
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Markus Punnar

Experimental Integration of the
Smart-ID Service Into Intel SGX

Enclaves
Master’s Thesis (30 ECTS)

Supervisor: Peeter Laud, PhD

Co-supervisor: Armin Daniel Kisand, MSc

Tartu 2023

Experimental Integration of the Smart-ID Service Into Intel SGX

Enclaves

Abstract:

Privacy-preserving services are becoming increasingly important as they allow untrusted

remote servers to process sensitive information while preserving the privacy of that in-

formation. To ensure the security and privacy of such services, strong authentication

mechanisms based on public-key cryptography are required instead of password-based

authentication. While there are several standardized authentication services available,

such as Smart-ID and mobile-ID, they are not yet integrated with Sharemind HI, a de-

velopment platform for privacy-preserving services.

This thesis aims to address this gap by developing a proof-of-concept service that

runs in a trusted execution environment and authenticates users using the Smart-ID ser-

vice provider. By leveraging the existing public-key infrastructure, the proposed service

would allow for the development of privacy-preserving applications on a national scale

where sensitive data remains secure from remote untrusted servers and administrators.

To achieve this goal, the prototype was developed on the Sharemind HI platform,

which simplifies the development of privacy-preserving applications and is based on

the Intel SGX platform. The prototype demonstrates the feasibility of securely commu-

nicating with the Smart-ID service provider from a trusted execution environment and

integrating Smart-ID authentication into the Sharemind HI platform. However, further

work is required to optimize the prototype in terms of time and space and to develop

a scalable solution for integrating external authentication providers without adding un-

necessary complexity to the core modules.

Keywords:

User authentication, trusted execution environments, privacy-preserving technologies.

CERCS: P170 Computer science, numerical analysis, systems, control.

2

Smart-ID Teenuse Eksperimentaalne Integreerimine Intel SGX

Enklaavidesse

Lühikokkuvõte:

Privaatsust säilitavad teenused muutuvad üha olulisemaks, kuna need võimaldavad tund-

matutel serveritel töödelda tundlikku teavet, säilitades samal ajal selle teabe privaatsu-

se. Nende teenuste turvalisuse ja privaatsuse tagamiseks on paroolipõhise autentimise

asemel vaja tugevaid autentimismehhanisme, mis põhinevad avaliku võtme krüptograa-

fial. Kuigi saadaval on mitmeid standardiseeritud autentimisteenuseid, näiteks Smart-ID

ja mobiil-ID, ei ole nad veel integreeritud privaatsust säilitavate teenuste arendusplat-

vormiga Sharemind HI.

Käesoleva töö eesmärk on arendada välja autentimisteenuse prototüüp, mis töötab

usaldusväärses täitmiskeskkonnas ja autentib kasutajaid Smart-ID teenusepakkuja abil.

Olemasoleva avaliku võtme infrastruktuuri kasutamine võimaldaks arendada privaatsust

säilitavaid rakendusi riiklikul tasandil, kus tundlikud andmed on kaitstud tundmatute

serverite ja administraatorite eest.

Selle eesmärgi saavutamiseks loodi prototüüp Sharemind HI platvormil, mis liht-

sustab privaatsust säilitavate rakenduste arendamist ja põhineb Intel SGX platvormil.

Prototüüp suhtleb turvaliselt usaldusväärse täitmiskeskkonna kaudu Smart-ID teenuse-

pakkujaga ning selle abil on võimalik integreerida Smart-ID autentimine Sharemind HI

platvormiga. Edasiseks rakendamiseks on vajalik prototüübi optimeerimine ning ska-

leeritava lahenduse väljatöötamine väliste autentimisteenuse pakkujate integreerimiseks

ilma põhimoodulitele tarbetut keerukust lisamata.

Võtmesõnad:

Kasutajate autentimine, usaldatavad täitmiskeskkonnad, privaatsust säilitavad tehnoloo-

giad.

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, kontroll.

3

Table of contents

Introduction 6

Glossary 9

1 Preliminaries 10
1.1 Digital identity . 10
1.2 TLS . 11

1.2.1 Definition and history . 11
1.2.2 TLS handshake . 12

1.3 SplitKey protocol and the Smart-ID service 14
1.3.1 Overview of threshold cryptography 14
1.3.2 SplitKey scheme . 15

1.4 Smart-ID integration details . 20
1.4.1 Authentication session . 20
1.4.2 Digital signing session . 22

1.5 Intel SGX . 23
1.5.1 Enclaves . 25
1.5.2 Attestation . 26
1.5.3 Data sealing . 29
1.5.4 The Enclave-Definition Language 30

1.6 Sharemind HI . 31
1.6.1 Overview . 31
1.6.2 Configuration . 32
1.6.3 Architecture . 34
1.6.4 Security . 35

2 Background on the underlying problem 39
2.1 Problem statement . 39
2.2 Motivation . 40

3 Design 42
3.1 Integration mechanism for Smart-ID clients 42
3.2 Intel SGX application integration specifics 43
3.3 HTTPS enclave . 45

3.3.1 Objective and requirements 45

4

3.3.2 EDL interface . 46
3.4 Sharemind HI action flow with Smart-ID 49

3.4.1 Data upload . 49
3.4.2 Authorization . 51

4 Implementation 54
4.1 Development environment . 54
4.2 TLS implementation . 55
4.3 Flatbuffers message definitions . 55
4.4 Untrusted component . 57
4.5 Smart-ID enclave . 60
4.6 HTTPS enclave . 62
4.7 Testing . 67

5 Results 68
5.1 Memory usage . 68
5.2 Performance . 71
5.3 Security of the prototype . 72

6 Discussion 74
6.1 Conclusion . 74
6.2 Future work . 75

References 76

Appendix 79
I. Licence . 79

5

Introduction

Authentication and authorization are essential in ensuring the security and integrity of

computer systems and networks. Authentication verifies the identity of a user or system

before allowing access to resources, while authorization determines what level of access

the authenticated user or system has to those resources. Without proper authentication

and authorization measures in place, unauthorized users could gain access to sensitive

data or systems, potentially causing damage or harm. Therefore, these security mea-

sures are necessary to protect against data breaches, cyber attacks, and other malicious

activities.

The most common authentication method involves an individual entering a user-

name and a password, where the username is considered public knowledge, and the

password is only known to the legitimate user. Despite its simplicity and widespread

use, password authentication suffers from various weaknesses, including password reuse

across multiple services, easily guessable passwords via brute force or dictionary at-

tacks, or even social engineering tactics. Therefore, a growing number of services are

adopting authentication systems based on public-key cryptography. These systems re-

quire users to decrypt a challenge sent by the system or digitally sign some data that

can later be verified to validate the user’s authenticity. Estonia and the Baltics have im-

plemented various such authentication mechanisms, including ID-card, mobile-ID, and

Smart-ID.

Trusted execution environments (TEE) refer to a group of technologies that enhance

privacy by allowing secure code to run in unsecured computing environments. TEEs are

particularly useful in implementing privacy-sensitive services that require a high level

of security where the server host cannot be trusted. In some cases, such as with the

Intel SGX platform [1], TEE implementations provide additional measures to ensure

data privacy by encrypting working memory and implementing access controls on the

processor chip level. This approach completely hides the data from the host machine,

6

thereby adding an extra layer of security to the TEE mechanism.

The objective of this thesis is to examine the feasibility of integrating a privacy-

preserving service with Smart-ID, a commonly used authentication and digital signing

solution in the Baltics. To achieve this goal, a prototype was developed to verify the

identity of users within a trusted execution environment. The Sharemind HI platform

was used to create the prototype, as it is a commercial product developed by Cybernet-

ica AS with the primary objective of facilitating the development of privacy-preserving

services. This platform utilizes Intel SGX as its underlying trusted execution environ-

ment.

The focus of this thesis was on the design and implementation of a prototype ser-

vice for integrating a privacy-preserving solution with Smart-ID. The author did not

enhance the Sharemind HI platform with additional functionalities in order to create the

prototype. The author’s work specifically involved the following activities:

• Designing two new server-side components that would facilitate the integration

between Sharemind HI and the Smart-ID service.

• Implementing the prototype service to enable secure communication with the

Smart-ID service provider and obtain user information.

This thesis is comprised of six chapters, in addition to the introduction. Chapter 1

presents an overview of the necessary background knowledge required to understand the

design and implementation of the prototype service. Chapter 2 outlines the motivation

for integrating privacy-preserving services with Smart-ID. Chapter 3 provides a detailed

discussion of the architectural decisions made during the development process. Chapter

4 focuses on the implementation details of the prototype service. Chapter 5 briefly

discusses the security implications of integrating Smart-ID to Sharemind HI as well

as benchmark results for time and memory consumption are presented, and Chapter 6

concludes the thesis with a discussion of future work.

7

In the course of writing this thesis, ChatGPT was utilized by the author to refine and

enhance the phrasing of selected sentences, where deemed appropriate.

8

Glossary

API Application Programming Interface

CA Certificate Authority

CPU Central Processing Unit

CSR Certificate Signing Request

DFC Dataflow Configuration File

DHKE Diffie-Hellman Key Exchange

EDL Enclave Definition Language

EPC Enclave Page Cache

EPID Enhanced Privacy ID

HSM Hardware Security Module

HTTP HyperText Transfer Protocol

IAS Intel Attestation Service

IETF Internet Engineering Task Force

JSON JavaScript Object Notation

MAC Message Authentication Code

MITM Man-In-The-Middle

PKI Public Key Infrastructure

PRF Pseudo-Random Function

PRM Processor Reserved Memory

QE Quoting Enclave

RAM Random Access Memory

RP Relying Party

SAML Security Assertion Markup Lan-

guage

SDK Software Development Kit

SGX Software Guard Extensions

SSL Secure Socket Layer

SSO Single Sign-On

TCP Transmission Control Protocol

TCS Thread Control Structure

TEE Trusted Execution Environment

TLS Transport Layer Security

9

1 Preliminaries

This chapter provides an overview of the fundamental background knowledge that is

necessary to understand the results presented in this thesis. First, chapter 1.1 offers an

introduction to the concept of digital identity, encompassing key terminology and trust

assumptions. Subsequently, chapter 1.2 discusses TLS, which serves as the underlying

protocol for securing communications between parties over the internet. Chapter 1.3

introduces the concept of threshold cryptography, along with the SplitKey protocol that

is implemented by the Smart-ID service and chapter 1.4 details the interface between

the Smart-ID service and its users. Chapters 1.5 and 1.6 provide an in-depth overview

of the underlying technologies employed in this thesis - Sharemind HI and Intel SGX.

1.1 Digital identity

In contemporary society, digital identity has become a critical aspect of daily life. It

refers to the electronic portrayal of an individual’s identity, personal information such

as their name and national identity number. To establish trust in either the physical and

digital domain, it is essential to have a reliable authority that verifies a person’s identity.

In a psychical world, this is generally accomplished by issuing an official document,

such as a passport or an ID card, to the individual, which can be authenticated by other

parties and is challenging to replicate. Such a document can serve as proof of a person’s

identity.

In the digital domain, physical identification documents are not viable for proving

a person’s identity to another individual. Instead, web services have traditionally relied

on passphrases, which are expected to be known only to the legitimate user, for user

authentication. However, this approach is associated with several limitations. Firstly,

passphrases are susceptible to brute-force and dictionary attacks, as well as data leak-

ages, which can compromise the security of the user’s identity [2]. Secondly, the user-

10

name alone is insufficient to establish the real-world identity of the user, making it

impractical for use cases that require the verification of the user’s actual identity, such

as digital signatures.

The concept of digital identity has undergone significant evolution over time, driven

by the increasing need for enhanced security and privacy in online transactions. By

leveraging asymmetric cryptographic primitives, it is possible to elevate authentication

and digital transactions to a level equivalent to that of handwritten signatures, as per

eIDAS regulations [3]. In this approach, an individual’s personal information is bound

to their public key through a public-key certificate, which is digitally signed by a trusted

third party known as a certificate authority. This certificate authority is responsible for

verifying that the public key corresponds to the intended individual or entity, and their

certificates are publicly available for others to extract the associated identity and public

key information. To authenticate, an individual must demonstrate their possession of

the corresponding private key by either decrypting a challenge or digitally signing some

data. Additionally, digital signatures can be verified by other parties using the public

key information from the associated certificate [4].

1.2 TLS

1.2.1 Definition and history

TLS, formerly also known as SSL is a cryptographic protocol which provides commu-

nication security over a computer network [5]. TLS operates on top of the transport

layer and and is agnostic to the underlying application protocol. It is used with many

application level protocols, however, it is most widely known for its use in securing

HTTP traffic.

The first version of SSL, called SSL 1.0 was developed by engineers and scientists at

Netscape in 1995. However, since the protocol had serious security flaws, it was never

11

released to the public. Over the next few years, next revisions of the protocol called

SSL 2.0 and SSL 3.0 were developed and released. SSL 2.0 was quickly discarded

due to numerous security and usability issues. SSL 3.0 was a complete redesign of the

protocol, addressing the issues present in its predecessors. It was the final revision of

SSL and all newer TLS versions are based on the same concepts [6].

TLS 1.0 was an upgrade over SSL 3.0 published in 1999. The name change from

SSL to TLS was mainly for differentiating the newer revisions as the closed-source

development of SSL at Netscape transitioned to an open standardization process led

by IETF [7]. Newer versions of TLS focus on extending the support for different use

cases, deprecating the use of insecure hash functions, pseudo-random functions, mes-

sage authentication codes and encryption schemes. Moreover, recent version of TLS

aim to make the TLS handshake process more efficient and provide additional security

properties such as perfect forward secrecy. Currently, there are two TLS versions being

actively used. TLS 1.2 is the most widely used TLS version since TLS 1.1 was depre-

cated by all major browser vendors in 2020. However, TLS 1.3 was released in 2018,

providing more secure cipher suites and faster handshake [8]. Today, TLS 1.3 is sup-

ported by all major browsers and is being widely adopted by most web servers as well

as being supported by popular commercial and open-source libraries such as WolfSSL

and OpenSSL.

1.2.2 TLS handshake

Since applications can communicate with or without TLS, the client needs to notify the

server that it requests a TLS connection. This is most widely done by using a different

port for TLS connections. For example, the default port for HTTP traffic is 80 and

the default port for HTTPS (HTTP over TLS) traffic is 443 [9]. The main objective of a

TLS handshake is for the parties to agree on a session key which can be used to securely

exchange application data using a symmetric cipher. During a basic server-authenticated

12

TLS 1.2 handshake, the messages shown in Figure 1 are exchanged between the client

and the server after the parties have established a TCP connection.

Figure 1. A standard TLS 1.2 handshake [10]

The main difference in the handshake in TLS 1.3 is that it attempts to complete

the handshake in a single round-trip whereas a standard TLS 1.2 handshake is done in

multiple round-trips as illustrated in Figure 1. This is possible mainly due to the fact

that deprecating many insecure key exchange algorithms, hash functions, encryption

functions and encryption modes, the number of supported cipher suites was reduced

13

from 37 to only 5 [8].

In the process of designing the TLS 1.3 protocol, it was identified that a number of

TLS implementations had incorrectly implemented the protocol’s version negotiation

feature which allows both the client and the server to agree on a common TLS version.

In addition to other faulty assumptions made during implementation, this forced the

introduction of additional measures in TLS 1.3, such as relocating the version identifier

to an extension and making TLS 1.3 appear similar to TLS 1.2 for various network

middleboxes [11]. Consequently, TLS 1.3 is a more complex protocol than necessary

due to the need to maintain backwards compatibility. This highlights how fragile the

protocol is in practice due to decisions made during protocol design and implementation

errors.

1.3 SplitKey protocol and the Smart-ID service

1.3.1 Overview of threshold cryptography

The field of threshold cryptography studies cryptosystems that enhance the protection

of information by distributing the private key used for decryption and digital signatures

among multiple participating parties. This implies that in order to carry out crypto-

graphic operations involving the private key, several parties must cooperate. The number

of required parties depends on the specific protocol and is called a threshold, resulting in

these schemes being called (t, n)-threshold systems where n is total number of parties

participating in the protocol and t is the threshold. In most protocols, t is strictly smaller

than n, making the systems fault-tolerant when a single party is unavailable or refuses

to cooperate.

The first cryptosystem with such threshold properties with a proof of security was

published in 1994 and constructed a shareable variant of RSA [12]. Since threshold

cryptosystems require a public and private key, these schemes can be built on top of

14

many existing asymmetric cryptosystem such as RSA, ECDSA and ElGamal. Histori-

cally only governmental agencies and certificate authorities with very important secrets

used threshold cryptosystems to provide additional security. In recent years, however,

threshold cryptosystems have gained traction in the general public as well, with NIST

publishing a roadmap toward criteria for threshold schemes for cryptographic primitives

in 2020 [13].

The main benefit that a threshold cryptosystem provides over a conventional asym-

metric cryptosystem is the elimination of the single point of failure. In conventional

system, the trust and responsibility is in the hands of a single individual, making him

an obvious target for carrying out attacks against the system. In addition to becoming

compromised, the individual can also become unavailable, introducing bottlenecks in

the system. The computer itself can also become a point of failure in the case of a mal-

function or a side-channel attack, where an adversary observes computer performing

cryptographic operations to extract information about the private key or other secrets.

Such attacks have been conducted in lab conditions since a novel attack by Kocher [14].

A threshold cryptosystem involves a group of independent entities who are respon-

sible for generating their own unique private keys and calculating corresponding public

key shares. These shares are then distributed and a common public key is computed.

During the signing process, each party calculates its signature share, which is used to

form a complete signature when combined with the shares of other parties. As long as

the number of signature shares is equal to or greater than the threshold level, any party

can combine these shares to create a complete signature, which can then be verified

using the public key.

1.3.2 SplitKey scheme

Smart-ID is an tokenless authentication solution widely used by banks, e-commerce

companies and government agencies to securely authenticate users. Before Smart-ID,

15

companies relied on possession based authentication means such as passwords and code

cards which could be guessed or replicated. For some services, methods using hardware

based security such as authentication using ID-cards or Mobile-ID were also available,

but these methods require the client to either have a special purpose SIM-card or a ID-

card reader to carry out cryptographic operations using the private key. Smart-ID, how-

ever, uses a (2, 2)-threshold cryptography scheme where the user’s smartphone and the

Smart-ID service provider are the parties participating in the authentication and digital

signing processes, providing a more convenient user experience while not compromis-

ing the security provided by hardware based methods. Smart-ID authentication process

to a standard web service consists of multiple distinct parties which can be seen in Fig-

ure 2. In this work the focus is on relying party integration. A relying party in Smart-ID

is an organization or a service using the Smart-ID solution to authenticate its users and

to sign documents.

1. A physical user who wants to authenticate to an online service

2. A user interface for the service - typically a browser

3. Smartphone belonging to the user

4. Relying party (RP) server

5. Smart-ID service provider

16

Figure 2. Overview of Smart-ID components [15]

The exact architecture of the Smart-ID service provider is out of the scope of this

work. Next we will look at the details of Smart-ID authentication and digital signing

processes. Note that this will not be a complete overview of these processes as additional

measures are implemented against key cloning attacks, PIN brute force attacks, side-

channel attacks and various transport level attacks.

Authentication process [15]

After the user navigates to the RP website, chooses the Smart-ID authentication method

and enters the user identifier, such as national personal code, RP server sends authenti-

cation request to the Smart-ID service provider. After that

1. RP generates a random SHA-2 family hash to be signed during the authentication

process and requests a new authentication session creation.

2. Smart-ID service provider creates a new authentication session and returns the

17

session ID to the RP.

3. RP computes the verification code of the authentication request and displays it to

the user. The verification code is calculated from interpreting the two rightmost

bytes of the SHA256 hash as a big-endian unsigned integer and extracting the last

4 digits in decimal.

4. Smart-ID service provider sends a push notification about the authentication re-

quest to the user’s mobile device.

5. Smart-ID App connects to the Smart-ID service provider, requests the authenti-

cation request details and computes the verification code, asking the user for its

PIN1.

6. After entering the PIN1, the Smart-ID App performs its signature generation

steps with the authentication key pair and sends the result to the Smart-ID ser-

vice provider. See the signature computation chapter for details.

7. Smart-ID service provider completes the composite signature computation steps

and returns the authentication response to the RP.

8. RP verifies the validity of the authentication response and creates a new session

for the authenticated user. RP must verify the validity of the end user’s certificate

and the signature.

Signature computation [16]

1. To sign a message m, first hash it using SHA-2 family hash function and pad it

with PKCS #1 v1.5 algorithm.

2. Decrypt private key share d′
1 with a key derived from the PIN and compute signa-

ture share y = md
′
1 .

18

3. Send signature share y and message m to the server. For authentication, message

m is a randomly generated hash.

To sign a hashed and padded message m, the Smart-ID app asks for a PIN from the

user, decrypts its private key share d
′
1 using the key derived from the PIN and computes

its signature share y = md
′
1 . For authentication, the digest H is generated randomly by

the RP and padded using the PKCS #1 v1.5 algorithm. Client then sends the signature

share y and the message m to the Smart-ID service provider. The service provider then

finishes the computation of the signature by

1. Compute the digest H(m) and use the same aforementioned padding algorithm.

2. Calculate the client’s signature s1 = y ·md
′′
1 and verify its validity by checking if

se1 = m mod n1.

3. Calculate the server’s signature share s2 = md2 mod n2 and create the composite

signature by using the Chinese Remainder Theorem s = Cn1,n2(s1, s2) which

satisfies s ≡ si mod ni for i ∈ {1, 2}. This is done by finding constants α, β

during key generation which satisfy αn1 + βn2 = 1 via Extended Euclidean

Algorithm.

4. Verify the validity of the composite signature using regular RSA signature verifi-

cation methods.

5. Send the composite signature back to the client.

Note that in a production environment, additional security measures such as retry

counters are included to increase security, which are omitted in this overview. However,

using these base steps, an end user can authenticate to different service providers and

create electronic signatures compliant with the eIDAS regulations using their smart-

phone as a party in a threshold cryptography scheme.

19

1.4 Smart-ID integration details

This chapter provides a comprehensive overview on the specifics of HTTP level requests

and responses involved in Smart-ID authentication and digital signing sessions. These

two sessions demonstrate analogous patterns involving two distinct HTTP services: one

for initiating the session, and the other for polling the final outcome. Unless explicitly

indicated, all information provided in this chapter is derived from the official Smart-ID

integration guide [17].

1.4.1 Authentication session

The process of authenticating users in a relying party service begins with the initiation

of an authentication session by the relying party, prompted by a user’s request to log

in. The Smart-ID service offers several means of identifying users, including a private

identifier unique to the relying party, a document number, or a semantic identifier. This

discussion, however, will concentrate on semantic identifiers, particularly the identity

code.

To initiate the authentication process, the relying party submits an HTTP POST

request to the Smart-ID service provider. In the case of semantic identifiers, the relevant

endpoint is /authentication/etsi/:semantics-identifier. The request body must include

the relying party’s UUID and name, which were acquired by registering the service

with the Smart-ID service provider, along with a base64 encoded hash (generated using

a SHA-2 family hash function) over a set of randomly generated bytes. Finally, the

relying party must supply a list of interaction flows in order of preference, with only the

simplest interaction flow that displays text and a PIN prompt on the user’s smartphone

being used for this purpose. An example payload for the session initialization request

can be found in Listing 1.

20

{

"relyingPartyUUID":"00000000-0000-0000-0000-00000000000",

"relyingPartyName":"DEMO",

"hashType":"SHA256",

"hash":"mpLS4Slsv40OONo1w4JlnhhPXgqK12BVU0bY8ebVkAI=",

"allowedInteractionsOrder":[

{

"displayText60":"Enter PIN1 to sign in",

"type":"displayTextAndPIN"

}

]

}

Listing 1. Example Smart-ID session initialization request body

When the Smart-ID service provider successfully finds a registered user with the

provided semantic identifier, it generates a session identifier in response, which the

relying party can use to later check the status of the session. An example of the session

initialization response’s payload is provided in Listing 2.

{

"sessionID":"e65cca40-31e9-4907-94f7-c6c348b104e4"

}

Listing 2. Example Smart-ID session initialization response body

The HTTP roundtrip described above fulfills the first two steps of the authentica-

tion process outlined in chapter 1.3.2. Subsequently, the authentication flow proceeds

according to the aforementioned chapter. During steps 3 to 6, the relying party server

regularly polls the Smart-ID service provider to determine whether the Smart-ID ser-

vice provider and the user’s smartphone have completed the authentication steps. To

accomplish this, the relying party server issues an HTTP GET request to the /ses-

sion/:sessionID endpoint, using the previously acquired session identifier. The Smart-

ID service provider responds with either an intermediate response indicating that the

authentication process is still ongoing, or a final poll response containing the user’s sig-

nature and certificate details. Listings 3 and 4 provide possible successful responses

from the service provider. The user’s signature and certificate values are encoded in

21

base64 and are not included in the example response due to their size. The endResult

field indicates whether the authentication flow was successfully completed, an error oc-

curred, or the user cancelled the procedure.

{

"state":"RUNNING"

}

Listing 3. Example intermediate Smart-ID session status response body

{

"state":"COMPLETE",

"result":{

"endResult":"OK",

"documentNumber":"PNOEE-39803022754"

},

"signature":{

"value":"Omitted for brevity",

"algorithm":"sha256WithRSAEncryption"

},

"cert":{

"value":"Omitted for brevity",

"certificateLevel":"QUALIFIED"

},

"interactionFlowUsed":"displayTextAndPIN"

}

Listing 4. Example final Smart-ID session status response body

Upon receiving a successful response from the Smart-ID service provider and veri-

fying the received signature and certificate values’ validity, the relying party can verify

the user’s identity and create an internal session using cookies, JWTs, or some other

method, allowing the user to access content that would otherwise be restricted.

1.4.2 Digital signing session

The process of digitally signing data shares numerous similarities with the authentica-

tion flow discussed earlier. The key distinction lies in the initialization endpoint used to

22

initialize the session. In instances where the relying party requires advanced electronic

signatures (AdES), the process entails two sessions: one for selecting a specific signing

certificate in situations where a user possesses multiple certificates across various mo-

bile devices, and another for actually signing the data. To trigger the certificate selection

flow using the semantic identifier, the relying party submits an HTTP POST request to

the /certificatechoice/etsi/:semantics-identifier endpoint, providing solely the RP UUID

and name. Upon obtaining the session identifier from the service provider, the relying

party will utilize the identical endpoint for monitoring the session status as for authenti-

cation. Subsequently, the documentNumber field in the final poll response will indicate

the document number selected by the client. Alternatively, the relying party may opt

to use the document number obtained from a prior authentication poll response, thus

bypassing the need for a separate certificate selection step.

Following the successful acquisition of the correct document number, the relying

party can initialize the digital signing session via the /signature/etsi/:semantics-identifier

endpoint. The request payload for this endpoint mirrors the authentication initialization

request as illustrated in Listing 3, with the exception of the hash field, which now con-

tains the base64 encoded hash output of the data intended for signing. Once the request

is initialized, the service provider and user’s smartphone will jointly calculate a com-

posite signature for the specified data. Upon completion, the resulting signature will be

transmitted to the relying party via the same session status endpoint.

1.5 Intel SGX

Numerous software applications need to process sensitive information such as pass-

words, cryptographic keys, credit or health records. Only designated individuals should

be allowed to access this data. The operating system enforces security policies that

protect sensitive information from other users and applications by restricting access to

other users’ files and memory space. Applications themselves can protect data at rest

23

and in transit by conventional encryption methods. However, there exists little protec-

tion from malicious parties with administrative privileges over the operating system.

Furthermore, during the processing of sensitive information it is accessible in memory

without applied encryption.

Intel Software Guard Extensions (SGX) [1] is an extension of the instruction set

available on Intel processors which enables developing secure applications when even

the host operating system is not trusted. Intel SGX allows applications to create and

operate with hardware-protected memory partitions called enclaves. Enclave provides a

protected memory region with confidentiality and integrity guarantees, which hold even

when a privileged adversary or malware is present in the system. By running sensitive

information processing code in an enclave, it is possible to considerably reduce the

attack surface of the application. The differences between the attack surface for regular

and SGX applications can be seen in Figure 3. In addition to enclaves, Intel SGX relies

on two more concepts to protect data - attestation and data sealing.

Figure 3 demonstrates the effectiveness of enclaves in significantly reducing the at-

tack surface for an application. In the absence of enclaves, the entire application, as well

as the underlying operating system, hypervisor, and hardware, must be trusted. Malware

or malicious privileged users can exploit vulnerabilities in any of these components to

launch an attack on the application. For instance, gaining privileged access at the op-

erating system level may enable an attacker to extract the application’s entire working

memory, exposing sensitive data. This poses a security risk, as stakeholders are required

to trust multiple third parties to ensure the application’s security. However, with the use

of enclaves, only the Intel SGX-capable hardware and correct implementation of the in-

terface between the untrusted and trusted sections of the application need to be trusted.

Further information regarding the interface description details can be found in Chapter

1.5.4.

All of the information regarding SGX in this chapter comes from Costan and De-

24

vadas’ article Intel SGX Explained [18], unless explicitly cited otherwise. The article

provides an excellent and thorough overview of the Intel SGX platform. The reader is

heavily encouraged to refer to the article for any additional details on the topics pre-

sented in this chapter.

Figure 3. Attack surface with and without enclaves [19]

1.5.1 Enclaves

The enclave is a central component of SGX. It contains all of the code and additional

data needed to perform operations on sensitive information. For example an enclave

can decrypt multiple table files, aggregate the entries based on some business logic and

encrypt the result again. The enclave’s code and data is stored in Processor Reserved

Memory (PRM) that cannot be directly accessed by other software, including system

software. Direct memory access targeting the PRM is also rejected by the CPU. The

PRM contains an Enclave Page Cache (EPC) which is split into 4kB pages that can be

assigned to different enclaves, allowing the support of multiple enclaves in a system at

the same time. This memory is managed by the same system software that manages

the rest of the memory, using SGX instructions to allocate and deallocate EPC pages.

25

Since system software is untrusted by design, SGX processors check the correctness of

allocation decisions. It is also possible for multiple logical processors to concurrently

execute the same enclave’s code via different threads using a Thread Control Structure

(TCS).

1.5.2 Attestation

One of the main use cases of SGX is running trusted code on a remote untrusted host

machine. Therefore a mechanism is needed to verify that the code and data have not

been modified. This is achieved by using a cryptographic protocol called software at-

testation. This process also produces a shared key between two parties which can be

used to establish a secure channel between the participants, allowing for exchange of

secrets. Intel SGX offers two different types of attestation protocols - local attestation

and remote attestation. Remote attestation requires that the parties trust Intel to verify

the enclave and assure its authenticity.

Enclave measurement

When an enclave is built and initialized, SGX will generate a cryptographic log in order

to build an enclave identity, which is a 32-byte hash digest of the log called the MREN-

CLAVE which can be thought of as the fingerprint of an enclave. The cryptographic log

consists of the following:

• The enclave content - code, additional data, stack and heap

• Location of each memory page within the enclave

• Security flags

26

Local attestation

It may be necessary to create multiple enclaves in a system due to enclave size restric-

tions or a separation of concerns. Local attestation is a process used by two enclaves

running on the same platform to prove to each other that they can be trusted. The re-

sult of a successful local attestation provides an assertion between two enclaves so they

can exchange information securely. Enclaves use multiple special purpose CPU instruc-

tions for attestation, such as EREPORT, which generates a structure called REPORT,

containing the MRENCLAVE, certificate-based identity, user data and a MAC tag over

the contents. To derive the keys used for the local attestation process, enclaves use the

EGETKEY instruction which can be used to derive sealing and report keys from key

material such as MRENCLAVE and secrets embedded in the processor. Local attestation

then performs the following steps assuring enclave A is attested by enclave B

1. B retrieves its MRENCLAVE value and sends it to A via an untrusted channel

2. A uses EREPORT to generate a REPORT using B’s MRENCLAVE and sends it

to B. This can also contain Diffie-Hellman key exchange (DHKE) data for trusted

channel creation.

3. B calls EGETKEY to get a report key to verify the REPORT. If the report is

successfully verified, then B assured that A runs on the same platform, because

the report key is specific to the platform.

4. B uses A’s MRENCLAVE from the REPORT to create a REPORT for A.

5. A verifies it similarly to Step 3.

6. If needed, then A and B can create a secure channel using DHKE using user data

fields in the REPORT and exchange messages using the shared symmetric key.

27

Remote attestation

Another type of attestation supported by SGX is remote attestation. It is used to verify to

a remote client that the enclave is running trusted code and to establish an authenticated

communication channel between the enclave and the client. In order to accomplish this,

a few additional components are introduced.

First, a special purpose enclave provided by Intel, called the Quoting Enclave (QE),

is present on all SGX platforms. The objective of the Quoting Enclave is to verify local

attestation reports from other enclaves, convert them into a quote and sign the quotes

using a device-specific Intel Enhanced Privacy ID (EPID) key.

Furthermore, remote attestation requires a trusted third party, namely the Intel At-

testation Service (IAS) to be present in order to verify the EPID signature over a quote.

The remote attestation process can be thought of as a slightly modified Sign-and-

mac (Sigma) protocol between the application and the challenger [20]. The protocol

needs to be modified due to the application enclave not being able to provide all the

necessary information needed to participate in DHKE. The process therefore includes

the enclave being attested, the Quoting Enclave, the untrusted application, the IAS and

a challenger called a relying party. Remote attestation can be broken down into seven

steps.

1. The attestation process is initiated by requesting to create an authenticated chan-

nel between the enclave and the challenger. The challenger sends the first protocol

message, consisting of a challenge and a nonce.

2. The application, running in the untrusted operating system, requests an attestation

report from the enclave and passes on the challenger’s nonce.

3. The enclave generates the report, using the EREPORT instruction, and a manifest,

consisting of the user data section from the report and optionally the nonce along

28

with a public key for the challenger to create the authenticated channel. Both the

report and manifest are returned to the untrusted application.

4. The application forwards the report to the QE, which verifies the report using

local attestation, converts it into a quote, and signs it with the EPID key.

5. The QE returns the signed quote to the application.

6. The application returns the quote from QE and the manifest from the enclave to

the challenger.

7. The challenger sends the quote to IAS, who verifies the EPID signature over the

quote and returns the result of the verification.

1.5.3 Data sealing

Sometimes it may be necessary to preserve enclave data or state following events during

with an enclave is destroyed, which can happen when

• Application closes the enclave

• Application itself is closed

• Platform is hibernated or shut down

Normally, enclave data and state are lost when an enclave is closed. In order to

preserve the data, it must be stored outside enclave boundaries. In order to protect this

data, a mechanism called data sealing is in place in SGX, which allows the enclave to

retrieve a key unique to an enclave based on the enclave measurement. This key can be

retrieved using an EGETKEY instruction. It is also possible to retrieve a key based on

the enclave author so that all enclaves of the author on the same platform can decrypt

the data. It is important to note that this method goes against the goal of isolating

the enclaves and minimizing attack surface. If any of the enclaves of the author are

29

compromised then all of the shared data is leaked. However, the compromised enclave

will not gain access to any other data which limits the severity of the leak.

1.5.4 The Enclave-Definition Language

The Enclave-Definition Language (EDL) is a domain-specific language that is used in

Intel SGX applications. It allows enclave developers to define enclave calls (ECALLs)

and outside calls (OCALLs), which specify how data moves in and out of enclaves

respectively [21]. The tool called sgx_edger8r, which is part of the Intel SGX software

development kit (SDK), uses EDL as input. This tool produces C wrapper functions

that implement multiple input and boundary checks during runtime for security and

serve as the only access points to an enclave. Additionally, the wrapper functions copy

input and output parameters from untrusted memory to trusted memory and vice versa.

This behavior also applies by default to pointer-type arguments, in which case the entire

array is copied. It is possible to provide modifiers to arguments, such as opting out of

the copying functionality for pointers and leaving the pointer verification to the enclave

developer. A comprehensive overview of the modifiers and how the EDL-generated

code handles different argument types is available in the EDL whitepaper [21].

The EDL file consists of two sections - a trusted block and an untrusted block.

As the names imply, ECALLs are defined in the trusted block and OCALLs in the

untrusted block. Listing 5 illustrates the structure of an EDL file along with the contents

of each block. Code generation from an EDL file takes place during enclave build time

and produces two header files: enclave_u.h for OCALL wrappers and enclave_t.h for

ECALL wrappers.

30

enclave {

// Include files

// Import other EDL files

// Data structure declarations to be used as parameters of the function prototypes

trusted {

/* Define ECALLs here */

// Included files will be inserted in the trusted header file (enclave_t.h)

// Trusted function prototypes

void test_ecall([user_check] int* ptr);

};

untrusted {

/* Define OCALLs here */

// Included files will be inserted in the untrusted header file (enclave_u.h)

// Untrusted function prototypes

void test_ocall([user_check] int* ptr);

};

}

Listing 5. Structure of an EDL file [21]

1.6 Sharemind HI

1.6.1 Overview

Sharemind HI is a platform to develop data-driven services which require strong privacy,

confidentiality and integrity guarantees throughout the entire lifecycle of the service. It

achieves these guarantees by using modern cryptographic schemes and a trusted execu-

tion environment (TEE) technology. TEE technology is used to provide secure memory

regions for confidential parts of the application which are isolated from the untrusted

parts of the host machine using trusted hardware. Sharemind HI uses Intel SGX as its

TEE technology to provide these memory regions in the form of enclaves [22]. Incom-

ing data to a Sharemind HI instance is encrypted at the source by the data producer

and then forwarded to the Sharemind HI service. The host of the service can only ac-

31

cess the data in encrypted form during all stages of processing, including during actual

processing tasks.

Sharemind HI leverages the hardware-based security guarantees provided by Intel

SGX and expands upon them by providing organizational measure and an access con-

trol framework. It aims to abstract away common concerns for privacy sensitive data

processing applications such as key management and cryptographic operations. Often

these applications involve multiple stakeholders, each with different roles and access

rights. Sharemind HI allows for precise control over what data is accessible to whom,

while preserving all security and privacy guarantees. This leaves the application devel-

oper only with the tasks to implement the data processing business logic and dataflow

configuration.

1.6.2 Configuration

A Sharemind HI instance consists of multiple different components and stakeholders

with different access permissions. There can exist any number of computational tasks

with different inputs and outputs. A group of similar data is aggregated by a primitive

called a data topic. These topics also serve as protection boundaries as a party or a

task requires separate permission to read or write to each topic. All stakeholders, tasks,

topics and access permissions are configured in a designated dataflow configuration file

(DFC). This configuration file is written in YAML format and contains the following

elements [23]:

• A listing of all stakeholders who are configured to access the system, including

their names and references to their certificates.

• A listing of all tasks along with their enclave measurements and a list of stake-

holders who are allowed to run a specific task.

32

• A listing of all topics, including their names and a list of stakeholders able to

manipulate the data in the topic.

The stakeholders present in the system fall into three main roles. Note that a single

stakeholder can act in multiple roles in a single instance

1. Data producers, who are responsible to uploading the encrypted input data to the

data topics.

2. Data consumers, who download the output data from a data topic.

3. Task runners, who can trigger a task enclave to execute its computational task.

In addition to these main roles, Sharemind HI defines additional roles to further

increase the deployment’s security [23]:

• The auditor, who has access to the audit logs produced by the instance and is

responsible for validating critical components and performing system audits.

• The coordinator, who is responsible to activities related to setup and deployment.

• The enforcer, who can approve the configuration and is responsible for checking

if the configuration conforms to the security objectives that are agreed upon by

the stakeholders.

Figure 4 illustrates a possible structure of a Sharemind HI instance defined by a

simple DFC. There are three distinct stakeholders present in the system. Producers A

and B both encrypt the input data for Task A and upload the encrypted data to topics

A and B, respectively. Task A is configured to be able to download and decrypt the

data from topics A and B to perform a computational task, encrypt the result and upload

the result to topic C. The output data can then be downloaded by a third stakeholder,

consumer A. In this example, consumer A also possesses a runner role, which means

that he is able to trigger the task enclave to perform its computations. However, he does

not have access to any raw input data provided by producers A and B.

33

Producer A

Producer B

Topic A

Topic B

Topic C

Consumer A

Upload

Upload

Task A

Download

Download

Upload

Download

Trigger

Sharemind HI Server

Figure 4. An example instance with a simple configuration

1.6.3 Architecture

Sharemind HI is implemented as a client-server application. The client includes the

application specific code and leverages the Sharemind HI client libraries. The client

can be implemented as a web application or native application as Sharemind HI pro-

vides an SDK for both TypeScript and C++ as well as a command-line interface. The

client library provides common functionality such as communicating with the Share-

mind HI server, performing encyption operations and remote attestation. The untrusted

part of the Sharemind HI server is responsible for work coordination, file system ac-

cess, network communication and forwarding messages between enclaves. Since this

34

part is untrusted, it does not run inside enclaves and therefore can not have access to any

sensitive information in plaintext.

The trusted parts of the Sharemind HI instance consist of application-specific task

enclaves - developed by the application developer - and three enclaves provided by

Sharemind HI - key enclave, attestation enclave and core enclave. The server-side func-

tionality is separated into multiple enclaves to keep the enclaves small and to separate

concerns into separately auditable components and to mitigate risks when a single en-

clave becomes compromised. Their responsibilities in the service are as follows:

• The attestation enclave is responsible for performing remote attestation and set-

ting up secure channels between the client and other enclaves.

• The key enclave is only responsible for storing and managing access to keys re-

quired to use any encrypted data.

• The core enclave manages the state of the instance, creates the audit log and co-

ordinates the execution of tasks. It does not have access to any confidential data

except shared secrets for communication channels.

1.6.4 Security

As Sharemind HI relies on Intel SGX for providing a trusted execution environment for

sensitive data, most of its attack model is identical to Intel SGX. However, Sharemind

HI adds additional abstraction layers which hide numerous details of data encryption

and technical role enforcement, such that application developers can concentrate more

on developing the business logic. A thorough attack model which lists all considered

threats and countermeasures that are applied to mitigate those threats is provided in the

Sharemind HI white paper [22].

As mentioned before, the main goal of Sharemind HI is to ensure that the data

uploaded to the platform can only be accessed by stakeholders and task enclaves with

35

Figure 5. Overview of the security model of Sharemind HI [22]

sufficient permissions. Sharemind HI focuses in providing confidentiality and integrity

of this data, whereas availability is left as a responsibility for the stakeholders. A visual

overview of the security model is given in Figure 5.

To ensure the confidentiality and integrity of the data, the data owner encrypts the

input data at the source and transfers the encryption keys to the key enclave via secure

channels attained by remote attestation. The encrypted data is the stored in a topic in

the Sharemind HI server. Similarly, after processing the input data, the output data is

encrypted inside the task enclave and stored in a topic. When a stakeholder requests to

download the output data, first his access rights are confirmed by the platform and then

decryption keys are transferred from the key enclave to the authorized stakeholder.

Before running a Sharemind HI instance, a set of enforcers must verify that the task

enclaves are configured with correct access permissions and give a cryptographically

signed approval. All stakeholders must choose which enforcers they trust and not vali-

date the configuration themselves. Stakeholders can then perform operations with input

or output data only on a Sharemind HI server which has been approved by their trusted

enforcers.

36

Figure 6. CA hierarchy in Sharemind HI

The coordinator has to generate an unique asymmetric key pair for each Sharemind

HI instance. The certificate is signed by the Cybernetica Deployment Root CA for

Sharemind HI, binding the identity of coordinator to the key pair. Similarly, each stake-

holder who needs to communicate with the Sharemind HI server, generates an asym-

metric key pair, and their certificate is signed with the coordinator’s private key. The

coordinator’s signed public key certificate is loaded into the server during deployment

and used to authenticate clients in remote attestation. Analogously, the Cybernetica

37

Deployment Root CA certificate is embedded into the server and verifies the validity

of the coordinator’s certificate. This ensures that only the parties explicitly added by

the coordinator are allowed to access the deployment, and facilitates authenticating the

stakeholders and enforcing access controls. An illustration about the certificate hierar-

chy in Sharemind HI is given in Figure 6.

Furthermore, prior to the instance deployment an auditor is required to validate the

enclaves, ensuring they are secure and privacy-preserving, resulting in a cryptographic

proof of the audited code. A client can, at any point after deployment, compare that

proof against any of the deployed enclaves, ensuring the integrity of the server.

Sharemind HI is also configured to use all available mitigations provided by SGX

against side-channel attacks. While these measures are not enabled by default due to

slower execution speeds, Sharemind HI takes a conservative approach and uses all avail-

able measures, compromising some performance for security benefits [23].

38

2 Background on the underlying problem

This chapter provides a concise introduction to the problem under consideration. It

begins by outlining the limitations of the present authentication mechanism utilized in

Sharemind HI. Subsequently, the chapter describes the potential benefits of incorporat-

ing the Smart-ID solution into Sharemind HI. Additionally, the chapter explores several

practical scenarios in which the proposed solution could be deployed, thereby under-

scoring the significance of investigating this area further.

2.1 Problem statement

As outlined in chapter 1.6, Sharemind HI’s current authentication and authorization

protocols are heavily reliant on the use of configuration files and X.509 certificates.

The coordinator possesses full control over the system’s access, with each stakeholder’s

certificate being signed with the coordinator’s private key. The DFC must list every

stakeholder, resulting in a secure yet restrictive environment that is difficult to scale.

The integration of a new stakeholder requires the creation of a new asymmetric key pair,

with the public key certificate being signed by the coordinator. The coordinator must

then add the new stakeholder to the DFC and assign authorization for task enclaves and

topics. Sharemind HI also supports dynamic end users, where a single stakeholder can

act as an intermediate CA and sign certificates. This slightly improves bottlenecks and

overall usability of the system, but possesses similar weaknesses.

Additionally, relying solely on an X.509 certificate-based authentication mechanism

creates a cumbersome user experience for both end-users and applications integrating

with Sharemind HI. Today’s end-users expect to authenticate to a service using either a

username and password or some form of PKI-based authentication mechanism, such as

Smart-ID or Mobile-ID in the Baltics. However, Sharemind HI only supports a compar-

atively technical and inconvenient authentication method, limiting its usability.

39

There have been solutions developed with Sharemind HI that rely on a password-

based authentication mechanism for specific projects, instead of the certificate-based

authentication mechanism [24]. The registration process involves the generation of an

asymmetric key pair, which is encrypted with the user’s password using scrypt as a key

derivation function. The resulting encrypted private key is then stored in a centralized

storage system. An administrator signs the user’s certificate, which contains their public

key. During login, the certificate is retrieved from the storage system by username, and

the private key is decrypted using the password. This approach can improve the user ex-

perience by removing the need for technical knowledge in setting up the authentication

flow. However, it is susceptible to the same weaknesses as any other password-based

scheme, as the security depends heavily on the strength of the password selected by the

user. Additionally, the scheme requires the maintenance of an additional storage system

by an administrator.

2.2 Motivation

Sharemind HI, in its current state, cannot be used in practice for applications with a

large and constantly evolving user base, as each stakeholder must be listed separately

in a DFC. This presents a challenge when building privacy-preserving services on a na-

tional level, as it would require all citizens to have a public key certificate listed in a

DFC. However, multiple services, such as Smart-ID, are capable of authenticating users

and providing their public key certificates to relying parties. As of March 2023, Smart-

ID has over 3 million users in the Baltics who could use national privacy-preserving

services using Smart-ID, much like how they authenticate to e-commerce or govern-

mental services today [25]. As a result, integrating the Smart-ID authentication process

with Sharemind HI and Intel SGX applications could enable the development of various

privacy-preserving services at a national scale. There are currently numerous practi-

cal scenarios in which integrating Smart-ID authentication into Sharemind HI based

40

services could be advantageous. The process of implementing such an authentication

mechanism could offer valuable insights into the necessary requirements and best prac-

tices for further successful applications in the future.

41

3 Design

This chapter presents an overview of the necessary requirements for the integration of

Sharemind HI authentication and access control mechanisms with the Smart-ID ser-

vice provider. Specifically, the chapter first discusses how to integrate existing services

with the Smart-ID service provider and what the differences are between integrating a

regular web service and an Intel SGX based platform. Next, a thorough architectural

overview of the final solution will be provided, which satisfies all current Sharemind

HI access control and auditability requirements. This integration enables the develop-

ment of larger scale services combining the Sharemind HI platform with the user base

of Smart-ID.

3.1 Integration mechanism for Smart-ID clients

The Smart-ID service components overview in Figure 2 demonstrates that the Smart-ID

platform offers two external REST APIs for integration purposes. The first of these is

the mobile device (MD) API, which facilitates communication between the Smart-ID

application library and the Smart-ID core. While this API is utilized by an external

party, an application developer seeking to integrate their service with the Smart-ID core

is not required to interface with this API directly.

The second and primary API offered by the Smart-ID core is the relying party (RP)

API. This API functions as the primary entry point for relying parties seeking to per-

form authentication and digital signing operations using Smart-ID. The RP API allows a

service to create either an authentication, certificate selection, or digital signing session

using a semantic identifier in a format specified by ETSI [26]. Once a Smart-ID ses-

sion has been initiated, a relying party can poll the Smart-ID core to determine whether

the operation has been completed successfully or whether the user is in the process of

entering their PIN1 or PIN2, or selecting a certificate for signing. Chapter 1.4 details

42

the specific REST endpoints, request and response payloads, and status codes associ-

ated with Smart-ID authentication and digital signing sessions. Once a relying party has

received a successful authentication session poll response from the Smart-ID core and

has validated it appropriately, it obtains proof of the user’s identity and can establish an

internal session for the user as needed. Similarly, following a successful digital signing

session poll response, the relying party receives a composite digital signature that is

computed jointly by the mobile device and the Smart-ID core.

3.2 Intel SGX application integration specifics

As indicated in the preceding chapter, the RP API offered by the Smart-ID provider is a

REST API, which utilizes HTTP as its underlying application-level protocol. To ensure

the authenticity of the Smart-ID RP API endpoint, it is crucial to use HTTP over TLS

in conjunction with a secure TLS cipher suite and HTTPS pinning. Neglecting to do so

could enable an attacker to intercept the connection between the RP and the Smart-ID

service provider and execute an active man-in-the-middle (MITM) attack. The attack

scenario involves the following steps [17]:

1. The client requests Smart-ID authentication to log in. The RP server initiates

a connection to the RP API authentication endpoint. However, the attacker in-

tercepts the connection and responds instead. Consequently, the RP sends an

authentication request with a random hash h1 to the attacker.

2. The attacker establishes another connection to the RP server under the same iden-

tity as the original client and intercepts this connection as well. This time an

authentication request with a random hash h2 is sent to the attacker.

3. The attacker calculates the verification codes for both hashes utilizing the afore-

mentioned method.

43

4. If the verification codes differ, the attacker drops its connection and repeatedly es-

tablishes a new one until the codes match. On average, it will take approximately

5000 connections until such a collision occurs.

5. The attacker sends the authentication request with the hash h2 to the authentic RP

API authentication endpoint.

6. The Smart-ID service provider dispatches a notification to the client’s smart-

phone, prompting the user to verify the verification code. Since h1 and h2 produce

a hash collision, the verification codes will match.

7. The client enters their PIN and completes the authentication process. The attacker

receives the authentication response from the RP API and forwards it to the RP

server, which verifies the signature’s validity and establishes an authenticated ses-

sion for the attacker under the client’s identity.

In the context of Intel SGX applications, the aforementioned MITM attack would

render it impossible for an untrusted component of the application to act as a client

for RP API calls in the guise of a privileged user or malware. Such untrusted parties

would have the capability to examine decrypted HTTP responses and interject genuine

client calls to initiate a similar MITM attack, thereby nullifying the security of the sys-

tem. This implies that HTTPS requests and responses need to be handled by enclaves.

This requirement poses a number of complex architectural challenges. Firstly, initiating

system native API calls from trusted application components to read from or write to

sockets is not possible. Secondly, TLS is a complex protocol with vulnerabilities being

discovered in several implementations in recent years. In addition, both open source and

commercial TLS implementations may be susceptible to side-channel attacks, which

have been the primary means of attacking Intel SGX systems [27] [28].

44

3.3 HTTPS enclave

3.3.1 Objective and requirements

As outlined in chapter 1.6.3, the Sharemind HI system comprises of three distinct en-

claves, namely the core enclave, the attestation enclave, and the key enclave. These

enclaves are designed to manage risks and enforce a clear separation of concerns. Con-

sistent with this architectural framework, it is advisable to create an additional enclave

responsible for initiating HTTPS traffic from the trusted segment of the application.

This approach ensures that the HTTPS enclave has a well-defined role and does not

pose a risk to the core enclave in the event of a vulnerability in the TLS protocol or a

particular implementation.

The HTTPS enclave has been specifically designed to handle arbitrary HTTPS con-

nections, on the condition that the server certificate used for the connection is signed by

a trusted certificate authority. The enclave is unaware of any Smart-ID integration spe-

cific details, thus allowing it to be utilized for other use cases in the future. Its primary

function is to receive plain HTTP requests from other enclaves via a secure channel

created with the local attestation mechanism. It then establishes a TLS session with the

server and forwards the encrypted TLS records to the untrusted portion of the appli-

cation, where it can be written to a socket. Similarly, when a TLS record is received

from the server, it is only decrypted within the enclave and then securely transferred

to the originating enclave, where the required business logic is applied to the received

response.

The HTTPS enclave must fulfill an additional requirement of being capable of han-

dling multiple concurrent clients seeking to authenticate to a service via their Smart-ID

accounts. As a result, the enclave is required to handle multiple TLS sessions and de-

mand that clients provide a unique identifier for each HTTP request issued to enable

multiplexing. Nonetheless, the responsibility of linking a response to the corresponding

45

request lies with the originating enclave, while the HTTPS enclave guarantees that the

response comprises an identifier pointing to the appropriate request.

In order to ensure optimal resource utilization within an enclave, it is imperative to

utilize asynchronous input/output (IO) operations, as the allowed thread count must be

specified during the enclave’s build process. A preconfigured thread count that is ex-

cessively high would lead to wastage of resources, while a thread count that is too low

would result in incoming requests being stalled under load. Additionally, it is important

to note that errors in multithreaded code pose a significant threat to SGX enclaves as

they can be exploited by a malicious operating system [29]. Through the utilization of

asynchronous IO operations, one can effectively process an arbitrary number of requests

with a single thread until CPU usage reaches saturation. Several TLS implementations,

including OpenSSL and WolfSSL, are capable of functioning in an asynchronous man-

ner, making them well-suited for this type of application. If the TLS client is unable

to read or write data at a particular time, the corresponding call will return with an ap-

propriate status code, and the IO operation will be queued for later processing, thereby

freeing up resources for other ECALLs to execute their respective tasks.

3.3.2 EDL interface

Next the interfaces used by the HTTPS enclave to communicate with untrusted parts and

other enclaves are described. This procedure is done using the EDL notation. Specifi-

cally, for the HTTPS enclave, two distinct EDL interfaces are defined. The first interface

concerns ECALLs and OCALLs implemented by the HTTPS enclave itself, while the

second one requires the consumer of the HTTPS responses to implement it. Both inter-

faces offer lifecycle methods for enclave initialization and destruction. For instance, the

initialization section performs the local attestation process and enclave communication

setup. It is worth noting that the communication between different enclaves in the same

machine passes through the untrusted segment of the application. Nevertheless, the

46

payload is encrypted with the session key that was negotiated during local attestation,

making it impossible for the untrusted segment to observe the payload. The HTTPS

enclave consumer interface comprises two methods: a single OCALL for performing

an HTTPS request through the HTTPS enclave, and a single ECALL for receiving the

HTTPS response once the entire response has been received. The method signatures for

these methods are presented in Listing 6.

enclave {

trusted {

public void async_response_from_https_enclave_ecall(

https_enclave_result_for_enclave_t result);

};

untrusted {

void async_request_to_https_enclave_ocall(

uint32_t fbs_discriminator,

[user_check] const uint8_t * in_payload,

size_t in_payload_size,

https_enclave_peer_request_identifier identifier);

};

};

Listing 6. EDL interface description for the HTTPS enclave consumer

The HTTPS request OCALL takes as input the encrypted payload containing the

HTTP request, as well as the size of the payload. In addition, the caller provides the

request identifier to the HTTPS enclave, enabling the response to be associated with the

corresponding request. The fbs_discriminator argument is an implementation detail in-

ternal how Sharemind HI uses Flatbuffers, a serialization library employed for efficient

message serialization between the client and various enclaves. The HTTPS response

ECALL receives the encrypted HTTPS response object as an argument, containing a

pointer to the response data along with its size and the request identifier.

47

enclave {

trusted {

public https_enclave_result_t https_from_enclave_ecall(

uint32_t fbs_discriminator,

[in, size=encrypted_fbs_size] const uint8_t* encrypted_fbs,

size_t encrypted_fbs_size,

https_enclave_peer_request_identifier identifier);

public https_enclave_result_t https_from_socket_ecall(

https_enclave_session_context_t session_context,

int recv_return_value,

int untrustedErrno,

const uint8_t * socket_received_data,

size_t socket_received_data_size);

};

untrusted {

int convert_address_to_socketfd_ocall(const char* host, size_t host_size);

};

};

Listing 7. EDL interface description for the HTTPS enclave

The HTTPS enclave itself implements a separate EDL interface, which consists of

two ECALLs and an OCALL. The https_from_enclave_ecall ECALL is used to initiate

a new HTTPS request from a different enclave. It is called by the consumer OCALL

method and forwards the encrypted Flatbuffer message to the HTTPS enclave. Its ar-

guments are therefore analogous to the OCALL defined in the consumer enclave. The

https_from_socket_ecall is executed asynchronously after the HTTPS enclave returns a

status indicating that the entire response has not yet been received. Since the ECALL

operations for HTTPS are non-blocking, any subsequent IO operations performed by

the untrusted are scheduled on a separate thread. After receiving additional data, the

HTTPS enclave is notified via this ECALL. This loop can occur multiple times until

the entire payload has been received. Along with the received socket data and size, the

ECALL is passed a session identifier and potential error values as arguments. The inter-

48

face defines a single OCALL for generating a new socket when a client requests a new

HTTPS session from the HTTPS enclave. Since the enclave is unable to execute system

calls directly, it must delegate the creation to the untrusted portion of the application.

The OCALL takes hostname details as arguments and returns the identifier of the gen-

erated file descriptor. The entire EDL interface for the HTTPS enclave is presented in

Listing 7.

3.4 Sharemind HI action flow with Smart-ID

This chapter presents a theoretical overview of how the Sharemind HI authentication

mechanism can be incorporated with the Smart-ID service provider. The HTTPS en-

clave is used to issue RP API client calls as explained in the previous chapter. Although

Sharemind HI offers numerous request types for clients related to audit log downloads,

configuration approvals, and recoveries, we will only examine the authentication and

client payload signing flow as they differ with Smart-ID usage. Finally, an authoriza-

tion solution for handling Smart-ID clients is provided.

3.4.1 Data upload

Figure 7 offers a detailed sequence diagram for the Sharemind HI authentication flow

with specific Smart-ID integration steps highlighted in groups. The integration involves

introducing two new enclaves, as well as additional round trips from the client to the

Smart-ID enclave, first to establish an internal session and later to sign the payload for

the Sharemind HI operation such as a data upload.

49

Figure 7. Sharemind HI action flow with Smart-ID integration

The authentication process starts by creating a secure session between the client and

the Smart-ID enclave through remote attestation. Afterwards the client also generates

an ephemeral asymmetric key pair to use during the Sharemind HI operation. In order

to initiate the authentication procedure using the Smart-ID identity provider, the client

must inform the Smart-ID enclave and provide its national identity code. The Smart-

50

ID enclave then establishes a new authentication session using the HTTPS enclave,

generating a random token upon successful completion, which is stored locally along

with the ephemeral public key. It is noteworthy that the HTTPS request is performed

asynchronously without making any OCALLs. At the conclusion of the authentica-

tion process, the Smart-ID enclave returns the token and the Smart-ID certificate to the

client, which can be used for authentication purposes with the core enclave. All error

conditions from the Smart-ID service, as well as any response verification errors, are

propagated to the client, and the authentication procedure will fail.

The Sharemind HI operation payload signing process follows a similar procedure to

the authentication flow, with the added requirement for the client to provide the hash of

the payload to be signed. The Smart-ID and HTTPS enclave operate in a similar manner,

but with the use of a separate Smart-ID RP API endpoint for creating a signing session.

Following the retrieval of the client’s signature from the Smart-ID service provider,

the core enclave verifies it using the client’s Smart-ID certificate. The signing of the

operation payload serves the purpose of ensuring non-repudiation in the audit logs.

The Smart-ID enclave performs an identity provider function similar to that of

SAML authentication or OpenID Connect in the scheme described above. The general

process involves the user agent (client application) requesting an identification proof

from the identity provider before requesting a resource from the service provider (core

enclave). Typically, these proofs have an expiration date, which cannot be verified

within enclaves. To prevent the malicious use of tokens returned by the Smart-ID en-

clave at a later time, communication between the core enclave and the Smart-ID enclave

has been established to validate the one-time token’s legitimacy.

3.4.2 Authorization

The current dataflow configuration files explicitly list the permissions for each stake-

holder. However, one of the main objectives of integrating Sharemind HI with the

51

Smart-ID service is to enable the development of larger-scale privacy-preserving ser-

vices where listing every stakeholder is not feasible. Therefore, the same approach

cannot be used with services that leverage the benefits of Smart-ID. As a result, every

client authenticated using Smart-ID must currently have identical access permissions,

which are listed in a new section defined in the dataflow configuration. Listing 8 pro-

vides a minimal configuration file with a new section for listing identity providers and

permissions for users who are using the provider.

Stakeholders: [{Name: "Alice", CertificateFile: "client.crt"}]

Auditors: ["Alice"]

Enforcers: ["Alice"]

IdentityProvider:

- Name: Smart-ID

EnclaveFingerprint: "aa531..."

SignerFingerprint: "a3535..."

Tasks:

- Name: sample_task

EnclaveFingerprint: "34e7b..."

SignerFingerprint: "79010..."

Runners: ["Alice"]

Topics:

- Name: input

Producers: ["Smart-ID"]

Consumers: ["sample_task"]

- Name: output

Producers: ["sample_task"]

Consumers: ["Smart-ID", "Alice"]

Listing 8. Example dataflow configuration file with Smart-ID stakeholder

The dataflow configuration file now has the ability to include a separate section for

identity providers in addition to stakeholders, auditors, enforcers, and a variety of tasks

52

and topics. While currently restricted to Smart-ID, there is potential for other external

identity providers, such as mobile-ID, to be accommodated in the future. Every iden-

tity provider is assigned a name, which is cited in the producer, consumer or runner

lists. This naming convention authorizes each individual authenticated with the respec-

tive identity provider to execute the operations listed. In the example above, all users

authenticated using Smart-ID are permitted to upload data to the input topic and down-

load data from the output topic. However, they are not permitted to run the sample task

which produces output data.

53

4 Implementation

This chapter provides a comprehensive overview of the implementation details of the

Smart-ID integration prototype that is based on the Sharemind HI platform. The proto-

type comprises of an untrusted portion of the application in conjunction with two Intel

SGX enclaves, namely the HTTPS enclave and the Smart-ID enclave. The HTTPS en-

clave, which is introduced in Chapter 3, is responsible for initiating HTTPS traffic to the

Smart-ID service provider. The Smart-ID enclave hosts the Smart-ID specific business

logic and communicates with the HTTPS enclave.

4.1 Development environment

Due to the specific processor requirements for running Intel SGX applications in hard-

ware mode, a virtual machine with a compatible Intel processor and Intel SGX software

development kit (SDK) preinstalled was established as a remote development environ-

ment. While it is possible to simulate Intel SGX applications without the need for com-

patible hardware, a remote machine was preferred to create an environment that closely

resembles production. This approach allowed for more precise benchmarking, leading

to more accurate evaluations of real-world use cases.

In addition, the prototype, albeit not yet fully integrated, was developed on the

Sharemind HI platform due to the platform’s useful abstractions for creating enclaves,

performing local and remote attestation, and executing other Intel SGX-specific opera-

tions. Both the Sharemind HI platform and the prototype were programmed in C++17

which allowed the prototype to utilize an existing build system built with CMake, a

popular C++ build tool. The build system involves the generation of C++ code from

Flatbuffers and EDL definition files, as well as the signing of enclaves.

54

4.2 TLS implementation

When creating a HTTPS client, the selection of a suitable TLS implementation is a

crucial factor to consider for establishing a secure channel with the server before ex-

changing application data. For UNIX systems, OpenSSL, an open-source toolkit for

cryptography and secure communication, is a commonly used choice. However, for the

prototype under consideration, WolfSSL was preferred as the TLS library for several

reasons. Firstly, OpenSSL is a rather extensive library, whereas WolfSSL, due to its

modular nature, has a considerably smaller build size and a runtime memory footprint

[30]. Secondly, WolfSSL already offers basic integration with Intel SGX, along with

an example enclave that serves as an excellent reference point for creating an enclave

that links with a TLS library [31]. Implementation details for the HTTPS enclave are

discussed in chapter 4.6. While WolfSSL is a commercial TLS implementation, it can

be used free of charge for educational purposes. For future commercial use cases, it is

rather straightforward to change TLS implementations as the WolfSSL API is compati-

ble with the OpenSSL API.

4.3 Flatbuffers message definitions

The serialization of messages exchanged between different enclaves is accomplished

through the use of the Flatbuffers library, as mentioned in chapter 3.3.2. Since the

HTTPS enclave requires information on when to transmit data over an HTTPS connec-

tion or terminate the connection, the responsibility for providing this information lies

with the caller enclave. Listing 9 offers a comprehensive definition of the request and

response messages relevant to the transmission of data over an HTTPS connection.

55

table HttpsEnclaveSendRequest {

new_or_continuation:HttpsEnclaveSendNewOrContinuation;

path:string;

method:string;

headers:string;

payload:[ubyte];

}

table HttpsEnclaveSendResult {

result: HttpsEnclaveSendResultUnion;

}

table HttpsEnclaveSendResponse {

http_status:uint;

payload:[ubyte];

session_context:TlsSessionContext;

}

table TlsSessionContext {

session_identifier:[ubyte];

}

table HttpsEnclaveSendNew {

url: string;

}

table HttpsEnclaveSendContinuation {

session_context: TlsSessionContext;

}

union HttpsEnclaveSendNewOrContinuation {

HttpsEnclaveSendNew, HttpsEnclaveSendContinuation

}

union HttpsEnclaveSendResultUnion { HttpsEnclaveSendResponse, EnclaveError }

Listing 9. Message definitions for sending data over an HTTPS connection

The two primary tables included in the definition are the HttpsEnclaveSendRequest

and HttpsEnclaveSendResult. The HttpsEnclaveSendRequest message is sent by the

56

Smart-ID enclave when it has to initiate a Smart-ID RP API request. The message

contains a resource path, an HTTP verb, along with the request headers and payload,

which the HTTPS enclave can use to build a raw HTTP body before transmitting it

to WolfSSL for wrapping it in TLS records. Moreover, the client provides a structure

that specifies whether the HTTPS enclave should create a new TLS session or reuse an

existing one. In the case of a new session, the HTTPS enclave must be given a server

address to which it can connect. For session continuation, the client provides a session

identifier, which is returned with every HTTPS enclave response, in addition to the

HTTP status code and the response payload in the HttpsEnclaveSendResult message. In

the case of an internal error, an EnclaveError is returned instead, containing an error

string. When the client has received all necessary responses, it must send a separate

HttpsEnclaveCloseRequest along with the corresponding session identifier.

4.4 Untrusted component

As previously stated, the prototype comprises of three distinct components - the un-

trusted component, the Smart-ID enclave, and the HTTPS enclave. The untrusted com-

ponent serves as the primary entry point to the application. Moreover, the untrusted

component has three specific objectives:

1. Upon startup, create and initialize both the Smart-ID and HTTPS enclaves.

2. Initiate the Smart-ID authentication flow by making an ECALL to the Smart-ID

enclave.

3. Provide OCALL implementations for methods defined in the untrusted blocks in

all EDL files.

57

Initialization

In every Intel SGX based application, the untrusted component is responsible for cre-

ating the necessary enclave upon startup. When using the Intel SGX SDK directly,

the sgx_create_enclave is used to create an enclave. However, Sharemind HI provides

numerous utility classes and mix-ins to ease the creation and initialization of an enclave.

Smart-ID authentication initiation

Similarly to regular Smart-ID authentication procedures, the user is required to provide

their national identity code to the relying party during each authentication session. On

the Sharemind HI platform, the identity code may be obtained through several means,

such as via an user interface using a HTTP request, a configuration file or a command

line, depending on the use case. Since enclaves are unable to carry out any IO operations

directly, the identity code will be sent to the untrusted component. After receiving the

identity code, the untrusted component will prompt an ECALL to the Smart-ID enclave

in order to initiate the Smart-ID authentication session. Due to the fact that the input

originates from an untrusted source, the Smart-ID enclave is obliged to conduct validity

checks before proceeding with the flow.

OCALL implementations

In chapter 3.3.2, both EDL interfaces define an OCALL, which the untrusted compo-

nent is required to implement. The first OCALL, convert_address_to_socketfd_ocall,

acts as a wrapper around the C function getaddrinfo, which is used to translate domain

names and hostnames into an addrinfo structure. By means of the address family, socket

type, and protocol, this function generates a new socket that can connect to the socket

address, and eventually returns the file descriptor for the newly created socket. This file

descriptor is returned to the trusted component and later used to read and write applica-

tion data. This OCALL is invoked by the HTTPS enclave when it needs to create a new

58

session with the Smart-ID RP API. Listing 10 provides an example on how to use the

getaddrinfo function.

int address_to_sockfd(const char* address) {

struct addrinfo* result;

struct addrinfo* res;

int error;

error = getaddrinfo(address, NULL, NULL, &result);

// Error handling omitted

for (rp = result; rp != NULL; rp = rp->ai_next) {

sockfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);

if (sockfd == -1) { continue; }

if (connect(sockfd, rp->ai_addr, rp->ai_addrlen) != -1) {

break;

}

close(sockfd);

}

freeaddrinfo(result);

return sockfd;

}

Listing 10. Example of using a getaddrinfo function

The async_request_to_https_enclave_ocall is used to transmit the raw HTTP request

data from the Smart-ID enclave to the HTTPS enclave. The purpose of this OCALL

is to allow the Smart-ID enclave to issue an HTTPS request to the Smart-ID RP API

either to establish a Smart-ID session or poll its status. This OCALL queues a task

to initiate an https_from_enclave ECALL to the HTTPS enclave, which takes in the

input arguments provided by the Smart-ID enclave. The execution of this task takes

place asynchronously on a different thread. Upon receiving a response from the HTTPS

enclave, the OCALL then queues a task to forward the response back to the Smart-ID

enclave if the complete HTTP response was obtained. If the entire response was not

received, the untrusted component performs additional socket read or write operations,

59

based on the input arguments from the HTTPS enclave, and queues a task to notify the

HTTPS enclave of the newly read data. Further details regarding the return values of

HTTPS enclave ECALLs can be found in chapter 4.6.

4.5 Smart-ID enclave

The Smart-ID enclave is responsible for performing successful Smart-ID authentication

and digital signing operations. It initiates the necessary business logic for these pro-

cesses. The enclave is required to implement both the Smart-ID and HTTPS consumer

EDL interfaces, which consist of a singular ECALL and enclave lifecycle methods. Dur-

ing the initialization phase, the enclave must perform local attestation with the HTTPS

enclave to establish a secure communication channel.

The smart_auth_init ECALL, defined in the Smart-ID EDL interface, is utilized by

the untrusted component to initiate a Smart-ID session. As discussed in the preceding

chapter, this ECALL receives the national identity code of the user, which must be

validated by the Smart-ID enclave before use. Following this validation, the enclave

generates 64 random bytes and computes their SHA-2 family hash. This resulting hash

is signed during the authentication session. Subsequently, the hash is used to calculate

the verification code, utilizing the algorithm described in chapter 1.3.2. The Smart-ID

enclave then creates a HttpsEnclaveSendRequest to initialize the Smart-ID session. An

example of the request body can be seen in Listing 3. Furthermore, to ensure that the

request is accepted by the Smart-ID service provider, it is essential to correctly set the

Host, Content-Type, and Content-Length headers. Prior to forwarding the request to the

HTTPS enclave, the Smart-ID enclave establishes a new internal session to monitor the

status of all ongoing Smart-ID sessions. The sessions are identified by a unique session

identifier which is sent to the HTTPS enclave along with the HTTP request. Once

the HttpsEnclaveSendRequest object is constructed, the Smart-ID enclave encrypts the

payload utilizing the session key negotiated during local attestation. Finally, the enclave

60

invokes the async_request_to_https_enclave_ocall to notify the HTTPS enclave of the

new request.

The async_response_from_https_enclave ECALL, defined in the HTTPS consumer

EDL interface, is utilized by the untrusted component when the HTTPS enclave indi-

cates that the complete HTTP response has been received from the Smart-ID service

provider. It will first decrypt the message sent by the HTTPS enclave with the sym-

metric session key and find the correct internal session based on the session identifier

included in the HTTPS enclave response message. Note that the raw HTTP response is

already parsed by the HTTPS enclave and the Smart-ID enclave can access the status

code, headers and the potential response payload directly. In the case of a successful

HTTP response, indicated by a 200 status code, the JSON payload can be parsed by

the enclave. When the request was unsuccessful, a descriptive error message depending

on the exact status code in propagated to the user. After the response JSON has been

successfully parsed, the following action depends on the current state of the internal

session:

1. If the session is currently initializing, then the Smart-ID enclave received an ses-

sion initialization response from the Smart-ID service provider, provided in List-

ing 4. The enclave extracts the sessionID value from the response, initiates the

first status polling request in similar manner to the initialization request using the

sessionID and updates the internal session state.

2. If the session is in polling state, then the Smart-ID enclave received either an

intermediate or a final session status response from the Smart-ID service provider.

Examples of these can be found in Listings 5 and 6. If the state value in the

response is RUNNING, then another poll request is initiated after a small delay. If

the state is COMPLETE, the enclave can extract the client signature and certificate

values from the response. Since the Smart-ID session is completed, the internal

session is removed from the memory as well.

61

After receiving the signature over the randomly generated hash and the public key

certificate of the client, the Smart-ID enclave verifies the validity of the response. Ac-

cording to the Smart-ID RP integration guide [17], the relying party must verify the

following:

1. The endResult field in the response has the value OK.

2. The received certificate is valid, meaning that it is a well-formed X.509 certificate

and the current time is between the timestamps provided in the validity period

fields in the certificate.

3. The received certificate is trusted, meaning that it is signed by the Smart-ID cer-

tificate authority. To do this, the Smart-ID enclave must have access to the cer-

tificate of the Smart-ID certificate authority. This certificate is published by the

maintainers of Smart-ID and hardcoded into the Smart-ID enclave. If the certifi-

cate expires or is revoked, the Smart-ID enclave must be rebuilt and redistributed.

4. The received signature is a valid signature over the randomly generated hash. The

signature can be verified using the public key from the certificate.

4.6 HTTPS enclave

The HTTPS enclave is responsible for initiating TLS sessions, converting application

data transmitted from the Smart-ID enclave to TLS records, and extracting application

data from TLS records received from the Smart-ID service provider. To create socket

file descriptors for a particular server address and execute IO operations, it interacts

with the untrusted component through the HTTPS enclave EDL file-defined interface.

Furthermore, the HTTPS enclave communicates with the Smart-ID through the HTTPS

enclave consumer interface. During enclave initialization, along with local attestation

performed with the Smart-ID enclave, the HTTPS enclave also initializes the WolfSSL

62

context. The WolfSSL context is necessary for WolfSSL to establish TLS sessions when

the Smart-ID enclave initiates an HTTP request. To perform TLS session verification,

the WolfSSL library requires access to the certificate of the certificate authority respon-

sible for issuing the certificate of the Smart-ID RP server. As a result, the HTTPS en-

clave must embed the DigiCert root CA certificate. However, since root CA certificates

are typically valid for extended periods, this hardcoding approach poses no significant

concerns.

Figure 8. Complete HTTP request flow using HTTPS enclave

The https_from_enclave_ecall function serves as the primary access point to the

HTTPS enclave. It is utilized by the untrusted component to relay the encrypted payload

from the Smart-ID enclave to the HTTPS enclave. The function’s behavior depends on

63

whether the request is a send or a close request, which is determined through the use of

the Flatbuffers discriminator. If the request is a close request, the enclave will clear the

internal session associated with the session identifier and close the socket file descriptor

to release any allocated resources.

The majority of requests sent to the HTTPS enclave are typically send requests. The

caller provides information on whether the HTTPS enclave should initiate a new TLS

session or maintain an existing one. This decision is made using the newOrContinuation

field within the request. If an existing session is requested, the enclave performs an

internal session lookup based on the provided session identifier. If such a session does

not exist, an error response is transmitted to the caller.

struct SessionMapData {

std::unique_ptr<WOLFSSL> ssl;

int sockFd;

bool closeSessionAfterRequest;

https_enclave_peer_request_identifier peerRequestIdentifier;

std::vector<std::uint8_t> outCiphertextBuffer;

std::vector<std::uint8_t> inCiphertextBuffer;

std::string outPlaintextBuffer;

std::string inPlaintextBuffer;

};

Listing 11. Definition of an internal HTTPS enclave session

In contrast, if a new session is requested, the HTTPS enclave initiates an OCALL

to acquire a socket file descriptor based on the server URL supplied by the Smart-ID

enclave. Currently this is a blocking operation which could be changed in the future

as the OCALL can perform a rather expensive DNS lookup. Subsequently, the HTTPS

enclave establishes a new WolfSSL session using the acquired socket file descriptor

and an internal session that contains the session metadata and necessary plaintext and

64

ciphertext buffers for reading and writing data. Both the internal session and the gen-

erated session identifier are stored in memory, facilitating session data retrieval through

the identifier and socket file descriptor lookups. A complete definition of the HTTPS

enclave internal session is provided in Listing 11.

Once the appropriate session is obtained, either through creation or lookup, the en-

clave proceeds to populate the outPlaintextBuffer with a raw HTTP request using of the

method, resource path, headers, and a body provided by the Smart-ID enclave. This

buffer is then utilized by the WolfSSL write functions as input to encrypt raw applica-

tion data and encapsulate them into TLS records. Notably, a key difference between

the HTTPS enclave and standard HTTPS clients is that the WolfSSL write function typ-

ically writes directly to the socket using system calls. However, this approach is not

possible within the enclave due to the inability to execute system calls. As a result,

the HTTPS enclave must declare and implement custom send and recv functions that

write and read bytes to and from session buffers, respectively, rather than socket file

descriptors. Consequently, the send function writes data to be transmitted to the out-

CiphertextBuffer, while the recv method writes received data to the inCiphertextBuffer.

However, when using a blocking socket, data is expected to be returned, although the

actual write operation has not yet occurred. In such cases, WolfSSL will return a WOLF-

SSL_ERROR_WANT_READ error on the initial write, requiring separate handling. Ul-

timately, the ECALL returns a result indicating that the untrusted component must exe-

cute IO operations on a specified socket.

Upon receipt of the ECALL result, the untrusted component initially verifies whether

the returned response is a complete response for the Smart-ID enclave or if additional

IO operations are necessary. This is done by inspecting a discriminator provided in the

response. If the response is deemed final, it is directly transmitted to the Smart-ID en-

clave via the async_response_from_https_enclave ECALL, and the HTTP request has

completed successfully. However, if additional IO operations are required, a send sys-

65

tem call is first executed with the provided data and the socket file descriptor, followed

by a recv call to block for the response. To prevent blocking the thread handling the

ECALL response itself, these operations are queued on a separate thread. Subsequently,

upon receiving the response bytes, a https_from_socket ECALL is made to the HTTPS

enclave to forward the received data for further processing.

The https_from_socket ECALL begins by performing a lookup for the internal ses-

sion. This step requires that the session has already been created, and if the lookup

fails, the function cannot proceed. Subsequently, the incoming data from the recv call

is placed in the inCiphertextBuffer, and any errors encountered during this process are

returned to the caller. This step is performed before any WolfSSL methods are invoked

so that it can be used as input to the recv method inside the enclave. Once the in-

coming ciphertext buffer is populated, it can be read by WolfSSL to retrieve the server

response. If there is no data available in the incoming buffer for WolfSSL, a WOLF-

SSL_ERROR_WANT_READ error is raised, and a new write is requested from the un-

trusted component. This write can consist of a TLS handshake message or application

data if the handshake has already been completed and the outgoing plaintext buffer

is not empty. When there are response bytes available, they are read into a dynami-

cally expanding inPlaintextBuffer. This buffer is then analyzed to determine whether

the entire HTTP response has been received. First, it checks for the presence of two

CLRF blocks, indicating the end of the HTTP headers. If these blocks are present, the

length of the body can be determined by examining either the Content-Length value

or a zero-length chunk in the case of chunked encoding. It is critical that the HTTPS

enclave performs the HTTP response parsing to minimize the workload for consumers

and keep security risks localized. Once the HTTPS enclave determines that the en-

tire response has been received and successfully parsed, it creates a response indicat-

ing that the response is final and should be forwarded back to the caller through the

async_response_from_https_enclave ECALL. The complete flow indicating how the

66

Smart-ID enclave, HTTPS enclave and the untrusted component interact during a HTTP

request is provided in Figure 8.

4.7 Testing

The Smart-ID service provider offers a distinct environment for relying parties to eval-

uate their Smart-ID integrations. This environment provides a public service for both

versions of the Smart-ID RP API, along with a unique relying party name and UUID

for testing purposes. Additionally, the CA certificate is provided, which can be utilized

to verify the client’s signature in the final session status response. However, the testing

environment does not have access to the actual Smart-ID accounts, and specific seman-

tic identifiers issued by the service provider must be used for testing purposes. Each

response scenario, including positive responses, user cancellations, verification code

mismatches, and timeouts, has a separate semantic identifier. It is crucial to note that

the testing environment does not transmit push notifications to a mobile device. Instead,

it returns a final poll response after a random delay. A comprehensive explanation of the

Smart-ID RP testing environment can be found in the Smart-ID documentation [32].

As the prototype has not been fully integrated into Sharemind HI, a small application

was developed for testing purposes. This application utilized dummy semantic identi-

fiers to trigger Smart-ID authentication sessions using the smartid_auth_init ECALL

function. Subsequently, the testing application entered a wait state for a period of 10

seconds before terminating. This wait period allowed for completion of the Smart-ID

authentication process by other concurrent threads.

67

5 Results

The prototype Smart-ID authentication service developed as a part of this thesis was

deployed on a server with the following technical specifications:

• CPU: Intel Xeon CPU E3-1225 v5 @ 3.30GHz

• RAM: 4x8GiB DDR4, ECC UDIMM, 2133 Mbps

• Storage: Samsung SSD 850 PRO 1TB

5.1 Memory usage

In order to ensure effective utilization of memory resources within enclaves, it is crucial

to gain a clear understanding of the memory allocation patterns for both HTTPS and

Smart-ID enclaves during a single authentication request, as well as during subsequent

and concurrent authentication requests. This is because the memory available for each

enclave is restricted by a predefined metric set at the time of enclave construction. To

monitor and track memory allocation for a C++ application, it is possible to incorpo-

rate a modified version of the malloc and free functions, which are capable of logging

statistics about memory allocations. This approach enables efficient identification and

analysis of memory allocation behaviors within the enclaves. Listing 12 provides an

example for the modifications. The modified version delegates the actual memory allo-

cation to the original function, but uses a enclave_printf_log, a specialized function to

print data to standard output, to log every memory operation. Upon enabling memory

tracking during authentication flows, the resulting log lines can be used as input for a

dedicated program to generate visual representations of the memory usage.

68

extern "C" {

void* dlmalloc(size_t);

void dlfree(void*);

void* malloc(size_t s) {

auto ptr = dlmalloc(s);

enclave_printf_log("HTTPS malloc %zu %p", s, ptr);

return ptr;

}

void free(void* ptr) {

enclave_printf_log("HTTPS free %p", ptr);

return dlfree(ptr);

}

}

Listing 12. Definitions of specialized functions for memory tracking

A Python script was developed utilizing the Matplotlib library for effective data

visualization purposes. Figure 9 presents the memory usage for both enclaves during

three subsequent Smart-ID authentication requests. As demonstrated in the graph, the

memory usage for a single Smart-ID session peaks at approximately 50kB when read-

ing the final session status response, as this involves a large JSON object containing

the user’s signature and certificate. The same peak can be observed in the Smart-ID

enclave. Moreover, the HTTPS enclave memory overhead remains around 10kB be-

tween requests, while the Smart-ID enclave exhibits barely any overhead. Furthermore,

the graph illustrates that the enclaves do not experience large memory leaks, and used

resources are properly cleaned up. Figure 10 illustrates the same memory usage dur-

ing three concurrent Smart-ID authentication sessions. Here the memory usage for the

HTTPS enclave peaks at around 100kB since the enclave has to keep multiple internal

sessions with independent buffers in memory.

69

Figure 9. Memory usage during subsequent authentication requests

Figure 10. Memory usage during concurrent authentication requests

70

5.2 Performance

In addition to the memory usage, time complexity is another important metric to con-

sider when designing an authentication service. It is a significant metric as it influ-

ences the length of the idle period that users must endure after inputting their PIN code,

thereby directly affecting the user experience. In this context, Figure 11 illustrates tim-

ing results for a single authentication request, with error boundaries displayed across

multiple requests. The elapsed time is plotted using a logarithmic scale as different

ECALLs differ greatly in execution time. It is important to note that the figure only

takes into account the ECALL overhead associated with the prototype service, and does

not include the IO operations carried out by the untrusted component, which is a pri-

mary bottleneck in an Smart-ID authentication request. Furthermore, the ECALLs to

both HTTPS and Smart-ID enclaves are asynchronous due to a queuing mechanism,

which adds additional overhead.

Figure 11. Elapsed time for ECALLs during an authentication request

The figure indicates that the majority of elapsed time is due to the initial HTTPS

71

request made by the Smart-ID enclave, and its corresponding socket ECALLs, which are

responsible for negotiating a TLS session with the remote server and involve relatively

slow asymmetric cryptographic operations. This could potentially be improved in the

future by using connection pooling to reduce the number of required TLS handshakes

over a longer period of time. During most authentication requests, it was found that

three invocations of the https_from_socket ECALL were necessary to receive the session

initialization response, and a further two to receive the final poll response. Occasionally,

an additional roundtrip was observed, but the reasons for this are unclear and may be

affected by factors on both the client and server sides, such as the TCP buffer state.

However, this did not appear to cause noticeable delays in response time. The time

taken by the Smart-ID enclave to process responses received from the HTTPS enclave

was proportional to the size of the JSON payload received. The figure illustrates that

the final poll response took considerably longer to process as it included a much larger

payload and required cryptographic validation operations.

5.3 Security of the prototype

The incorporation of Smart-ID authentication into Sharemind HI has been executed

without compromising its security guarantees. The conventional method of utilizing

Smart-ID authentication and signing has been mapped one-to-one onto correspond-

ing infrastructure components within Sharemind HI, with implementation details such

as performing asynchronous HTTPS requests addressing limitations in the Sharemind

HI code base. In a regular Smart-ID relying party service, the client communicates

with the RP server via HTTPS, relying on TLS for security. Sharemind HI, however,

uses libsodium secretstreams [33] to secure the communication between the client and

Sharemind HI, which provides comparable security guarantees for the the communica-

tion channel between the user and the system. The separation of the external identity

provider into a distinct enclave next to the core enclave has been implemented using

72

methods similar to established SSO protocols, with modifications made to accommo-

date Sharemind HI’s deficiencies, such as the absence of time support.

The Smart-ID enclave has been designed to exclusively handle the task of informing

the Core enclave about the outcome of Smart-ID authentication and the corresponding

client identity. The Sharemind HI core workflows remain mostly unchanged. As in the

previous setup, the DFC determines the access rights of the client, which is done in

a similar fashion as with the existing CA stakeholders and dynamic end users within

Sharemind HI.

In the previous setup, stakeholders were required to generate a long-term private key

and certificate while configuring themselves to use Sharemind HI. However, with the

introduction of Smart-ID authentication, a client generates an ephemeral key pair. The

private key was previously used for creating signatures for the Sharemind HI audit log,

but with the Smart-ID signing capabilities, a similar signature can be created. Therefore,

the security of the system remains unaffected, as all the cryptographic primitives used

earlier remain intact.

73

6 Discussion

This chapter provides a summary of the research carried out in this thesis, focusing on

the authentication mechanism enhancements achieved for the Sharemind HI platform.

Alongside the improvements, this chapter also enumerates potential directions for future

research. These directions illustrate how the outcomes and techniques introduced in this

thesis could be extended and improved.

6.1 Conclusion

The aim of this thesis was to create a proof-of-concept integration between the Smart-

ID service provider and the Sharemind HI platform. By incorporating this integration,

it would be possible to build privacy-preserving applications on the Sharemind HI plat-

form, leveraging the widespread usage of the Smart-ID service in the Baltics. The re-

search conducted in this thesis provides an overview of the underlying technologies and

protocols, such as SplitKey, Intel SGX, and Sharemind HI, and discusses the prototype’s

design, implementation, and performance.

While examining the integration details for connecting an Intel SGX based applica-

tion with the Smart-ID service provider, it was discovered that the security properties

primarily depend on a secure HTTPS connection between the relying party and the

service provider. The Smart-ID documentation demonstrates that a man-in-the-middle

attack could be executed, which necessitates making the HTTPS requests from within

the enclave, which Sharemind HI did not support.

The prototype solution presented in this thesis incorporated two new enclaves along-

side the existing three enclaves in the Sharemind HI server. The first new enclave was

dedicated to executing HTTPS requests to remote servers, while the second was uti-

lized to encapsulate Smart-ID specific business logic and initiate Smart-ID RP API calls

through the HTTPS enclave. By integrating these two new enclaves into the existing use

74

case flows of Sharemind HI, it was demonstrated that Smart-ID authentication could

replace the current authentication mechanisms employed in Sharemind HI, thereby in-

creasing flexibility.

The reference implementation provided in this thesis showcases the functioning of

the integration and successfully receives an authentication session response from the

Smart-ID service provider. This enables Sharemind HI to authenticate the stakeholder’s

identity and carry out its operations.

6.2 Future work

While the proof-of-concept implementation serves as a good baseline, it has multiple

limitations which do not allow it to be used in Sharemind HI in its current form. First

off, the WolfSSL TLS implementation used in the reference implementation due to its

ease of integration with Intel SGX needs a commercial license to be used in products

such as Sharemind HI. If this turns out to be an issue, then WolfSSL needs to be re-

placed. Therefore it will be necessary to either solve the licensing issues or migrate to

an alternative implementation such as OpenSSL.

Additionally, to allow authentication to Sharemind HI instances using Smart-ID, it

is necessary to develop the Sharemind HI SDK that can support Smart-ID specific calls

from the client to the core enclave. As this thesis is solely concerned with the server-

side implementation, any enhancements to the client-side must be carried out as part of

future work.

As of the time of writing, Cybernetica AS is engaged in further developing the

prototype with the aim of rendering it commercially viable. A considerable amount

of work is still required before the service can be offered commercially. Furthermore, it

is important to highlight that the current implementation suffers from certain limitations,

as previously discussed. Additionally, the prototype has not been optimized in terms of

time and space, and has not been subjected to thorough testing.

75

References
[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for CPU

based attestation and sealing,” 2013.

[2] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An empirical
analysis,” in 2010 Proceedings IEEE INFOCOM, 2010, pp. 1–9.

[3] “Regulation (eu) no 910/2014 of the european parliament and of the council of 23
july 2014 on electronic identification and trust services for electronic transactions
in the internal market and repealing directive 1999/93/ec,” https://eur-lex.europa.
eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910 (07.05.2023).

[4] J. Fruhlinger, “What is PKI? and how it secures just about
everything online,” https://www.csoonline.com/article/3400836/
what-is-pki-and-how-it-secures-just-about-everything-online.html (07.05.2023).

[5] “The transport layer security (TLS) protocol version 1.2,” https://www.rfc-editor.
org/rfc/rfc5246 (07.05.2023).

[6] J. Schwenk, A Short History of TLS. Cham: Springer International Publishing,
2022, pp. 243–265.

[7] T. Dierks, “Security standards and name changes in the browser wars,” https://tim.
dierks.org/2014/05/security-standards-and-name-changes-in.html (07.05.2023).

[8] “The transport layer security (TLS) protocol version 1.3,” https://www.rfc-editor.
org/rfc/rfc8446 (07.05.2023).

[9] “Upgrading to TLS within HTTP/1.1,” https://www.rfc-editor.org/rfc/rfc2817
(07.05.2023).

[10] A. Arampatzis, “Where is a TLS/SSL handshake most vulnerable?” https://venafi.
com/blog/where-tlsssl-handshake-most-vulnerable/ (07.05.2023).

[11] N. Sullivan, “Why TLS 1.3 isn’t in browsers yet,” https://blog.cloudflare.com/
why-tls-1-3-isnt-in-browsers-yet/ (07.05.2023).

[12] A. D. Santis, Y. Desmedt, Y. Frankel, and M. Yung, “How to share a function
securely,” in Symposium on the Theory of Computing, 1994.

[13] L. T. A. N. Brandão, M. Davidson, and A. Vassilev, “NIST roadmap toward criteria
for threshold schemes for cryptographic primitives,” 2020.

76

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910
https://www.csoonline.com/article/3400836/what-is-pki-and-how-it-secures-just- about-everything-online.html
https://www.csoonline.com/article/3400836/what-is-pki-and-how-it-secures-just- about-everything-online.html
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://tim.dierks.org/2014/05/security-standards-and-name-changes-in.html
https://tim.dierks.org/2014/05/security-standards-and-name-changes-in.html
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc2817
https://venafi.com/blog/where-tlsssl-handshake-most-vulnerable/
https://venafi.com/blog/where-tlsssl-handshake-most-vulnerable/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/

[14] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 104–113.

[15] “Smart-ID technical overview,” https://github.com/SK-EID/
smart-id-documentation/wiki/Technical-overview (03.12.2022).

[16] A. Buldas, A. Kalu, P. Laud, and M. Oruaas, “Server-supported RSA signatures
for mobile devices,” in Computer Security – ESORICS 2017, S. N. Foley, D. Goll-
mann, and E. Snekkenes, Eds. Cham: Springer International Publishing, 2017,
pp. 315–333.

[17] “Smart-ID documentation,” https://github.com/SK-EID/smart-id-documentation/
blob/master/README.md (02.02.2023).

[18] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol. ePrint Arch., vol.
2016, p. 86, 2016.

[19] “SGX 101,” https://sgx101.gitbook.io/sgx101 (07.05.2023).

[20] H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ approach to authenticated diffie-
hellman and its use in the IKE protocols,” in Advances in Cryptology - CRYPTO
2003, D. Boneh, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.
400–425.

[21] “Input types and boundary checking in enclave-definition language (EDL)
files,” https://www.intel.com/content/dam/develop/external/us/en/documents/
input-types-and-boundary-checking-edl-737361.pdf (17.04.2023).

[22] “Sharemind HI white paper,” https://cyber.ee/uploads/sharemind_hi_white_
paper_ec24e8189a.pdf (21.10.2022), 2021.

[23] “Sharemind HI overview,” Internal document.

[24] “CoNurse,” https://cyber.ee/research/projects/conurse (07.05.2023).

[25] “Smart-ID,” https://www.smart-id.com/ (26.04.2023).

[26] “Electronic signatures and infrastructures (ESI); certificate profiles; part
1: Overview and common data structures,” https://www.etsi.org/deliver/
etsi_en/319400_319499/31941201/01.04.04_60/en_31941201v010404p.pdf
(13.04.2023), 2021.

77

https://github.com/SK-EID/smart-id-documentation/wiki/Technical-overview
https://github.com/SK-EID/smart-id-documentation/wiki/Technical-overview
https://github.com/SK-EID/smart-id-documentation/blob/master/README.md
https://github.com/SK-EID/smart-id-documentation/blob/master/README.md
https://sgx101.gitbook.io/sgx101
https://www.intel.com/content/dam/develop/external/us/en/documents/input-types-and-boundary-checking-edl-737361.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/input-types-and-boundary-checking-edl-737361.pdf
https://cyber.ee/uploads/sharemind_hi_white_paper_ec24e8189a.pdf
https://cyber.ee/uploads/sharemind_hi_white_paper_ec24e8189a.pdf
https://cyber.ee/research/projects/conurse
https://www.smart-id.com/
https://www.etsi.org/deliver/etsi_en/319400_319499/31941201/01.04.04_60/en_31941201v010404p.pdf
https://www.etsi.org/deliver/etsi_en/319400_319499/31941201/01.04.04_60/en_31941201v010404p.pdf

[27] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying microarchitectural
timing leaks in rudimentary CPU interrupt logic,” ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 178–195. [Online].
Available: https://doi.org/10.1145/3243734.3243822

[28] S. Weiser, R. Spreitzer, and L. Bodner, “Single trace attack against RSA key
generation in intel SGX SSL,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, ser. ASIACCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 575–586. [Online].
Available: https://doi.org/10.1145/3196494.3196524

[29] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock: Exploiting
synchronisation bugs in intel sgx enclaves,” in Computer Security – ESORICS
2016, I. Askoxylakis, S. Ioannidis, S. Katsikas, and C. Meadows, Eds. Cham:
Springer International Publishing, 2016, pp. 440–457.

[30] “WolfSSL versus OpenSSL,” https://www.wolfssl.com/docs/wolfssl-openssl/
(13.02.2023).

[31] “WolfSSL linux enclave example,” https://github.com/wolfSSL/wolfssl-examples/
tree/master/SGX_Linux (13.02.2023).

[32] “Environment technical parameters,” https://github.com/SK-EID/
smart-id-documentation/wiki/Environment-technical-parameters (26.01.2023).

[33] “Encrypted streams and file encryption,” https://libsodium.gitbook.io/doc/
secret-key_cryptography/secretstream (09.05.2023).

78

https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/3196494.3196524
https://www.wolfssl.com/docs/wolfssl-openssl/
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/wolfSSL/wolfssl-examples/tree/master/SGX_Linux
https://github.com/SK-EID/smart-id-documentation/wiki/Environment-technical-parameters
https://github.com/SK-EID/smart-id-documentation/wiki/Environment-technical-parameters
https://libsodium.gitbook.io/doc/secret-key_cryptography/secretstream
https://libsodium.gitbook.io/doc/secret-key_cryptography/secretstream

Appendix

I. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Markus Punnar,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to
reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Experimental Integration of the Smart-ID Service Into Intel SGX Enclaves,
(title of thesis)

supervised by Peeter Laud and Armin Daniel Kisand.
(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection leg-
islation.

Markus Punnar
09/05/2023

79

	Introduction
	Glossary
	Preliminaries
	Digital identity
	TLS
	Definition and history
	TLS handshake

	SplitKey protocol and the Smart-ID service
	Overview of threshold cryptography
	SplitKey scheme

	Smart-ID integration details
	Authentication session
	Digital signing session

	Intel SGX
	Enclaves
	Attestation
	Data sealing
	The Enclave-Definition Language

	Sharemind HI
	Overview
	Configuration
	Architecture
	Security

	Background on the underlying problem
	Problem statement
	Motivation

	Design
	Integration mechanism for Smart-ID clients
	Intel SGX application integration specifics
	HTTPS enclave
	Objective and requirements
	EDL interface

	Sharemind HI action flow with Smart-ID
	Data upload
	Authorization

	Implementation
	Development environment
	TLS implementation
	Flatbuffers message definitions
	Untrusted component
	Smart-ID enclave
	HTTPS enclave
	Testing

	Results
	Memory usage
	Performance
	Security of the prototype

	Discussion
	Conclusion
	Future work

	References
	Appendix
	I. Licence

