

UNIVERSITY OF TARTU

Institute of Computer Science

Data Science Curriculum

Mait Metelitsa

A Functional Prototype and General Architecture of An-

alytic Data Management for a Railway Company

Master’s Thesis (15 ECTS)

Supervisor(s): Kristo Raun, MSc

Prof. Ahmed Awad, PhD

Tartu 2024

2

A Functional Prototype and General Architecture of Analytic Data Man-

agement for a Railway Company

Abstract:

The thesis delves into the realm of data engineering and business intelligence within the

context of a railway company. The work aims to address the challenges posed by the mod-

ernisation efforts of EVR's analytic data management platform.

One of the key novel aspects of the thesis lies in its transition from the AS-IS state to the

TO-BE state of analytic data management in EVR. This transition involves a detailed anal-

ysis of decision dimensions and technology alternatives for the future architecture of EVR's

data management system. The proposed TO-BE architecture advocates for a flexible hybrid

approach combining on-premises/Infrastructure as a Service (IaaS) and Software as a Ser-

vice (SaaS) solutions tailored to the type and complexity of data sources.

Furthermore, the thesis presents practical use cases based on the TO-BE architecture, show-

casing the implementation of end-to-end analyses of purchase invoices and railway level

crossings' log data. By integrating technologies such as ETL processes, Dagster for data

orchestration, Postgres for data storage, Streamlit for data visualisation, and XML-fetching

for data retrieval, the thesis demonstrates a tangible contribution towards further improving

EVR's data engineering capabilities and preparing the company for the adoption of data

lakehouse SaaS platform.

Overall, the thesis contributes to the field of data management by providing a structured

framework for decision-making in analytic data platform architectural design, emphasising

the importance of technology choices and trade-offs in optimising analytic data management

for a complex organisation like EVR.

Given the limited exploration of data engineering and business intelligence within the rail-

way sector, this thesis fills a significant knowledge gap by providing insights and recom-

mendations tailored to the unique requirements and challenges of managing data in a railway

company undergoing analytics platform modernisation.

Keywords:

ETL, data lakehouse, Dagster, Postgres, Streamlit, XML-fetching, railway sector, log-based

data mining, predictive maintenance, platform requirements engineering

CERCS:

P170 Computer science, numerical analysis, systems, control

P175 Informatics, systems theory

3

A Functional Prototype and General Architecture of Analytic

Data Management for a Railway Company

Mait Metelitsa

Data Science (MSc) 2024

Institute of Computer Science

University of Tartu

Supervisors: Kristo Raun, MSc;

 Prof. Ahmed Awad, PhD

 #UniTartuCS

Figure 1. Visual abstract.

4

Analüütilise andmehalduse funktsionaalne prototüüp ja üldine tehniline

arhitektuur raudtee-ettevõtte jaoks

Lühikokkuvõte:

Magistritöö käsitleb andmetehnika ja ärianalüütika temaatikat raudtee-ettevõttes. Töö ees-

märk on lahendada EVR-i analüütilise andmehaldusplatvormi moderniseerimisega seotud

väljakutseid.

Lõputöö üks peamisi uudseid külgi on detailne analüüsipõhine kirjeldust sellest, kuidas

EVR-il oleks kõige otstarbekam nii rahaliselt kui ka arhitektuuriliselt oma analüütilist and-

mehaldusplatvormi moderniseerida. Töös on avatud hetkeolukord, kirjeldatud lähteandmete

nomenklatuuri ning läbi otsustusdimensioonide ja tehnoloogiliste alternatiivide üksikasja-

liku analüüsi on jõutud tulevase arhitektuuri teekaardini.

Väljapakutud tulevikuarhitektuur toetab paindlikku hübriidset lähenemisviisi, mis ühendab

infrastruktuuri kui teenust (IaaS) ja tarkvara kui teenust (SaaS) käitumise mudeleid. Rõhu-

tamist väärib, et tasakaal IaaS ja SaaS tarkvara käitamismudelite vahel on kohandatud vas-

tavalt andmeallikate tüübile ja keerukusele.

Praktilise panusena realiseeritakse töös tulevikuarhitektuuri komponentidele tuginedes kaks

kaasust. Esmalt, ostuarvete XML-ide ridade ning teiseks, ülesõitude logiandmete automa-

tiseeritud analüüsi- ja andmetöötlusvood. Praktiliste kaasuste jaoks arendatud lahendused

baseeruvad mh tehnoloogiatel nagu Dagster andmetöötlusvoogude orkestreerimiseks, Post-

gres andmete säilitamiseks ja Streamlit andmete visualiseerimiseks. Sellega annab lõputöö

praktilise panuse EVRi andmetöötlusvõimekuse edasisse parandamisse ja valmistab ette

tehnilist võimekust ja asutusesisest kompetentsi SaaS andmejärve platvormi kasutuselevõ-

tuks. Eeldatavalt saab selleks platvormiks olema Microsoft Fabric.

Lõputöö annab üldisema panuse andmehalduse ja andmetehnika valdkonda, pakkudes struk-

tureeritud raamistikku analüütiliste lahenduste arhitektuuridisaini loomiseks. Võttes arvesse

andmetehnika ja ärianalüüsi suhteliselt mõõdukat varasemat vaagimist raudteesektoris, toe-

tab käesolev lõputöö märkimisväärselt selle teadmislünga ületamist.

Võtmesõnad:

ETL, andmejärv, Dagster, Postgres, Streamlit, XML, raudteesektor, logiandmete kaeve, en-

netav hooldus, analüütika platvormi nõuete analüüs

CERCS:

P170 Arvutiteadus, numbriline analüüs, süsteemid, kontroll

P175 Informaatika, süsteemide teooria

5

Analüütilise andmehalduse funktsionaalne

prototüüp ja üldine

tehniline arhitektuur raudtee-ettevõtte jaoks

Mait Metelitsa

Andmeteadus (MSc) 2024

 Arvutiteaduste Instituut

 Tartu Ülikool

 Juhendaja: Kristo Raun, MSc;

 Prof. Ahmed Awad, PhD

 #UniTartuCS

Joonis 2. Visuaalne kokkuvõte.

6

Table of Contents

1 Introduction ... 7

2 Theoretical Background .. 8

2.1 Methodological Background and Scope of the Thesis .. 8

2.2 Previous Work about Analytic Data Management in the Railway Sector 10

2.3 Key Data Engineering Concepts ... 11

3 Outline of AS-IS State of Analytic Data Management and Business Intelligence in

EVR ... 19

3.1 Description of the Current Technical Setup .. 19

3.2 Analytic Data Landscape of EVR ... 21

3.3 Strengths of the Current Setup .. 22

3.4 Development Needs for the Current Setup ... 23

4 Outline of TO-BE State of Analytic Data Management and Business Intelligence in

EVR ... 28

4.1 Main Decision Dimensions and Technology Alternatives for Future Architecture

 28

4.2 The Proposed Technical Architecture for EVR's TO-BE Analytic Data

Management System ... 33

5 Practical Use Cases Based on Selected Components of TO-BE Architecture 40

5.1 Deployment Context of Implemented Practical Use Cases 40

5.2 End-to-end Row-level Analysis of Purchase Invoices from Raw XML-s 43

5.3 End-to-end Analysis of Railway Level Crossing Log Data 50

6 Conclusions ... 57

7 Acknowledgments ... 58

7.1 Methodological Acknowledgments .. 58

References ... 60

Appendix ... 65

I. Glossary of Abbreviations ... 65

II. TO-BE Architecture and IT-Business Cooperation Model 66

III. Technology Alternatives for Practical Use Cases ... 67

IV. Cost-capacity Analysis of Microsoft Fabric Data Lakehouse SaaS Platform 69

V. License .. 70

7

1 Introduction

Estonian Railways Limited (EVR) is a government-owned company whose core business is

building, operating and maintaining Estonian railway infrastructure. Per the European Un-

ion Common Market legal framework, the same company cannot concordantly fulfil the

role of railway undertaker and infrastructure manager in the interests of encouraging free

market competition. Therefore, as an infrastructure manager, since 2001, EVR has not op-

erated cargo trains.

The main strategic focus of EVR is the modernisation of its infrastructure, which entails

electrification, digitalisation and boosting the maximum allowed speed of currently operated

rail lines — the railway infrastructure reconstruction due to be completed by 2028 costs

nearly 800 million Euros. Digitalisation will increase the variety of data sources, velocity,

and overall amount of data. The change poses a challenge at the technical, work processes,

and culture levels.

With a focus on business intelligence and analytic data, the current thesis tries to tackle the

previously outlined challenges at the organisational and technical levels. In addition to giv-

ing a theory-based overview of the critical data engineering concepts, the thesis also de-

scribes the AS-IS state of business intelligence and analytic data management in EVR. A

detailed description of the AS-IS state is essential because the thesis is dealing with a brown-

field-type project where already-made decisions and sunken costs annulate some options in

choosing the technological stack that would be reasonable in a clean-slate greenfield project.

Moving from general to specific, the following central part of the thesis focuses on TO-BE.

The thesis outlines the main decision dimensions and technological trade-offs that general

architectural design decisions must answer. TO-BE architectural decision dimensions are

elaborated through relevant technology alternatives. The analytic part of the thesis con-

cludes with a presentation of the general TO-BE architecture for EVR's analytic data man-

agement and business intelligence.

The last part of the thesis presents the practical implementation of two business-relevant use

cases based on technologies specified in TO-BE business intelligence and analytic data man-

agement architecture. The first practically implemented use case consisted of end-to-end

analysis of row-level data of purchase invoice XML files, including initial data-fetching and

cleaning, dimensional normalisation to star schema, data enrichment and reporting from the

Postgres-based data warehouse.

As a second use case, the author created an automatic data pipeline to analyse railway level

crossings' log data from legacy relay-based level crossing systems to extract train pass-

through events and respective timings. The goal was to create an exploratory tool which

would allow for the monitoring of train-passing event timings by the level crossing, with

particular emphasis being the detection of train passings with spuriously short duration, in-

dicating an in situ malfunction of train detection. As train passing event signatures and nor-

mative train passing timings differ by the level crossing, the author expanded the data visu-

alisation dashboard with minimal CRUD capability to save per-level crossing alert threshold

values set manually by the end-user.

The practical work contributes significantly by preparing EVR for a Microsoft Fabric-based

proof of concept study with Microsoft's Baltics cloud services partner company. The future

proof of concept study will involve the same datasets and analytic questions covered in the

thesis's two end-to-end practically implemented cases.

8

2 Theoretical Background

This chapter provides an overview of the data engineering challenges addressed by this the-

sis, both in terms of requirements engineering and practical implementation. Additionally,

by summarising crucial data engineering concepts, this chapter lays the groundwork for part

four of the thesis, which proposes future analytics data management architecture for EVR.

Furthermore, as the railway sector as a problem domain is unique, the background section

of the thesis also gives an overview of the most referenced review articles that deal with

data engineering in the railway sector.

2.1 Methodological Background and Scope of the Thesis

In order to ensure the future architecture of EVR's analytic data management is adequately

specified, the current thesis has established two key objectives. The first is to undertake

requirements engineering, a crucial step often overlooked in corporate data engineering pro-

jects [1, 2]. This oversight can result in accidental complexity within the architecture, as the

data engineering field is rife with competing technologies that offer similar functionality

with differing underlying architecture, deployment patterns, and technical trade-offs [3, 4,

5]. As a result, the thesis places significant emphasis on describing the current state of ana-

lytic data management in EVR, including mapping and classifying the source data systems

that are not utilised in the practical implementation of the thesis. Broader coverage of source

data is needed because the future analytic data management platform towards which the

gap-based requirement engineering and analysis contributes must serve all the future ana-

lytic needs of the EVR, which are much broader than the two practical cases solved by the

current thesis.

Secondly, the thesis aims to provide the company with a comprehensive end-to-end analytic

data management architecture, broadly covering everything from data ingestion to report-

ing. The task involves a detailed discussion of various technologies and platforms, some of

which are not included in the current technology set used to realise the practical usage cases.

The centrepiece of the proposed architecture is Microsoft's cloud-based SaaS1 all-in-one

analytic data management solution Fabric [6], which covers data engineering steps from

data movement to data science and business intelligence. Detailed rationalisation for select-

ing Microsoft Fabric over its competitors is presented in latter chapters of the thesis. Alt-

hough the implemented use cases do not utilise Fabric's technical capabilities, the rationale

behind choosing this platform is thoroughly described due to its costliness and multifaceted

capabilities. A detailed description of Microsoft Fabric is necessary to determine how to

interface source data systems with the cloud platform (including thinking through network

interfaces and authentication mechanisms) and which capabilities to implement based on

Fabric's costly SaaS offering versus implementing required steps on cheaper on-prem or

1 SaaS, or Software as a Service, is a cloud-based service model where software applications are hosted by a

service provider and made available to users over the internet. SaaS applications are typically fully-managed

by the vendor and accessed through a web browser, with users paying a monthly or yearly subscription fee. In

addition to Microsoft Fabric, Cloudera Data Platform (CDP) [7] and Databricks Data Intelligence platform [8]

are examples of SaaS based offerings that include integrated data movement, compute and storage capabilities.

9

IaaS2/PaaS3 deployment model. To make matters more complex, the optimal trade-off be-

tween SaaS and IaaS/PaaS depends on the data source.

In a broad sense, the thesis addresses a significant technical challenge - implementing a

middle layer that prepares data from on-prem data sources to be ingested into the Fabric

cloud system. To achieve this, a deep understanding of the final to-be analytic data manage-

ment architecture of the EVR is necessary, which further buttresses the arguments for allo-

cating a large proportion of the thesis towards describing technologies and platforms that

are strictly not employed at the code level. Furthermore, pragmatically, as the EVR is quite

a large company, it would be impossible to design and implement a whole new analytic data

management architecture under one study.

The current work contributes significantly by preparing EVR for a Microsoft Fabric-based

proof of concept study with Microsoft's Baltics cloud services partner company. The future

proof of concept study will involve the same datasets and analytic questions presented in

the thesis's two end-to-end practically implemented cases; these include analysing legacy

railway level crossing data to identify abnormally short train passing events and analysing

and enriching row-level data from incoming purchase e-invoices XMLs. The upstream steps

from the thesis' practically implemented end-to-end cases are almost fully re-usable in actual

Fabric proof of concept study. Downstream steps from the thesis' practically implemented

end-to-end cases that transform and clean analytic data for the reporting layer allow for

practically informed comparison and choice between running those data cleaning and trans-

formation operations on-prem/IaaS/PaaS vs utilising Microsoft Fabric. In other words, for

the data pipeline downstream steps, the thesis will give a reference implementation case for

a fully on-prem solution, and the future Fabric-based proof of concept study with an external

partner will give a reference cloud-native solution. Finally, the reporting layer, Streamlit

dashboard for level crossing log data and Power BI dashboard for enriched purchase e-in-

voices data, will be fully re-usable in an actual Fabric proof of concept study and later in

day-to-day usage.

In many respects, both practically implemented use cases exceed the complexity of EVR's

previously implemented analytic solutions. Practically implemented use cases are based on

unordered source data, from which the analytic output can only be obtained through algo-

rithmic data mining (level crossing log data) or from which the source data must first be

fetched and enriched across data sources (purchase invoices XML-s). Furthermore, the

dockerised and version-controlled deployment model is novel compared to the current EVR

analytic solutions. Most importantly, disregarding the analytic output managed by source

systems, the current use cases are implemented to make them stateful - the implemented

solutions save cleaned analytic data and keep the state information about already included

source data. This situation contrasts with the current analytic solution, which relies entirely

on the source system to save data permanently. Last but not least, the log data Streamlit-

2 Infrastructure as a Service (IaaS) is a form of cloud computing that provides virtualized computing resources

over the internet. In an IaaS model, a cloud provider hosts the infrastructure components traditionally present

in an on-premises data centre, including servers, storage, and networking hardware, as well as the virtualization

or hypervisor layer.
3 Platform as a Service (PaaS) is a cloud computing model that provides customers with a platform, allowing

them to develop, run, and manage applications without the complexity of building and maintaining the infra-

structure typically associated with developing and launching a data pipeline or app. Example of PaaS based

data engineering architecture would be a combination of Amazon EMR Spark serverless compute cluster ser-

vice [9], Amazon Glue serverless data ingestion and work orchestrator tool [10] and Amazon Redshift fully

managed warehouse service [11].

10

based dashboard is minimal example of reverse-ETL [12] like thinking, by which the

cleaned analytic data is feed back to the operational level by allowing users to set per-level

crossing alert thresholds which are to be used in future Fabric proof of concept study to send

out Microsoft Teams or e-mail alerts about the occurrence of abnormal train passing events,

which in turn allows for checking if those alerts were registered by current manual work

based abnormal event reporting system.

2.2 Previous Work about Analytic Data Management in the Railway Sec-
tor

A brief literature overview reveals that the two main streams of research that deal with big

data, data engineering, data warehousing and business intelligence or analytic data manage-

ment in the railway sector are firstly related to the general topic of asset management and

predictive maintenance and secondly to the general topics of railway network and asset to-

pologies, including the aspects of geospatial data modelling and metadata and semantic

modelling. Both topics are relevant for EVR as the key strategic goal of the company is to

digitise asset management and asset maintenance processes, thus, in the long run, replacing

static maintenance schedules with predictive near real-time data-based maintenance sched-

uling. Secondly, efforts are being made to revamp and re-order the EVR's topological data

master data schema, which includes specifying the truth sources and data producers for each

main topology category.

Tutchet [13] highlights the importance of ontology-driven data integration in addressing the

complexities of railway asset management (including maintenance and monitoring) and the

potential benefits of using semantic data modelling for improved decision-making and anal-

ysis in the rail industry. This line of thinking means structuring and organising data that

emphasises the meaning and relationships between data elements. Unlike traditional data

modelling approaches that focus on the structure and format of data, ontological semantic

data modelling aims to capture the real-life semantics of data elements and their relation-

ships [13].

Integrated and cleaned data is the bedrock for building business-relevant machine learning

tools [2]. In the railway sector, most of these efforts relate to building predictive machine

learning models to use as input for maintenance planning. A recent comprehensive survey

of the railway sector by Davari and colleagues [14] provides a thorough empirical overview

of the current state of data-driven predictive maintenance in the railway industry. Predictive

maintenance is a proactive maintenance strategy that uses data analysis, monitoring, and

predictive analytics to predict likely equipment failure. The authors categorise the prediction

efforts in two broad categories: failure prediction (and its subtask anomaly detection and

failure classification), which involves forecasting the approximate time when a failure might

occur in a system or equipment; and secondly, remaining useful life estimation which tells

how much operational time remains before a railway device needs to be repaired or replaced.

Relevant to the current thesis' level crossings' log data mining implementation is Davari and

colleagues' [14] conclusion that a big research gap exists in anomaly detection from time-

series data.

An older review by Ghofrani and colleagues [15] from 2018 emphasises the central role of

predictive maintenance in big data push in the railway sector. Furthermore, the authors bring

up examples of big data-based decision support tools being used for more efficient capacity

allocation planning and general day-to-day operations management. Review article by

Binder and colleagues [16] summarised the findings of 24 relevant scholarly works. Binder

and colleagues [16] reach a generally similar conclusion to Davaris and colleagues [14] in

11

their industry-specific field survey, with their unique contribution being the proposing a

nomenclature of components, predicted defects, and maintenance conditions targeted by

predictive maintenance efforts. They highlight employing machine and deep learning model

nomenclature broadly similar to Davari and colleagues [14]. Further relevant to the current

thesis, Binder and colleagues argue that the broader societal benefits, mainly safety and

resource usage efficiency, increase due to employing predictive maintenance depending on

source data quality and data standardisation.

All in all, previous works about data engineering in the railway sector mainly relate to spe-

cific problem area and focus on a narrow set of applied methods. The author found no over-

arching studies that would have tried to describe the railway sector's data engineering jour-

ney at a more macro level.

2.3 Key Data Engineering Concepts

The following section will provide a brief overview of the key theoretical concepts. This

section is meant to serve as a high-level overview of the process of obtaining and managing

analytic data in data engineering. Hopefully, this section will serve as a CliffsNotes-like

overview for the later, more technical sections of the thesis, where more in-depth architec-

tural and implementation details are discussed.

The data engineering lifecycle is a structured framework that guides the process of manag-

ing and transforming data from its raw form to end state that is ready for consumption by

various stakeholders, e.g. machine learning models and business intelligence reports. Fol-

lowing Figure 3 by Reis and Housley [2] encapsulates the key steps and components of the

data engineering lifecycle.

Figure 3. Data engineering lifecycle (adopted from Reis and Housley [2])

Reis and Housley [2] define the key steps of data engineering lifecycle as follows:

1) The first stage of the data engineering lifecycle is the data generation, which involves

collecting data from various sources such as databases, IoT devices and sensors, and

external API-s.

2) After the data is generated, it needs to be stored. Storage and technical data accessi-

bility is a crucial bedrock on which to the following three steps of data ingestion,

transformation and serving depend. This is because, usually the input/output opera-

tions towards the permanently stored data are most costly in terms of latency [3, 17].

12

3) The ingestion stage involves moving data from the storage layer to the processing

layer where it can be transformed and cleaned.

4) The transformation stage is where the raw data is processed, cleaned, and trans-

formed into a data model and format that is suitable for analysis and reporting.

5) The serving stage involves making the processed data available to data analytics,

data scientists (for machine and deep learning), and other stakeholders through dash-

boards, reports, and increasingly through API-s. Of importance in the context of the

current thesis’ log data analysis use case is the concept of reverse ETL. This is an

umbrella term for a pattern of data integration where data is moved from a data

warehouse, data lake, or reporting systems back to operational systems enabling or-

ganisations to bridge the reporting-action gap [18] and leverage insights gained from

data analysis or machine learning models in enriching operational systems with the

processed data.

6) Ingestion, transformation and serving stages must be orchestrated, meaning the pro-

cess of coordinating and managing the execution of multiple data processing tasks

or jobs to ensure they run reliably in the correct sequence. Often the orchestrator is

the singular interface for a data engineer to define, visualise, and manage end-to-end

data workflows comprising multiple tasks, transformations, and data movements.

Furthermore, the orchestration layer must also handle the complexity related to han-

dling dependencies between tasks, including by automatically resolving dependen-

cies based on task completion status and scheduling the execution of data jobs at

specific times or intervals based on predefined triggers (sensors) or conditions.

ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) are common data in-

tegration processes of data engineering to move and process data from source systems to

landing analytical systems [3]. Following Figure 4 illustrates the difference between ETL

and ELT.

Figure 4. Illustrating example of the ETL and ELT processes (based on [2, 3, 19, 20]) 4

4 There are some differences between authors in defining the scope of the staging layer in typical ETL based

DW. Staging area can be either a simple periodically updated copy of source database that lessens the load on

the source system during ETL process or staging area can be a full fledged ELT-based data lake in itself. To

13

For the ETL process, data is first extracted from the source system or systems, after which,

most importantly, the extracted data is transformed through a combination of cleaning,

standardisation, enrichment and aggregation operations to conform to the requirements of

the target system’s analytic data model. Once the data is transformed, it is loaded into the

target data warehouse, data lake, or database for storage and subsequent analysis, reporting,

or input for machine learning or deep learning applications.

As was the case for the ETL process, the ELT process begins with data extraction from

source systems. Extracted data is in its raw form and loaded into the target storage (usually

data lake) or analytical system without transformations. Once the data is loaded into the

target storage, transformation processes are applied within the target environment as needed.

The previous point encompasses the main difference between ETL and ELT: for idealised

cases of ETL, data transformation occurs before loading data into a data warehouse or other

target system, while in the case of the ELT, transformation is typically performed after data

loading within the target environment. Furthermore, for the further discussion about VJS

system’s role as data source, it is noteworthy to emphasise that ETL processes data outside

the target system, often in a separate ETL engine or source system module, whereas ELT

processes data within the target (usually data lake related compute cluster) system. ELT has

evolved and is mostly the standard due to low storage cost and the emergence of SQL en-

gines (e.g. Trino, Presto), which together allow for fast DW capable of fast data processing.

The data transformation step is usually not a singular operation; furthermore, often, the step-

wise cleaned, ordered and refined data is retained in separate tables. Databricks' Medallion

Architecture exemplifies previously outlined logic [21] in which data refinement is de-

scribed through the logic of stepwise refinement. In detail, the first, i.e., the bronze layer,

contains the data in its raw, unprocessed form (without any filtering, cleansing, or transfor-

mation). The bronze layer has conceptual similarities with the classical data warehouse's

staging area [3]. The next layer of refinement is the silver layer, obtained through data op-

erations like cleaning, transformation, and enrichment. The top, i.e., gold, layer of the Me-

dallion Architecture is where data is ready for reporting and being highly aggregated.

A data lake and a data warehouse are both analytic storage systems used in data engineering

for storing and analysing large volumes of data [2]. A data warehouse is a relational database

system optimised for querying and analysing structured data to support business intelligence

and reporting [2, 3]. Data warehouses use a columnar or row-based storage architecture to

store structured data in tables with predefined schemas [2]. Warehouses are typically opti-

mised for query performance and exhibit complex database-world-derived built-in query

optimization techniques [2, 3]. Importantly, data warehouses follow a schema-on-write ap-

proach, meaning the data must be transformed and structured to comply with the predefined

schema to be loadable into the warehouse [2, 3].

A data lake is a centralised repository that allows organisations to store large amounts of

raw, unstructured, semi-structured, and structured data at a relatively low cost [2]. On-prem

data lakes typically use scalable distributed storage systems, such as Hadoop Distributed

File System (HDFS); hybrid and cloud-based data lakes typically use cloud-based object

storage services (e.g. Amazon S3 or Azure Data Lake object storage), to store diverse data

types, including text, images, logs and sensor data [2, 17]. Data lakes align with the schema-

emphasise the later possibility, the figure presents a somewhat uncommon connection from data lake to ETL’s

staging area.

14

on-read approach, meaning that data is stored first, and its structure is applied during anal-

ysis or processing [2, 19].

In practice, pure data lakes and data warehouses are uncommon; elements of data lakes are

often used for ingestion or staging layers followed by structuring warehouse-like layers [17]

(see also Figure 5 for comparison between data warehouse, data lake and data lakehouse).

This has led to the development of a relatively new architecture called data lakehouse, a data

management system that combines on a single platform the features of a data lake and a data

warehouse [19, 17]. Data lakehouse aims to provide the scalability and flexibility of a data

lake with the management and performance capabilities of a data warehouse [17, 19]. At the

technical level, the data lakehouse stores raw data like a data lake (mainly in the format of

Apache Parquet or ORC (Optimised Row Columnar)) but also supports ACID5 compliant

transactional data management features, data versioning, managed schema evolution and

indexing like data warehouse [17, 19] through its metadata management, indexing and cach-

ing layer [17] provided by technologies like Delta Lake [17, 19]. In detail, Delta Lake main-

tains a transaction log that records all the changes made to the data lake. This transaction

log is stored in a Parquet format within the data lake [17, 19]]. Delta Lake stores metadata

about tables, partitions, and data files in the transaction log, which enables Delta Lake to

track the lineage of data changes and manage schema evolution [17, 19]. Delta Lake is

tightly integrated with Apache Spark, meaning that users can leverage Spark's distributed

processing capabilities to interact with Delta Lake tables to perform complex analytics tasks

encompassing large datasets [17]. Apache Spark is a general-purpose single-node and clus-

ter computing system that provides high-level APIs in Java, Scala, Python, and R that is

able to handle data in batches and real-time streaming [22].

5 ACID is an acronym that stands for Atomicity, Consistency, Isolation, and Durability. Those properties are

needed to ensure reliable data transactions with the database system. Atomicity ensures that a transaction is

treated as an atomic unit of work that either succeeds totally or is fully rolled back. Consistency ensures that

a transaction move the database from one valid state to another valid state. Isolation means that concurrent

transactions can be carried out without interfering with the parallel transactions. Durability means that state

changes created by transactions are durably saved. [2]

15

Figure 5. Idealised architectures of data warehouse, data lake, combined two-tier architec-

ture and data lakehouse (based on [2, 6, 8, 17, 19])

16

It is crucial to note that data in the live system’s transactional tables and data extracted and

saved in the data warehouse or data lakehouse is quite different. Simitsis and colleagues [3]

highlight the following key differences between analytic and transactional live system data.

Information system-level data, called OLTP (Online Transactional Processing), is designed

and modelled for transactional processing to support daily live operations. In detail, the

OLTP data is typically normalised (preferably in the III standard form), and the general data

model is optimised for low latency, i.e. fast individual transaction processing, with the ma-

jority of the workloads being CRUD (Create, Read, Update, Delete) operations on individ-

ual records. Therefore, mainly, the row-store is used. While the data size is lower (in giga-

bytes to terabytes), OLTP systems place high demand on concurrent operations, i.e. the need

to serve multiple user sessions simultaneously.

In contrast, OLAP (Online Analytical Processing) data models are designed for analytical

processing to support complex queries and data analysis. The analytic data is modelled and

saved to optimise a few concurrent but long-running complex query performances and ag-

gregations. The analytic data is often denormalized or saved in the star/snowflake schema

to optimise query performance; e.g., the popular reporting tool PowerBI assumes that the

input data is presented in the star schema.

Analytic data modelling and storage based on star or snowflake schemas follow the general

principles of dimensional modelling. Kimball and Ross [29] emphasise the following key

concepts in analytic data modelling. Fact tables contain quantitative data, also known as

measures, representing the business metrics or atomic meaningful business events (e.g. sin-

gular sale, accounting entry etc) that are being analysed. Fact tables are modelled through

dimensional tables, which provide context to the data stored in the fact tables and ensure

efficient filtering, grouping, and aggregation of the data in the fact table. The relationship

between fact tables and dimension tables is established through foreign keys. Dimension

tables contain attributes that are represented as descriptive columns that provide additional

information about the data. Crucially for drill down and rollup query performance, dimen-

sions can be presented in a way that models intra-dimensional hierarchical relationships.

Relatedly, often in the context of modelling hierarchies, a star schema is the most straight-

forward way to do dimensional modelling, just surrounding fact tables by denormalized

dimension tables (e.g. singular dimension table for department with division grouping and

crucially division’s attributes being represented as separate columns). In a snowflake

schema, dimension tables are normalised by breaking down hierarchies or attributes into

separate foreign key-linked tables (e.g. two foreign key-linked dimension tables: one for a

department and its attributes and the other for division and its attributes with a department

table also containing foreign key reference to division table id field).

While Kimball's model is built from the bottom up, its alternative, Inmon's data model, takes

a centralised, top-down approach in which data is integrated from across the organisation

into a granular, highly normalised ER model [2]. In extreme cases, the data in Inmon's data

warehouse, especially if it is entirely in third normalised form, closely resembles the nor-

malisation structure of the source system itself [2]. While Kimball and Inmon emphasise the

organisation of business logic within the data warehouse, the Data Vault proposes a different

data modelling method. The Data Vault model comprises three primary table types: hubs,

links, and satellites. In essence, a hub stores business keys, a link preserves relationships

among business keys, and a satellite embodies the attributes and context of a business key.

Users can retrieve the information they need when they query a hub that links to a satellite

table containing the applicable attributes [2]. In industry practice, Data Vault and its deriv-

ative Data Vault 2.0 are more resilient in handling source data schema drifts [23].

17

Interestingly, according to Tutchet’s article touched briefly in the previous section [13], al-

ready ten years ago, the increasing volume and heterogeneity of data in railway systems had

already posed challenges for traditional analytic data management techniques like data

warehousing. Decade-old thinking by Tuchet aligns very well with modern domain-based

thinking from designing microservices [24, 25] and data mesh-based analytic data manage-

ment [26, 27]. Data mesh is an analytic data management architecture emphasising decen-

tralisation and domain-oriented data ownership. It involves organising data into domains

managed by individual teams within an organisation, with each team responsible for under-

standing and producing data specific to their domain. The fundamental concepts of data

mesh include treating data as a product, implementing self-serve data platforms for teams

to manage their domains autonomously and utilising a federated approach to data govern-

ance. As a sneak peek, the thesis employs data mesh in the proposed architecture to organise

cleaned analytic data. Furthermore, as the data mesh data management model is as much a

governance or data leadership model as it is technical architecture [26], a notable proportion

of the thesis is allocated for thinking through the nexus between technology choices and

their assumed governance and usage by the broader end-user groups of the organisation.

In the upcoming sections, the thesis will uncover details of multifaceted levels of aggrega-

tion within the EVR source data systems. Hence, it is essential to carefully consider how

OLTP tables are logically translated into analytic domain objects. In the field of data engi-

neering, a domain object refers to a data model or structure that represents a specific and

meaningful concept within the target domain. These objects are often created to encapsulate

data and behaviours that are relevant to the addressed problem domain [24]. Domain objects

are a critical aspect of an application's architecture's business layer, aimed at reflecting the

real-world entities and relationships within a particular domain or area of interest. In the

context of data engineering, domain objects play a vital role in ensuring that the design and

implementation of architectures align with the real-world entities and relationships they rep-

resent. This alignment facilitates encapsulation of complexity [28] and helps in achieving

intuitive data models, transparent translation of business logic to the code, and ultimately,

systems that are more maintainable and adaptable to the evolving needs of the business [24,

26].

At the technical level, it means striving towards coherent stateful entities with well-defined

business meanings. The crucial concept for analytic data management and engineering is

domain aggregates, which means aggregates based on sources stored across many OLTP

tables in source transactional systems. In the domain-driven design (DDD) system architec-

ture paradigm, domain aggregate is a collection of entities and value objects that logically,

i.e. in terms of the domain's business rules, belong together and are always consistent con-

cerning invariants6 [24, 25, 28]. Further, in the DDD paradigm, writing ad-hoc database

queries to modify domain objects belonging to domain aggregate is an anti-pattern [24, 25,

28]. Instead, the repository pattern is enforced to encapsulate storage access code and pro-

vide a straightforward interface to retrieve, store and remove domain objects from the do-

main aggregate [24, 25, 28].

The take-home message from the previous theoretical discussion to the current thesis' TO-

BE architecture is that in the ideal case, the analytic/data-warehousing layer should contain

something other than the code that reconstructs domain objects and aggregates from the

system's raw transactional tables. Instead, it is a non-functional requirement for source

6 I.e. the whole state of domain aggregate is updated coherently if there is change in element of the collection

comprising the domain object.

18

systems to be apt to provide an analytics/data warehousing layer with a coherent set of busi-

ness domain model-following objects and aggregates (e.g. via API endpoint). In that sense,

the source system's data is describable as a product (valuable, accessible, documented) [26]

or open host service [24, 25], meaning that the source system, for example, adapts its API

endpoints to the needs of the accessing parties.

19

3 Outline of AS-IS State of Analytic Data Management and Business
Intelligence in EVR

In this chapter, the thesis will delve into EVR's current technical setup for managing analytic

data and data sources. While it may seem excessive to describe source data systems like

PONY, VJS, TTCSM, and SharePoint - which are not utilised in the practical implementa-

tion use cases of chapter five - it is necessary to paint a complete picture of EVR's analytic

data management and business intelligence journey. EVR has already made significant

strides in reporting and central and system-level analytic data management. Therefore, pro-

posing a new TO-BE architecture without considering the current AS-IS state would be

unwise and inefficient. Thus, this chapter will outline both the strengths and areas for de-

velopment in the current state. It's important to note that any shortcomings in the current

state should not be taken as a harsh critique. EVR has already achieved a respectable level

of maturity in analytic data management, having already picked the low-hanging fruit. To

continue advancing in data engineering, EVR must focus on building the capacities outlined

in this chapter's development needs.

3.1 Description of the Current Technical Setup

In EVR, Microsoft Power BI is the current go-to tool for business intelligence needs. A

trusted third-party collaborator is responsible for generating new Power BI reports in re-

sponse to requests from the business side or upon the availability of new, report-ready da-

tasets. It is worth noting that this partner manages Power BI service deployment settings on

behalf of EVR. The partner has prepared over 25 reports conveniently accessible to around

100 end-users via the Power BI online service. These reports exhibit a high level of user

experience and design.

Technically, Azure VM running MS Windows Server, generally denoted as EVR's data

warehouse (EVR DW), is the data source for relational data for the Power BI reporting

service. Architecturally, the MS Windows Server VM runs an MS SQL Server instance,

including the orchestration component of SQL Server Integration Services (SSIS) accessible

via MS Visual Studio GUI and Power BI Data Gateway service installation. The cloud VM

is deployed inside Azure's vNet infrastructure and connects with EVR's on-premise systems

via the VPN-vNet gateway [30]. As for more straightforward tabular cloud-hosted data

sources, like MS Sharepoint, the current solution ingests data through Power BI-s built-in

data connections. Figure 6 describes the current technical setup of EVR's data warehouse.

Before describing the data sources and data extraction, transformation and enrichment steps

employed in the EVR's DW in more detail, it is essential to note that the paramount archi-

tectural decision of the current setup is making the EVR's DW non-stateful. MS SQL server

instance of the DW does not permanently store any data. Relational data sources are ex-

tracted as linked tables, linked source system's materialised views or, as an often-used

backup solution, as copies of source tables. In the latter case, the SSIS package orchestration

job truncates respective landing tables in EVR DW's MS SQL instance before the update.

After which, the orchestration job carries on by non-incrementally loading complete, up-to-

date copies from the source systems into DW's MS SQL tables. With few exceptions, the

relational data in DW is updated once a day, at nighttime, in order to minimise the I/O load

on source systems. For reporting layer output, EVR's DW presents relevant MS SQL tables

for Power BI semantic model generation as views through the on-prem data gateway.

20

Figure 6. Outline of the AS-IS analytic data management architecture.

21

3.2 Analytic Data Landscape of EVR

Data transformations based on relational data have differing complexity and locus of data

cleaning and transformation location, i.e. between EVR's DW vs source system. The most

complex data transformations relate to EVR's wagon management system (VJS), which also

presents the extreme of relying on the source system to extract, clean and transform the

analytic data. VJS is a monolithic system based on the Oracle database platform, in which

the database platform manages all the data storage and nearly all the programmed business

logic (PL/SQL procedures). To illustrate VJS's complexity, the VJS's codebase consists of

over 2.3 million rows of SQL DDLs and PL/SQL procedures.

VJS's schema STATISTIKA_AGENT encompasses a set of extensive partially parameter-

ized PL/SQL procedures that transform the system's OLTP live tables to clean aggregated

analytic data tables. By and large, the data pipelines implemented in the analysis schema

first extract complete business-relevant events (e.g., a train journey from station A to B)

from atomic events described in OLTP tables and tie those business-relevant events to con-

crete business objects (e.g. train) and enrich business event-object combinations with rele-

vant characteristics (e.g. nomenclature and mass of goods carried). As source transactional

tables are in constant flux, extracted and cleaned business-logic-focused analytic input ta-

bles are timestamped and versioned. A further set of stored PL/SQL procedures creates a

dimensionalised, cleaned and highly aggregated analytic output, realised as tables and ma-

terialised views. As a security and compatibility compromise with DW, the output set of

tables and materialised views are redundantly copied to the newer on-prem instance of Or-

acle DB, which the EVR's DW accesses (see also Figure 6). Of note is that a group of EVR

personnel uses locally stored and manually executed SQL queries to get analytic output that

is not reflected in DW-based Power BI reports.

Source data from the PONY7 multidomain information system illustrates a more reasonable

compromise between data transformations in DW and the source system (see Figure 6 for

reference). Similarly to VJS, PONY runs on the Oracle DB technological stack. However,

contrary to VJS, PONY's relational data model is almost entirely in the third normal form,

with all the main business-relevant entities presented in separate tables and those tables cov-

ered by well-defined dimensional tables that include dimensions' metadata and validity sta-

tus. As a corollary, operational data in PONY loosely resembles data the reporting layer

would access from traditional, i.e. stateful, DW that follows the Inmon data warehouse data

model. Therefore, even the current EVR's DW can create star schema-following Power BI

semantic data models using straightforward join-based transformations on a limited number

of linked tables from PONY.

Regarding custom code amount and complexity, EVR DW's most complex transformations

concern the MS Dynamics 365 ERP system, namely ERP's MS SQL database. As a com-

plexity highlight, the developer has implemented user-updatable rudimentary parametriza-

tion for project budgeting reporting, which uses an end-user-updatable MS Sharepoint table

that serves as an input in the respective SSIS job package. On the contrary, relatively more

uncomplicated source data originates from tables and files embedded in Sharepoint sites

(formerly also from Excel files stored in OneDrive). In the latter case, usually, one SP site

serves one Power BI report.

7 PONY is EVR's internal information system. It is built over time to support a diverse and loosely coupled

set of business functions (incident management, hazard assessment and management, management of infra-

structure master etc).

22

The current EVR's DW does not analyse the technical system's log data. Most legacy control

systems have non-configurabele monitoring environments with end-user-facing GUI. Sup-

pose one needs more detailed custom analyses that are not covered by an out-of-the-box

interface. In that case, the end user extracts the data as an Excel file and analyses it locally

on their personal work computer.

To conclude the high level and overview of the data landscape with a forward-looking note,

the data landscape in EVRs will get more complex. Multiple new technical systems (e.g.,

CCS systems by Siemens and MIPRO) will produce more varied real-time log data. This

data needs to be cleaned and centrally stored. Real-time monitoring data is planned to be

used to implement a predictable maintenance scheduling of assets instead of using old, par-

tially from Soviet times, static maintenance schedules. Moving from static to predictive

maintenance scheduling is also one of the company's strategic goals.

3.3 Strengths of the Current Setup

The following section gives an overview of the strengths of the current setup, with a focus

on aspects that should be preserved and carried over to the TO-BE architecture.

The VJS's analysis module (i.e. STATISTIKA_AGENT schema) has a long history and a

large codebase. Therefore, it contains an operationalized description of protocols for trans-

lating live transactional source data into analytical business-relevant domain objects and

aggregates. Contrariwise, analytic protocols and principles have yet to be documented, and

the primary source of truth is the PL/SQL procedures themselves. Furthermore, solutions

for different corner cases have been incorporated into the code for a long time. Therefore,

the VJS in-built analysis module acts as an anticorruption layer [24] between the live system

and reporting, e.g. providing computation paths in case the same but conflicting live data is

present in different VJS's OLTP tables. Furthermore, persistent data storage and basic ver-

sioning of the data are features of VJS’s analysis module that are not present in any other

EVR's custom business intelligence and analysis solutions.

Notably, in the current data landscape, the VJS analysis schema and related tables and pro-

cedures are the most evident implemented examples of employing the principle of domain

modelling (see theoretical background chapter for more details). A future case in point is

the architecture of EVR's new in-development traffic management system, TTCMS, which

follows the pattern that transactional OLTP tables are closed-source at the database level for

the deployer of the system. Instead, the TTCMS information system provides a coherent set

of domain objects and aggregates in a database schema accessible to the analytics and data

warehousing layers. A further future case in point is the evolution of Microsoft's Dynamics

365 ERP suite (D365), which in its cloud version restricts clients' direct access to the under-

lying MS SQL database that is available in the legacy on-prem version of the ERP suite.

EVR will soon migrate from the on-prem D365 installation to the cloud-based version.

From the code perspective, the procedures in the VJS STATISTIKA_AGENT schema

strongly rely on stored PL/SQL procedures from other operational schemas. Operational

procedures are loosely used as API endpoints that at least partially mask the operational data

logical-level complexity from the analysis schema-specific procedures. Corollary to the cur-

rent program setup, the load and dependence on the source system would remain high even

if the logic inherent in the STATISTIKA_AGENT schema were migrated outside of VJS.

Furthermore, narrowly refactoring and migrating only the analysis-specific procedures to a

new platform would require substantial investment, which would not immediately add new

functionality or business value. To bolster the argument for keeping the current VJS's anal-

ysis schema intact, translating data transformation logic performantly from Oracle's

23

PL/SQL, let us say to Spark8, would be a substantial undertaking, as PL/SQL has constructed

operations that do not have clear one-on-one correspondence from Spark. Likewise, writing

Spark code that relies highly on external Oracle's stored procedures would not be trivial.

Last but not least, the current portfolio of Power BI reports is the strong point of the EVR's

data landscape. Reports are visually pleasing, modern-looking, logical to use, and generally

fast, with few exceptions. Power BI as a platform has proven itself in the eyes of EVR’s end

users.

3.4 Development Needs for the Current Setup

This section gives an overview of the deficiencies of the current setup, with a focus on as-

pects that should be solved, or at least highly improved, by implementing TO-BE architec-

ture. Areas that need improvement are presented followingly in tabular form. First, the spe-

cific problem is defined (see column Problem description). Secondly, for every problem

description, the author of the thesis highlights the ability gap underlying the problem. There-

fore, the thesis describes deficiencies in current tooling and general processes that make the

problem unsolvable with capabilities available in the AS-IS state.

Table 1. Development needs for the current setup.

 Problem definition (PRD) Ability gap (AG)

PRD1: Governance, documentation and

finding business value of data assets.

AG1; Metadata management system9.

AG2: Promoting data ownership and self-

serve culture (data culture)

[24, 26].

AG3. Enforcing business-side data owner

role.

PRD2: Documentation of currently im-

plemented business intelligence solutions

needs improvement.

AG4: Documentation standards (e.g. doc-

string system).

AG1: Metadata management system.

AG5: Clear analytic data pine programming

guidelines (tools and project structure).

AG6: DataOps practices: a) Code reposi-

tory and versioning usage in creating

8 Apache Spark is characterised as a processing framework with a very complex API that relies heavily on

code, requiring the code writer to take on the responsibility of optimization tasks that are typically automated

in SQL-based engines. Therefore, when utilising Spark, data engineering teams must proactively address the

challenges associated with Spark optimization, particularly for resource-intensive and prolonged jobs. [2]
9 Metadata management is a framework that encompasses processes, policies, and technologies for cataloguing

information assets within an organisation, ensuring their accuracy, integrity, and usability. It serves as a foun-

dational practice for data discovery, search, collaboration, quality, and governance, employing various tools

(often SaaS products) to manage all metadata types. Metadata is categorised into passive metadata, which

includes basic data definitions like schema and data types, and active metadata, which adds context by detail-

ing all interactions with the data. [31]

24

analytic data pipelines; b) CI/CD10 prac-

tices, including infrastructure as a code and

Dockerised software deployment to im-

prove integration between different technol-

ogies; c) swift data onboarding (i.e. the us-

age of standardized data ingestion tools).

PRD3: The current EVR's DW lacks

some defining features of classical DW.

AG7: Single place to persistently store at

least gold layer analytic data.

PRD4: Currently implemented analytic

solutions are fragmented and lack over-

arching data architecture.

AG7: Set of architectural principles for

EVR’s analytic data management.

AG8: Agreeing and enforcing analytic data

modelling principles, at least for the gold

layer of the analytic data (e.g. Data Vault).

AG1: (Active) metadata management sys-

tem.

PRD5: The current technological stack is

complicated to extend and partially tech-

nologically amortised.

AG9: DataOps11 practices.

AG10: Observability tools12.

PRD6: Currently implemented analytic

solutions are monolithic and hard to

maintain.

AG9: DataOps practices.

AG10: Observability tools.

PRD 7: Currently implemented analytic

solutions are challenging to reuse/refac-

tor.

AG9: DataOps practices.

AG11: Agreed upon architectural principles

for analytic data related developments. See

also AG8.

In terms of governance, documentation and finding business value of data assets (PRD1)

EVR's data landscape has yet to be thoroughly mapped and documented. Currently, many

critical large information systems need more quality documentation. Even if certain data

assets are well documented, the discoverability of this documentation could be improved.

Relatedly, the ease of improving the documentation is a challenge as there is no up-to-date

master catalogue of data assets that is a) accessible to a broader audience, b) easy to use, c)

searchable and d) reflective of the actual state of the live systems.

The current analytic solutions focus on solving the reporting domain, including automating

repetitive data analysis tasks and increasing the observability of the data quality in source

10 CI/CD, short for Continuous Integration/Continuous Deployment, automates merging code changes and

deploying them to production, thus facilitating rapid, reliable software development and deployment cycles

through enhanced collaboration and accelerates delivery.
11 DataOps is a discipline that focuses on streamlining data and analytics processes through automation, col-

laboration, and continuous improvement. It combines principles from agile software development and DevOps

to enhance the speed, quality, and efficiency of data operations within organisations [32].
12 Observability in data engineering refers to fully understanding the state of the data engineering systems.

This means tracking and monitoring data flows, infrastructure, applications, and systems in real-time to iden-

tify issues, tune performance, and ensure the reliability and integrity of data processing [2].

25

systems. Reports are created following the waterfall or supply push pattern, which centrally

develops reports with a focus on the end-user-facing UI of the solution.

Although successful, the current pattern of developing analysis solutions might need to be

more integrated and broader. The current focus on readymade reports as a product instead

of the underlying data as a product leads to an overly substantial client-supplier cooperation

pattern between IT and business parties. This asymmetrical cooperation pattern diverts the

focus from the business side's responsibility, technically, of course, in cooperation with the

DW/data engineering team, of organising their domain information in a documented, dis-

coverable, and integrative/reusable way. Furthermore, the previously described cooperation

dynamic is an attenuating factor in enforcing the broader data owner role in the organisation.

Creating and enforcing the data owner role is paramount, as the simple set of analytic chal-

lenges solvable by creating isolated Power BI reports that depend on a singular or sparse

number of input data tables that are often pre-cleaned and pre-aggregated has peaked. Com-

plex and not fully predefined fuzzy datasets assume deep domain knowledge and responsi-

bility, i.e. taking the data owner role in conjunction with continuous IT-business teamwork.

Datafication and digitalization mean business rules and actual work processes are increas-

ingly codified and enforced in data structures and application code. In this context, an asym-

metric client-service provider cooperation model between business and IT instead of con-

tinuous cross-functional teamwork would create a risk of responsibility drift: technical de-

velopers and maintainer of the business-critical codebase and data would implicitly assume

the role of the grantor of overall coherence of different business processes, i.e. business

architecture.

The situation by which the documentation of currently implemented business intelligence

solutions needs improvement (PRD2) is most clearly seen by the fact that the code running

in EVR's DW has not been documented, nor is it committed to any code repository. Relat-

edly, developments in EVR's DW are not version-controlled. An overview of currently live

data pipelines and their statuses is available at the level provided by the Power BI online

service by default. Configuration choices and applied settings on all levels of EVR's DW

have yet to be documented, and management of those settings has been almost totally out-

sourced to an outside partner.

As a non-exhaustible list of development needs, there is work to do in understanding how

the Azure network serving the VM on which the EVR's DW is deployed has been configured

(especially how on-prem and cloud resources network are integrated), which configured

SSIS packages serve, which reports, what the applied data transformations are, and partially

also what the used data sources for every pipeline are.

Although most previously posited areas needing further documentation are reverse-engi-

neerable from the code or UI, this task still requires substantial work time and yields little

immediate business value. The current lack of documentation entails the following corollar-

ies:

1) The situation increases the vendor lock-in risk towards the current business intelli-

gence development partner, as the new partner would need to endure substantial

sunken costs in unpacking the currently implemented setup.

2) The reusability of already developed data pipelines and cleaned data sources, as well

as the implementation of more complex data pipelines based on the current EVR's

DW setup, needs to be improved.

3) Migration to a more up-to-date DW or data lake platform and already implemented

code reuse is made more complicated (and costly).

26

4) A loose and non-documented setup and deployment configuration is a security risk.

Of note, the currently outlined critique does not mean that the code in EVR's current DW is

defective or of low quality.

The situation with documentation is similar for analytic data flows, in which the source

systems perform data extraction, cleaning and aggregation steps. For example, the complex

and monolithic codebase of VJS's STATISTIKA_AGENT schema needs to be more thor-

oughly documented. Furthermore, due to time pressure and high workload, the corner cases

are often solved by ad-hoc code modifications, mostly left undocumented.

Further area in need of development is that the current EVR's DW lacks some defining fea-

tures of classical DW (PRD3). The cleaned analytic data is versioned and permanently saved

only in VJS's analysis schema. EVR's DW re-computes data extractions and, if needed,

transformations at least nightly across the whole history of input datasets. This architectural

pattern might become a bottleneck in future data analysis scenarios where DW must meet

the requirement to be able to run computationally more costly extractions and transfor-

mations. Iterative data mining based on log data is an example of such a computationally

expensive scenario. Similarly, the current EVR's DW solution has yet to provide a readily

usable way to manage datasets and metadata, e.g. information about business-relevant keys

and master data. Making current EVR's DW stateful, i.e., able to permanently store data,

would require re-engineering already implemented data pipelines (SSIS packages) and set-

ting up the scheduled backup of the MS SQL instance.

Concerningly, currently implemented analytic solutions are fragmented and lack overarch-

ing data architecture (PRD4). As the main output of EVR's DW is the Power BI-based

reporting, and the data is not permanently stored, the general data model of warehousing

data (e.g. choice between Inmon, Data Vault 2.0 or Kimball) has yet to be agreed upon and

implemented.

Notably, there needs to be more overall observability in analytic data flows across its com-

plete cycle from source data to reporting. This problem is especially acute for analytic data

flows where transformations occur across different systems, which mostly impedes debug-

ging. For example, EVR's DW uses highly pre-aggregated VJS data, but EVR's DW devel-

opers do not have direct access to VJS's analysis schema. Detailed logging information, in

conjunction with the observability of data pipelines, is accessible only through the database-

specific interface. In the case of data pipelines that combine data aggregation operations by

the source system and EVR's DW, there is no single source for logging and observability.

As noted earlier, the locus of data transformations and methods differ depending on the data

source. Of note is the current overuse of Power BI's low-code data transformation utility

PowerQuery, which might hinder the future reusability and refactorability of already created

high-quality reports. PowerQuery is most suited for reports that are created on a self-serve

basis. Centralised reports, created as data products, would benefit from having DW engi-

neers prepare the complete domain-specific ready-to-use datasets, as is the case for the

datamart DW design pattern, which does not require extensive transformations on behalf of

the reporting tool. Data transformations carried out in Python or SQL code are more main-

tainable in the long term than automatic M code generated by Power BI's drag-and-

drop/point-and-click interface. To buttress the argument against PowerQuery, Power BI can

almost entirely automatically infer suitable data models, including relationships between

tables, through its direct query interface.

The current technological stack is complicated to extend and partially technologically

amortised (PRD5). Monolithic relational database engines (MS SQL and Oracle DB) and

27

Power BI's PowerQuery run most of the analytic data transformations. For VJS, Oracle

scheduled stored procedures, and for EVR's DW, SSIS, now often douted as legacy tech-

nology, orchestrate data transformation operations. Sharepoint data is mostly transformed

using Power BI's PowerQuery.

The current technological stack is most apt for relational and tabular data. Extending the

current setup to ingest object-oriented or API-sourced data would take much more work

than would be the case when using more modern infrastructure. Similarly, combining dif-

ferent types of data sources in the same data pipeline is more challenging.

Furthermore, extending the current setup with third-party data analysis packages would be

complex. Therefore, the current setup is more restrictive than modern data transformation

environments, such as Databricks notebooks, which allow more flexibility in configuring

and versioning the runtime environment (including installed packages) and combining SQL-

syntax-based data transformations and custom Python analysis packages. The current level

of reporting deals with arithmetic averages, sums and other group-based aggregates, for

which the current setup is sufficient. However, extending the current scope with simple sta-

tistical analysis (e.g. simple regression model) or machine learning (e.g. random-forest-

based anomaly detection model) would be complicated.

For future scalability, it is essential to note that both MS SQL and Oracle DB instances run

on single-node deployment instances.

Generally it seems that the currently implemented analytic solutions are monolithic and

hard to maintain (PRD6). VJS's analytic schema contains multiple procedures that are sev-

eral thousand to more than nine thousand lines long, stored as a single file. The code is

procedural and could be further decomposed by the concerns and parameterized, which

would improve the maintainability of the code. The versioning of the data transformation

algorithms has been realised in the code through version-specific conditional branching.

Therefore, large proportions of the code are left dormant if the latest version of the algorithm

runs. Furthermore, there is no straightforward way to concurrently deploy multiple versions

of the same data pipeline. Debugging of the code is complex, as the code cannot be isolated

and executed on the local machine, as with more modern DataOps-focused data engineering

tools (e.g. Dagster, containerized deployments).

Relatedly to PRD1-PRD6, the currently implemented analytic solutions are challenging to

reuse/refactor (PRD7). The previously outlined development needs of the current setup in

concert lead to the situation in which many of the current setup's main building blocks are

challenging to reuse in the future, as well as more modern EVR's analytic data management

platform. The interlude is especially noticeable in steps dealing with data transformations

and storage. The current setup has been developed piecemeal without pre-specifying the

overarching analytic data management architecture. In this respect, the EVR's current DW

is more akin to the interface machine, which ensures data access to the Power BI reporting

layer.

28

4 Outline of TO-BE State of Analytic Data Management and Business
Intelligence in EVR

In this chapter, the thesis delves deeper into the theoretical concepts discussed in the second

chapter. The following chapter expands on the previously described central concepts of data

engineering and brings them to life with specific, real-world technology examples and al-

ternatives. This analysis is organised through the lens of decision dimensions for the TO-

BE architecture.

The chapter culminates with the presentation of the TO-BE architecture of EVR's analytic

data management. Here, the thesis takes stock of the detailed description of the EVR's cur-

rent analytic data management system and data sources presented in the previous chapter.

The TO-BE architecture argues for a flexible hybrid between on-prem/IasS and SaaS solu-

tions with the exact balance between on-prem/IasS and SaaS, depending on the type and

complexity of source data.

4.1 Main Decision Dimensions and Technology Alternatives for Future
Architecture

The following section of the work gives an overview of the categories of choices that influ-

ence the future of EVR's analytic data architecture. The thesis outlines the categories to

create an organising frame for selecting critical technologies for the final TO-BE architec-

ture from the overwhelming variety of technologies available, both open source and com-

mercial. The work defines the extremes for each decision dimension with the corresponding

technology candidate examples. In most cases, there is no categorical best choice for the

individual decision latitude category. Instead, the rationale of this categorization exercise is

to exemplify trade-offs between technologies, knowledge of which would help create TO-

BE architecture that is more coherent across its components and unavoidable trade-offs.

Decision dimension 1: Amount of raw data moved between live systems and TO-BE analytic

data management platform13. The first extreme case would be ingesting and permanently

storing/mirroring almost all the relational tables from the live systems to the future data

warehouse/data lake/data lakehouse staging area. As an upshot for this architectural choice,

the future data platform should handle all the domain object derivation logic from raw

source systems' tables to emanate analytic quality tables that are well documented, business-

domain oriented, integrated across sources, non-volatile and timestamped. As an additional

functionality, such a setup would act as an incremental backup for the live system in case of

batch-based data ingestion or live backup if the future platform uses change data capture

(CDC). The simplest way to realise the previously described setup would be a classical DW

realised on the row or column/row combined DB engine, such as Oracle DB [35] or MS

SQL platform [36, 37]

The other extreme of the data movement decision dimension would be the usage of data

federation. In the later case, the centralised query engine would interface structured, primar-

ily relational, data across live systems, ingest the data via queries while keeping it in the

process memory, transform the data and load the resulting warehousing quality extracted

13 The first dimension of decision-making is becoming increasingly uncertain in the frontier of data engineer-

ing technologies. Apache Doris is an open-source technology that provides federation and ETL data ware-

house/ELT data lake-like capabilities on a single unified platform [33]. In the world of MySQL, TitaniumDB

is a neo-SQL technology that offers OLTP and semi-automatically derived OLAP capabilities on the same

database platform [34]. This means the TitaniumDB platform can perform analytic workloads and serve as the

backend data tier for production systems.

29

and cleaned analytic data to the permanent analytic storage. With this technology, the locus

of analytic domain object derivation from transactional live systems' data is open; it can be

accomplishable at the federation level or by the live system. Examples of open-source tech-

nologies that can be used to realise federation-based architecture are Trino [38, 39], Presto

[40], and DuckDB [41].

Decision dimension 2: Architecture of schema-on-write or schema-on-read. This decision

dimension also describes a dichotomy between the ETL and ELT pattern of building an

analytic data management system in its idealised form.

To recap, schema-on-write extreme is an approach that assumes the ETL procedural model

in building data pipelines. In this approach, the target data schema for data loading is pre-

defined, and transformation operations based on the loaded data must create an output that

complies with the target data schema. This approach is commonly used to build classical

data warehouses and is best suited for stable and structured data sources. However, handling

schema drifts can become quite complex, especially if the data warehouse is technically

realised on a row-based relational database [20, 35, 42]. If the data size is large and the

analytics demand real-time dimensionalised cross-aggregations, columnar OLAP-optimised

databases should be preferred. Examples of the technologies suitable for the former are

open-source technologies such as Apache Druid [43] and Apache Pinot [44] or commercial

offerings such as Clickhouse [45].

The process of schema-on-read assumes an ELT procedural model for building data pipe-

lines, which is the guiding principle for constructing data lakes and also effectively used on

conventional and cloud based data warehouses as a basis for building scalable staging layers

(see chapter two for details). In schema-on-read, predefined schema compliance is not re-

quired during data loading.

State-of-the-art technologies and design patterns, grouped under the umbrella term data

lakehouse, aim to enhance the ELT approach by incorporating the strengths of the ETL

model. In a data lakehouse, much like ELT, all kinds of raw data, including both structured

and unstructured data, are stored centrally in object storage (for example, Azure blob storage

and Amazon S3 from commercial offerings or open-source S3-compliant option Minio S3).

The data is then transformed and structured using high-speed parallelized computing en-

gines such as Apache Spark [22], DASK [46] or DuckDB [41], Trino [38, 39] (all open

source) or Teradata [47] (closed source). This approach usually follows the Apache medal-

lion architecture to produce domain-specific SQL-queriable table output sets. The current

trend is that database query engines and distributed computing engines are increasingly be-

coming the interfaces for large-scale object storage, i.e the classical monolithic database is

being unbundled [48, 49].

The data lakehouse storage tier often relies on a write-ahead transaction log-based architec-

ture that operates as columnar data storage and supports ACID transactions. Technically, it

is realised as a write-ahead log that tracks all atomic data changes, usually stored in parquet

or JSON format. Each transaction log set for a particular table is accompanied by an ex-

panding metadata set that stores schema, partitioning, and physical log data location infor-

mation. Popular technology options for implementing this architecture include Apache Ice-

berg (initially developed by Netflix) [50], Apache Hudi (initially developed by Uber) [51],

and the widely used Databricks-associated open-source Delta lake [19, 52]. Being based on

transactional log data has the inherent benefit of providing out-of-the-box versioning and

time-travel functionality.

30

For Data Lakehouse (or Delta Lakehouse if the storage tier is realised based on Delta table

technology), Databricks [8] (deployable on all big cloud platforms) and recent entrant Mi-

crosoft Fabric [6] (deployed on Azure) are the dominant SaaS offerings that combine

Apache Spark-based compute and Delta tables-based storage tier.14 The most common min-

imal open source on-prem deployment pattern to create a delta lakehouse is to use docker-

ised Hive metastore instance [53] with MySQL (MariaDB) or Postgres-based Hive metas-

tore storage, Minio S3 [54] object storage (for parquet files) and Spark [22] or Trino [38,

39] compute cluster. For a complete toy-example of creating a local delta lakehouse based

on open-source technologies see also [55].

Decision dimension 3: Selecting a deployment model, specifically between on-prem/IaaS

and PaaS/SaaS cloud options. It is important to note that these options are not mutually

exclusive. On one end, many open-source or freemium data engineering tools allow free

self-hosting with the option to upgrade to a paid managed deployment. Some examples of

these relevant technologies that are also used in this thesis include Minio S3 [54] and Dag-

ster [56]. Conversely, some of the most popular SaaS platforms are built on open-source

technologies. For instance, Microsoft's Fabric data lakehouse platform utilises Apache

Spark and Delta table open-source technologies [57].

One of the key advantages of PaaS/SaaS solutions, like complete data lakehouse offerings,

such as Databricks and Microsoft's Fabric or orchestration and data movement-focused

tools, such as Informatica [58] and Matillion [59], is the ease and security of getting the

platform up and running. With built-in monitoring and no maintenance burden on the client

company's DevOps team, it is a low-barrier way to introduce the technology into the com-

pany's tech stack. Additionally, these standardised platforms, supported by major tech com-

panies, provide access to corporate training and upskilling initiatives. This results in a larger

pool of potential external development partners and a more straightforward path to building

in-house competencies.

The main drawbacks of the PaaS/SaaS data lakehouse platforms are twofold. They relate to

high costs (see Appendix IV for short analysis of MS Fabric’s costs) and complexity in

handling custom codebases and enforcing good programming practices.

To achieve the reliability and scalability comparable to cloud SaaS solutions with IaaS or

on-prem deployment, companies must possess strong in-house DevOps skills and resources

for. However, if a company already follows the infrastructure as a code practice and can

deploy containerized software on a Kubernetes cluster, supporting modern DataOps stack

should be feasible. Most open-source data engineering tools can run on IaaS or on-prem

14 The MS Fabric suite also boasts a data warehouse storage module, which utilises the Synapse Data Ware-

house SQL engine to facilitate the querying and transforming of data within Delta Lake (OneLake). This

module offers full transactional capabilities and support for T-SQL flavour data definition language (DDL)

and data manipulation language (DML) queries. However, it is important to note that only T-SQL can insert

and update data within the data warehouse storage layer, while Spark and T-SQL can be used for querying.

Additionally, it is worth mentioning that the underlying storage for this type of data warehouse is not an MS

SQL server instance but rather still a set of delta tables. As a result, while it's technically classified as a data

warehouse, it still serves as a partial data lakehouse implementation for teams with a skillset focused on tradi-

tional data warehouse platforms based on MS SQL (T-SQL dialect). The most significant functional difference

between Fabric's data warehouse and data lakehouse is the former's support for multi-table transactions via the

Synapse Data Warehouse SQL engine and the latter's support for non-relational data. Specifically, the archi-

tecture of the Fabric data warehouse is akin to the hypothetical situation of a Trino compute cluster running

against Delta Lake, utilizing Hive metastore and S3 object storage. Further, as a storage tier, Microsoft Fabric

also supports proprietary event- and streaming-focused databases called Eventhouse, which is queriable

through the KQL dialect. The current thesis omits this novel technology branch [6].

31

Kubernetes clusters out of the box (e.g. [60]). Hybrid models are commonly used in large

corporate settings, where SaaS solutions are implemented downstream of existing DW or

data lake instances to enhance pre-reporting BI capabilities. In large corporate settings, the

bulk of the custom codebase is likely deployed on-prem or on top of IaaS as pre-existing

components, i.e. upstream from the SaaS platform. This approach lessens the main draw-

backs of using a pure-play SaaS solution: costs and handling codebase complexity.

Decision dimension 4: Choosing between the traditional coding paradigm and the no-

code/low-code approach. Supporting the leaning towards the latter is a fact that a significant

portion of real-world tasks related to the extraction and movement of raw data are highly

standardised. For instance, setting up a change data capture (CDC) stream from a relational

database that saves atomic data changes to object storage; retrieving analytical business do-

main object data from popular services through API endpoints such as Salesforce (e.g. list

of active campaigns), Jira (e.g. open projects and their progress), or Pipedrive (sales activity

per client); or one-on-one copying relational tables from the live system to the staging area

of the data warehouse. Writing and maintaining a custom codebase to accomplish previously

described one-step data extraction and movement tasks would waste resources as other de-

velopers have already solved those problems in a reusable manner. All the previous tasks

are accomplishable via a simple two-step GUI form-based workflow using an open-source

Airbyte [61] or commercial Matillion [59] solution.

Deciding between low-code/no-code and traditional coding paradigms becomes more com-

plex if the task assumes multistep and extensive custom data extraction or transformation

operations. On the low-code/no-code side of things, not needing a programming background

lessens the barrier of entry for the broader audience of the company's workforce. On the

other hand, using GUI-based no-code/low-code tools might lead to problems with the long-

term maintainability and refactorability of the data pipelines; as an example, see the discus-

sion about the merits and drawbacks of heavily relying on PowerQuery for data transfor-

mations in chapter three.

Furthermore, on the higher level of problem complexity, even traditional procedural coding

that is carried in a single or chained Jupyter notebooks might not suffice. Therefore, enforc-

ing good programming practices is especially important if the analytics data management

platform should, even partially, run the operations needed to extract analytic domain objects

from the source system's transactional tables. As the example from VJS's (see chapter three

of the thesis) showed, such code blocks can become quite long, i.e. thousands of lines, and

the long-term maintainability of such codebase can become complex. Thus, adopting a

standard project structure that will help decompose concerns into smaller testable code

chunks is essential. Notebook and individual Python script-based data pipelines, which are

the primary way to realise pipeline as a code on SaaS platforms, carry the risk of becoming

another monolith. In the notebook context, implementing the proper coding etiquette takes

extra effort. Empirically, the inclination of notebook medium to lead to a hard-to-maintain

codebase is corroborated by the finding of Pimentel and colleagues [62] by which only 25%

of Jupyter notebooks accessible in GitHub are reproducible. For possible remedies for this

problem, see the subsequent article from the same group [63].

Decision dimension 5: When considering EVR's future analytic data architecture, it is es-

sential to consider the IT and business cooperation model in analytic data management.

This decision includes deciding between a centralised or data mesh [26] management model,

which will define roles and responsibilities. While technical architecture is crucial, choosing

the suitable data model (i.e. Data Vault 2.0, Inmon or Kimball) for storing analytic data

depends mainly on domain specificity and the intended audience. Similarly, organising

32

master and metadata management and assigning data owner roles depends on the level of

expected involvement from the business side. Ultimately, the tools chosen for these tasks

must reflect the desired (or practically achievable) level of collaboration between IT and

business teams.

When managing analytic data in a centralised model, commonly used in traditional data

warehousing, IT takes on the responsibility of providing comprehensive end-to-end analytic

data provisioning service. Specifically, IT teams handle everything from obtaining business

domain objects from transactional data in production systems to implementing data pipe-

lines, managing meta and master data, and ultimately creating reports and organising data

output through data marts. However, Dehgani [26] has outlined several challenges associ-

ated with this (corporate) approach:

1) When an external party, like the data warehouse development team, is responsible

for building ETL pipelines on top of a live system's transactional tables after the

business IT systems are already engineered and developed; the development process

can become slow and resource-intensive. The situation arises because the data ware-

house dev team is directly dependent on the ever-changing source data structure,

which means that debugging and accommodating upstream changes can take up a

significant amount of their resources. Essentially, the data warehouse acts as a partial

anticorruption [24, 28] layer between the constantly changing IT systems and the

stable warehouse data tier, similar to the role of the VJS's STATISTIKA_AGENT

schema discussed earlier.

2) Deriving analytic data from operational data and the trade-offs and assumptions in

obtaining the final ordered results can be complex and challenging for those outside

the data warehouse development team. The problem is further compounded by the

technical complexity of a monolithic data warehouse, which can obscure the data

extraction and transformation logic. As a result, the data warehouse team may be-

come the de facto owner and expert of the analytic data. Furthermore, the develop-

ment process may experience a slow-down due to the need for the dev team to re-

verse-engineer all the specifics of domain logic before introducing new areas and

functionalities to the central provisioning analytic data.

3) The end user, who exhibits the highest domain knowledge of the analytic data, is

relegated to the passive consumer of the cleaned data and reports.

While the centralised approach may have drawbacks, it still has practical applications, es-

pecially for large corporate settings. It is essential to consider the resources required to im-

plement the full-service model carefully. Additionally, many organisations create new roles,

like data stewards, to facilitate understanding between the data warehouse team and busi-

ness-side data consumers. Furthermore, anticipating the data warehouse's expected input

during the requirements engineering phase, documenting it, and maintaining its stability can

mitigate the risks associated with the centralised approach.

The innovative data mesh approach [26] differs from the traditional centralised method of

analysing datasets in a linear fashion. Instead, the data mesh model proposes that large and

intricate datasets should be divided into decentralised data domains and managed by self-

governing cross-functional teams. These teams consist of individuals with domain expertise

and essential IT skills who should be aligned with specific business or functional areas to

develop more in-depth expertise and ownership over their data. The fundamental concept of

data mesh is to treat data as a product. Product-minded thinking means that domain-specific

datasets should be created in a way that seeks to provide value for other domains, ensuring

that published data is independently discoverable, usable, and combinable by other teams

33

within their domain with minimal effort. Additionally, domain-specific datasets should have

explicitly stated quality standards and service-level agreements (SLAs), typically formu-

lated as data contracts (for a practical template of a data contract, see [64]).

To illustrate the technological shift brought about by the data mesh approach, one could

draw a comparison to the domain-driven microservices architecture design that revolution-

ised complex monolithic software [24, 26]. This analogy has multiple compelling connota-

tions. Firstly, data teams should learn from the microservices world how to manage the data

schema drift, i.e. by adopting the publishing model of analytic data with the possibility of

accommodating data structure change by creating an alternate version of the published da-

tasets. Secondly, like microservices architecture, data mesh can only succeed if the autono-

mous teams implementing and servicing their domain-bounded data publishing micro-

services are technologically and architecturally empowered to work independently without

being strongly coupled to upstream dependencies.

Microsoft's latest SaaS data engineering and reporting solution, Fabric, is an excellent ex-

ample of this. By promising to seamlessly integrate the Delta Lake platform, similar to Data-

bricks, with pre-existing low or no-code data extraction and transformation capabilities

(now merged under DataFlow Gen2) from Power BI and Data Factory, as well as reporting

functionalities from Power BI, Fabric has emerged as a first big platform that tries techno-

logically operationalize the complete data mesh concept. Of note are the direct references

to the data mesh concept in Fabric's documentation [65, 66], which again define Fabric's

role as an enabler of company-wide data culture by making data mesh a practical possibility.

All in all, Fabric's most advertised standout feature is not a specific new narrow technology

or capability but rather the amalgamation of various technologies onto one platform that

should allow domain-oriented teams to create and utilise analytic data as a product. The new

platform has significantly invested in low/no code tools and a shared visual interface to

foster a collaborative development environment across users with differing technical com-

petencies. In detail, the new platform tries to cater to professional report developers using

Power BI, data engineers utilising the Spark notebook interface and Spark job definitions,

and self-serve users, also known as citizen developers by Microsoft, who rely on Power BI

reporting and PowerQuery-based data transformations.

4.2 The Proposed Technical Architecture for EVR's TO-BE Analytic Data
Management System

This thesis section outlines the proposed TO-BE state for analytic data management in EVR.

First, a visual representation of the general architecture (see Figure 7) and a brief overview

of its key components is offered. Additionally, the proposed architecture is exemplified

through potential implementation use cases, each with varying levels of complexity, all of

which are based on the TO-BE architecture.

The fundamental tenet of the proposed architecture is the pivotal role assigned to Microsoft's

new SaaS Delta Lakehouse Fabric. At the time of writing this thesis, EVR is preparing a

proof-of-concept study in collaboration with Microsoft's cloud services partner company to

evaluate the compatibility of Microsoft Fabric with EVR's business needs. Given that Power

BI is tightly integrated with Microsoft Fabric, it is the natural first choice for a technology

trial, as the current EVR's analytic data management and reporting system has been devel-

oped around this tool (refer to chapter three for further information). Furthermore, the prac-

tical use cases of the thesis will be used as the basis for the proof-of-concept study.

34

Therefore, TO-BE architecture delves into integrating Fabric with existing on-premises data

sources and solutions and the optimal balance between Fabric and other data engineering-

focused on-premises or cloud technologies. It aims to provide a structured analysis of these

open questions to aid in selecting the most suitable capabilities from Fabric's total offering.

Additionally, the TO-BE architecture advanced by the thesis explores ways to enhance Mi-

crosoft's SaaS offering with open-source technologies that serve as the integration middle

layer between Fabric and on-prem business IT systems. It is worth noting that since the

initial public preview of Fabric in the summer of 2023, Microsoft has revamped and changed

its offering quite a bit, with features being added and removed. Therefore, it is essential to

remember that the current way of incorporating Fabric and its capabilities in the TO-BE

architecture is based on the form of the Fabric platform at the time of writing the thesis.

In the larger context, the introduction of Fabric will probably result in a gradual phase-out

of Microsoft's previous “all-in-one” data integration solution, Azure's Synapse Analytics,

which may come as an unwelcome surprise for companies who have invested in building

their analytic data management system using this platform. Thus, incorporating additional

technologies and utilising a hybrid deployment model alongside Microsoft's solution pro-

vides the welcomed benefit of reducing the risk of vendor lock-in by making the entire ar-

chitecture more flexible for potential extension with competing alternatives. One example

is the TO-BE architecture's ability to integrate Amazon EMR's Spark compute cluster (via

Dagster) as an option with a more affordable and adaptable per-time-used pricing structure,

as opposed to Fabric's costly and inflexible upfront pricing model. In other words, the hy-

pothetical Amazon EMR's usage showcases the usefulness of preserving a certain level of

on-premises or IaaS infrastructure in one's configuration, which retains the liberty to select

tools from the deployment spectrum ranging from IaaS to SaaS.

35

Figure 7. Outline of the TO-BE analytic data management architecture.

Notes: Vertical purple lines denote the work handover points depending on the implemented IT-business cooperation model.

36

The proposed architecture is based on the premise that source data of varying complexity,

such as raw transactional data versus pre-cleaned and aggregated data, necessitates distinct

data pipelines that may also vary in terms of the technologies employed. Figure 7 categorises

EVR's data sources across six groups:

1) The first group includes simple tabular datasets with a limited number of tables and

no complex, multilevel depth relationship between them. These datasets can be

stored as Excel or CSV files on Microsoft's OneDrive or sourced from SharePoint

site's embedded tables.

2) The second group includes relational analytic data, which already contains analytic

domain objects that have been fetched from live transactional tables by the source

system. Further, as exemplified by the VJS's schema STATISTIKA_AGENT, the

domain objects can be pre-aggregated, e.g. by period and client. In the near future,

EVR's new traffic management system TTCMS, refactoring of infrastructure cost

calculations system (extension to VJS's STATISTIKA_AGENT) and the cloud ver-

sion of Dynamics 365 through Dataverse's tabular data stream will all produce sim-

ilar pre-ordered analytic domain objects data.

3) The third category comprises relational source data table sets that can be leveraged

to acquire analytic domain object data through straightforward joins and the SQL

query engine's built-in grouping and aggregation functions, which obviates the ne-

cessity of creating or using custom SQL procedures/functions from the source data-

base. Additionally, the table sets required to derive an analytic domain object with

its attributes are easily manageable, with a maximum size of 10-20 tables, mainly

limited to 3-7 tables.

4) The fourth category comprises data from API endpoints of cloud-based SaaS solu-

tions. In the case of EVR, Jira and Confluence are the most critical SaaS solutions,

which should provide operative analytic data output to EVR's delta lakehouse (Fab-

ric) and reporting (Power BI) layers.

5) Within the fifth category, the relational source data is comprised of transactional

tables that cannot be readily utilised to derive analytic domain objects via the SQL

query engine's native grouping and aggregation functions. Custom procedures

within the source system database must be employed to obtain the full analytical

domain objects, or a significant amount of custom programmatic logic must be de-

veloped. A prime example of the latter scenario is log data that necessitates algorith-

mic interpretation, such as aggregation and pattern matching, to acquire higher-order

log event cascades that carry business significance. As an illustrative instance, a train

passing through a level crossing involves a set of atomic events from various under-

lying technical systems, which must be algorithmically grouped together to obtain

the analytically meaningful train passthrough event.

6) The sixth category of source data encompasses unstructured or non-relational object

storage data. Similar to the last category, a considerable amount of custom program

logic, including parsing and fetching, is necessary to extract meaningful analytic

domain objects from this data.

Based on the input data, the architecture developed by the thesis proposes various interme-

diate processing layers between the source systems and the Fabric cloud platform. However,

the final Delta Lake (gold) storage and reporting layer is consistent across all six data

sources and is expected to be fully implemented on Fabric SaaS service. To elaborate, for

the final layer, which is identical for all six data sources, data is first imported from stag-

ing/landing tables. Then, on the Fabric platform, Spark Notebooks are used to transform the

data into cleaned and dimensionalised datasets, which are stored in domain-specific (e.g.

37

finance, infrastructure) gold layer delta lakes (i.e. collections of linked domain-specific delta

tables). These gold-layer Delta Lakes serve as the foundation for self-service data access,

analysis, and reporting and for centrally developed stateless and stateful reports. As a re-

minder, statefulness in the context of reports implies that reports must support basic CRUD

operations for a set of analysis parameters.

It is worth noting that the level of complexity in the final Fabric-based layer of transfor-

mations is variable based on the source data. Further, this deliberate variability in imple-

menting the middle layer between the source data system and the Fabric platform allows

flexibility in adjusting the costs of the overall architecture. For example, tasks that require

more data and computational power to extract analytic domain objects from transactional

data can be accomplished on less expensive on-prem/IaaS or PaaS infrastructure. Mean-

while, computationally cheaper transformations on analytic data can stay reserved for the

pricier SaaS-level solution. Overall, the architecture developed by the thesis allows attenu-

ating the maximum complexity before the costly reporting gold layer storage layer.

The first data category (refer to nomenclature in the previous page) requires no preliminary

on-prem/IaaS preparatory layer, which involves straightforward tabular data stored on Mi-

crosoft's cloud platforms (SharePoint or Office 365 OneDrive). Technically, Fabric can pull

this data source type directly into staging delta tables via Dataflow Gen 2 in-built connect-

ors, followed by the shared Fabric-based gold storage and reporting layers described earlier

for all source datatypes. Semantically, most simple tabular datasets stored in SharePoint or

OneDrive already describe analytic domain objects. Therefore, there is no need to imple-

ment steps for extracting analytic domain data objects. An example of this pattern in action

would be KPI indicators stored in embedded tables on a SharePoint site.

When the source system provides clearly defined analytic domain objects, as is the case for

the second category, a preparatory layer is unnecessary, just like in the first category. Batch

read jobs (using the pull architectural pattern) read data into staging Delta Tables for inges-

tion into the Fabric platform using Spark Notebooks. The final stages of the data pipeline

follow the same shared pattern as before. For example, pre-aggregated data tables from

VJS's STATISTIKA_AGENT schema needed to calculate infrastructure usage fees only

require a minimal transformation (if any) to perform as a suitable data source for the report-

ing layer. Therefore, the most optimal solution is sourcing the data with the same frequency

as the source system produces it (once per day) by initiating pull queries from Fabric.

To enable the analysis of domain objects and their relevant characteristics, the third and

fourth categories of data sources rely on a select number of transactional tables from rapidly

evolving source systems. In order to achieve a near-real-time reflection of the source sys-

tem's state within Fabric's staging tables, the proposed architecture utilises a change data

capture (CDC) or mirroring technology pattern. Fabric's data mirroring functionality is used

for relational data sources. For the fifth data category (SaaS System's API endpoints), data

mirroring is carried out by the no-code open-source tool Airbyte's minimised Python library

PyAribyte that is orchestrated by Dagster [67].

The previously described data extraction patterns constitute a push architectural pattern, as

changes in the source system are automatically propagated to the target (Fabric staging Delta

Tables) through the streaming link. For this middle layer configuration, Fabric's Spark note-

books extract the analytic domain objects from the source system's tables and, per the stand-

ardised following, store them in the gold layer Delta Tables. Of note, as outlined above in

the description of data sources, the delegation of extracting analytic domain objects from

transactional tables to the Fabric should be only under the constraint of analytic domain

38

objects being extractable through simple(r) SQL joins and ISO SQL-standard group- and

aggregate functions, from not overly excessive table set. The illustrative use case would be

reporting on work permit issuance and statuses based on the data stored in the PONY system

(small module in PONY). As PONY's data model is near Inmon and most of the data-logical

operations performed consist of simple CRUD (create, read, update, delete) transactions,

live-mirroring those tables to the Fabric via structured streaming link is reasonable. Obtain-

ing reporting source data from those mirrored tables would be a straightforward task.

For the last two categories of data (unstructured or object data and complex relational trans-

actional data or immutable atomic log data) that demand intricate and resource-intensive

multistep logic to extract analytic domain objects, the TO-BE architecture recommends con-

structing pipelines with the assistance of Dagster. Dagster is a data orchestration tool that

follows a development and project structure akin to conventional software development

practices, as opposed to the definition of data pipelines using notebooks. Therefore, Dagster

plays a unique and non-redundant role in TO-BE architecture compared to Fabric's Spark

notebook-based development interface. An excellent use case for the domain object extrac-

tion layer described earlier would be generating reports based on the Soviet statistical sys-

tem. To provide some context, EVR must operate two separate statistical reporting systems.

The first is the so-called Russian system implemented under the Council for Railway

Transport of the Commonwealth Member States (CSZT), which covers Soviet 1520mm

track gauge railways from the Baltic States, Russia, Poland, and other countries. The second

is an internal system similar to the European reporting system. These two systems are largely

incompatible; even the main domain events (such as train entity reckoning) have differing

implementations. The Soviet or CSZT reporting system relies on VJS's UI views, which are

supported by procedures and queries executed directly, i.e. without STATIS-

TIKA_AGENT-like standardising middle layer, against VJS's internal transactional tables

and procedures. Developing a stateful domain object middle layer similar to STATIS-

TIKA_AGENT for select Soviet system reporting views would be a beneficial application

to implement through Dagster.

The middle layer of the TO-BE architecture, consisting of Minio S3, Dagster, Airbyte (either

as Dagster orchestrated Python package or standalone installation) and Postgres, and basic

CRUD reporting capabilities using Streamlit, can be easily deployed on-prem or through

IaaS with Docker. This option allows deployment on either a single node or a Kubernetes

cluster.

Additionally, effective metadata management is a crucial component of the TO-BE archi-

tecture that can help bridge gaps in capability, such as improving documentation and data

discoverability, as outlined in Table 1.0. For the cloud, i.e. Fabric, side of the architecture,

data lineage and metadata management is already built into the SaaS offering. For compre-

hensive data lineage management across the source data layer and middle layers, which

encompass ingestion and analytic domain object extraction, TO-BE architecture recom-

mends utilising the open-source tool OpenMetadata, which is a user-friendly, centralised

repository for managing metadata [68]. It provides a UI-based environment to automatically

derive, store and update information about data assets, including their lineage and attributes.

Importantly, OpenMetadata enables management and cataloguing of relational data assets

at the table, column, and stored procedures level. It also allows users to assign data owner

roles and create personalised data categorization descriptive metadata (data dictionary).

The implementation of OpenMetadata has the potential to solve multiple challenges. Firstly,

it enables the documentation of dependencies between transactional data in the source sys-

tem and the analytic ingestion level, simplifying identifying and resolving issues related to

39

upstream dependencies. Additionally, an OpenMetadata-like environment can facilitate the

development and maintenance of source systems to improve documentation coverage for

data assets, resulting in greater data discoverability and more swift extraction of analytic

data from transactional sources. Appendix II of the thesis presents an initial TO-BE blue-

print for metadata management and data product-based IT-business cooperation pattern.

40

5 Practical Use Cases Based on Selected Components of TO-BE Ar-
chitecture

The chapter presents a detailed walkthrough of implemented two end-to-end use cases based

on TO-BE architecture: the first case involves the comprehensive analysis of row-level data

from purchase invoice XML files. This analysis includes data fetching, cleaning, dimen-

sional normalisation to a star schema, data enrichment, and reporting from a Postgres-based

data warehouse. The second use case revolves around the end-to-end analysis of railway

level crossing log data, which involves handling unordered source data through algorithmic

data mining and reporting. Both use cases are implemented following a dockerised and ver-

sion-controlled deployment model.

The reason behind choosing those two particular use cases is that the current EVR’s analytic

solutions have the least amount of previous experience in dealing with unstructured data

sources and the analytic data ingestion and domain object extraction layer is technically the

most complex (refer to Figure 7) for those two source data types. Thus, the decision was

made to trial out the new architecture on those two analytic areas. Further, automatic anal-

ysis of log data and its integration into business processes is still a relatively nascent devel-

opment for the company. Its business potential is emphasised, particularly in improving

maintenance schedules and overall railway safety. While the current Power BI-based ana-

lytics solution has successfully addressed reporting challenges based on pre-aggregated or

narrower datasets with low data volumes and liberal update schedules (predominantly once

a day), the decision to trial the proof of concept on newer and less familiar datasets is a

riskier proposition. Nonetheless, the potential for in-house technological competency build-

ing justifies this approach.

The code developed by the author is available at [69].

5.1 Deployment Context of Implemented Practical Use Cases

Considering that the data pipelines operate on live data within the company's access net-

work, thinking through deployment networking, security, and authentication was para-

mount. The VM running the staging server is deployed behind the firewall (i.e., no ports

open to the outside world), has a static IP address, and internally mapped DNS record. Fur-

ther, the deployment context was sandboxed through custom-rules-based VLAN, limiting

its access only to needed source IPs and external software repositories. Additional network-

ing rules, e.g., the decision to which Docker container ports to expose outside of the host

machine and which ports to keep exposed only at the host machine's host level, were made

at the level of Docker-compose configuration parameters.

Regarding the software, the staging server runs Oracle (CentoOS) Linux [70] with yum

package manager. Deployment was carried out in a single-node context by setting up the

Docker engine [71] with the Docker-compose plugin [72]. Figure 8 describes the deploy-

ment context in which both POC use cases were realised. Firstly, of importance, in terms of

the last figure, is the general network architecture of the setup, which also includes signal-

ling patterns between Dragster containers and source data resources. Secondly, Figure 8

illustrates the role of four Docker containers that both of the use-case depend on:

41

1) Dagster daemon container - plays a central role in a Dagster deployment, especially

in container-based orchestration systems like Docker or Kubernetes. This container

is responsible for executing sensors and schedules, managing run queues and moni-

toring run execution. Of note is the possibility of running Dagster daemon, Dagster

UI, and working code in the same container by creating a Python virtual environment

(.venv) runtime for Dagster. This pattern is often used for local development, which

shows Dagster’s flexibility of not being rigidly dependent on deployment infrastruc-

ture. However, for more complex use cases, such as realised by the thesis, it is rec-

ommended to use a multi-container setup (Dagster daemon, Dagster UI, storage and

one or more worker deployment containers), which helps in discernment of concerns,

code maintainability and future scalability.

2) Dagster dagit (UI container) - this container runs Dagster webserver, which provides

basic UI for the containerized deployment setup. Working code execution context

(worker or deployment containers) are triggered via gRPC-based remote process

calls. Worker container statuses are fed back to Dagit via API endpoint (e.g. deploy-

ment state or pipeline execution finished) or via queries to Dagster logs and metadata

containing database container.

3) Dagster logs and execution metadata storage container in the form of Postgres 14-

alpine Docker container - this container stores event logs, schedules and run storage

(i.e. metadata describing pipeline runs execution context). As most of the Dasgter

documentation and most often referenced example repos used Postgres 14 as an

Dasgter log storage layer, similar decisions was taken by the thesis.

4) Temporary data warehouse in the form of Postgres 16-alpine Docker container. This

container stores the data that is used as input to the realised reporting, Power BI

Desktop report for purchase e-invoices XMLs and Streamlit dashboard for level

crossing log data.

5) Minio S3 container – for object storage. This container is used to enhance the state-

fulness of data pipelines (see section 5.2 for details).

All the other elements (sources, outputs and other Docker containers) from the Figure 8 are

use-case specific and are thus described in the respective sections.

42

Figure 8. Deployment context.

43

5.2 End-to-end Row-level Analysis of Purchase Invoices from Raw XML-s

The initial use case pertains to fetch and enrich row-level data from purchase e-invoices

XML-s. In Estonia, suppliers are mandated to provision e-invoices [73], and the e-invoice

format has been standardised [74, 75]. Ordinarily, the e-invoices are transmitted from sup-

pliers to purchasers through an invoicing service provider (such as Finbite/Omniva) inter-

mediary, which also conducts the journalization of the e-invoices against the journal account

schema of the purchasing entity, utilising a blend of methods, both manual and automated.

EVR's e-invoices are received and consolidated onto an on-premises network drive that is

also responsible for managing additional attachments essential to the day-to-day operation

of EVR's Dynamics 365 enterprise resource planning system. These attachments may in-

clude photographs, XML files (such as messages from invoicing intermediaries detailing

the general account journaling of raw vendor-produced e-invoices), Word and Excel docu-

ments, and other related materials. Notably, all these documents are stored on the network

drive as serialised file blobs, bearing hash-based filenames and devoid of file extensions.

The initial technical obstacle is retrieving the e-invoice XMLs securely. Additionally, given

that the network drive has accumulated almost five years' worth of attachment history, the

retrieval process must be carried out without overburdening the VM-based server responsi-

ble for serving the on-prem network drive, which also serves the live system. This technical

challenge was addressed by implementing the following steps:

1) New Microsoft's ActiveDirectory's read-only user was created with access rights to

the network drive housing the D365's file attachments.

2) The SFTP Docker container was set up based on the atmoz/sftp [76] image, and the

D365's network drive was mounted to the SFTP container as an external volume.

3) The SFTP container was port-mapped to be exposed only to the address space of

Docker's host machine VM IP address to improve security.

4) Next, Dragster worker containers and Minio S3 object storage containers were set

up. In the Dagster worker container, two resources15 were generated by extending

the Dagster's base I/O class [78]. Firstly, pysftp [79] package-based I/O resource to

SFTP Docker container and secondly, minio python package-based [80] I/O resource

to Minio S3 object storage.

15 In Dagster, a resource is a configurable object that represents an external asset or service, such as a database

connection or a cloud storage client. Resources provide a way to encapsulate setup and teardown logic for

these external assets, making it easier to manage their lifecycle within your data pipelines. Thus, the asset

allows for abstracting away the details of connecting to and using these external services making the pipelines

more modular and reusable, as the same resource can be used across multiple pipelines or pipeline components

without needing to duplicate the connection logic. [77]

44

5) The first Dagster's asset16 get_files_to_parse was generated based on the previously

created resources. This asset first lists (name metadata, not files themselves) all the

files from the last three days (intra-asset configurable parameter) that are stored in

the D365 on-prem network drive. Secondly, it accesses JSON logs that are generated

during the pipeline activity to check if the serialised file blob is a valid e-invoice

XML. The Dagster asset generates a Python list containing the set difference of

available and already checked files. Importantly, to enhance the confidentiality of

the data handling, only files smaller than four megabytes are handled (configurable

intra-asset parameter), which reduces the load on the source data platform and par-

tially mitigates accessing files that contain non-XML confidential information (e.g.

sizable invoice related attachments).

6) Next, a Dagster data asset called get_new_XMLs is created to process a list of un-

checked new XMLs. This asset takes as input a list of unchecked new XMLs gener-

ated by the get_files_to_parse asset. To ensure that the XML is valid, a custom script

is used to parse the candidate serialised file blob as an XML. The script uses the

Python library lmlx [81] to parse the files and checks if the XML file is an instance

of an e-invoice through a simple xpath query. The files are accessed individually

through an SFTP-accessing resource class method call, while the read-in file is

stored in the Dagster worker node's memory. All the per-source file checks and valid

e-invoice XML file hits are logged to Minio S3 logging buckets. This prevents the

subsequent reruns of the data pipeline from carrying out redundant work, such as

checking already checked files. The get_files_to_parse asset generates a return dic-

tionary, with keys defined by the source file name and its values represented by

etree's UTF-8 encoded string dumps of the XML. Dumping parsed XML as a string

in the output is required, as Dagster cannot auto-pickle lmlx's etree-specific data

class.

The following major technical challenge is extracting row-level data from valid pur-

chase e-invoices XML-s and enriching the row-level data with relevant financial dimen-

sions. This technical challenge was addressed by implementing the following steps:

1) A Dagster data asset XML_to_results_df is created. Based on the custom script, this

asset tries to fetch the following values for each of the invoice lines from the valid

purchase XML-s:

a. Seller name.

b. Seller registration number.

c. Invoice number.

d. Invoice date.

e. Purchased item amount.

f. Item unit.

g. Description of the purchases item.

h. Price reduction (AddRate) rate.

i. Per item pierce (ItemPrice).

j. Item total (usually item amount times per item price).

16 In the context of Dagster, an asset represents a piece of data or a data-related computation. Assets in Dagster

manage how data is produced, state-managed, and monitored. Each asset is defined by the computation that

produces it, along with metadata that describes its dependencies on other assets, its output data type, and its

lineage. Dagster allows assets to be materialised - that is, physically saved or updated in a database, local drive

or data lake. Further, Dagster allows for automatic pickling of asset output (even if its base Python object like

dictionary or list or Pandas’ or Polars’ dataframe). [82]

45

k. Item’s EAN (European Article Number) number.

l. Seller’s product ID.

m. XML filename.

The script to retrieve row-level data from valid purchase XMLs is based on a com-

bination of xpath queries and Python dictionary data structure-based search. When

a XML tag is missing and cannot be found by the fetching algorithm, the script re-

turns a Missing Tag string value for the corresponding purchase e-invoice line. Sim-

ilarly, suppose there are multiple matches with differing values for the same tag pre-

sent in different XML hierarchy levels. In that case, the script returns a Multiple

Values string value for the corresponding purchase e-invoice line.

If an error occurs during the fetching process, the exception is captured and the cor-

responding XML file is registered in the Minio S3 bucket named xml-to-df-errors.

This follows an architectural pattern where problematic files are handled in a sepa-

rate data pipeline from the regular (happy) path described herein. However, the pipe-

line for resolving errors has yet to be implemented.

The data pipeline under consideration includes various assets, and among them, the

most troublesome one is the XML_to_results_df fetching step. This is because the

Estonian e-invoice XML standard [75] is quite liberal, and creating a universally

applicable algorithm within the confines of the current thesis has proven to be nearly

impossible, given that vendors tend to disregard the standard to some extent. The

most common errors include storing information that should be contained in an XML

tag as an XML tag attribute or in an unrelated generic information content tag, using

custom fields, and saving inappropriate information in XML tags (e.g., providing

buyer contact information as item entry). To address these issues, vendor-specific

fetching rules will need to be developed in the future.

The data XML_to_results_df asset returns a dictionary whose keys are defined by

purchase invoice XML names and values by Pandas data frames containing the

fetched rows of the corresponding purchase e-invoice.

2) The subsequent branching data asset result_DFs_to_S3 saves the invoice rows data

frames from the previous step to the Minio S3 bucket as JSON files (one JSON file

per previously fetched XML). This data asset constitutes one potential handover

point between the on-prem system and the MS Fabric cloud data lakehouse. Based

on test deployment outside of EVR’s infrastructure, on the Hetzner cloud infrastruc-

ture, it was possible to stream an on-prem S3 bucket to the data lakehouse’s delta

sink table via Spark structured streaming.

3) In another branch, data asset set_up_dw_xml_landing sets up a gold layer data land-

ing schema, tables, procedures and triggers in previously referenced Postgres 16-

alpine Docker container-based temporary DW. If required elements are already pre-

sent in the DW, the step is skipped at the database level, i.e. the Postgres DW I/O

Dagster resource calls a Postgres’ parameterized table, procedure and trigger crea-

tion SQL script templates, kind of a poor man’s dbt equivalent, that include either

try-catch logic or queries against Postgres’ system tables.

If not already present, the data asset creates the following 13 tables based on the

template of the star schema:

a. Fact table fact_invoice_xml

As the missing tags (not found from XML by fetching algorithm) and multiple

matchings (the same tag is present in multiple XML hierarchy levels with differing

46

values) are returned as string outputs, the decisions was taken, including the consid-

eration of facilitating quick debugging, to keep most fact table fields as varchar type.

Dimension tables 17:

b. dim_account for account;

c. dim_contract for contract;

d. dim_cost_center for cost centre;

e. dim_department for department;

f. dim_main_asset for main asset;

g. dim_project for project dimension.

The six n-m logic tables between the fact table and dimension tables are essential,

whose naming follows the convention of fact_invoice_xml_x_[respective dimension

table name]. Those n-m tables exist because financial dimensions from MS SQL DB

can be matched with specific XML only at the whole purchase e-invoice level. In

other words, there is no direct way to match rows of purchase invoices with specific

financial dimensions. There is a possibility for fuzzy matching (not implemented)

based on bookkeeping entries and related sums, but it is computationally a complex

problem which assumes almost perfect row-level data fetching from XML-s. There-

fore, as it stands now, all the related financial dimensions for a given purchase e-

invoice XML are related to each fetched row of the given purchase invoice.

Figure 9 depicts the E-R diagram of the output data of the whole data pipeline.

4) The data asset load_fact_table_to_dw upserts (insert if id is not present; update if id

present) fact table entries from the data asset XML_to_results_df to Postgres tempo-

rary DW. The following concatenation pattern is used to generate the surrogate keys:

[invoice row order]_[invoice number]_[source XML filename]_[date].

5) The data asset get_dims_to_load uses mssql_io_manager resource to fetch financial

dimensions that have been related to the given e-invoice in the Dynamics D365 ERP

MS SQL database. Based on Microsoft’s documentation [83] and initial consulta-

tions with EVR’s internal product owner, it was possible to work out the associated

financial dimensions by parameterizing SQL query for invoice number and seller

registration code. The dimension fetching query encompassed the following tables

and materialized views from the D365 ERP system:

a. DCEINVOICETABLE.

b. GENERALJOURNALENTRY.

c. GENERALJOURNALACCOUNTENTRY.

d. DIMENSIONATTRIBUTEVALUECOMBINATION.

e. ASSETTABLE.

f. DIMATTRIBUTEOMCOSTCENTER.

g. DimensionFinancialTag.

h. EVRCONTRACTTABLE.

i. MAINACCOUNT.

17 As it stands now, the date dimensions have not been normalised into separate dimensions, so it might be

reasonable to model date also as a dimension.

47

6) Finally, the data asset load_dim_tables_to_dw upserts the values in the dimension

tables. Of note, here the column data types in target Postgres tables correspond to

the data types in the source database (MS SQL). Asset load_dim__fact_rels_to_dw

upserts values to n-m tables (tables denoted by white colour in Figure 9). N-m rela-

tional table key columns are based on the concatenation of IDs of linked tables.

The full e-invoice XML fetching pipeline, described earlier, is illustrated in Figure 10, as

viewed in the Dagster UI after a successful execution. The Power BI desktop tool generates

reports based on the gold-level output of the data pipeline (see Figure 11). The Power BI

report directly queries the Postgres DB and deduces the necessary semantic data model for

creating and filtering dashboards almost automatically from the source relationships. The

only modification required is to enable bi-directional relationships across the automatically

inferred semantic data model's relations [84].

48

Figure 9. Purchase e-invoice cleaning data pipeline’s output to the reporting layer.

49

Figure 10. Purchase e-invoice XML-s fetching pipeline after successful execution in Dagster UI.

Figure 11. Purchase e-invoice cleaning data pipeline’s output to the reporting layer.

50

5.3 End-to-end Analysis of Railway Level Crossing Log Data

EVR operates, and will continue to operate in the next 2-3 years, relay-based legacy tech-

nology base level crossings. The critical difference between microcontroller-based and re-

lay-based systems is the reduced programmability of the legacy system. Therefore, detecting

the approaching train is paramount to ensure secure and reliable operation of the level cross-

ing (i.e., railway crossing with the main road). In detail, if the approaching train detection

is lost, typically, the legacy system will initiate the level crossing opening sequence. Micro-

controller-based systems would operate under the same hypothetical situation differently;

for example, level crossing opening could be postponed if the dime difference between train

detection and the release of train detection is spuriously short. By grossly simplifying things,

the train's presence is detected by short-circuiting the two electrified rail tracks through the

steel wheels of the railway wagon or locomotive undercarriage. Therefore, the train is

tracked through discrete blocks, not continually, as the track vacancy is detected through

individually wired (term: rail chains) track sections (term: isolation areas). Due to the steep

reduction of cargo train traffic after the Russo-Ukrainian war that would clean the tracks

from electricity-isolating dirt, diagnosing train detection losses has become especially im-

portant to ensure the safety of railway operations.

EVR utilises the InfraLx information system to manage configuration and collect and visu-

alize data from legacy level crossing systems. This includes detailed, visually presented re-

plays of train passing events that are based on the activation sequence of individual level

crossing components. The system has been in operation since 2009 and has seen little to no

updates. Atomic event logs from individual subsystems are saved to the Postgres database.

Presently, the source system is unable to group atomic log entries into a complete train pass-

ing event. In the event of a technical anomaly, the logs are manually checked, cross-refer-

enced with other systems and analysed for diagnostic purposes. It is crucial to note that the

InfraLx’s source atomic log events are not currently utilised for fully automatic live moni-

toring and alerting of anomalous events. Understanding the potential benefits of monitoring

and alerting, EVR's operations team has requested the following functionality:

1) The system should detect train passing events based on InfraLx's atomic log entries.

2) For every detected train passing event, the duration should be calculated.

3) Visual exploratory data analysis tool that would allow for the depiction of a train

passing duration over time by the level crossing, with an emphasised requirement

for the possibility to manipulate the temporal zoom level easily.

4) Importantly, to improve monitoring and alerting, the system should allow for setting

and updating threshold values for train passing events durations based on lower and

upper threshold values. From the operations perspective, train passing events of ab-

normally short duration have significantly high relevance as those events indicate

the possible loss of train detection as the speeding train is, in practice, almost impos-

sible. Furthermore, the criteria values have to be set per level crossing basis as the

technical setup differs from level crossing to level crossing quite a bit, e.g. distance

from the nearest train stop and positioning of detection points.

5) In the future, i.e. after implementing MS Fabric's data activator functionality [85],

the system should send automated MS Teams alerts if the detected train passing

event is too short.

The present thesis faces added complexity due to the deployment of InfraLx in a distinct

network environment from the staging server. This results in the current live InfraLx being

inaccessible from the staging server. To construct the second end-to-end data analysis pipe-

line, a replica of the VM hosting the InfraLx system was created and hosted in the EVR

51

access network. The analysis undertaken in this thesis pertains to the source data as it existed

on January 23rd, 2024, which is the date when the VM hosting the source system's database

was copied. During 2023, InfraLx’s source system logged 4,709,096 events, roughly corre-

sponding to 12,000 daily log events. The following Figure 12 depicts the E-R schema of the

source database.

Figure 12. InfraLx source data E-R schema.

For the log data analysis, five new Dagster data assets were created:

1) The data assets set_up_dw_landing sets up landing schema, tables, procedures and

triggers in the previously referenced Postgres 16-alpine Docker container-based

temporary DW. As with the previous purchase e-invoices XML-s pipeline, if re-

quired elements are already present in the DW, the step is skipped at the database

level. I.e. the Postgres DW I/O Dagster resource calls a Postgres’ parameterized ta-

ble, procedure and trigger creation SQL script templates that delegate the execution

logic to DB engine, e.g. skip table creation if the table already exists. In total, two

data tables are created:

a. source_log_data - this table is filled with a query from InfraLx DB. The asset

fills the target DW staging table with atomic log events and those events’ key

attributes (event id, level crossing name, event type, start and end datetime,

start and end error type).

52

b. matched_log_data - this table contains the output of train passing matchings.

In detail, the table contains the same amount of rows as the table

source_log_data and the same primary key. Matchings are added to the

atomic events, resulting in an output table with columns that describe the

source log event id, level crossing name, loge event duration, matched train

passing event id (concatenation of source atomic event id-s that make up the

train passing event), matched event duration and matched event signature

(concatenation of source atomic event types that make up the train passing

event).

Of note, the table for storing per-level crossing criteria values (level crossing name,

upper criteria, lower criteria) is created manually.

2) Dagster data asset load_raw_data queries data from the source system based on In-

fraLx’s tables that are colour-marked in Figure 12. The only source system’s con-

tinually updated table is the event_instance (marked in green). Other needed source

tables (event_type, levelcrossing and event_trigger) for data ingestion query to work

(coloured yellow) are in a stale state. As the source table event_instance id-s are

monotonically growing and InfraLx’s log entries are immutable, the data ingestion

query uses this value to keep track of already ingested source data, i.e. source data

ingestion query is parametrized concerning this value. Ingested data is loaded to

DW’s table source_log_data.

3) Dagster data asset get_data_to_analyze loads data for specified level crossings (intra

asset parameter) from DW’s table source_log_data into Python dictionary: keys by

level crossing name; values Pandas data frames of source log data.

4) The data asset match_events executes the train passing event matching algorithm per

level crossing. Three factors complicated the creation of the train-passing detection

algorithm:

a. Firstly, the technical configuration of level crossing systems and thus log

event types and train passing event signatures (sequences of source atomic

events that correspond to train passing events) vary significantly from level

crossing to level crossing.

b. Secondly, the temporal order of level-crossing events is partially non-deter-

ministic as the analogue relay-based source systems' activation pattern intro-

duces some randomness if the level-crossing system produces log events in

a narrow temporal window. For a hypothetical example, if the train passing

event encompasses seven atomic events (A, B, C, D, E, F, G) and the first

three of those (A-C) happen in narrow time window (< 1s) and the last four

events happen in second narrow time window (< 1s) and if we denote the set

of all permutations of the first three items {A, B, C} as P(ABC) and the set

of all permutations of the last four items {D, E, F, G} as P(DEFG) the valid

train passing event signature becomes the union of P(ABC) and P(DEFG).

c. Thirdly, the atomic event composition of valid train passing events also dif-

fers at the intra-level crossing level. For example, a set of atomic elements

comprising a valid train passing event can differ in composition, permutation

cutoff point(s), and length depending on the direction of the train approach.

The thesis’ source repo [69] describes the pattern-matching algorithm in detail through doc-

strings and in-code comments. Overall, the iterative approach was chosen. For each level

crossing, the event signature templates were generated. The candidate event signatures al-

low for specifying subsets in which template and data sequence comparisons use all the

possible permutations from the template. Furthermore, due to previously described

53

circumstances, a single-level crossing might have multiple candidate train passing event

signatures, which are then fitted one by one for the source data. Notably, the subsequent

iterative passes can only use the source atomic log events that previous pattern-matching

iterations have not used. In other words, subsequent pattern matching iterations can only use

source log events that form a uniform event sequence over time, i.e. subsequent iterations

can match blocks of events whose start and end points do not encompass some atomic log

entry already matched with previous matching iteration runs. Evidently, the algorithm cur-

rently implemented for train passing event detection is susceptible to the order of the candi-

date event signatures. As an additional measure to limit false positives, a configurable pa-

rameter (with the actually used value of 0.9) was added to the algorithm that discards the

event matching if the duration contribution of the first or last atomic pair of train passing

event sequence contributes more than parameterized proportion of the whole sequence’s

duration.

The data asset load_matched_events_to_dw upserts matched data to DW’s

matched_log_data table.

Figure 13.0 depicts the previously described level crossing log data analysis pipeline in its

entirety, as it is seen in the Dagster UI after a successful execution.

Figure 13. InfraLx source data ER schema.

The reporting based on the data pipeline’s output is realised based on the Streamlit [86]

dashboard. The dashboard allows for visualising (see Figures 14 - 16) the durations of the

matched train passing events by level crossing and year. Notably, the dashboard allows the

end user to set criteria values to highlight train passes that were either too short or of too

long duration. Criteria values are inserted and updated through a simple CRUD interface

and the criteria data is saved to the table in the DW Data is queried from the DW source

table matched_log_data in order to facilitate the speed of data loading (around 170 000

entries per year per level crossing) downloaded data resource caching [87] and resource (for

DB connection) caching [88] is used18. The dashboard has the following main elements:

1) Query specification by year and level crossing name.

2) Criteria values update CRUD fields.

3) Quick summary statistics pane that is computed based on selections and values from

the last two sections (see left side of the Figures’ 14-16 black-coloured area).

4) Tab for displaying train passing events timings over the selected year and level cross-

ing (see Figure 14).

5) Tab for displaying train passing events timings over the selected year, matched event

signature and level crossing (see Figure 15).

6) PyGWalker [89] based self-service environment for exploratory data analysis (see

Figure 16).

18 By default, Streamlit's execution model executes all the report's code from start to finish after every input

change [90]. Furthermore, Streamlit lacks an explicit way to control asynchronous code execution order. The-

refore, to avoid re-running long-running data loading steps, i.e. direct queries against the Postgres DW,

Streamlit suggests using data and resource caching.

54

Figure 14. Level crossing log data analysis dashboard - matched event durations.

55

Figure 15. Level crossing log data analysis dashboard - analysis by event signatures.

56

Figure 16. Level crossing log data analysis dashboard – exploratory data analysis view.

57

6 Conclusions

The thesis was written with the aim of aiding a railway company in analysing and develop-

ing a strategic plan for enhancing its analytics data management platform. A key recom-

mendation from the thesis is the adoption of a flexible hybrid architecture that integrates on-

premises/Infrastructure as a Service (IaaS) with Software as a Service (SaaS) solutions. This

approach is customised to accommodate the diverse complexity and types of data sources

within the company, suggesting a tailored solution rather than a one-size-fits-all model.

Moreover, the thesis successfully tested the essential elements of the proposed architecture

by addressing two real-world usage cases: analysis of purchase invoices and railway level

crossings' log data. Consequently, the thesis illustrates how the suggested data management

architecture can notably improve EVR's data engineering capabilities.

Moving forward, EVR has many chances to continue improving its platform for analysing

data. The thesis didn't cover one promising improvement: using parallel computing solu-

tions, like DASK with the Modin package, in the TO-BE architecture's on-premises or In-

frastructure as a Service (IaaS) part. This could make data processing faster and more scal-

able. By adopting such advanced technologies, EVR can further enhance its ability to pro-

cess data.

58

7 Acknowledgments

I want to express my deepest gratitude to my supervisors, Kristo Raun and Prof. Ahmed

Awad. Their valuable insights, support, and consistent guidance have been invaluable dur-

ing the thesis writing period. I appreciate their honest feedback and the wealth of technical

ideas and suggestions they shared. From the student's perspective, this has been the most

supported thesis writing and supervision experience thus far.

I want to take a moment to express my heartfelt thanks to my fantastic wife, Conghui, for

her support and understanding while I was working on my thesis. I especially thank her and

her family for three weeks in lovely Yunnan19 province, which allowed me to get three

weeks of breathing space away from a super intensive work environment. While staying in

China, I completed bulk of the thesis, background reading, and a large part of the log anal-

ysis pipeline.

I am further expressing my gratitude to Aare for carefully reviewing my thesis and providing

invaluable hinting about sections that are grinding to read. A huge thanks to Aivar Mihhailov

from EVR for inspiring the idea for log analysis and to my colleague Raini for helping me

untangle the complexities of the Dynamics D365 database and for proposing the XML-s as

worthy data source to try out. I also want to thank my supervisor Mailis and colleagues

Denis and Jüri for their assistance in ensuring the staging server computing resource and for

their pivotal role in getting the InfraLx database copy VM up and running. I thank our IT

architect Aleksandr and IT analyst Külli Kivi for explaining the intricacies of VJS and

PONY. Last but certainly not least, I want to express my sincere appreciation to our network

engineer, Ain, and the head of the department, Tõnu, for their support in navigating the

deployment's security considerations. I couldn't have done it without all of your help!

7.1 Methodological Acknowledgments

The author acknowledges using Grammarly, a recommended LLM-based tool by the In-

stitute of Computer Science, as a writing coach to maintain a score of approximately 92-95

(accessed via the university's licence). Of note is that the author initially wrote the text pre-

dominantly in Google Docs, and Grammarly's utilization followed. This initial material

from Google Docs included rephrased and synthesized text from referenced sources. No

references have been sourced from LLM tools nor content de-novo synthesized by LLM

tools. LLM tool usage involved following Grammarly's spellcheck, wording, and other au-

tomatic suggestions to improve the text's readability score. This less intrusive assistance

encompasses around 50% of the text. Additionally, the author utilized Grammarly's gener-

ative AI capabilities to help refine the text at a more involved level. Working problematic

paragraph by problematic paragraph, Grammarly was instructed to rework the select para-

graph with the following custom prompts: "Make it sound academic", "Make it more con-

cise", "Lessen the usage of passive voice", "Summarize academically the main point of the

text", "Summarize the main point of the text in one/two sentences" and "Make the text

shorter and easier to read". The more assisted mode of Grammarly usage covers the remain-

ing half of the thesis. As an example of less intrusive Grammarly usage, the author wrote

19 Objectively the second-best province in China after Heilongjiang province and its snowy capital Harbin, the

city which also exists in one of the tables of VJS and from which you can send goods via railway to Estonia

with SMGS rail consignment note that the VJS system can also understand.

59

this rather lengthy paragraph himself but accepted Grammarly's automatic suggestions dur-

ing the writing process20.

The practical implementation's codebase and docstrings were not generated by any

LLM or Gen AI tool. The coding work was supported by utilizing code examples in the

tool's documentation, official tool example repos, and tutorial repos. These resources pro-

vided the carcass for developing EVR-specific solutions.

20 As for examples of the author's level of academic writing before the advent of LLM-based assistants, see

work from 2016 https://www.sciencedirect.com/science/article/abs/pii/S0924977X16000651 and work from

2018 https://dspace.ut.ee/items/11c0950b-dcb6-4bb6-978b-27e8382f1e87. This paragraph has Grammarly’s

score of 98.

https://www.sciencedirect.com/science/article/abs/pii/S0924977X16000651
https://dspace.ut.ee/items/11c0950b-dcb6-4bb6-978b-27e8382f1e87

60

References

[1] Volk, M.; Staegemann, D.; Pohl, M.; Turowski, K. "Challenging Big Data Enginee-

ring: Positioning of Current and Future Development." In IoTBDS, pp. 351-358.

2019.

[2] Reis, J.; Housley, M. Fundamentals of Data Engineering. " O'Reilly Media, Inc.",

2022.

[3] Smitis, A.; Skiadopoulos, S.; Vassiliadis, P. "The History, Present, and Future of

ETL Technology." In DOLAP, pp. 3-12. 2023.

[4] MS Fabric Introductory Slide Decks. https://github.com/microsoft/Fabric-Readiness

[5] Patel, M.; Patel, D. B. "Progressive growth of ETL tools: A literature review of past

to equip future." Rising Threats in Expert Applications and Solutions: Proceedings

of FICR-TEAS 2020 (2020): 389-398.

[6] What is Microsoft Fabric? https://learn.microsoft.com/en-us/fabric/get-started/micro-

soft-fabric-overview

[7] Cloudera Data Platform (CDP). https://www.cloudera.com/products/cloudera-data-

platform.html

[8] Databricks platform description. https://www.databricks.com/product/data-intelli-

gence-platform

[9] What is Amazon EMR? https://docs.aws.amazon.com/emr/latest/Management-

Guide/emr-what-is-emr.html

[10] What is AWS Glue? https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html

[11] What is Amazon Redshift? https://docs.aws.amazon.com/redshift/la-

test/mgmt/welcome.html

[12] Dash, B.; Swayamsiddha, S. "Reverse ETL for Improved Scalability, Observability,

and Performance of Modern Operational Analytics - a Comparative Review." In

2022 OITS International Conference on Information Technology (OCIT), pp. 491-

494. IEEE, 2022.

[13] Tutcher, J. "Ontology-driven data integration for railway asset monitoring applica-

tions." In 2014 IEEE International Conference on Big Data (Big Data), pp. 85-95.

IEEE, 2014.

[14] Davari, N.; Veloso, B.; Costa G. A. Pedro Mota Pereira, Rita P. Ribeiro, and João

Gama. "A survey on data-driven predictive maintenance for the railway industry."

Sensors 21, no. 17 (2021): 5739.

[15] Ghofrani, F.; He Q.; Goverde R.; Liu, X. "Recent applications of big data analytics

in railway transportation systems: A survey." Transportation Research Part C: Emer-

ging Technologies 90 (2018): 226-246.

[16] Binder, M,; Mezhuyev, V.; Tschandl, M. "Predictive maintenance for railway do-

main: A systematic literature review." IEEE Engineering Management Review 51,

no. 2 (2023): 120-140.

https://github.com/microsoft/Fabric-Readiness
https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview
https://learn.microsoft.com/en-us/fabric/get-started/microsoft-fabric-overview
https://www.cloudera.com/products/cloudera-data-platform.html
https://www.cloudera.com/products/cloudera-data-platform.html
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/product/data-intelligence-platform
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html

61

[17] Armbrust, M.; Ghodsi, A.; Xin, R.; Zaharia, M. "Lakehouse: a new generation of

open platforms that unify data warehousing and advanced analytics." In Proceedings

of CIDR, vol. 8, p. 28. 2021.

[18] Singhal, B.; Aggarwal, A. "ETL, ELT and reverse ETL: a business case Study." In

2022 Second International Conference on Advanced Technologies in Intelligent

Control, Environment, Computing & Communication Engineering (ICATIECE), pp.

1-4. IEEE, 2022.

[19] Bennie, H.; Davis, D. Delta Lake: Up and Running. " O'Reilly Media, Inc.", 2023.

[20] Wiak, S.; Drzymala, P.; Welfleprzeglad, P. "Using ORACLE tools to generate Mul-

tidimensional Model in Warehouse." ELEKTROTECHNICZNY (Electrical

Review), ISSN (2012): 0033-2097.

[21] Databricks website: What is a medallion architecture? https://www.datab-

ricks.com/glossary/medallion-architecture

[22] Spark project website: Unified engine for large-scale data analytics.

https://spark.apache.org/

[23] Mahmoud, A. S. I. Data Warehouse Modelling Using Data Vault 2.0 in Fintech

Companies - Alumni Talks 2023. https://www.you-

tube.com/watch?v=02eCishUY10&t=1327s

[24] Khononov, V. Learning Domain-Driven Design. " O'Reilly Media, Inc.", 2021.

[25] Vernon, V. Domain-driven design distilled. Addison-Wesley Professional, 2016.

[26] Dehghani, Z. Data Mesh. Marcombo, 2022.

[27] Machado, I.A.; Costa, C.; Santos, M.Y. "Data Mesh: Concepts and Principles of a

Paradigm Shift in Data Architectures." Procedia Computer Science 196 (2022): 263-

271.

[28] Evans, E. Domain-driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley Professional, 2004.

[29] Kimball, R; Ross; M. The data warehouse toolkit: the complete guide to dimensional

modeling 2nd edition. John Wiley & Sons, 2002.

[30] Azure documentation: What is Azure VPN Gateway? https://learn.microsoft.com/en-

us/azure/vpn-gateway/vpn-gateway-about-vpngateways

[31] Metadata Management: Benefits, Automation, Use cases, and Framework. https://at-

lan.com/metadata-management-101/#what-is-metadata-management

[32] Ereth, J. "DataOps-Towards a Definition." LWDA 2191 (2018): 104-112.

[33] Apache Doris - Open Source, Real-Time Data Warehouse. https://doris.apache.org/

[34] TiDB introduction on BingCap’s webpage. https://www.pingcap.com/tidb/

[35] Oracle DB documentation: In-Memory Column Store Architecture.

https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-

column-store-architecture.html#GUID-D61E56A9-B152-49D1-9956-

BE9E882E3DE1

https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/glossary/medallion-architecture
https://spark.apache.org/
https://www.youtube.com/watch?v=02eCishUY10&t=1327s
https://www.youtube.com/watch?v=02eCishUY10&t=1327s
https://learn.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://learn.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://atlan.com/metadata-management-101/#what-is-metadata-management
https://atlan.com/metadata-management-101/#what-is-metadata-management
https://doris.apache.org/
https://www.pingcap.com/tidb/
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-column-store-architecture.html#GUID-D61E56A9-B152-49D1-9956-BE9E882E3DE1
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-column-store-architecture.html#GUID-D61E56A9-B152-49D1-9956-BE9E882E3DE1
https://docs.oracle.com/en/database/oracle/oracle-database/21/inmem/in-memory-column-store-architecture.html#GUID-D61E56A9-B152-49D1-9956-BE9E882E3DE1

62

[36] MS SQL documentation: Management data warehouse. https://learn.micro-

soft.com/en-us/sql/relational-databases/data-collection/management-data-ware-

house?view=sql-server-ver16

[37] MS SQL documentation: Columnstore indexes - Data Warehouse. https://learn.mic-

rosoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-data-ware-

house?view=sql-server-ver16

[38] Federated queries in data lakes with Redpanda and Trino. https://red-

panda.com/blog/data-lake-query-federation-tutorial

[39] Trino documentation: available source connections. https://trino.io/docs/current/con-

nector.html

[40] Raghav, S.; Traverso, M.; Sundstrom, D.; Phillips, D.; Xie, W.; Sun, Y.; Yegitbasi,

N. "Presto: SQL on everything." In 2019 IEEE 35th International Conference on

Data Engineering (ICDE), pp. 1802-1813. IEEE, 2019.

[41] DuckBB website: DuckDB, the great federator? https://mother-

duck.com/blog/duckdb-the-great-federator/

[42] Mukherjee, R.; Kar, P. "A comparative review of data warehousing ETL tools with

new trends and industry insight." In 2017 IEEE 7th International Advance Compu-

ting Conference (IACC), pp. 943-948. IEEE, 2017.

[43] Apache Druid project webpage: Introduction to Apache Druid.

https://druid.apache.org/docs//0.22.0/design/index.html

[44] Apache Pinot project website: What is Apache Pinot? https://github.com/apache/pi-

not?tab=readme-ov-file

[45] Clickhouse company homepage. https://clickhouse.com/

[46] DASK project website. https://www.dask.org/

[47] Teradata website’s transactional workloads description. https://www.tera-

data.com/platform/workloads/transactional

[48] Buuck, B. Minio blog: Unbundling the Data Stack: the Disaggregation of Storage

and Compute 2.0. https://blog.min.io/disaggregation-of-storage-and-compute-2-0/

[49] Buuck, B. Minio blog: Databases for an Object Storage Centric World.

https://blog.min.io/databases-for-object-storage/

[50] Apache Iceberg project website: Apache Iceberg Quickstart https://ice-

berg.apache.org/spark-quickstart/

[51] Apache Hudi project website: What is Apache Hudi. https://hudi.apache.org/

[52] Delta Table webpage: Build Lakehouses with Delta Lake. https://delta.io/

[53] Example GitHub repo to exemplify dockerising Hive-metastore.

https://github.com/naushadh/hive-metastore

[54] MinIO S3 documentation: MinIO Object Storage for Container.

https://min.io/docs/minio/container/index.html

https://learn.microsoft.com/en-us/sql/relational-databases/data-collection/management-data-warehouse?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/data-collection/management-data-warehouse?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/data-collection/management-data-warehouse?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-data-warehouse?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-data-warehouse?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-data-warehouse?view=sql-server-ver16
https://redpanda.com/blog/data-lake-query-federation-tutorial
https://redpanda.com/blog/data-lake-query-federation-tutorial
https://trino.io/docs/current/connector.html
https://trino.io/docs/current/connector.html
https://motherduck.com/blog/duckdb-the-great-federator/
https://motherduck.com/blog/duckdb-the-great-federator/
https://druid.apache.org/docs/0.22.0/design/index.html
https://github.com/apache/pinot?tab=readme-ov-file
https://github.com/apache/pinot?tab=readme-ov-file
https://clickhouse.com/
https://www.dask.org/
https://www.teradata.com/platform/workloads/transactional
https://www.teradata.com/platform/workloads/transactional
https://blog.min.io/disaggregation-of-storage-and-compute-2-0/
https://blog.min.io/databases-for-object-storage/
https://iceberg.apache.org/spark-quickstart/
https://iceberg.apache.org/spark-quickstart/
https://hudi.apache.org/
https://delta.io/
https://github.com/naushadh/hive-metastore
https://min.io/docs/minio/container/index.html

63

[55] Li, C.; Lodin, J. Trino Community Broadcast 34: A Big Delta for Trino.

https://trino.io/episodes/34.html

[56] Dagster documentation: Deploying Dagster to Docker.

https://docs.dagster.io/deployment/guides/docker

[57] MS Fabric documentation: Work with Delta Lake tables in Microsoft Fabric.

https://learn.microsoft.com/en-us/training/modules/work-delta-lake-tables-fabric/

[58] Informatica website: Informatica Integration Hub. https://www.infor-

matica.com/gb/products/data-integration/integration-hub.html

[59] Matillion website: How the Matillion ETL tool works. https://www.ma-

tillion.com/matillion-etl

[60] Dagster documentation: Deploying Dagster on Helm.

https://docs.dagster.io/deployment/guides/kubernetes/deploying-with-helm

[61] Airbyte: UI Overview. https://www.restack.io/docs/airbyte-knowledge-airbyte-ui-

overview

[62] Pimentel, J. F.; Murta L.; Braganholo, V.; Freire, J. "A large-scale study about qua-

lity and reproducibility of jupyter notebooks." In 2019 IEEE/ACM 16th international

conference on mining software repositories (MSR), pp. 507-517. IEEE, 2019.

[63] Pimentel, J. F.; Murta L.; Braganholo, V.; Freire, J. "Understanding and improving

the quality and reproducibility of Jupyter notebooks." Empirical Software Enginee-

ring 26, no. 4 (2021): 65.

[64] What is a Data Contract? https://www.datamesh-manager.com/learn/what-is-a-data-

contract

[65] MS Fabric documentation: Fabric domains. https://learn.microsoft.com/en-us/fab-

ric/governance/domains

[66] Tsafir, N. Easily implement data mesh architecture with domains in Fabric

https://blog.fabric.microsoft.com/en-us/blog/easily-implement-data-mesh-archi-

tecture-with-domains-in-fabric/

[67] Airbyte documentation: Getting Started with PyAirbyte (Beta). https://docs.airb-

yte.com/using-airbyte/pyairbyte/getting-started

[68] OpenMetadata website. https://open-metadata.org/

[69] Thesis GitHub repo. https://github.com/Mait22/DS-MSc-AY2024

[70] Oracle Linux. https://www.oracle.com/linux/

[71] Docker documentation: Install Docker Engine on CentOS.

https://docs.docker.com/engine/install/centos/

[72] Docker documentation: Install the Compose plugin

https://docs.docker.com/compose/install/linux/

[73] Rahandusministeeriumi koduleht: E-arved. https://www.fin.ee/riigi-rahandus-ja-

maksud/riigi-raamatupidamine/e-arved

https://trino.io/episodes/34.html
https://docs.dagster.io/deployment/guides/docker
https://learn.microsoft.com/en-us/training/modules/work-delta-lake-tables-fabric/
https://www.informatica.com/gb/products/data-integration/integration-hub.html
https://www.informatica.com/gb/products/data-integration/integration-hub.html
https://www.matillion.com/matillion-etl
https://www.matillion.com/matillion-etl
https://docs.dagster.io/deployment/guides/kubernetes/deploying-with-helm
https://www.restack.io/docs/airbyte-knowledge-airbyte-ui-overview
https://www.restack.io/docs/airbyte-knowledge-airbyte-ui-overview
https://www.datamesh-manager.com/learn/what-is-a-data-contract
https://www.datamesh-manager.com/learn/what-is-a-data-contract
https://learn.microsoft.com/en-us/fabric/governance/domains
https://learn.microsoft.com/en-us/fabric/governance/domains
https://blog.fabric.microsoft.com/en-us/blog/easily-implement-data-mesh-architecture-with-domains-in-fabric/
https://blog.fabric.microsoft.com/en-us/blog/easily-implement-data-mesh-architecture-with-domains-in-fabric/
https://docs.airbyte.com/using-airbyte/pyairbyte/getting-started
https://docs.airbyte.com/using-airbyte/pyairbyte/getting-started
https://open-metadata.org/
https://github.com/Mait22/DS-MSc-AY2024
https://www.oracle.com/linux/
https://docs.docker.com/engine/install/centos/
https://docs.docker.com/compose/install/linux/
https://www.fin.ee/riigi-rahandus-ja-maksud/riigi-raamatupidamine/e-arved
https://www.fin.ee/riigi-rahandus-ja-maksud/riigi-raamatupidamine/e-arved

64

[74] Masintöödeldava algdokumendi juhendi kehtestamine. https://www.riigitea-

taja.ee/akt/113042017005

[75] Description of Estonian e-invoice. https://billberry.ee/help/dev/estonian-einvoice-

standard/estonian-einvoice-standard-1.2.EN.en.pdf

[76] Github: atmoz/sftp. https://github.com/atmoz/sftp

[77] Dagster documentation: Resources. https://docs.dagster.io/concepts/resources

[78] Dagster documentation: I/O managers. https://docs.dagster.io/concepts/io-mana-

gement/io-managers

[79] PyPI: pysftp. https://pypi.org/project/pysftp/

[80] PyPI: minio. https://pypi.org/project/minio/

[81] PyPI: lxml. https://pypi.org/project/lxml/

[82] Dagster documentation: Software-defined assets. https://docs.dagster.io/concepts/as-

sets/software-defined-assets

[83] MS D365 documentation: Dimension code combination in Main(DimensionAttribu-

teValueCombination. https://learn.microsoft.com/en-us/common-data-mo-

del/schema/core/operationscommon/tables/finance/financialdimensions/main/dimen-

sionattributevaluecombination

[84] Power BI documentation: Enable bidirectional cross-filtering for DirectQuery in Po-

wer BI Desktop. https://learn.microsoft.com/en-us/power-bi/transform-model/desk-

top-bidirectional-filtering

[85] MS Fabric Documentation: What is Data Activator? https://learn.microsoft.com/en-

us/fabric/data-activator/data-activator-introduction

[86] Get started with Streamlit. https://docs.streamlit.io/get-started

[87] Streamlit documentation: st.cache_data. https://docs.streamlit.io/develop/api-refe-

rence/caching-and-state/st.cache_data

[88] Streamlit documentation: st.cache_resource. https://docs.streamlit.io/develop/api-re-

ference/caching-and-state/st.cache_resource

[89] PyGWalker. https://github.com/Kanaries/pygwalker

[90] Working with Streamlit's execution model. https://docs.streamlit.io/develop/con-

cepts/architecture

https://www.riigiteataja.ee/akt/113042017005
https://www.riigiteataja.ee/akt/113042017005
https://billberry.ee/help/dev/estonian-einvoice-standard/estonian-einvoice-standard-1.2.EN.en.pdf
https://billberry.ee/help/dev/estonian-einvoice-standard/estonian-einvoice-standard-1.2.EN.en.pdf
https://github.com/atmoz/sftp
https://docs.dagster.io/concepts/resources
https://docs.dagster.io/concepts/io-management/io-managers
https://docs.dagster.io/concepts/io-management/io-managers
https://pypi.org/project/pysftp/
https://pypi.org/project/minio/
https://pypi.org/project/lxml/
https://docs.dagster.io/concepts/assets/software-defined-assets
https://docs.dagster.io/concepts/assets/software-defined-assets
https://learn.microsoft.com/en-us/common-data-model/schema/core/operationscommon/tables/finance/financialdimensions/main/dimensionattributevaluecombination
https://learn.microsoft.com/en-us/common-data-model/schema/core/operationscommon/tables/finance/financialdimensions/main/dimensionattributevaluecombination
https://learn.microsoft.com/en-us/common-data-model/schema/core/operationscommon/tables/finance/financialdimensions/main/dimensionattributevaluecombination
https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-bidirectional-filtering
https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-bidirectional-filtering
https://learn.microsoft.com/en-us/fabric/data-activator/data-activator-introduction
https://learn.microsoft.com/en-us/fabric/data-activator/data-activator-introduction
https://docs.streamlit.io/get-started
https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_data
https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_data
https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource
https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource
https://github.com/Kanaries/pygwalker
https://docs.streamlit.io/develop/concepts/architecture
https://docs.streamlit.io/develop/concepts/architecture

65

Appendix

I. Glossary of Abbreviations

• ACID – an acronym that stands for Atomicity, Consistency, Isolation, and Durabil-

ity.

• API – application programming interface.

• CCS – common control system.

• CDC – changed data capture.

• CRUD– create, read, update, delete data operations.

• CSZT – Council for Railway Transport of the Commonwealth Member States

• D365 – Microsoft Dynamics 365 enterprise resource planning system.

• DB – database.

• DNS – domain name service.

• DW – data warehouse.

• ELT – extract, load, transform.

• ETL – extract, transform, load.

• ERP – enterprise resource planning system.

• EVR DW – EVR’s data warehouse.

• gRPC– remote procedure call framework.

• ICF – next generation level crossing system manufacturer.

• KPI – key performance indicator.

• OLAP – online analytical processing.

• OLTP – online Transaction Processing.

• PBI – Microsoft Power BI reporting tool.

• PL/SQL – Oracle Corporation's procedural extension for SQL.

• POC – proof of concept.

• PONY – EVR's internal information system that is built over time to support a di-

verse and loosely coupled set of business functions (incident management, hazard

assessment and management, management of infrastructure master etc).

• SLA – service-level agreement.

• SP – SharePoint.

• SSIS – SQL Server Integration Services.

• TCP – Transmission Control Protocol.

• TTCMS – in-development future traffic management system.

• UI – user interface.

• VJS – EVR’s wagon management system (in Estonian: Vedude Juhtimise

Süsteem/Vagunite Jälgimise Süsteem).

• VLAN – virtual local area network.

• VM – virtual machine.

• WD – Web Desktop, document management software.

66

II. TO-BE Architecture and IT-Business Cooperation Model

Figure 7 illustrates the TO-BE architecture, highlighting the distinct boundaries of respon-

sibility between IT and business based on the selected analytic data management model. In

the case of a centralised approach (refer to decision dimension no. 1 in section 4.1), the IT

department becomes the de facto owner of the analytic data. Specifically, the data lake/data

warehouse development team would need to represent the analytic data requirements during

the requirements engineering phase of the source system, establish corresponding data in-

gestion and analytic domain objects extraction pipelines, and ensure the proper storage of

the gold layer analytic data across domains, thus ensuring the cross-domain consistency of

master data. In a centralised approach, the IT department must oversee the self-serve end-

points for central data access, as the technical department holds the overall picture of stored

gold layer data. The primary source of consuming analytic data for the business side would

remain centrally developed Power BI reports. It is evident that if the centralised approach

were adopted, much of the Fabric platform's data mesh-specific functionalities would go

unused.

The diagram in Figure 17 outlines a proposed model for managing analytical data that can

fully leverage the potential of the TO-BE architecture. The challenge of adopting data mesh-

based thinking is similar to implementing a microservices-based system architecture. This

involves breaking down the monolithic system or data into meaningful autonomous parts

that align with domain-specific business requirements and rules.

Figure 17. Outline of the data mesh enforcement under TO-BE analytic data management

architecture.

In practice, implementation of data mesh means working towards creating and utilising a

shared language, known as the ubiquitous language, which bridges the gap between domain

experts, self-serve data users, and developers. Additionally, at a strategic level, data imple-

mentation entails defining bounded contexts and establishing explicit boundaries within

which a specific model is applicable. At the level of analytic data, the ubiquitous language

is explicated in the data contract, which describes the main domain-specific terms and pro-

cesses needed to use the analytic data on a self-serve basis or as an enrichment input in

another domains’ data pipelines; this is in addition to stating quality standards and service-

level agreements (SLAs) associated with the given published dataset.

67

III. Technology Alternatives for Practical Use Cases

When selecting the middle layer technologies for TO-BE's architecture, the primary consid-

eration is the ability to experiment freely at no cost, with the potential to deploy on an IaaS

or PaaS/SaaS basis in the future. These criteria have led to limited technology options for

the middle layer, consisting solely of open-source projects backed by mid to large-sized

technology companies.

The most obvious question arising about TO-BE technological stack is the choice of Dagster

over the industry standard orchestration tool Airflow. As outlined above, the problems in-

herent in the current technical setup are a need for containerization, code maintainability,

and the possibility of running, debugging, and developing the code locally independently of

the production system. Those areas needing improvement are also why currently deploying

and running multiple versions of the same end-to-end data pipeline is nearly impossible to

accomplish. Across all the above-outlined development needs, Dagster has clear advantages

over Airflow:

1) Firstly, Dagster provides robust local development, unit testing, and staging envi-

ronment support. This feature set allows developers to work with pipelines outside

production deployments, making testing, developing, and debugging pipelines eas-

ier. On the other hand, Airflow often requires a production context to be workable.

2) Additionally, Dagster is designed for container-native orchestration, making it ideal

for modern hybrid or cloud-native environments. Conversely, containerizing and de-

ploying the Airflow setup on the Kubernetes cluster requires a more complex manual

setup.

3) Finally, while Airflow primarily focuses on orchestration, Dagster prioritises data

assets and modular transformation based on those assets. Dagster is inherently aware

of data passing between pipeline steps and includes built-in pickle support for basic

Python data types (lists, tuples, dictionaries) and commonly used Python data tools

like Pandas and Polars.

Dagster and Airflow offer a convenient UI-based admin view with scheduling and pipeline

execution health monitoring. However, Dagster's drawback lies in the need for built-in au-

thentication capacity. Moreover, due to Dagster's daemon node's reliance on GraphQL-

based API endpoints to communicate with the UI node, implementing basic authentication

via a reverse proxy setup can be complex.

As for alternative deployment paths, there is a promising opportunity to transition the TO-

BE setup to a cloud-native deployment model. This would entail:

1) The current on-prem Minio S3 installation can be replaced with Amazon S3, Azure's

Data Lake Gen 2 object storage, or Fabric's own OneLake storage.

2) Similarly, the on-prem relational Postgres storage can be substituted with Azure's,

Oracle's Cloud, or Amazon's Postgres-managed instance offerings. Alternatively,

Fabric's built-in DataWarehouse instance and CRUD operations with the Synapse

Data Warehouse SQL engine via JCDB-endpoint are also feasible options.

3) OpenMetadata provides a convenient SaaS deployment option that is fully managed.

4) Additionally, Airbyte can also be accessed as a fully managed SaaS option when

required. This enables the extraction of data from external system API endpoints or

the running of CDC outside of Fabric's platform.

5) Finally, Dagster presents a deployment option in which the daemon and UI nodes

are deployed on the Dagster cloud, while the worker nodes are located on-premises

or on an IaaS basis on the Amazon AWS platform.

68

For the sake of completeness, it's important to note that several commercial data movement

and pipeline orchestration tools exist that, if combined with an adequate storage layer, could

approximate the functionality of the architecture advanced by the current thesis. Numerous

industrial and infrastructure management companies throughout the Baltic and Nordic re-

gions seem to utilise alternative analytic tech stacks. This conclusion is based on a non-

scholarly assessment of the author's LinkedIn and CV.ee adverts about relevant job postings.

Examples of comparable technical options include:

1) Matillion for data extraction and transformation, coupled with Snowflake analytic

storage and Tableau-based reporting. Matillion provides a cloud-native data integra-

tion platform, enabling users to perform complex data integration, transformation,

and ETL operations in a low-code/no-code environment. Meanwhile, Snowflake is

a cloud-based data warehousing platform that separates computing and storage re-

sources, allowing users to pay solely for the aids they require, and it employs SQL

as its query language.

2) Another option that seems to be commonly utilised, particularly in the energetics

and IoT fields, is a comprehensive solution that leverages Hitachi Vantara's product

portfolio. This approach involves using Pentaho for purposes similar to Matillion

while relying on traditional relational data warehousing and object storage for stor-

age needs.

3) Alternatively, some companies seem to have chosen to utilise on-premises MS SQL

or Oracle-based relational data warehousing, combined with T-SQL or PL/SQL pro-

cedures for data transformations, along with Power BI-based reporting.

69

IV. Cost-capacity Analysis of Microsoft Fabric Data Lakehouse SaaS Plat-
form

Regarding costs, Microsoft Fabric's F64 ability tier, which has 64 capacity units (CU) and

32GB of RAM, costs 5000 euros monthly. The F64 tier is the cheapest option for deploying

Microsoft Fabric against Azure's vNet infrastructure (allowing for secure private IP-based

networking between cloud and on-prem resources over a VPN channel). Further, as a bonus,

the F64 tier offers unlimited Power BI end-user licences, provided that concurrent Power

BI end-user sessions have to be serviceable with underlying resources of 8 CUs and 4 GB

of RAM. It is essential to emphasise Microsoft's accounting for offered computing capacity,

with one CU equaling the computing power that would yield 2000 points in the CoreMark

benchmark suite. Taking AMD's ZEN 5 microarchitecture-based Epych 32-core processor

as a reference roughly yields one CU equaling 1/8 of one real CPU core. 5000 Euros for a

core single node machine with 32 GB of RAM (22 GB available for compute use) and no

GPU resources is 10-20 times the markup compared to infrastructure deployed on-prem or

on an IaaS basis.

Engaging in hypothetical discussions about pricing is crucial as they have a significant im-

pact on the future. If EVR's analytic demands surpass the computing capacity of a single

eight-core VM, upgrading to Fabric's next performance tier (128 CU, 16 core, 64 GB of

memory) comes at a cost of approximately 5000 €. This amount is comparable to the salary

budget of a full-time DataOps specialist.

Furthermore, considering that Apache Spark as technology focuses on solving the problem

of handling and transforming large datasets that do not fit in a single compute node's RAM

(i.e. the requirement for distributed compute), running Spark cluster on top of Fabric's F64

instance that is by today's standard low to medium performing single node compute equiv-

alent, is a bit of an oxymoron. Such deployment introduces overhead both in the compute

(coordinator node in addition to worker nodes) and complexity (need to follow Spark's API),

which is unnecessary as programmatically more straightforward and on a single CPU,

highly parallelized options like Polars and Pandas drop-in replacement Modin exist.

70

V. License

Non-exclusive licence to reproduce the thesis and make the thesis public

I, Mait Metelitsa,

1. grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the

purpose of preservation, including for adding to the DSpace digital archives until the

expiry of the term of copyright, my thesis A Functional Prototype and General Archi-

tecture of Analytic Data Management for a Railway Company, supervised by Kristo

Raun and Prof. Ahmed Awad.

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available

to the public via the web environment of the University of Tartu, including via the

DSpace digital archives, under the Creative Commons licence CC BY NC ND 4.0,

which allows, by giving appropriate credit to the author, to reproduce, distribute the

work and communicate it to the public, and prohibits the creation of derivative works

and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’ intel-

lectual property rights or rights arising from the personal data protection legislation.

Mait Metelitsa

15/05/2024

