a Wireless Network Management (WNM) Sleep Mode Response frame. 

The attacks against the group key handshake (CVE-2017-13080) and FT handshake (CVE-

2017-13082) will be briefly presented further in this subchapter, after having explained the 

concept behind the KRACK attacks. Also, the group key handshake will be summarised. As 

can be seen in the list, all these vulnerabilities consist of a type of key reinstallation. The 

main CVE is considered, according to Vanhoef, to be CVE-2017-13077 as it is the most 

critical one in terms of potential harm against a Wi-Fi user. Based on the Common Vulner-

ability Scoring System version 3 (CVSSv3), it received a score of 6.8 (“Medium”) from the 

National Institute of Standards and Technology (NIST), a US governmental agency, 



21 

following the article of Vanhoef and Piessens [5]. Before their paper, the most efficient way 

to attack WPA and WPA2 networks directly was to run dictionary attacks8 against them, 

meaning that the Wi-Fi password (PSK) could be easily guessed or found using lists of 

possible passphrases to test against the AP [2]. More details on the evolution of Wi-Fi at-

tacks are presented in the literature review (Chapter 4). This type of attack usually needs to 

capture the 4-way handshake between the client and the AP to work, as the encrypted com-

munication that will follow uses the TK (a subkey of the PTK representing the “session” 

key), and not the PSK nor the PMK. Plain brute forcing is hardly feasible with current tech-

nologies and strong passwords [2]. Capturing the 4-way handshake was the main type of 

attack against WPA/WPA2 (also called “offline dictionary attacks”) until the various key 

reinstallation attacks were observed under certain conditions. With KRACK, an attacker 

doesn’t need to capture a 4-way handshake or retrieve the PSK but only needs to be in the 

range of both the client and AP. It uses an adversarial technique called a Multi-Channel 

Man-In-The-Middle (MC-MITM) attack. The core elements behind KRACK are explained 

first, followed by a brief explanation of the MC-MITM attack.  

The core vulnerability resides in the machine state of devices. The supplicant goes through 

various states depending on conditions during the 4-way handshake (Figure 10). 

 

Figure 10: Informal supplicant (client) machine state during the 4-way handshake [5] 

As explained in Vanhoef and Piessens’ article [5], this state machine of the supplicant (i.e., 

the client) concerning the 4-way handshake was specified in the 802.11r amendment in 

 

8 A dictionary attack is a technique that aims at improving brute-force attacks by giving a list of possible 

wordlists to test (and possibly, combinations of these words by defining rules), instead of going over all pos-

sible values. 
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2016. First, the supplicant enters the “PTK-INIT” state when starting the 4-way handshake, 

after the Authentication and Association steps were performed. The PMK is computed as 

detailed in the previous subchapter. Then, when EAPOL Message 1 is received by the sup-

plicant, the PTK’s computation is performed. The supplicant will move to the “PTK-

START” state. In Figure 10, “TPTK” stands for “Temporary PTK” and is used because the 

supplicant still needs confirmation from the authenticator that it will be the valid PTK. The 

supplicant’s last action in this state is to send EAPOL Message 2 to the authenticator. If this 

message is not received by the authenticator, it will resend EAPOL Message 1 to the sup-

plicant. If EAPOL Message 1 is received again, the supplicant will stay in the same state. 

Following this, the supplicant will switch to the “PTK-NEGOTIATING” state if the follow-

ing conditions were satisfied: it received EAPOL Message 3, the authenticator’s MIC was 

successfully verified, and the EAPOL replay counter is validated. In this state, the supplicant 

will confirm its PTK (switching from a TPTK to PTK) and send EAPOL Message 4 to the 

authenticator. Automatically, the supplicant will then move to the PTK-DONE state where 

it will install the session keys, namely the PTK and GTK. It also enables the 802.1X logical 

port for the supplicant, used for sending and receiving encrypted frames. If EAPOL Message 

3 is sent again (and it is valid, meaning it has a correct MIC and a valid replay counter 

value), then the supplicant goes back to the “PTK-NEGOTIATING” state, thus resetting the 

PTK to the TPTK. On the authenticator’s side, the 802.11i standard states that to accept 

EAPOL Message 4 (i.e., the EAPOL replay counter was validated), the AP should check 

that “[the replay counter] was one used in the handshake” [5]. Finally, the retransmission of 

EAPOL Messages 1 and 3 by the AP can also happen if it respectively didn’t receive 

EAPOL Messages 2 and 4. Note that this can happen also because of background noise. 

The vulnerability resides in the fact that the supplicant can still accept EAPOL Message 3 

being retransmitted to it even when it is in the last state (“PTK-DONE”), with the PTK and 

GTK already installed using the MLME.SETKEYS primitive function. This will lead to the 

following scenario: after the client sends EAPOL Message 4, it will automatically install the 

agreed PTK. It also means that it will normally9 start encrypting any Wi-Fi frame it will 

 

9 The wording “normally” is selected here on purpose because, as shown by Vanhoef and Piessens [5], the 

exact implementation of 802.11i is not uniform across operating systems, supplicants, and APs. The paper also 

discusses the case where the retransmission of EAPOL Message 3 to the supplicant will be discarded if the 

retransmitted EAPOL Message 3 is not encrypted using the previously agreed PTK. For the same reasons, it 
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send to the AP using its PTK, most of the time also including the first transmission of 

EAPOL Message 4 according to [5]. To perform the attack, the adversary must block the 

arrival of EAPOL Message 4 from the client to the AP, so that the latter resends EAPOL 

Message 3 to the client, as per the 802.11 standard. The attacker will transfer this message 

to the client. When this happens, the client will reinstall the (same) session keys, with the 

nonce (packet number) used by the data-confidentiality protocol (TKIP, CCMP, GCMP) 

also being reset. As a result, the client will send EAPOL Message 4 to the AP again, but this 

time encrypted using the previously agreed PTK. This leads to an example of keystream 

reuse that an adversary can use against the cryptosystem, as shown in Figure 11. 

 

Figure 11: Example of attack using the KRACK vulnerability with a MC-MITM position [14] 

Indeed, by accepting the retransmission of EAPOL Message 3 (the pink arrows in Figure 

11), the client will reset the packet number. In Figure 11, keystream reuse is exemplified 

when EAPOL Message 4 is first transmitted unencrypted at the end of the handshake, with 

its encrypted version being transmitted by the client after having received EAPOL Message 

3 again. Therefore, an attacker can use the invertible XOR operation on the encrypted pay-

load with the plaintext payload (here, EAPOL Message 4) to retrieve the keystream for this 

packet number. More generally, Vanhoef found that this keystream reuse allowed him to 

 

is also possible that the AP rejects the encrypted EAPOL Message 4 sent by the supplicant, since it didn’t 

install its keys yet (i.e., because the plaintext EAPOL Message 4 wasn’t received yet). 
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either replay, decrypt or forge packets depending on the data-confidentiality protocol (see 

Figure 12).  

 

Figure 12: KRACK impact by data-confidentiality protocol used [5] 

As was shown in the list of CVEs, one targeted the FT handshake (CVE-2017-13082). As 

Vanhoef developed a test for the FT handshake vulnerability, it is worth briefly summarising 

it now. The FTK handshake also consists of four steps (stage “1” in Figure 13).  

 

Figure 13: KRACK10 against the FT handshake [5] 

To allow for a faster transition between APs of the same Wi-Fi network (i.e., part of the 

same ESS), the 802.11r amendment was developed and defined the FTK handshake. The 

 

10 In stage “3”, the first frame should be ReassoReq and not ReassoRep (see Vanhoef’s Erratum in [5]). 
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first two messages are an Authentication Request (AuthReq), and an Authentication Re-

sponse (AuthResp), which carry randomly generated nonces used to derive a fresh PTK. 

Following this, the client sends a Reassociation Request (ReassoReq), and the AP replies 

with a Reassociation Response (ReassoResp). A MIC is used to authenticate the two reas-

sociation messages. Furthermore, no replay counter is used in the FT handshake. Instead, it 

relies on the (random) SNonce and ANonce values to provide replay protection between 

different handshake sessions. The 802.11r amendment also states that the PTK must be in-

stalled after the AuthResp message is sent or received. Additionally, the 802.1X logical port 

is opened only after sending (or receiving) the ReassoReq message. This ensures that the 

AP and client will only transmit or accept 802.11 data frames after a handshake got com-

pleted, even if the PTK was already installed. As such, the FT handshake should in theory 

be protected against KRACK. According to Vanhoef, this was apparently not the case in 

reality: the PTK (and GTK) are reinstalled when replaying a ReassoReq message. It can be 

replayed since there are no replay counters and the MIC is valid. The AP will accept and 

process this replayed frame, and thus reinstall the keys and reset the related IVs. 

The last handshake presented in this subchapter is the group key handshake. CVE-2017-

13080 targets this handshake. While the GTK is first installed during the 4-way handshake, 

it can be periodically refreshed by the AP during the so-called group key handshake [13, p. 

220]. It only consists of two EAPOL messages: the EAPOL “group” message 1 is sent by 

the AP to all clients, while the second “group” message is sent by a client to the AP, ac-

knowledging this change. If the AP didn’t receive a reply to its request, it will retransmit 

EAPOL “group” message 1. The EAPOL “group” message 1 contains the new GTK to use, 

and normally the RSC value of the last used GTK-IV. In reality, the AP determines which 

RSC value to send to clients: the client will accept it if the RSC value “has not yet been seen 

before” [13, p. 221]. In response, the client will send the second group message with an 

incremented RSC. The idea behind the attack of this handshake is to collect a retransmitted 

EAPOL “group” message 1, block it from arriving at the client, and forward it to the client 

at a later stage. This will trick the client into reinstalling the GTK, and thus reinitialise the 

GTK-IV of the installed group key. When clients want to send broadcast or multicast frames 

(i.e., group frames), they will essentially send unicast frames to the AP, who will then use 

the GTK to send actual encrypted broadcast/multicast frames on the WLAN. For clients, the 

GTK is therefore only used to decrypt AP-encrypted multicast/broadcast frames. Since the 

key reinstallation targets the client, no nonce reuse can be forced. Instead, the GTK 
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reinstallation makes it possible for the attacker to replay frames from the AP since the RSC 

value can still be reset [5]. The impact might be indirect but nonetheless important: as men-

tioned by Vanhoef in [5], taking the Network Time Protocol11 operated in broadcast mode 

as an example, replaying frames could compromise time reliability and result in target de-

vices being stuck at a certain time if the replay is periodical. Vanhoef mentions that unreli-

able clock time can impact other security systems like TLS certificates, DNSSEC, or Ker-

beros authentication. 

As mentioned previously, the adversary performs an MC-MITM attack to set itself between 

the client and the AP. As thoroughly explained in [14], this attack allows the previously 

established and secured connection between a client and the AP to remain untouched by the 

adversary. Instead, it will use two Wi-Fi channels, thus the name “Multi-Channel”. The 

attacker will spoof the real AP for the client on another channel while spoofing the client on 

the initial channel for the AP, as summarised in Figure 14. 

 

Figure 14: General configuration of an MC-MITM attack [14] 

To perform an MC-MITM, an adversary first must set up (rogue) interfaces to spoof the 

client and the AP, and secondly, force them to switch to the selected rogue channels. To 

perform the first step, the adversary needs to clone the AP on another channel than the cur-

rently used one, meaning that it will set up a rogue AP using, among other things, the same 

MAC address and the SSID as the legitimate AP. To seem legitimate to the AP, the adver-

sary needs to modify the firmware of its second Wi-Fi interface to send acknowledgement 

Wi-Fi frames when it receives unicast frames from the AP (sent to the legitimate client), 

thus impersonating the real client. The result should be that a rogue client (interface 2) lis-

tens on channel A for the real AP, while a rogue AP (interface 1) communicates on channel 

B with the legitimate client. This technique allows an attacker to stay stealthy, as the only 

 

11 This protocol is used as a networking protocol helping computers’ clock times to be synchronized inside of 

a network. 
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visible change is the channel used (for communications with the legitimate client). The two 

interfaces used by the adversary will just transfer frames from one to the other. The previ-

ously secured communication channel remains intact, as the goal is to move the client to the 

new channel and to impersonate the legitimate client for the AP on the same Wi-Fi channel 

as before. 

 

Figure 15: Steps to perform an MC-MITM attack [14] 

To get the client to move to the new channel, beacons from the legitimate AP are retrans-

mitted (Figure 15). This can be performed using Channel Switch Announcement frames and 

work if the attacker’s signal is stronger than the AP’s. To push the client to the new channel, 

the attacker can temporarily jam the legitimate channel so that the client sees the beacons of 

the rogue AP. The client, trying to find the AP by scanning other channels, will find (re-

played) Beacon frames from the legitimate AP with the correct SSID on another channel, 

and will in practice end up sending a Probe Request on this channel, in fact, to the attacker’s 

AP. An easier alternative is to send Channel Switch Announcement frames to the client with 

a stronger signal than the ongoing communications to and from legitimate AP, which will 

also move the client to channel B [14].  

Following this, the rogue AP sends a custom Probe Response to the client on the new chan-

nel B to have the client continue the process with an Authentication Request frame sent to 

the rogue AP. Then, the rogue AP can collect this Authentication Request frame and re-

transmit it to the true AP on the legitimate channel, using the rogue client. The real AP 

should accept it, and in response, will send an Authentication Response frame on channel 

A. This leads to the rogue client collecting and retransmitting this response on the new chan-

nel. Analogously, Association frames are retransmitted through the two interfaces. The 4-

way handshake can take place following the completed association step. In summary, the 

communication channel is only interrupted for a short period of time so that the client starts 
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communicating on the new channel and sends an authentication request frame, which will 

be sent to the legitimate AP on the previous channel [14]. 



29 

4 Literature Review 

The present chapter aims at giving a literature overview of the available research on Wi-Fi 

security and KRACK-related research questions. First, the history of Wi-Fi security preced-

ing and surrounding the KRACK discovery is presented, supplemented by articles on the 

perception of Wi-Fi-related risks. This is meant to present a historical overview of previous 

research on Wi-Fi security challenges to the reader, as well as the user-perceived risks of 

using Wi-Fi under certain conditions. Then, a summary of practical attacks against Wi-Fi 

security mechanisms is suggested. This subchapter showcases articles that explain ways to 

find new attacks or implement already known attacks, against Wi-Fi networks. Finally, it is 

followed by a presentation of articles that assessed the nearby Wi-Fi security environment, 

mainly through wardriving. It seems to be the most popular technique to collect large 

amounts of data on Wi-Fi-enabled devices and helps to assess the Wi-Fi security environ-

ment. As will be shown, some research groups looked at how ISPs (Internet Service Provid-

ers) provide (or do not) Wi-Fi security measures to their customers, while others mainly 

focused on Wi-Fi security statistics. 

4.1 Wi-Fi Security History 

Previous studies already showed ways to get around some of the Wi-Fi security measures 

put in place, starting with WEP. A few years after its release, WEP’s core encryption 

scheme, RC4, was shown to have various vulnerabilities embedded in it [17]. Exploiting 

these, researchers developed attacks against the WEP encryption key, which would need the 

collection of encrypted Wi-Fi frames [18]. This is always possible as Wi-Fi frames are radio 

waves and thus physically reachable if an attacker is in range. Studies continued to imple-

ment more efficient techniques, with the peak of this development being the attacks de-

scribed by research groups in 2007 [19] and 2008 [20]. They showed that WEP cracking 

could take less than 1 minute, because of its weak cryptosystem.  

This called for a quick replacement, which was presented by the IEEE committee responsi-

ble for 802.11. They proposed two new security protocols: WPA, which would still use RC4 

but in a different way (thus, remaining compatible with legacy hardware), and WPA2, which 

would use the more secure AES algorithm for future use in hardware. The fact that WPA’s 

security was still using RC4 made it vulnerable to similar WEP attacks, as showed by the 

same German research group in [20] in 2008, although they needed the password to be 

“weak”.  
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While WEP and WPA attacks were already discussed in various papers, another Wi-Fi se-

curity certification meant to be easier to set up was soon shown to be also easier to hack: the 

Wi-Fi Protected Setup (WPS) system, released in 2007. It was developed by Cisco and im-

plemented as an alternative way of connecting clients to a Wi-Fi router that uses 

WPA/WPA2. Indeed, a PIN code is used to authenticate clients instead of a password. A 

couple of years after its release, a security expert showed how poorly the WPS system was 

designed and implemented. He showed that brute-forcing the PIN was possible given its 

short length, leading to a maximum of 11’000 possible values [21]. The attack wouldn’t be 

affected by the length of passwords, and thus, if no blocking scheme was implemented on 

the router’s software, the attack could take less than 5 seconds. He originally designed a 

program in Python as a proof-of-concept, described in his article. Soon, tools hacking WPS 

would be developed and included in the Kali OS as well12. 

As presented in subchapter 3.2, the WPA and WPA2 protocols are using the so-called 4-

way handshake, with the security of the system thoroughly analysed in [22]. Given its key 

generation scheme, just capturing packets wouldn’t suffice to find the encryption key, alt-

hough it will be later shown that specific attacks could still be run against it. The attention 

was moved to the 4-way handshake itself, as it included all the needed elements to recover 

the password by brute-forcing the handshake, which is feasible when the PSK is weak. The 

most popular technique was thought to be launching a so-called dictionary attack on the 

captured handshake to uncover the initial password. This is so because WPA and WPA2’s 

schemes to derive the PTK and PMK using the PSK are time-consuming processes, thus 

making plain brute-force attacks almost unfeasible. A well-known tool package for diction-

ary attacks against WPA/WPA2 is the aircrack-ng suite13, but it isn’t the only one. Next to 

WPA-PSK and WPA2-PSK Wi-Fi configurations, there are also the WPA-Enterprise and 

WPA2-Enterprise networks, which use a per-user password to derive a session key. The 

literature on attacks targeting these systems was found to be less abundant than for the PSK 

systems. Nevertheless, studies showed that the Enterprise mode also has its vulnerabilities, 

as it will be briefly shown later. 

 

12 The main tool to hack WPS on Kali is called Reaver and is included by default in the OS. For more infor-

mation, see https://www.kali.org/tools/reaver/.   

13 See https://www.aircrack-ng.org/ for more details. 

https://www.kali.org/tools/reaver/
https://www.aircrack-ng.org/
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As shown previously, the KRACK vulnerability was discovered by Vanhoef and Piessens 

in 2017 [5]. This attack allows a user to replay, decrypt captured messages and sometimes 

even forge messages (unless CCMP is used). The authors discovered that most Wi-Fi-ena-

bled devices (using various OSs) were vulnerable to this attack. For Linux-based OSs, typ-

ically Android for smartphones, the attack was even worse as the reinstalled key (TK) was 

always an all-zero-byte key. This is due to a mechanism that was thought to be good for 

security: after having been installed, the PTK was deleted from memory by setting its cor-

responding value to 0 bytes to reduce the possibility of malicious access to it. By doing so, 

when KRACK is performed, the PTK (and thus the TK) is set to all-zero bytes. The vulner-

ability resides in the wpa.c file as explained in [23], referring to the commits that were per-

formed by the authors of the wpa_supplicant and hostapd packages14. Vanhoef also raised 

the specific issue of the wpa_supplicant client on the Chromium OS reinstalling all-zero 

keys in 2017, showcasing how to check for vulnerable devices [24]. This vulnerable behav-

iour affects wpa_supplicant v2.4, v2.5 and v2.6. Vanhoef also published another study, writ-

ten in 2018, describing improvements in performing the KRACK attacks, in particular at 

the implementation level of these attacks [25], but also showing that other types of related 

handshakes were vulnerable to KRACK. 

In 2019, a Master’s thesis performed at the Czech Technical University in Prague also thor-

oughly discussed KRACK and detection mechanisms [26]. Its listed goals were to develop 

a testing tool, study generated traffic while KRACK is performed, as well as analyse detec-

tion mechanisms. Also, testing KRACK against Wi-Fi-enabled devices was performed. The 

development of a KRACK-exploitation tool was reduced to a detection system, similar to 

the scripts Vanhoef published later on his GitHub repository [27]. The code was written in 

Python and is not publicly available. Also, the same Vanhoef scripts were used in this thesis 

to test KRACK on devices. Out of 21 devices, 4 devices were reinstalling the PTK, all using 

Android v6 or below. Interestingly, all the devices were apparently reinstalling the GTK 

during the 4-way handshake. It seems that only the main testing script was tested. The group 

key handshake wasn’t tested for example. The script to test the FT handshake was tested on 

two university APs. None of them were vulnerable.  

 

14 Actually, the specific commit number ad00d64e7d8827b3cebd665a0ceb08adabf15e1e, available at 

https://w1.fi/cgit/hostap/commit/?id=ad00d64e7d8827b3cebd665a0ceb08adabf15e1e (Accessed 

11.06.2023), was used for the analysis in [23].  

https://w1.fi/cgit/hostap/commit/?id=ad00d64e7d8827b3cebd665a0ceb08adabf15e1e


32 

Another important 2022 paper [14] concerns the technique which Vanhoef and Piessens’ 

used for discovering KRACK in [5], namely the MC-MITM. The researchers present a re-

view of the technique, which is at the core of KRACK exploitation, and discuss the various 

ways it can be used to attack Wi-Fi networks in general. The authors have a subchapter on 

the KRACK vulnerability. Reviewing types of MC-MITM attacks and patching statistics, 

the authors cite tests from a cybersecurity company done in 2019, from which they deduced 

interesting statistics: testing multiple Wi-Fi-enabled devices (wireless networking cards, 

Wi-Fi client software, AP, OS, etc.), around 90% of them were still vulnerable to KRACK 

(although the vulnerabilities were 2 years old). Using the same MC-MITM technique, 

Vanhoef found new vulnerabilities related to packet fragmentation, which he nicknamed 

“FragAttacks” [28]. Although the conditions for it to work are stricter than for KRACK, he 

found that it affected all wireless security protocols, from WEP to WPA3.  

Another vulnerability similar to KRACK was later published in 2020 by a Slovak research 

team working at ESET, a company specialising in IT security software [29]. While the at-

tack, named Kr00k, is similar to KRACK, the vulnerability resides at a different level. In 

fact, the Kr00k vulnerability exists because when disassociating, some wireless network 

cards (of clients and Wi-Fi routers included) were “flushing” the current encryption key, 

setting it back to all-zero bytes. At the same time, the device will also empty its memory, 

sending the remaining data encrypted with the key, which became an all-zero key. This 

means that some remaining frames will be encrypted using this all-zero key, similar to the 

Linux-Android vulnerability to KRACK. 

To conclude this subchapter with the user perception of Wi-Fi-related risks, a 2020 research 

paper [30] qualitatively analysed the Wi-Fi security awareness of users, with a specific em-

phasis on KRACK. Their qualitative method consisted of semi-structured interviews with 

Wi-Fi router owners in the area of Munich, with a small sample of 16 participants, a majority 

being male students. The authors found that 37.5% of Android devices (6/16) and 62.5% of 

iOS devices (5/8) were vulnerable to KRACK, although how this was determined is un-

known. Also, they concluded that although most participants were aware of Wi-Fi-related 

risks, they didn’t implement security best practices when using or managing their Wi-Fi 

infrastructure, such as changing factory default settings or having strong passwords. An-

other research group pursued similar research objectives in Japan in 2018, by setting up 

open Wi-Fi networks and looking at the traffic of users that would connect to them [31]. 

They observed that women, and more generally people with higher education, were more 
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likely to use public Wi-Fi and that the main motivation for taking this risk was to preserve 

their mobile data allowance, especially for people with a low monthly data allowance. They 

also noticed that many user applications still didn’t add encryption for their communica-

tions, which would indicate that Wi-Fi security is still relevant to this day to ensure confi-

dentiality. It should be pointed out that these results might encompass cultural and regional 

biases that aren’t addressed thoroughly in their discussion. 

4.2 Practical Attacks Against Wi-Fi 

With time, research studies started to develop specialised attacking tools and techniques. 

For example, one paper written in 2015 [32] presented a way to attack WPA2-PSK without 

capturing the handshake. It speeds up the dictionary attack on WPA2-PSK by creating mul-

tiple virtual wireless clients (VWC) that would “act” as real clients. Each of the VWCs 

would then make password guess trials: each VWC will reply to the AP’s EAPOL Message 

1 with an EAPOL Message 2, and if the password was wrong (i.e., a new EAPOL Message 

1 is sent by the AP), then it would try another password, until a Deauthentication frame is 

sent by the AP. The authors tested their script live on various wireless router models, and 

only needed one WNIC. They saw that they could speed up the process by a factor of 100. 

The issue with this methodology is that it was heavily dependent on the routers’ processing 

power, although being an interesting alternative if no 4-way handshake can be captured. 

Other such examples are the various side-channel attacks against WPA-TKIP developed by 

Schepers, Ranganathan, and Vanhoef in 2019 [33]. First, the research looked at the imple-

mentation of TKIP at several levels of the Wi-Fi stack, such as the hardware (the WNIC), 

the OS (i.e., the driver or Wi-Fi subsystem) and the Wi-Fi client. Then, focusing on the 

attack on TKIP discovered in 2009 by [20], they aimed for ways around the deployed coun-

termeasures and successfully found them on numerous elements of the Wi-Fi stack. Finally, 

the research group also considered the attack surface of their attacks and compared it be-

tween different regions, namely Boston (USA), Hasselt (BE), and Leipzig (DE). To collect 

the APs’ data, they used wardriving, a methodology consisting of driving around in towns 

in a car with Wi-Fi dongle-connected hardware (usually, compact ones like an Arduino or 

Raspberry Pi system). The goal of this method is to quickly gather information about sur-

rounding APs, such as the SSID, the channel the Wi-Fi network is using, or the type of 

security protocols it supports. They found that on average, almost 50% of identified routers 

were configured with WPA-TKIP, with stark differences between regions (+30% in Hasselt 
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compared to Leipzig). Their side-channel methods allowed them to decrypt and forge Wi-

Fi frames in a matter of minutes, according to the researchers. 

Of course, methods to circumvent the Wi-Fi security protocols also can be developed and 

used, as shown in [34]–[36]. Typically, [34] tested the efficiency of a self-built phishing 

tool, written in Python. This tool would send an email with an attached file (i.e., a script) 

which, if run, would return all stored Wi-Fi passwords and related SSIDs stored on the vic-

tim’s machine to the attacker. Another well-known technique is the Man-in-the-Middle at-

tack (or MITM), which consists of the attacker putting its machine in between the commu-

nication of the client and the AP to actively collect or modify Wi-Fi traffic. MITM can also 

lead to phishing attempts to gather the credentials. This method is thoroughly discussed and 

put into practice in [35] against wireless networks, and automated against Wi-Fi clients spe-

cifically in [36]. The first study analysed how Kali Linux (also called “Kali”), probably the 

most widely used OS to test the security of IT Systems, could be used to teach about MITM 

by describing the setup and launch of this attack. The second study developed a tool called 

WifiMitm, written in Python, which they successfully tested against 5 various environments 

(with variations relating to the laptop or smartphone model, OS, and Wi-Fi security proto-

col) which were compared. The MITM technique is one among many alternative penetration 

testing techniques that can be tested against Wi-Fi using Kali, which includes a default set 

of Wi-Fi hacking tools as summarised by [37]. In [37], they also tried to run some of the 

well-known Wi-Fi attacks that can be performed using Kali, notably the aircrack-ng suite 

that was mentioned previously to crack the Wi-Fi PSK after having captured the 

WPA/WPA2 handshake. 

Giving a broader overview of the Wi-Fi attack paths, the study by Kohlios and Hayajneh 

[2] from 2018 is recommended for its completeness and quality. The authors present a com-

prehensive view of known Wi-Fi attacks, and the multiple attacking phases attackers have 

to go through. It provides a precise and structured vision of various attack pathways an 

attacker can perform, from WEP to WPA3 networks with an extensive overview of at-the-

time available attack methods, such as the KRACK vulnerability. 

When looking for studies specifically on KRACK, one research group also found the related 

vulnerability unintentionally. Indeed, the study led by Garbelini et al [38], describes how 

they developed an automated tool that tries various kinds of Wi-Fi tests. Their core tech-

nique was to use fuzzing to uncover non-compliant behaviour (or at least, unexpected re-

sponses within the Wi-Fi protocols). As the researchers explain, fuzzing is a technique that 
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aims at sending various values to an IT system to see how it reacts. The goal of this attack 

is usually to see how the IT system would handle malformed or unusual inputs. These non-

compliant behaviours were either inconsistencies with the protocol specifications, crashes, 

or plain vulnerabilities. They tested their tool on real-world Wi-Fi-enabled devices, which 

allowed them to test Wi-Fi clients and AP implementations of the 802.11 standards. It dis-

covered new Wi-Fi vulnerabilities, which were assigned common vulnerability and expo-

sure (CVE) identifiers, and discovered KRACK as well, which was already known at the 

time.  

Until now, different attacks targeting the PSK mode of WPA/WPA2 were discussed but the 

Enterprise mode also has shown to be vulnerable to attacks, if not implemented securely. 

For example, Abo-Soliman and Azer [39] compared the vulnerabilities affecting WPA2 in 

Enterprise mode and PSK mode. They noted that the password used for a certain username 

in an Enterprise mode can also be brute forced, as the usual Enterprise implementation is 

that the username is sent in plaintext (thus the attacker knows which user exists) and that 

the number of wrong authentications is usually unlimited. In [40], another research group 

performed an Evil Twin attack on a university campus WPA2 Enterprise network, meaning 

that they set up an AP that would broadcast itself as being the legitimate AP clients need to 

connect to. The interesting aspect of Evil Twin is that it doesn’t necessarily need victims to 

interact with their “fake” AP: by broadcasting itself as the legitimate AP, with the “auto-

mated connection” feature enabled on devices, clients may connect directly to an AP without 

user interaction, thus providing the victim’s credentials (used in an Enterprise system). The 

authors roamed the campus with their attacking system and estimated to have gathered 

around 7% of the credentials of the 2’700 users connected to the university network. 

4.3 Assessing Wi-Fi Security through Wardriving 

Moving away from practical implementations of Wi-Fi attacks, a whole set of studies took 

an interest in estimating the Wi-Fi environment security level in their respective regions, 

using the previously mentioned wardriving method. The first study found on this topic was 

the analysis by Schreuders and Bhat in 2013 in Leeds (UK) titled “Not All ISPs Equally 

Secure Home Users - An Empirical Study Comparing Wi-Fi Security Provided by UK ISP” 

[41]. They aimed to compare the default security settings of the routers provided by major 

ISPs. They performed wardriving in town, collecting the broadcasted data of around 8’000 

APs and compared the ISPs. As an example, they showed how one telecommunication 
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company still provided routers with WEP in almost 40% of the cases, and how another one 

set the default password of the provided routers to “sky”, a very easily guessable one. A 

meta-review of such studies was performed by a 2022 study containing a very thorough 

literature review of articles focusing on assessing the Wi-Fi security of geographical re-

gions, mainly through wardriving [42]. This research team also performed wardriving to get 

a better overview of the Wi-Fi security level in a town located in North Cyprus. They col-

lected data on more than 20’000 routers, among which around 50% used WPS, an easily 

hackable protocol. Overall, their results showed that while WEP was rarely used, some 

WLANs were using no security at all (25%). Also, they discovered that WPA/WPA2 (mean-

ing both were supported) was used in 32% of cases, while most (43%) routers would use 

WPA2 only.  

Another such analysis was [43], which performed wardriving in Riga (LV) in 2017. They 

also tested attacks on WEP, WPA/WPA2-PSK protocols, and the WPS security feature on 

various routers. Their aim was also to estimate the overall attack surface, by first gathering 

information on the security put in place on clients’ routers, and then testing specific attacks 

on selected routers. The data collected consisted of approximately 2’000 APs. Around 80% 

of them were supporting WPA2. Also, interesting to note is that while they gathered data 

with their tool, they also performed an online survey asking participants to indicate which 

Wi-Fi security protocol they were using for their routers: almost 50% responded that they 

didn’t know, while most (50%) shared that they have WPA or WPA2.  

Other related studies were the analyses by Sebbar et al [44], Hossain et al [45], and Delija 

et al [46]. The research of Sebbar’s team took place in Rabat (MA) in 2016. They showed 

that almost 80% of routers had WPA/WPA2 enabled, and also did a brief analysis of the 

market share of the different ISPs. To do this, they looked at the broadcasted name of the 

APs, which often includes the ISP’s brand, allowing them to link the routers to the corre-

sponding ISP. Unfortunately, the authors didn’t go further in comparing which ISP was 

implementing which security protocol. Hossain’s study in 2019 took place on a university 

campus in Dhaka (BD) to gather information about the Wi-Fi routers’ vulnerabilities to raise 

awareness of Wi-Fi security. What made their study, particularly novel is the use of Nessus, 

a known vulnerability scanner, on the Wi-Fi routers, which allowed the researchers to pro-

vide a list of detected vulnerabilities for the identified APs. The KRACK vulnerability 

wasn’t mentioned in the paper. Finally, another wardriving analysis was performed by 

Delija et al [46] in 2021 in Karlovac (HR) which determined that almost 90% of routers 
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were using WPA2 out of around 1’250 APs. This study also discussed the legal and ethical 

aspects of their methodology, which added interesting insights into these rarely discussed 

points in Wi-Fi security-related research papers. 
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5 Problem Statement 

As suggested in the literature review, Wi-Fi security was and is still being investigated by 

research groups at many levels. At every step of the development of Wi-Fi security proto-

cols, it was shown that new vulnerabilities were discovered, with tools to abuse them in their 

wake. Concerning KRACK, it seems that although the set of vulnerabilities is already 6 

years old, no research paper presented a clear walkthrough on how to perform and test it, 

except on a theoretical level in the original paper written by Vanhoef and Piessens [5].  

Overall, looking at ways to assess the Wi-Fi security environment, it seemed that research 

groups often preferred quantitative collecting methods such as wardriving on Wi-Fi APs, 

instead of checking if Wi-Fi-enabled devices were vulnerable to certain attacks such as 

KRACK. While allowing for an overview of the proportion of WPA/WPA2 in Wi-Fi net-

works, their methods couldn’t detail if performing the KRACK attacks “in the wild” would 

be successful, and if so, how and which devices would be vulnerable. To analyse the Wi-Fi 

security environment, mostly wardriving was used, and often only to evaluate the Wi-Fi 

security protocols used on Wi-Fi routers, without actually testing the APs for various vul-

nerabilities.  

The Czech Master’s thesis [26], while thoroughly describing KRACK, only tested parts of 

the KRACK vulnerabilities. In addition, it was written 4 years ago and updating its results 

would be useful to assess the current relevance of KRACK. Furthermore, only one example 

of traffic capture was presented in the thesis, giving little for the reader to analyse in terms 

of results. Rewriting a set of detection or testing scripts is considered time inefficient: the 

author of KRACK already published scripts for them to be tested. Indeed, Mathy Vanhoef 

published a set of scripts to test if clients and APs are vulnerable to it on GitHub [27]. Given 

his expertise, it is assumed that these are the most effective ones publicly available, which 

is why they will be selected for testing devices. He also shared scripts to specifically perform 

the so-called MC-MITM technique, which can be accessed at [47]. Besides, he wrote a 

Proof-of-Concept script for the specific case of Linux-Android cases of a zero key reinstal-

lation [48]. Other repositories were found based on the original one, such as [49] and [50]. 

The first one is a fork of Vanhoef’s original repository focusing on all-zero key reinstalla-

tion, while the second one explains in general terms how to perform the MC-MITM attack 

with the all-zero key KRACK attack only (i.e., only against Linux hosts or Android 

smartphones). Given that already in 2019, only 1 out of 21 devices was affected by the all-
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zero key reinstallation [26], this test is considered to be too exclusive to evaluate KRACK, 

even more 4 years later. Note that Vanhoef didn’t make his attacking scripts used for his 

discoveries public. This was done on purpose, as stated on the official KRACK webpage 

[16]. Because of thesis time constraints but also because of related ethical questions, reverse-

engineering scripts to perform it was discarded as a goal. Developing an attacking tool un-

doubtedly poses questions, such as the respect of the author’s non-disclosure intent and the 

case of potential illegitimate use of such a tool. The only relevant scripts currently identified 

are either verifying if devices (APs and clients) are vulnerable or showing how to perform 

an MC-MITM attack. 

Therefore, this Master’s thesis aims at documenting the KRACK testing scripts of Vanhoef 

[27] on Wi-Fi-enabled devices. Following this documentation process, the main goal is to 

test them on a set of devices, to suggest a reassessment of KRACK’s relevance. At the same 

time, with an “attacker’s perspective”, this thesis will show if vulnerable devices can be 

found, and if so, display which models (laptop, smartphone, and their OS), if any, were 

affected by the attacks. The thesis will present multiple Wi-Fi communication captures to 

support the findings. 

The core research objective for this thesis is to estimate how prone Wi-Fi-enabled devices 

are vulnerable to KRACK. Thus, the following research questions are stated: 

Q1.  Given the identified available GitHub repositories, is it possible to successfully scan 

Wi-Fi-enabled devices for the KRACK vulnerability? 

Q2.  If that is the case, what are the struggles to perform the vulnerability test?  

Q3.  What’s the current relevance of KRACK given obtained results with this tool? 

For this study, documenting the identified testing scripts will also be key, in order to make 

the analysis reproducible. This is considered as one of the important added values of this 

thesis, as no simple and clear walkthrough exists for testing KRACK, and understanding 

how the attack works and can be performed. Embedded in these research questions are the 

following hypotheses: 

H1. A tool to test KRACK attacks can be run successfully against Wi-Fi-enabled de-

vices. 

H2. This tool only works with an alignment of specific conditions. 

H3. As KRACK was discovered in 2017, it will be difficult to find vulnerable devices. 
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6 Methods 

This chapter provides a brief overview of the selected methods used to address the three 

research questions. First, to understand if Vanhoef’s official testing scripts [27] are efficient 

at detecting KRACK on devices, the installation of the GitHub repository’s scripts is per-

formed, followed by a code analysis. A testing setup will be defined, with details on the 

required configuration. Then, to successfully test the scripts, the list of tested commands is 

also defined. Furthermore, a code analysis is conducted to understand the outputs of said 

commands. Moreover, the method for sampling the tested devices is defined.  

All these steps will help answer the second research question, aiming at identifying the chal-

lenges of testing KRACK against Wi-Fi-enabled devices. It will also be possible to assess 

KRACK’s relevance (i.e., the third and last research question) after having analysed the 

results of the tested devices. The analysis will consist of running all designated commands 

against each device, the exact commands being described further in this chapter. To reduce 

false positive rates, if a test shows up as positive, it is run two more times. This means that 

all test-positive results will have to be tested three times before concluding it is vulnerable 

to the test. The model, OS type and OS version will be documented for each device. To have 

a stronger understanding of the results, network analysis is applied using Wireshark. 

Now concerning the tests specifically, two scripts are at the heart of Vanhoef’s GitHub re-

pository [27]: krack-test-client.py and krack-ft-test.py. The tests which can be performed 

using these scripts are listed by Vanhoef and summarised in Table 2 (p. 41). The first column 

shows the script, with the command to run for each test. As can be seen, most of them are 

meant to test clients and not APs. The unique test for APs can be performed only if the AP 

supports 802.11r, as it targets the FT handshake. This is more often the case in corporate 

environments, as suggested by Vanhoef in [5]. For time and sampling relevancy reasons, 

the krack-ft-test.py script targeting APs implementing 802.11r will be discarded from this 

thesis’ scope, but is nonetheless included in the table for completeness.  

The reason for discarding it is that to answer the third research question, it was decided that 

sampling, testing, and thus comparing tested devices would be more relevant for clients than 

for specific types of APs. Indeed, the population of clients is widespread and diverse, while 

the scarcer 802.11r APs will not help as much in assessing today’s KRACK relevance. An 

additional reason for this decision is that there was no access to 802.11r APs, making a 

potential sampling of such APs, at the time of writing, unfeasible. 
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Table 2 – Summary of Vanhoef’s seven tests for KRACK [27] 

Script Test 

No. 

Full Command Test Details 

krack-test-

client.py 

(to test a client) 

1.  krack-test-client.py Resends encrypted EAPOL Message 3 to 

check for PTK reinstallation (CVE-2017-

13077) and GTK reinstallation (CVE-2017-

13078). 

2.  krack-test-client.py 

--tptk 

Same15 as test 1 (no option), except that a 

forged message 1 is sent before retransmit-

ting the encrypted EAPOL Message 3. 

3.  krack-test-client.py 

--tptk-rand 

Same as test 2 (--tptk), except that the 

forged message 1 contains a random 

ANonce. 

4.  krack-test-client.py 

--replay-broadcast 

Checks if the client accepts replayed broad-

cast frames. 

5.  krack-test-client.py 

--gtkinit 

Checks if the client installs the GTK with 

the given Receive Sequence Counter (RSC) 

during the 4-way handshake. 

6.  krack-test-client.py 

--group 

Checks if the GTK gets reinstalled during 

the group key handshake (CVE-2017-

13080). 

7. krack-test-client.py 

--group 

--gtkinit 

Checks if the GTK is installed with the 

given Receive Sequence Counter (RSC) 

during the group key handshake. 

krack-ft-

test.py 

(to test an 802.11r 

AP) 

krack-ft-test.py  Retransmits ReassoReq frame of the FT 

handshake to the AP to check for PTK rein-

stallation (CVE-2017-13082). 

 

15 According to Vanhoef, this variant is important as some clients are only vulnerable to KRACK in the 4-

way handshake when a forged EAPOL Message 1 is injected, before resending EAPOL Message 3. Vanhoef 

cites wpa_supplicant v2.6 used on Linux-based OSs as an example. 
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For the sampling of devices, the selection process follows a convenience sampling process, 

where devices are selected by asking relatives, friends and coworkers to provide Wi-Fi-

enabled devices (smartphones, computers, tablets) for testing. This is considered suitable as 

the end goal is to test as many different devices as possible (model, OS, and version). Part 

of the objective is also to showcase if, as a potential attacker, it would be feasible to find 

vulnerable devices in direct proximity. Indeed, gathering a higher number of devices to test 

(e.g., in a public place) would be far more complex for ethical reasons (i.e., as the permission 

of device owners would be needed) and technical reasons (i.e., as device owners need to 

manually connect to the test AP, and stay connected without any Internet connection). Hav-

ing briefly analysed the main script (krack-test-client.py), it seems possible to test multiple 

devices at once, although it isn’t stated as such, probably because of potential radio inter-

ference issues. Also, to check for which device (i.e., model and OS) the result is printed out, 

the MAC address of each device would still need to be manually registered. Finally, the 

exact phone models and OS versions are documented for this study, which could rapidly 

become tedious with a higher number of tested devices.  

Regarding the KRACK vulnerability, the following assigned CVEs will be tested on clients, 

with dedicated commands: 

- CVE-2017-13077 (CVSSv3 score of 6.8, “Medium”): reinstallation of the PTK. 

o Tested with: krack-test-client.py 

▪ Variations with additional options: --tptk, --tptk-rand 

- CVE-2017-13078 (CVSSv3 score of 5.3, “Medium”): reinstallation of the GTK in 

the 4-way handshake. 

o Tested with: krack-test-client.py 

▪ Variations with additional options: --tptk, --tptk-rand 

- CVE-2017-13080 (CVSSv3 score of 5.3, “Medium”): reinstallation of the GTK in 

the group key handshake. 

o Tested with: krack-test-client.py --group 

Note that the --replay-broadcast and --gtkinit additional options don’t have specific 

CVEs assigned to them but are used to detect malfunctioning Wi-Fi clients. Indeed, they 

still showcase common vulnerabilities (e.g., accepting replayed messages). Also, the tests 

only support CCMP, which means only WPA2. This is considered acceptable as it is the 

most widely observed Wi-Fi security protocol (see [7] as cited in Introduction). 
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The described methods used for this thesis have their limitations, the major ones described 

below: 

- The age of the KRACK vulnerability: 

o It has been 6 years since the public disclosure of KRACK, which allowed 

for time to patch devices. This potentially resulted in a strong reduction in 

the number of vulnerable devices, which, although a positive sign, would 

reduce the analysis potential of this thesis. 

- The representativity of sampling: 

o The selected sampling method doesn’t allow for a representative overview 

of the type of devices that an attacker might encounter, which makes it im-

possible to generalise the results. Nevertheless, the representativity of the 

tests is not crucial as it is a case study, showcasing what an attacker could 

find “in the wild”. Also, diversity is considered when selecting devices, 

meaning that the tests won’t be applied to the same types of devices multiple 

times. 

- The dependencies of the testing setup:  

o It might be the case that the KRACK scripts work well in certain test cases, 

such as against specific OSs or Wi-Fi client software, or running the tests 

with specific WNIC models. Indeed, the authors of the KRACK attacks 

showed that they don’t get the scripts to work against all types of devices. 

- The reliability of the script: 

o As warned by Vanhoef, some tests are not always reliable (e.g., the --

gtkinit option). Wi-Fi traffic captures can be used to verify such results. 

Also, to understand the reliability of the script, an analysis of the code will 

help in providing potential answers to understand the obtain results. 

Note that for grammatical reviewing, the Generative AI tool “Grammarly” was also used. 

For more details on the tool, see the official website at https://www.grammarly.com/ (last 

accessed on the 8th of August 2023). 

https://www.grammarly.com/
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7 Results 

This chapter begins with a subchapter presenting the procedure to install the testing setup 

for KRACK, followed by a subchapter on a code analysis of the tests performed. Finally, a 

summary of devices and related test results will be presented. 

7.1 Setup Procedure 

Starting with the testing setup, the selected host machine has Windows 10 with VirtualBox16 

installed, with a Kali Linux virtual machine17 (VM) set up. This is following Vanhoef’s 

advice on his GitHub repository: he only tested his scripts on Kali Linux. When inserting a 

WNIC in a USB port, it should be noted that to be successfully used in the VM on a Win-

dows machine, it needs to be added as a USB device in the VM’s settings (under “USB”). 

Also, as the tests are sensitive to background noise, it is advised to run them in a place with 

as little radio (Wi-Fi, Bluetooth) interference as possible.  

Before any test execution, it was observed that only particular WNICs were compatible with 

Vanhoef’s scripts. Indeed, he doesn’t specify which work and which don’t, but only shares 

with which WNICs his tests were successfully tested in the “Issues” section of his reposi-

tory. This was the first (but consequent) struggle: to find a compatible WNIC. For example, 

it was found that the two WNICs selected beforehand for this analysis couldn’t be worked 

with, after many various attempts to reverse-engineer the issues. The tested WNICs were 

the AWUS036ACH (FCCID 2AB8788121) by ALFA Network Inc. and the TL-WN822N 

(EU) v5.0 (FCCID TE7WN88NV4) by TP-Link Corporation. The former uses a 

RTL8812AU chipset, while the latter operates with a RTL8192EU chipset. To save time, a 

search was conducted online for the same Wi-Fi chipset as Vanhoef’s (AR9271). As men-

tioned by Vanhoef himself18, it is now difficult to find them as it has been a long time since 

their release. This might be the reason why vendors don’t provide them anymore as easily. 

In the end, a WNIC with the AR9271 chipset by Qualcomm Atheros was ordered online 

 

16 See https://www.virtualbox.org/ (Accessed 08.08.2023). 

17 The pre-built image source can be retrieved from the official webpage of the Kali Linux project, available 

at https://www.kali.org/get-kali/#kali-platforms (Accessed 11.06.2023). 

18 This refers to a reply of Vanhoef to another user on the KRACK GitHub repository, publicly available at 

https://github.com/vanhoefm/krackattacks-scripts/issues/94#issuecomment-1428601663. He mentions that 

the following WNICs should work: WNICs with the RT5572 chipset, the TP-Link TL-WN722N and Techno-

ethical N150 HGA (both using the AR9271 chipset), and finally WNICs with the RTL8188CUS chipset. 

https://www.virtualbox.org/
https://www.kali.org/get-kali/#kali-platforms
https://github.com/vanhoefm/krackattacks-scripts/issues/94#issuecomment-1428601663
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from a Chinese manufacturer, with no visible FCC ID on the outside of the hardware (see 

Figure 16). 

 

Figure 16: Selected WNIC with Atheros AR9271 chipset 

The subsequent procedure to install the scripts can be summarised in two steps. First, the 

required packages need to be installed on the VM, and the GitHub repository cloned locally. 

Secondly, commands need to be run to finalise the environment’s configuration before each 

test session.  

In the first step, installation files (build.sh and pysetup.sh) need to be run, and hardware 

encryption has to be disabled. The exact flow of commands is shown below: 

 

The build.sh script compiles a clean, modified hostapd daemon, written in C. Hostapd is a 

daemon used to create a Wi-Fi AP on Linux. It will run an AP, and tested devices will 

connect to it to undergo KRACK detection. The pysetup.sh file will create a virtual Python 

environment and read the requirements.txt file to install the correct Python packages and 

versions, namely pycryptodome (version 3.9.9) and scapy (version 2.4.4). 

sudo apt update 

sudo apt install libnl-3-dev libnl-genl-3-dev pkg-config libssl-dev net-

tools git sysfsutils virtualenv 

git clone https://github.com/vanhoefm/krackattacks-scripts.git 

cd krackattacks-scripts/krackattack 

./build.sh 

./pysetup.sh 

cd krackattack 

sudo ./disable-hwcrypto.sh 
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Hardware encryption must be deactivated as it might interfere with the scripts. Vanhoef 

mentions that it would be safer (in terms of reliability) to run the tests when transferring 

(“offloading”) the encryption/decryption operations directly to the software and not the 

hardware of the WNIC. In a comment inside of the krack-test-client.py code, he notes that 

“On some kernels, the virtual interface associated to the real AP interface will return frames 

with an already decrypted payload (this happens when hardware decryption is used)” (lines 

116-117)19.  

To reenable hardware encryption, one can run the reenable-hwcrypto.sh script provided in 

the repository, which will revert the options set for the defined WNICs, i.e., the 

“nohwcrypt=1” parameter in the newly created /etc/modprobe.d/nohwcrypt.conf file will be 

removed. Modprobe is a utility used to load or offload modules of the Linux kernel. This is 

the path where Vanhoef adds a “nohwcrypt” (“no-hardware-encryption”) configuration for 

the selected WNIC. For optimal results, rebooting the VM is recommended.  

Another extra step suggested by Vanhoef is to verify if the hardware encryption is indeed 

disabled, by checking that the nohwcrypt value is set to “1” when running the systool -

vm ath9k_htc command20 (see Figure 17). The option “-m” is used to specify a module, 

while “-v” is used to show all attributes and related values of the module. To verify that the 

ath9k_htc module is installed, one can verify that it is in the output of the lsmod command 

when the WNIC is plugged in. The lsmod command is used for listing kernel modules. 

 

Figure 17: Hardware encryption is disabled on the ath9k_htc kernel module  

 

19 Vanhoef explains this in more details when he tested his script with the ath9k_htc: “With the ath9k_htc it 

was not possible to detect the usage of an all-zero key when using hardware decryption. It seems as if the 

hardware tries decryption, thereby scrambling the contect (N.B. “context”) of the frame, and then sees that 

decryption failed. This means userspace doesn't receive the original frame, but a frame where the (encrypted) 

data is scrambled.” (Lines 336-340 of krack-test-client.py). 

20 Note that here, ath9k_htc is the needed kernel module for the Atheros AR9271 WNIC chipset. 
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To identify which driver a WNIC different from the Atheros AR9271 different needs to 

communicate with the Linux kernel, the WNIC’s manufacturer and model need to be iden-

tified. Usually, the kernel will automatically load the corresponding module (or driver) when 

plugging in the WNIC. Besides, to check USB connectivity, the lsusb command can be 

run and the WNIC should be displayed. Finally, to check if the wireless interface is up, the 

iwconfig or ip link commands will confirm that a given interface name is activated (if 

not, running the sudo ifconfig wlan0 up command will activate it, ‘wlan0’ being the 

interface’s name in this example). In case of doubts, unplugging and re-plugging the WNIC 

will help identify the wireless interface name corresponding to the WNIC. Inside of the  

./hostapd/hostapd.conf (line 8), the wireless interface name must also be set. 

After this first step, a second and final “configuration” step needs to be performed, each 

time before a test session. It consists of disabling Wi-Fi in the network manager (for exam-

ple, using the nmcli networking off command), followed by the below commands: 

 

The first line will turn Wi-Fi transmissions on, while the following lines are used to enable 

the virtual Python environment needed for running the test scripts. This concludes the con-

figuration. Now that the virtual environment is activated, we can run multiple tests one after 

the other on different client devices. 

7.2 Script Analysis 

This subchapter will give an overview of the reviewed script, i.e., krack-test-client.py, and 

the various options that can be tested against client devices. Before going into the details of 

the script, the way a test can be run is as follows: first, launch the krack-test-client.py script, 

then connect the Wi-Fi-enabled device to the Wi-Fi network named “testnetwork” and enter 

the password (“abcdefgh”). These are the default values defined in the ./hostapd/hos-

tapd.conf file (inside the krackattacks-scripts folder). The SSID is configured at line 88 and 

the PSK at line 1249 of the hostapd.conf file. It can also be seen at line 1240 that the 

sudo rfkill unblock wifi 

cd krackattack 

sudo su 

source venv/bin/activate 
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supported Wi-Fi security protocol is WPA2. After entering the correct password, a normal 

4-way handshake between the client and the AP is performed. The test will start from there. 

The script bases its network packet handling capabilities on the well-known scapy Python 

package. Also, Vanhoef uses a personally developed Python package called libwifi (inspired 

by the C libwifi library), which handles Wi-Fi communications with the help of two other 

self-written libraries (wifi.py and crypto.py). Additionally, the krack-test-client.py script im-

ports the local wpaspy package, used to control the operations performed on hostapd. Of 

course, other more common Python libraries like socket, time, logging or sys are also used 

in this script. The logging library is used by scapy to output messages, which make most of 

the printed messages during the test execution. To get the most of the logger’s usage in the 

script, one can run the script with the --debug option to have access to more details on 

background operations. Additionally, the -dd -K option prints all debug outputs of hostapd, 

for extra-detailed information of all exchanged frames. 

To summarise the script, 3 Python classes were written by Vanhoef, in addition to a few 

helper functions. These classes are TestOptions, ClientState and KRAckAttackClient. As 

the name reveals, the first TestOptions class retrieves the test options provided by the user. 

These are split into 2 categories:  

1. the target or type of the attack (ReplayBroadcast, ReplayUnicast, Fourway which 

targets the PTK and GTK reinstallation in the 4-way handshake, and Grouphs 

which targets GTK reinstallation in the group key handshake),  

2. and the variant of TPTK attack (if performed), explained further in the subchapter. 

Note that the ReplayUnicast test option isn’t used throughout the code, for unidentified rea-

sons. By default, the Fourway option is selected, the TPTK variant set to 0 (TptkNone), and 

the additional gtkinit attribute set to “False”. This last attribute checks if the provided RSC 

(Receive Sequence Counter) value used when installing the GTK is used (which is good), 

or if the client resets it to 0 (which would be bad) during either the 4-way handshake or the 

group key handshake.  

The ClientState class differentiates the test state and the client state, which can be “UN-

KNOWN”, “VULNERABLE”, or “PATCHED”, and keeps track of changes in the client 

state depending on the results of the tests. Multiple class methods are needed to either assess 

if the client is vulnerable or patched, or to just set the encryption key. To verify if a device 

is vulnerable, class methods are used to identify IV/nonce reuse. This is done by setting an 
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IvCollection object (imported from the libwifi library, more specifically the wifi.py li-

brary), and then using class methods to identify and track any IV (nonce) reuse. Note that 

in this chapter, the terms “IV” and “nonce” will be used interchangeably. Remember also 

that the PTK and the GTK have separate IV incrementations, meaning that if multiple 

unicast frames were exchanged (thus incrementing the IV linked to the PTK), it won’t affect 

the IV used for the next multicast/broadcast frame. Indeed, the RSC is the starting packet 

number (IV) for the GTK, which gets incremented for each encrypted multicast/broadcast 

frame sent. The most important class method is probably check_pairwise_reinstall(). 

In this method, multiple PTK reinstallations will be waited for before assuming that the 

client is patched21, while the actual PTK reinstallation occurs in the KRAckAttackClient 

class. To check for a group key reinstallation from the client, the AP will send replayed 

broadcast ARP (Address Resolution Protocol) requests on the network, and check if clients 

will respond to it. Even though the GTK is not used to encrypt frames by the client as men-

tioned earlier, if it replies to a replayed encrypted ARP request (i.e., encrypted with the GTK 

and reusing a GTK-IV), it means that the client accepted the frame. It is also in the Client-

State class that various class methods for group key reinstallation detection reside. 

The class running the simulated attack is the KRAckAttackClient class. In its constructor 

class method, the hostapd configuration will be read to get the WNIC’s interface name. 

Also, the WNIC’s MAC address is grabbed using scapy. The main class method is run(), 

used to launch the test (line 463), as can be seen in the last line of the script (line 663) inside 

of the main() function. It starts by setting the options used for the test by declaring a Tes-

tOptions class. Furthermore, a Ctrl object is declared to communicate with hostapd (using 

the wpaspy library mentioned earlier) at line 481. The following lines are used for further 

AP configuration, like having the scapy library handle Dynamic Host Configuration Proto-

col (DHCP) requests which will be sent by the connecting clients to get their IP address22. 

After having finished setting up the AP, the actual testing can be performed. This is done 

through an endless loop, which needs to be terminated manually. Each loop can be 

 

21 As mentioned by Vanhoef [27], it could be that frames are lost due to important background noise, and thus 

the client state remains unknown. In practice, the script checks for 5 “IV reuse cycles”, where a cycle takes 

longer each round (i.e., the time interval is doubled each round before resending EAPOL Message 3).   

22 This is the assumed reason why Vanhoef insists that for the tests to be successful, clients need to request 

their IP through DHCP [27]. In our tests, it was observed that by default, smartphones have this configuration 

enabled. 
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represented as a cycle of actions. Per cycle, an ARP request will be sent with the tested 

device’s MAC address, looking for a GTK reinstallation (which could have occurred in the 

4-way handshake or the group key handshake). Depending on the options used, the script 

will either perform a new 4-way handshake and track PTK-IVs or launch a new group key 

handshake and test if a replayed ARP request (i.e., where a GTK-IV was reused) gets a 

response. The Appendix (section II) can be consulted to understand the general cycle for 

each test. More details on the process followed by the script are given now. 

First, if the gtkinit attribute is set, should it be when testing the 4-way handshake or the 

group key handshake, then the script will start by making hostapd reinitialise the GTK. The 

commands used to communicate with the hostapd daemon are simple to read but not always 

straightforward for interpretation, as can be seen in the below example (line 531).  

hostapd_command(self.hostapd_ctrl, "RENEW_PTK " + client.mac) 

Here, it seems to be renewing the PTK, while in reality, it is asking hostapd to restart a new 

handshake with a specific client, using its MAC address. This is assumed to originate from 

the ctrl_iface.c file contained in the hostapd folder. For the GTK renewal, a similar syntax 

is used, as shown in the below example. Note that since the GTK renewal is unilaterally 

performed by the AP, the command below doesn’t imply going through another 4-way hand-

shake (line 520), nor a group key handshake. The latter will only be used to share the new 

GTK with clients. 

hostapd_command(self.hostapd_ctrl, "RENEW_GTK”) 

If the gtkinit option isn’t used, the script will first reinitialise the RSC value (i.e., the counter 

for GTK-IVs) of the current GTK. Then, it will look at the selected TPTK option: 

- if the --tptk option was used, then EAPOL Message 1 is replayed (with the same 

ANonce as before), followed by a replayed EAPOL Message 3, 

- if the --tptk-rand option was used, then EAPOL Message 1 is sent again (with a 

new ANonce), followed by a replayed EAPOL Message 3, 

- if no additional option was used, only EAPOL Message 3 is replayed. 

The reason for sending EAPOL Message 1 before was documented in an online Addendum 

of Vanhoef and Piessens [16], and cited by Vanhoef again in a follow-up study on KRACK 

[25]. According to their research, wpa_supplicant v2.6 (and other clients) are only vulnera-

ble to KRACK if an EAPOL Message 1 is replayed (or sent again with a new ANonce) 

before retransmitting EAPOL Message 3. In all cases, after EAPOL Message 3 is sent again, 
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the script expects an encrypted EAPOL Message 4 from the client. This is the frame in 

which IV reuse is analysed. Since the vulnerable client accepts this new EAPOL Message 

3, it should also reinitialise its IV, leading to PTK-IV reuse. The script keeps track of all IVs 

used. As stated before, when using the --debug option, a user can follow all “debug-level” 

log messages of the script. In such a case, the tester can see which PTK-IV was used (for 

which frame, identified by a sequence number). 

Following the transmitted EAPOL message(s), the script will then check for the client’s 

behaviour concerning replayed ARP requests (checking for group key reinstallation). This 

is done by using the broadcast_check_replies() method (of the ClientState class). If the 

ClientState is not in the “VULNERABLE” state, it will use the broadcast_send_re-

quest() method (of the KRAckAttackClient class) to send the ARP requests. In this 

method, if the --group option was used, a new group key handshake message will first be 

sent, i.e., an EAPOL “group” message 1. In any case, the method will then replay a broadcast 

ARP request with the client’s MAC address, looking for an ARP response. As mentioned in 

“The KRACK Vulnerability” subchapter (3.3), a GTK reinstallation only allows an attacker 

to replay broadcast/multicast frames. If the client is vulnerable, after having reinstalled the 

GTK (either through the 4-way handshake or the group key handshake), it will reset its RSC 

counter. When receiving a replayed ARP request, it will accept the GTK-IV used and reply 

to the request. In the script, at least 5 out of all replayed ARP requests needs to be replied 

to state that the client is vulnerable. If the client is patched, it should ignore the requests. 

7.3 Devices tested for KRACK Vulnerability 

In total, 29 Wi-Fi-enabled devices were analysed. Table 3 (see pages 53 to 54) presents the 

overview of tested devices with the seven tests (options) of the krack-test-client.py script. 

This sums up to 203 tests performed in total. As can be seen, computers, tablets, and mostly 

smartphones were analysed. The main goal was to test a variety of hardware and OSs, and 

document as thoroughly as possible the models and OS versions (such as the kernel version) 

which was overall successful. Some device owners didn’t have a lot of time for sharing their 

personal smartphone, which made this documentation sometimes less comprehensive. In 

any case, the most important data could be retrieved. 

The results of the tests can be seen in Table 3, with a colour legend summarising the results: 

a device should either be vulnerable (red) or not vulnerable (green). In practice, it was ob-

served that some tests were unsuccessful (yellow), usually because the client would 
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disconnect and reconnect after a short period of time in the course of testing. This might be 

a security feature that prevents a device from staying connected to an AP sending unex-

pected frames. “N.A.” (grey) indicates that for unknown reasons, the script would run for-

ever without printing out a result. Finally, “Possibly Vuln.” (orange) refers to the fact that 

if the device accepts replayed broadcast frames, then the group-related tests (i.e., Tests 5, 6 

and 7, see below) are considered unreliable. This is stated on the GitHub repository of the 

tests: “If the client accepts replayed broadcast frames, this must be patched first. If you do 

not patch the client, our script will not be able to determine if the group key is being rein-

stalled (because then the script will always say the group key is being reinstalled).” [27] 

As a reminder for Table 3 (pages 53 to 54), the test number represents the command run: 

• Test 1: krack-test-client.py 

• Test 2: krack-test-client.py --replay-broadcast 

• Test 3: krack-test-client.py --tptk 

• Test 4: krack-test-client.py --tptk-rand 

• Test 5: krack-test-client.py --gtkinit 

• Test 6: krack-test-client.py --group 

• Test 7: krack-test-client.py --group –gtkinit 

Tests 1, 3 and 4 check both PTK (CVE-2017-13077) and GTK (CVE-2017-13078) reinstal-

lation in the 4-way handshake. Therefore, the colour code for the result applies for both PTK 

and GTK, unless specified otherwise. Test 6 verifies if the device was vulnerable to CVE-

2017-13080. In total, only 2 devices (devices no. 3 and 4) were test-positive to CVE-2017-

13077, respectively the BlackBerry device and the Samsung S5 Plus. This means that the 

tests state that the devices are reinstalling the PTK when an EAPOL Message 3 is sent again. 

The BlackBerry and Samsung S5 Plus are also vulnerable when a new EAPOL Message 1 

is transmitted first with a random ANonce (Test 3), followed by a transmission of a new 

encrypted EAPOL Message 3. Also, only 3 devices were positive for CVE-2017-13080. 

Other test-positive results for Tests 2, 5 and 7 were also detected and will be discussed in 

the next chapter.   
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Table 3: Devices tested for KRACK (𝑛 = 29)  

 Not Vuln.  Vuln.  Possibly Vuln.  Test Unsuccessful  N.A. Tests 

No. Device Model OS version 1 2 3 4 5 6 7 

1.  Surface 3  Win10 (build 10.0.19045)        

2.  Dell Inc Latitude E7450 Ubuntu 22.04.2 LTS        

3.  Blackberry Bold 9700 BlackBerry OS v6.0 Bundle 2949 23  24     

4.  Samsung Galaxy S5 Plus (Model SM-G901F) Android 6.0.1        

5.  Samsung Galaxy S6 Edge (Model SM-G928F) Android 7.0         

6.  Samsung Galaxy Note 9 (Model SM-N960F) Android 10        

7.  Xiaomi Redmi Note 9 Android 10        

8.  Asus ZenFone 6 Android 10        

9.  Xiaomi Mi A3 (Model M1906F9SH) Android 11        

10.  Samsung Galaxy S10 (Model SM-G973U) Android 11        

11.  OnePlus 6 (Model A6003) OxygenOS v11.1.2.2 (Android 11)        

12.  Fairphone 4 (FP4) Android 12        

13.  Vivo Model V2023 Funtouch OS12 Global (Android 12)        

14.  Samsung Galaxy S20 FE 5G Android 13        

15.  Samsung Galaxy S23+ Android 13        

16.  Sony Xperia 1 Mark 3 Android 13        

17.  Oppo Find X5 Pro ColorOs (Android 13)        

18.  Oppo Reno 8 Pro 5G ColorOs (Android 13)        

19.  MacBook Air (Early 2015) macsOS Catalina (v10.15.7)        

20.  iPod Touch 1 (Model MC547LL/A) iOS 6.1.6        

21.  iPad 2 (Model MC982FD/A) iOS 9.3.1        

22.  iPad 2 (Model MD366LL/A) iOS 9.3.5        

23.  iPhone 5 iOS 10.3.4        

24.  iPhone 5S (Model ME432KN/A) iOS 11.4.1        

25.  iPhone SE (Model MP8822FD/A) iOS 13.4        

 

23 Test 1’s output states that the PTK was reinstalled but not the GTK. 

24 Test 3’s output states that the PTK was reinstalled but not the GTK. 



54 

 Not Vuln.  Vuln.  Possibly Vuln.  Test Unsuccessful  N.A. Tests 

No. Device Model OS version 1 2 3 4 5 6 7 

26.  iPhone 14 Pro iOS 16.5.1        

27.  iPhone XR iOS 16.5        

28.  iPhone 12 iOS 16.5.1        

29.  iPad Air (5th Gen) iPadOS 16.2        

  Total of “Vuln.” results 2 1 2 0 13 3 6 

          

(Table 3: Devices tested for KRACK (𝑛 = 29))  

To verify the results and understand what is happening in the background, Wireshark was 

used to capture transmissions with specific devices. Since the testing script already creates 

a virtual monitoring interface (in this case, called monwlan0), it can be used on Wireshark 

to detect IV reuse (and replies to ARP frames reusing GTK-IVs). The CCMP Header is 

where the IV can be found (i.e., the PN). Before detecting IV reuse, the CCMP header con-

taining the IV needs to be briefly understood first (see Figure 18). In Wireshark, it can be 

found in encrypted frames under the “CCMP Header” field, as will be shown later. 

 

Figure 18: CCMP Header [13, p. 180] 

The CCMP header contains the IV, split into 6 bytes (from PN0, the least significant byte 

or LSB, to PN5, the most significant byte or MSB). Note that just like the PN, the KeyID 

byte must be reordered from the MSB to LSB (from bit 7 to bit 0). To complete the CCMP 

header, the “Rsvd” (i.e., “Reserved” for future use) parts are always ‘0’ bits, the “ExtIV” 

value is always a ‘1’ bit for CCMP-encrypted payloads, and the “KeyID” value will identify 

one of four possible encryption keys used.  
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Now, using Wireshark, the CCMP Header field can be inspected. It will appear when a Wi-

Fi frame is encrypted and used to identify IV reuse (Figure 19). While running the krack-

test-client.py script, the monwlan0 virtual interface is launched is selected when capturing 

transmissions on Wireshark.  

 

Figure 19: Wireshark capture with CCMP Header column with device no. 12 (start of Test 1) 

In Figure 19, a portion of the capture between the Fairphone FP4 (device no. 12) and the 

Atheros AR9271 (used by hostapd) is displayed while running Test 1. This device was not 

vulnerable to the test. The displayed MAC address of the AP starts with “Shenzhen”. The 

view is filtered for the AP’s and the Fairphone’s MAC addresses. Note that the display filters 

(if used) for each presented Wireshark capture can be consulted in the Appendix (section I). 

Sometimes, a local IPv4 address is also shown instead of the MAC address, such as 

“192.168.100.254” (which would be the AP), or “192.168.100.2” (i.e., the client). More 

rarely, IPv6 addresses are used, such as in frame no. 168. Also noteworthy is that EAPOL 

Message 4’s were not encrypted for this device, although it was suggested in [5] that this 

often happens. 

The starting 4-way handshake is performed, with the EAPOL replay counter values shown 

under the “Replay Counter” column. The “CCMP Ext. Initialization Vector” column repre-

sents the IV value of the frame, extracted from the CCMP Header. Following the 4-way 

handshake, 802.11 Data frames are encrypted either using the GTK, or the TK. The “Key 

Index” column indicates this: a Key Index value of “0” means that the TK was used, while 

“1” implies that the GTK was used. The case of the client encrypting a unicast frame (using 

the TK) and sending it to the AP, for it to re-encrypt it (using the GTK) and send it on the 

WLAN, can be seen, such as in frames no. 168-169. To understand such procedures, the 

CCMP Header needs to be deconstructed further. Indeed, the IV value contained in the 

CCMP Header can be extracted, to identify the IVs that are used by the client and the AP. 

Remember that the IVs are incremented for each use of the TK and GTK separately. 
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Figure 20: Detailed look at the CCMP Header of frame no. 168 

In Figure 20, the CCMP Header of frame no. 168 is deconstructed to understand how the 

real value of the IV is determined. Here, the CCMP Header is “01 00 00 20 00 00 00 00” 

(in hexadecimal), with the PN bytes in green, the Reserved byte in purple and the KeyID 

byte in red. Joining the 6 bytes of the packet number (i.e., from PN5 to PN0) gives us the 

following bytes for the IV (in hexadecimal): “00 00 00 00 00 01”, which corresponds to “1” 

in decimal.  

The TK and PMK values are also indicated in Figure 20 only because the Wi-Fi network 

password was entered in Wireshark to allow frame decryption, to show which key was used 

for CCMP encryption. These keys are never transmitted on the channel between the client 

and the AP. The ExtIV and the KeyID values can also be extracted from the 4th byte of the 

CCMP Header (“20” in hexadecimal). For frame no. 168, the following values are extracted: 

“20” (in hexadecimal) becomes “0010 0000” (in bits), therefore, the KeyID equals “00” (bits 

7 and 6) and the ExtIV is “1” (bit 5). The KeyID indicates that the TK was used and the 

ExtIV is “1”, as defined in the 802.11 standard [13]. 

Now that the collected results and the IV identification were presented, further discussion 

on the obtained results is provided in the next chapter. 
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8 Discussion 

This chapter discusses the obtained results and goes deeper into the analyses to assess their 

relevance. As a first general observation, the results showed that it was difficult to find Wi-

Fi-enabled devices vulnerable to the core of KRACK, meaning PTK and GTK reinstalla-

tions (i.e., Test 1 and Test 6). Only older devices like the BlackBerry or Samsung S5 were 

positive to key reinstallations in the 4-way handshake. The OS and its version appear to be 

key elements in identifying vulnerable devices, while the year of device release doesn’t 

seem to play a role. This is overall an encouraging outcome for Wi-Fi users. Nevertheless, 

it was found that devices reacted in different ways to the tests, should it be positive (i.e., 

vulnerable) or not. The chapter will be split into subchapters, starting with a general discus-

sion of the obtained results, followed by a comparison between an overall non-vulnerable 

device and devices which tested positive for some of the commands. The chapter will be 

completed by a broader discussion including the research questions, as well as the impact 

and limits of this thesis’ results. 

8.1 General Observations 

As mentioned earlier, there was a variety of responses from the devices being tested. For 

example, some smartphones would rapidly produce a pop-up message stating that no Inter-

net connection was detected. This might be a security measure to protect against similar 

MITM attacks. Typically, the Sony Xperia smartphone (device no. 16) would show this pop-

up message, and automatically disconnect by default if the user didn’t confirm the connec-

tion after a few seconds. The manual confirmation of the user was needed to keep the 

smartphone connected to the network. In contrast, some devices would reconnect automat-

ically to the network between 2 tests. 

Test 2 came out positive only once, namely for a Windows 10 device. This will be investi-

gated further in this chapter. No other device accepted replayed broadcast frames. Moving 

to the variants of the “basic” KRACK attack, Test 3 was positive only for the devices which 

were already vulnerable to Test 1, i.e., the Blackberry and Samsung S5 devices. The only 

test which was mostly inconclusive was Test 4. Indeed, it was observed that several 

smartphones would disconnect automatically after some time when testing the KRACK var-

iant performed with the --tptk-rand option.  



58 

 

Figure 21: tptk-rand variant of KRACK and Disassociation as a response by device no. 12 (Test 4) 

As seen in Figure 21 (see highlighted frame), the --tptk-rand test would make some de-

vices send a Disassociate (management) frame with an “Unspecified reason” code after hav-

ing received EAPOL Message 1 and EAPOL Message 3 in a row. This also occurred for 

some devices with the –tptk and the --gtkinit options (Tests 3 and 5). It seems that the 

unexpected transmission of the EAPOL messages makes the client disconnect from the 

WLAN. Further in the communication, the device then reconnects to the network going 

through a new 4-way handshake. For the Sony Xperia phone (device no. 16), this “discon-

nect cycle” behaviour was repeated throughout most of the tests.  

Test 5 is described as being rather “unreliable” by Vanhoef in [27], “because any missed 

handshake messages cause synchronization issues”. It tests if the device installs the given 

RSC value in the 4-way handshake. When inspecting Wireshark captures of this test, an 

anomaly was observed: the RSC value set in the EAPOL Message 3 by hostapd should have 

been set to a higher value. In practice, it was observed that this wasn’t the case: the provided 

RSC was always a zero-byte value for all EAPOL messages (see Figure 22). 

 

Figure 22: Wrong behaviour by hostapd for Test 5 (device no. 12) 

Debugging this issue wasn’t clear until the code was reviewed again: a logic bug seems to 

reside at line 541 of the run()method. Indeed, the previous conditional statement (line 
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533) explicitly excludes the case where the “gtkinit” option is on. Therefore, this option can 

never be acknowledged to set a higher RSC value when sending another EAPOL Message 

3, as shown in Figure 23. An issue was raised on the GitHub repository to address this. 

 

Figure 23: Broken logic in the run()method 

Considering this script malfunction, the code was manually corrected to allow the “gtkinit” 

option to work as expected during the GTK reinstallation test of a 4-way handshake. For 

unknown reasons, recapturing the traffic generated by Test 5 on the Fairphone gave a similar 

output: it seems that the 4-way handshake is performed (as expected with the “gtkinit” op-

tion), but retransmitting EAPOL Message 3 is on the other hand rarely performed. As the 

origin of this issue remains unidentified, the “gtkinit” test (Test 5) is set aside. For some 

devices, the test started the “disconnect cycle” mentioned previously. 

Moving to Test 6, only 3 devices were detected as being vulnerable to GTK reinstallation 

in the group key handshake: the Samsung S5 (device no. 4), one iPad 2 (device no. 22) and 

the iPhone 5 (device no. 23). Most of the devices were not vulnerable to this test.  

Finally, 5 devices were declared test-positive to Test 7, meaning that they reinstalled the 

RSC value during the group key handshake to 0. This test correctly assigned a high RSC 

value in EAPOL group message 1, to the contrary of Test 5. Given the previous issue with 

the “gtkinit” option, the test is briefly investigated here for the Fairphone FP4 (Figure 24).  

  

Figure 24: RSC value in EAPOL group message 1 is not set by the client (device no. 12, Test 7) 
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The command line output states that the device installs the provided RSC in the group key 

handshake (which would be good). However, this appeared to be incorrect. The AP sends 

EAPOL group message 1 to the Fairphone with a high RSC value. As for the PN bytes in 

the CCMP Header, the value is read in reverse order, meaning that the RSC value sent is 

“00 00 00 00 00 02 FF FF” (in hexadecimal, or 196’607 in decimal). Instead of responding 

with an incremented RSC value, the client responds each time with an all-zero RSC. 

8.2 Case Studies of KRACK Tests 

Going further in the discussion of results, this subchapter will present a selection of cases 

where the traffic was captured. First, the example of a device protected against the main 

KRACK attack (Test 1) is presented. Then, various examples of test-positives results are 

discussed.  

8.2.1 KRACK against Fairphone FP4 (Android v12) 

The case of the Fairphone FP4 (device no. 12) is described first. In Figure 25, the EAPOL 

Messages exchanged during the performance of Test 1 against the FP4 are displayed. 

 

Figure 25: Test 1 on device no. 12 (Fairphone FP4) with the first KRACK attempt highlighted 

It shows the multiple EAPOL Message 3s which are sent again and again by the AP, and 

the corresponding EAPOL Message 4s sent by the Fairphone in response. The first retrans-

mission of an EAPOL Message 3 takes place on the (highlighted) 207th frame, meaning that 

it is the first occurrence of a key reinstallation test. Although the EAPOL Message 3s of the 

AP are always encrypted using the TK (see “Key Index” column), none of the EAPOL Mes-

sage 4s are encrypted by the Fairphone. It can be now checked if encrypted messages sent 

by the client (starting from the 208th frame) reused PTK-IVs, which would indicate a PTK 
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reinstallation occurred. In Figure 26, the PTK-IV incrementation is correctly done by the 

Fairphone. It is not true for frames sent by the AP though, as replayed broadcast ARPs are 

sent on purpose to test for GTK reinstallation for example. 

 

Figure 26: No PTK reinstallation, as no PTK-IV was reused on device no. 12 (with Test 1) 

Note that for GTK reinstallation, it can be deduced from the presence (or absence) of replies 

to the replayed ARP requests. To confirm that the GTK didn’t get reinstalled, the replayed 

ARP frames must be investigated (see Figure 27). 

 

Figure 27: No replies from device no. 12 to replayed ARP requests (Test 1) 

When inspecting these, only non-replayed ARP requests were replied to by the client. Such 

a response can be found for example in frames no. 520-521 or frames no. 2967-2969. May 

replayed broadcasted ARP requests have the GTK-IV value of “1” here (see IV values for 

frames with “1” in the “Key Index” column). 
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8.2.2 KRACK against Blackberry Bold 9700 (BlackberryOS v6) 

Looking at a selection of positive tests, the BlackBerry (device no. 3) is the first one pre-

sented. Both the command line and the Wireshark capture confirm that a PTK-IV was re-

used. The script’s output with debug option on is shown, stating that it is the PTK-IV value 

of 7 which was first reused (Figure 28). A Wireshark capture was also recorded during Test 

1 (see Figure 29) for this device, showing that the IV value of 7 was the first reused nonce. 

Although it is not clear why precedent KRACK attempts succeeded in making the client 

reinstall the PTK, later attempts showed that other PTK-IVs were reused (such as the IV 

value of 8, in frames no. 9331 and 9859).  

 

Figure 28: IV reuse statement on the command line by device no. 3 (Test 1) 

 

Figure 29: IV reuse by device no. 3 (Test 1) 

Note that according to the 802.11i standard, even a valid replayed encrypted frame should 

increment its packet number (i.e., IV). Indeed, “The decryption processing prevents replay 

of MPDUs by validating that the PN in the MPDU is greater than the replay counter main-

tained for the session.” [13, p. 184], with the MPDU standing for the MAC Protocol Data 

Unit, which can be simplified as the frame here. 

Continuing the investigation, the GTK was not reinstalled according to the script (Figure 

30, p. 63). In fact, the Blackberry device never replied to any ARP request according to the 

Wireshark capture (Figure 31, p. 63). 
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Figure 30: No GTK reinstallation in the 4-way handshake for device no. 3 (Test 1) 

 

Figure 31: Absence of replies to replayed ARP requests for device no. 3 (Test 1) 

Concerning PTK reinstallation, the same pattern occurred when performing Test 3 (TPTK 

variant) on the device, as can be seen in Figure 32 and Figure 33 (p. 64). PTK-IVs reuse 

was observed, but not GTK reinstallation. 

 

Figure 32: tptk variant of KRACK is successful on device no. 3 (Test 3) 
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Figure 33: Multiple IV reuse due to repeated PTK reinstallations on device no. 3 (Test 3) 

The first tptk variant attack worked (i.e., the successive transmission of EAPOL Message 1 

and EAPOL Message 3) and lead to nonce reuse. The second and third highlighted pairs of 

frames represent a standard EAPOL Message 3 retransmission vulnerability. This occurred 

because the script already detected after the first tptk test that the device was vulnerable, and 

thus didn’t send EAPOL Message 1 anymore. This observation confirms the previous result 

of Test 1.  

The last reviewed test for the Blackberry device is the “group-gtkinit” test (Test 7). On one 

hand, device no. 3 always sets its RSC value to 0 in EAPOL group message 2, although the 

AP sets it at a high value in EAPOL group message 1 (Figure 34). On the other hand, the 

command-line states that the Blackberry correctly resets the GTK counter (Figure 35, p. 65).  

 

Figure 34: As for the Fairphone, the RSC value is not incremented for the Blackberry (Test 7) 

Given that the “gtkinit” option (Test 5) already produced unexpected behaviour, this addi-

tional observation for the “group-gtkinit” (Test 7) diminishes the confidence one can have 

in these 2 tests.  
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Figure 35: Blackberry device allegedly uses the given RSC value according to Test 7 (device no. 3) 

To compare previous results of the Fairphone and the Blackberry devices for the “group-

gtkinit” test, 2 other devices, which were detected as vulnerable, are presented to underline 

the issue with the test. These are the Redmi Note 9 (device no. 7) and the Asus Zenfone 6 

(device no. 8). For these 2 devices, the results stated that they were not installing the pro-

vided RSC, as shown in Figure 36 for the Redmi Note 9 device. Looking at the Wireshark 

capture of Test 7, Figure 37 shows that the Redmi Note 9 phone indeed reinstalls an all-zero 

RSC value, while it should take the counter value given by the AP. 

 

Figure 36: Test-positive result for the Redmi Note 9 (Test 7) 

 

Figure 37: Constant RSC reset to 0 by Redmi Note 9 during the group key handshake (Test 7) 

The same was observed for device no. 8 (Figure 38), which would confirm the script’s out-

put. Overall, it seems that the script output for Test 7 is less reliable given the various 

Wireshark captures taken. Nevertheless, the traffic captures seem to indicate that devices 

don’t install the provided RSC value in the group key handshake. 

 

Figure 38: RSC is also not incremented in the group key handshake for Asus Zenfone 6 (Test 7) 
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8.2.3 KRACK against Samsung S5 (Android v6) 

Another quite interesting case study is the Samsung S5 device (device no. 4). It was almost 

positive on all tests, which was less surprising than for other devices as its OS is Android 

v6.0.1. This OS was the one at the centre of Vanhoef’s analyses, which he found to be 

vulnerable to KRACK [5, p. 5]. Starting with the general Test 1, PTK-IV reuse was detected, 

indicating PTK reinstallation (Figure 39). As opposed to the Blackberry device, the Sam-

sung S5 was also reinstalling the GTK during Test 1 (Figure 40).  

 

Figure 39: Samsung S5 being vulnerable to KRACK and performing PTK reinstallation (Test 1) 

 

Figure 40: GTK reinstallation in the 4-way handshake for device no. 4 (Test 1) 

The Wireshark capture confirms that a PTK reinstallation occurred in frame no. 7452, after 

the second retransmission of EAPOL Message 3 (Figure 41). Note that for this device, the 

group key was also reinstalled, as the Samsung S5 device replied to replayed ARP requests 

multiple times (see Figure 42 on p. 67). The tptk variant of KRACK (Test 3) also produced 

the same outcomes for device no. 4. Still, although Vanhoef found that Android v6.0.1 de-

vices were reinstalling an all-zero TK, the captured frames showed that device no. 4 wasn’t. 

 

Figure 41: IV reuse highlighted due to PTK reinstallation on Samsung S5 (Test 1) 



67 

 

Figure 42: Device no. 4 repeatedly replies to ARP requests, indicating GTK reinstallation (Test 1) 

Responses to replayed ARP requests were also detected during the group key handshake 

(Figure 43) and proven during traffic capture (Figure 44). Note that in Figure 44, all ARP 

frames or frames which were encrypted by the AP (i.e., “Key Index” column shows “1”) are 

filtered for. Even if the client’s IP address is sometimes shown, it is the AP who retransmit-

ted the client’s broadcast frame. If just looking at ARP frames isn’t enough to identify GTK 

reinstallation, this display can help follow the GTK-IVs more precisely and show that high-

lighted IVs were already used previously by the AP. 

 

Figure 43: Samsung S5 reinstalls the GTK during the group key handshake (Test 5) 

 

Figure 44: Multiple ARP responses to replayed ARP requests by device no. 4 (Test 5) 

Out of all 29 devices, the Samsung S5 seems therefore to be the most vulnerable to KRACK 

attacks.  
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8.2.3 Replaying Broadcast Frames on Surface 3 

The last example presented for this subchapter is the Surface 3 tablet (device no. 1), the only 

device where Test 2 came out positive. It should be remembered that the test looks for re-

plies to replayed ARP messages based on GTK-IVs. For this test, no KRACK attempts are 

performed (meaning that no GTK is reinstalled, unlike for the other options). The Surface 3 

tablet replied to a replayed broadcasted ARP request, as can be seen in Figure 45. The re-

played frames are highlighted in red, while the response is marked in green. 

 

Figure 45: A replayed ARP request accepted by device no. 1 (Test 2) 

Since the Surface 3 device has seen (i.e., responded to) other ARP frames with higher GTK-

IVs, it should have dropped frame no. 2211. Multiple examples can be seen in the capture. 

Interestingly, the device answered to other frames where the GTK-IV was lower than that 

of previously accepted ones. For example, frame no. 1341 used a GTK-IV of “5”, but it was 

a GTK-IV of “3” for frame no. 1515. Therefore, frame no. 1515 should have been dropped. 

Instead, it replied to it. Figure 46 shows the GTK-IV incrementation of the AP, and high-

lights frames encrypted using GTK-IVs of “1” by the AP. 

 

Figure 46: Expanded view of traffic with the Surface 3 device to follow GTK-IVs (Test 2) 
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8.3 Impact and Limits of Results 

Having reviewed the relevant test cases, the significance of obtained results is discussed, 

considering the research questions. As a reminder, they are listed below: 

Q1. Given the identified available GitHub repositories, is it possible to successfully scan 

Wi-Fi-enabled devices for the KRACK vulnerability? 

Q2.  If that is the case, what are the struggles to perform the vulnerability test?  

Q3.  What’s the current relevance of KRACK given obtained results with this tool? 

Answering the first research question, it appears that a KRACK-scanning tool indeed allows 

for successful detection of the KRACK vulnerability on devices in most cases. Nevertheless, 

there are multiple reasons why it is imperfect. Note that the specific tests cited in the Results 

chapter are targeted here. To begin with, the script understandably can’t handle all types of 

device behaviours: some devices break out of the connection, and it was shown that it is 

sensitive to background noise. Also, some obtained results were hard to verify, such as the 

tests resetting the RSC counter for the GTK (in the group key and 4-way handshakes). For 

some test, it would be correct while for others, the command line output would contradict 

the Wireshark capture. Although Vanhoef warns about their reliability issue on its GitHub 

repository [27], the exact reason behind them remains unclear. Undoubtedly, there was also 

a logical bug in Vanhoef’s script which made the “gtkinit” option (Test 5) not set the RSC 

value properly in EAPOL Message 3. The impact of this, although being corrected after-

wards, was unknown as it appeared that some devices were still stated as responding cor-

rectly while they weren’t. A similar issue occurred for the “group-gtkinit” option (Test 7), 

while this one didn’t suffer such a bug. For the main tests which target the most important 

vulnerabilities (Tests 1-3-4 and Test 6), the script was successfully identifying vulnerable 

devices. Overall, the script seemed efficient for marking devices which would be vulnerable 

to CVE-2017-13077, CVE-2017-13078 and CVE-2017-13080. 

To answer the second research question, the following struggles for the testing process were 

therefore identified: 

1. Finding a suitable WNIC for setting up the testing AP can be challenging. 

2. The tests are sensitive to background noise. 

3. Some device behaviour couldn’t be handled by the script. 

4. Some tests aren’t performing correctly (Test 5 and Test 7). 
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Finally, the assessment of the KRACK vulnerabilities’ current relevance, in light of the tests 

performed with the tool, answers the third and last research question. Given the comprehen-

sive analyses presented in this thesis, it would seem that KRACK’s main vulnerabilities 

were patched in modern OSs. Performing a KRACK attack against a victim to read its com-

munications with an AP seems hard enough to deter attackers from choosing this attack 

vector though. First, an attacker would probably have to gain in-depth knowledge of how 

WPA/WPA2 works to fully recreate a tool able to exploit KRACK. Although the MC-

MITM tool [47] and the all-zero key reinstallation Proof-of-Concept [48] written by 

Vanhoef are available, no tool or script was found to be able to chain the two elements 

together to perform KRACK. If older WNICs are also needed, as was the case with the 

KRACK testing scripts of [27], then the attacker may also have difficulties finding the right 

hardware. Then, the attacker is limited by the Wi-Fi range, and even more so by the attack 

which needs to move the client and AP to communicate with its malicious MITM device. 

Furthermore, the client must be vulnerable to the attack, which was shown to happen in rare 

cases. 

On top of all these elements, other less technical attacks might be as efficient as KRACK in 

fulfilling the attacker’s objective(s), as described in [2]. Typically, if the attacker aims for 

credentials, it could simply put its machine in a MITM position in case the data is not en-

crypted at a higher level of the OSI model (e.g., HTTPS or using a Virtual Private Network, 

or VPN). Of course, this wouldn’t be as stealthy as the MC-MITM, but nonetheless efficient.  

The seemingly difficult exploitation of KRACK is supported by the Exploit Prediction Scor-

ing System (EPSS) score, which estimates how likely a vulnerability is to be exploited in 

the next 30 days [51]. Its scale goes from 0 to 100%, and the estimated EPSS score for CVE-

2017-13077 was 0.16% in March of 2023, according to [52]. Overall, all KRACK-related 

CVEs had a score below 3%. The CVSSv3 Exploitability subscore of CVE-2017-13077 also 

indicates that exploitation is unlikely to occur, as it was set at 1.6 (out of 10) by NIST. The 

two scores suggest that KRACK is difficult to exploit. Although affecting the core of the 

WPA/WPA2’s security, it seems that vendors and manufacturers patched the most problem-

atic vulnerabilities correctly. As [2, p. 17] also notes, most of the attack techniques against 

Wi-Fi in 2018 were solved by moving to WPA3, including KRACK. 

Still, the results of this analysis also show that more “minor” issues might remain unpatched 

or uncorrected in modern devices and OSs, such as accepting replayed broadcast frames or 
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ignoring the RSC reset performed for a GTK renewal. As WPA/WPA2 is still widely used, 

the presented results show that these issues should be addressed. 

Closing this chapter, the assessed limits of the selected methods (see Methods, p. 40) are 

discussed to present ideas for future work. It was indeed discovered that, given the time that 

passed since KRACK’s discovery, very few devices were found to be reinstalling their keys 

(PTK, GTK), and thus reusing cryptographic nonces. Then, the representativity of the sam-

pling was considered to be reasonably diverse. The selection process could have targeted 

Android/Linux-based devices more, as they were the main ones thought to be vulnerable to 

KRACK. Nevertheless, it was found that some Apple devices also had issues with some 

tests, which wouldn’t have been discovered if only Android/Linux-based devices were se-

lected.  

The number of tested devices could be improved with more resources at disposal, and scripts 

to automate running the tests could be written to speed up the data collection process. Since 

connecting to a Wi-Fi network needs the manual approval of the device owner most of the 

time, a fully automated testing process is considered difficult to achieve. Further investiga-

tion into this option would be beneficial to similar studies aiming at detecting devices vul-

nerable to Wi-Fi attacks. Also, finding and sampling 802.11r APs to perform Vanhoef’s test 

on them would also be an interesting continuation of this thesis. At a more general level, it 

would be interesting to develop a tool which could screen Wi-Fi-enabled devices for various 

Wi-Fi-related vulnerabilities, proving its result through traffic captures. 
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9 Conclusion 

KRACK is a complex set of vulnerabilities affecting WPA/WPA2, two Wi-Fi security pro-

tocols still widely used in the world. It has been six years since its release, yet researchers 

have shown little attention to it, except for citing the discovered vulnerabilities as a potential 

type of attack against Wi-Fi. As shown, KRACK has been well patched over the years and 

it seems that WPA2 has still some years left before being fully replaced by WPA3, the cur-

rent Wi-Fi security standard. 

This thesis aimed to explain KRACK as thoroughly as possible. The contributions of this 

study was to detail the steps to install a testing environment, to review Vanhoef’s testing 

script, to showcase how to run the tests against devices, as well as presenting traffic captures 

proving vulnerable behaviour. A convenience sampling was performed, collecting test re-

sults for 29 devices. For each device, a set of 7 tests based on Vanhoef’s script was per-

formed, totalling 203 outcomes. Only 2 older devices were identified as being vulnerable to 

the main KRACK vulnerabilities (CVE-2017-13077 and CVE-2017-13078). The devices 

reinstalled the PTK and GTK after retransmission of EAPOL Message 3, leading to nonce 

reuse. For this, variants of the simple retransmission of EAPOL Message 3 were also tested, 

with limited success. Also, 3 devices suffered from CVE-2017-13080, meaning that they 

reinstalled the GTK and reinitialise the related counter during the group key handshake. The 

script commands examining the reinitialisation of the RSC to a higher value were not effi-

cient in revealing if devices were vulnerable to the tested malfunction. This analysis also 

discovered a logical bug which prevented one of Vanhoef’s tests from running correctly, 

although this was not the reason why related results were unreliable. On top of device test-

ing, this thesis provided Wireshark captures performed during the tests, deep diving into the 

traffic and related behaviour of examined devices. This allows the reader to get insights on 

the exchanged frames when KRACK is performed against a Wi-Fi-enabled device. 

For future studies, developing scripts to automate the testing process could be written to 

speed up data collection, resulting in more representative analyses. Finally, a novel and 

broader research project could be the development of a general vulnerability detection sys-

tem for Wi-Fi systems, which would screen devices with various test and proving the vul-

nerable behaviour through traffic capture. 
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Appendix 

I. Filters used for Wireshark Capture Figures 

Figure 20: Detailed look at the CCMP Header of frame no. 168 (p. 56) 

Wireshark filter used: 

(wlan.sa == c0:1c:30:2f:f6:f0) || (wlan.sa == 22:61:71:23:de:e6) 

Explanation: It filters for the Source address (“sa”) respectively using the AP’s and the de-

vice no. 12’s MAC address. The logical OR symbol is represented by “||” (which is used 

here), while the AND symbol is represented by “&&”. For each Wireshark capture (i.e., 

figure), the filters used for the display are defined. 

Figure 21: tptk-rand variant of KRACK and Disassociation as a response by device no. 12 

(Test 4) (p. 58) 

Wireshark filter used: 

(wlan.sa == c0:1c:30:2f:f6:f0) || (wlan.sa == 22:61:71:23:de:e6) 

Figure 22: Wrong behaviour by hostapd for Test 5 (device no. 12) (p. 58) 

Wireshark filter used: 

eapol 

Explanation: As suggested by its name, this filter only displays EAPOL messages. 

Figure 24: RSC value in EAPOL group message 1 is not set by the client (device no. 12, 

Test 7) (p. 59) 

Wireshark filter used: 

eapol 

Figure 25: Test 1 on device no. 12 (Fairphone FP4) with the first KRACK attempt high-

lighted (p. 60) 

Wireshark filter used: 

eapol 

Figure 26: No PTK reinstallation, as no PTK-IV was reused on device no. 12 (with Test 1) 

(p. 61) 
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Wireshark filter used: 

(wlan.wep.key == 0) && (wlan.ta == 22:61:71:23:de:e6) 

Explanation: It filters for the Transmitter address (“ta”) of the device no. 12’s MAC address 

(and not the Source address), as well as frames encrypted using the TK. The reason for 

selecting “ta” instead of “sa” is to ignore the broadcast frames sent by the client and avoid 

confusion. 

Indeed, these “broadcast” frames are, in fact, a combination of “unicast (by client) + broad-

cast (by AP)” frames, as stated before. Using the “ta” filter skips these frames. 

Figure 27: No replies from device no. 12 to replayed ARP requests (Test 1) (p. 61) 

Wireshark filter used: 

arp 

Explanation: Only ARP frame will be displayed. 

Figure 29: IV reuse by device no. 3 (Test 1) (p. 62) 

Wireshark filter used: 

((wlan.sa == c0:1c:30:2f:f6:f0) || (wlan.sa == f4:0b:93:66:fc:9f)) && (wlan.fc.type == 2) 

Explanation: The last parameter filters for Data frames to give a clearer but still relevant 

view to the reader. 

Figure 31: Absence of replies to replayed ARP requests for device no. 3 (Test 1) (p. 63) 

Wireshark filter used: 

arp 

Figure 33: Multiple IV reuse due to repeated PTK reinstallations on device no. 3 (Test 3) 

(p. 64) 

Wireshark filter used: 

eapol 

Figure 34: As for the Fairphone, the RSC value is not incremented for the Blackberry (Test 

7) (p. 64) 

Wireshark filter used: 

arp 
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Figure 37: Constant RSC reset to 0 by Redmi Note 9 during the group key handshake (Test 

7) (p. 65) 

Wireshark filter used: 

eapol 

Figure 38: RSC is also not incremented in the group key handshake for Asus Zenfone 6 

(Test 7) (p. 65) 

Wireshark filter used: 

eapol 

Figure 41: IV reuse highlighted due to PTK reinstallation on Samsung S5 (Test 1) (p. 66) 

Wireshark filter used: 

((wlan.wep.key == 0 || eapol) && wlan.sa == 60:af:6d:f9:69:c0) || (eapol && wlan.sa == 

c0:1c:30:2f:f6:f0) 

Explanation: To summarise this filter, TK-encrypted or EAPOL frames sent by the client 

are displayed, as well as EAPOL frames sent by the AP. 

Figure 42: Device no. 4 repeatedly replies to ARP requests, indicating GTK reinstallation 

(Test 1) (p. 67) 

Wireshark filter used: 

arp 

Figure 44: Multiple ARP responses to replayed ARP requests by device no. 4 (Test 5) (p. 

67) 

Wireshark filter used: 

arp || ((wlan.ta == c0:1c:30:2f:f6:f0) && (wlan.wep.key == 1)) 

Explanation: The filter here expands the view which just showed ARP frames: it also in-

cludes GTK-encrypted frames for which the Transmitter address is the AP's. 

Figure 45: A replayed ARP request accepted by device no. 1 (Test 2) (p. 68) 

Wireshark filter used: 

((arp.src.hw_mac == b4:ae:2b:2c:b7:e9 ) || (arp.src.hw_mac == c0:1c:30:2f:f6:f0)) 
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Explanation: It filters for ARP requests sent by these 2 MAC addresses (which are, respec-

tively, the Surface’s (device no. 1) and the AP’s MAC address. 

Figure 46: Expanded view of traffic with the Surface 3 device to follow GTK-IVs (Test 2) 

(p. 68) 

Wireshark filter used: 

arp || ((wlan.ta == c0:1c:30:2f:f6:f0) && (wlan.wep.key == 1)) 
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II. Step-by-step Process of KRACK Tests 

This additional section aims at summarising the steps and checks each test goes through25. 

Attempts targeting the 3 KRACK CVEs which were tested are highlighted in orange, while 

the yellow forms highlight the cause of the malfunction. 

 

 

25 “BCAST_VULN” checks if replayed ARPs received replies. “4WAY_VULN” checks if PTK-IVs were 

reused. 
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