
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Talha Mahin Mir

Incentive Models for Mobile Code

O�oading to Imporive it's Adaptability

Master Thesis (30 ECTS)

Supervisor: Prof. Satish Srirama

Tartu 2018

Incentive Models for Mobile Code O�oading to Imporive it's
Adaptability

Abstract: Mobile cloud computing has been rising in popularity in recent years
due to the advantages it brings to the mobile devices. Mobile devices are mostly
resource constrained and using cloud computing technologies they can perform
even highly resource intensive tasks e�ciently. For performing resource intensive
tasks on the cloud, mobile devices need to delegate those tasks to the cloud for
which two major techniques are in use today namely Task delegation and Code
o�oading. In task delegation model, mobile device consumes web services pro-
vided by the cloud through an API. Whereas in Code o�oading model, app is
partitioned to identify resource intensive tasks which are then transferred to the
server for remote processing. Various techniques have been in use for performing
code o�oading but none of them are economically viable due to which this model
is not frequently used in the industry. In this thesis, we tried to address the issues
which make code o�oading expensive and came up with code o�oading model
that can make the process economically viable. We developed a game theoretic
model that provides incentive to mobile users to open their devices for o�oad-
ing. Simulation and a small prototype have also been developed to validate the
mathematical model.

Keywords: Mobile cloud, mobile applications, code o�oading, mobile web
services, IOT

CERCS: P170 - Computer science, numerical analysis, systems, control

Mobiilset koodi mahalaadimist soodustavad mudelid, et
parandada selle kohanemisvõimet

Abstract: Mobiilne pilvearvutus on viimastel aastatel populaarsemaks
muutunud, kuna see toob mobiiliseadmetele mitmeid eeliseid. Mobiiliseadmed on
enamasti piiratud ressurssidega kuid pilvearvutustehnoloogiate abil suudavad
need tõhusalt täita isegi väga ressursimahukaid ülesandeid. Pilves
ressursimahukate ülesannete täitmiseks peavad mobiiliseadmed delegeerima need
ülesanded pilvele, mille jaoks tänapäeval kasutatakse kahte peamist tehnikat:

ülesannete delegeerimist ja koodi o�oadimist. Ülesannete delegeerimise mudelis
kasutab mobiiliseade API kaudu pilve poolt pakutavaid veebiteenuseid. Koodi
o�oadimise mudelis jagatakse rakendus osadeks, et tuvastada ressursimahukad
ülesanded, mis seejärel edastatakse serverile kaugtöötlemiseks. Koodi
o�oadimiseks on seni kasutatud erinevaid tehnikaid, kuid ükski neist pole
majanduslikult elujõuline, mistõttu seda mudelit tööstuses sageli ei kasutata.
Selles töös püüdsime lahendada probleeme, mille tõttu koodi o�oadimine on
kallis ja pakkusime välja koodi o�oadimise mudeli, mis muudab antud protsessi
majanduslikult elujõuliseks. Oleme välja töötanud mänguteoreetilise mudeli, mis
motiveerib mobiilikasutajaid oma seadmeid o�oadimiseks kasutama.
Matemaatilise mudeli valideerimiseks on välja töötatud ka simulatsioon ja väike
prototüüp.

Keywords: Mobiilne pilv, mobiilsed rakendused, koodide mahalaadimine,
mobiilsed veebiteenused, IOT

CERCS: P170 - Arvutiteadus, arvuline analüüs, süsteemid, kontroll

3

List of Figures

1 High-level code o�oading architecture 10

2 High-level RAPID architecture [1] 14

3 RAPID task execution �ow [1] . 17

4 T2 instances speci�cations [2] . 23

5 Hypothesis Testing Results . 24

6 Cloud instance rates . 24

7 Scatter plot comparison . 37

8 Density plot comparison . 37

9 Reliability Analysis . 38

10 Scalability Analysis . 39

11 Central server DB Schema . 40

12 API endpoints . 41

13 Central server application structure 43

14 Buyer app main page . 44

15 O�oading page . 44

16 Android client application structure 45

17 Android server application structure 47

18 Prototype �ow diagram . 48

19 Payment noti�cation . 49

20 Prototype �ow diagram . 50

List of Tables

1 Code o�oading framework comparison 12

2 Software e�ort for developed platforms 42

3 Testing Devices . 49

4

Contents

1 Introduction 8

1.1 Problem . 8

1.2 Research Questions . 9

1.3 Structure . 9

2 State of the art 9

2.1 Background . 10

2.1.1 Code o�oading architecture 11

2.1.2 Related Work . 12

2.2 Rapid Code o�oading framework 14

2.2.1 Acceleration client (AC) . 15

2.2.1.1 Design Space Explorer (DSE) 15

2.2.1.2 Registration Manager 15

2.2.1.3 Dispatch and Fetch Engine 15

2.2.2 Acceleration Server (AS) . 16

2.2.2.1 Design Space Explorer (DSE) 16

2.2.2.2 Registration Manager 16

2.2.2.3 Dispatch and Fetch Engine 16

2.2.3 Directory Server (DS) . 16

2.3 Literature Review . 17

2.3.1 Research Methodology . 18

2.3.2 Reviewed Material . 18

2.3.3 Summary . 21

3 Hypothesis Testing 22

4 Mathematical Modeling 25

4.1 System Modeling . 25

4.2 Game theoretic model formulation 25

5

4.2.1 Background . 25

4.2.1.1 Elements of a game 26

4.2.1.2 Summary . 27

4.2.2 Incentive Scheme . 27

4.2.2.1 Node Memory . 28

4.2.2.2 Node Battery . 28

4.2.2.3 Node Computational Power 28

4.2.2.4 Reserve prices of nodes 29

4.2.3 The bargain game . 30

4.3 Code o�oading framework . 34

5 Implementation 35

5.1 Simulation . 35

5.1.1 Execution time analysis . 36

5.1.2 Reliability analysis . 37

5.1.3 Scalability analysis . 38

5.2 Prototype implementation . 39

5.2.1 Central Server . 39

5.2.1.1 Database Schema 40

5.2.1.2 Spring web services 40

5.2.1.3 Implementation details of central server 42

5.2.2 Mobile client app . 44

5.2.2.1 Implementation details of mobile client app 45

5.2.3 Mobile server app . 46

5.2.3.1 Implementation details of mobile server app 46

5.2.4 Interaction of components 47

5.2.5 Testing of Prototype . 49

6 Conclusion 50

6

7 Future Work 51

7

1 Introduction

1.1 Problem

Mobile devices have limited computational capabilities and performing tasks that
demand lots of computational resources drains down the battery life of the
mobile device pretty quickly and are usually slow as well. In the recent years,
mobile cloud has become increasingly popular. More and more mobile devices
are using cloud services to perform resource intensive tasks on the cloud. To
transfer resource intensive tasks to the cloud from the mobile device there are
two major methods in use. Task delegation method and Code o�oading. Task
delegation follows the traditional client-server architecture where the data
required for a certain operation is passed to an online server and the server then
performs the task on its end and transfers the results back to the mobile device.
In contrast, in code o�oading, instead of passing the data, whole chunk of code
that's considered resource intensive is transferred to the server where this code
runs on a surrogate device and once the server is done with computation, results
are passed back to the mobile. This technique has two apparent bene�ts - �rstly
because the code is running on the same device on the server as the device from
which it has been o�oaded, it means that in case the internet is down the code
can still run on the local device. That's something which is not possible with the
Task delegation model. In task delegation model, in case the internet is not
available, app cannot run because the computational logic is on the server and
we are just passing the data, which cannot be done if internet is down. Secondly,
in case of code o�oading, no major development is required on the server end as
all the logic is still on the mobile end. Unlike in the task delegation model where
we have to setup the server using some platform like .NET, Java etc, in code
o�oading we are just setting up some VM environment and all the application
logic is still on the client end.

So, considering the bene�ts of the mobile code o�oading model, it's a good
candidate to be used in the research and industry for increasing the
computational capabilities of the mobile devices. But despite the bene�ts, it's
not widely used in the industry because all the frameworks and models available
for code o�oading right now are not economically viable.

Code o�oading faces many challenges when it comes to applying it to the real
time applications. Most of the time, code has non-deterministic behaviour and
the time code will take to run depends on a lot of factors like current available
memory of the device, device memory state, connectivity bandwidth and so on.
So, deciding what, when and how to o�oad is an involved decision. But, major

8

problem with code o�oading is the cost associated with it. Experiments show
that in order to o�oad a chess game based on min-max algorithm from Samsung
Galaxy S3 to Amazon's EC2 instances, in order for code o�oading to be e�ective
m3.medium instance should be used [3]. The m3.medium instance costs $0.067
per hour and if we have to make sure continuous availability of that instance, it
proves to be very cost ine�ective.

So, goal of this thesis was to come up with a model for mobile code o�oading
that is economically viable. We ended up creating a game theory based
mathematical model that provides incentive to the mobile users to open their
devices for o�oading. This way, we tried to eliminate the dependence of the
system on the central server running virtual machine instances which, as we will
see in the later chapter, is the main source of cost in any code o�oading
framework.

1.2 Research Questions

Deriving from the problem statement, our main research task is as follows:

RQ1: To �nd incentive models for mobile code o�oading that make the process
economical.

1.3 Structure

The thesis is structured as follows: Chapter 2 gives overview of the state of the
art. Chapter 3 describes the process we used for testing our hypothesis. Chapter
4 describes our contribution in terms of mathematical model and framework we
developed. Chapter 5 explains the implementation details of the simulation and
prototype. In Chapter 6 we conclude the thesis, and in Chapter 7 we touch upon
the possible future paths. All references can be found in References section.

2 State of the art

In this chapter, we will brie�y explain what code o�oading is and what are some
of the code o�oading solutions currently available. Then we will describe RAPID
code o�oading framework [4], the framework that we extensively used for testing
in this thesis. We will end the chapter by explaining our literature review that
we did for �nding out what incentive schemes, if any, are available right now.

9

Figure 1: High-level code o�oading architecture

2.1 Background

As brie�y described before, code o�oading is a technique of partitioning a code
to identify which tasks are resource intensive and which are not. Those resource
intensive tasks are then o�oaded to the server where they run on the same
surrogate device from which they are o�oaded. Unlike on the mobile devices, on
cloud those methods have access to virtually unlimited amount of resources. So,
the total execution time is less as compared to when those tasks are run locally
on the mobile device. The overall purpose of the o�oading technique is to
increase the throughput and save the processing power and energy of the device.

Now, there are couple of techniques involved in the code o�oading process and
di�erent frameworks implement it in their own way. But despite the di�erences,
they all follow almost the same architecture even when the underlying
implementation details are di�erent. Now, we will explain that code o�oading
architecture.

10

2.1.1 Code o�oading architecture

A very high level representation of code o�oading architecture is shown in
Figure 1. It follows the traditional client-server architecture where we have a
client part running on user's mobile device and a server application running on a
surrogate device on a cloud. Every code o�oading framework contains logic for
identifying the resource intensive tasks in the program. The whole code
o�oading framework is essentially a framework to determine What to o�oad,
When to o�oad and How to o�oad.

For deciding what to o�oad, code pro�lers are used. Code pro�lers are of two
types namely static pro�lers and dynamic pro�lers. Static pro�lers are mostly
annotation based pro�lers where the application developer annotates a certain
method by using annotations like @O�oadable, @Remote etc. to specify that
this method is resource intensive and should be o�oaded at run-time. This
techniques is certainly not very e�cient as there can be many other constraints
at run-time that will make the o�oading of a particular method not feasible, for
instance a code can be e�ciently run on one device but not on other devices. To
counter such issues, some frameworks use dynamic pro�lers. Dynamic pro�lers
decide on run-time which code to o�oad. For that, there are various techniques
like static analysis of the code or keeping history traces of the previous
executions of the methods. This approach is more adaptable as the developer do
not have to change the code for each individual devices and the o�oading code
can adapt to the device on which it is running.

Similarly, for deciding when to o�oad, system pro�lers are used. System pro�lers
are used to collect device parameters like the battery state of the device,
processor load, memory state, network bandwidth state etc. These parameters
are important as these parameters indicate whether in a given circumstances,
code o�oading will result in reduction of throughput or device energy
consumption or not.

Finally, decision engine is used to decide how to o�oad. Decision engine is the
component that takes all the parameters provided by code pro�lers and system
pro�lers and run some logic (like linear programming) on those parameters to
decide whether o�oading will be bene�cial for the device or not. Usually the
desired outcomes of code o�oading are reduced program execution timing,
energy saving, reducing device's processor load or some combination of all of
these. If the decision engine can see that o�oading will yield these bene�ts, it
will decide to o�oad the code otherwise the code will be run locally.

The server side of the framework consists of the surrogate devices which are
hosted on a cloud. O�oading code to these surrogates results in higher

11

Framework
O�oading
approach

O�oading
decision logic

Bene�ts Limitations

MAUI
Code

annotations
code and system

pro�lers

Reduced battery
consumption
Increased

performance

Not scalable

CloneCloud
Thread level
VM-syncing

Static analysis
dynamic
pro�lers

20x execution
speed-up

20-fold energy
decrease

Limited
multithreading

ThinkAir
Code

annotations
code and system

pro�lers

Energy saving
Increased

performance

Lacks
adaptability

COMET
Thread level
VM-syncing

Greedy
algorithms

Speed gain of
2.88x

No cluster
optimization

Table 1: Code o�oading framework comparison

throughput of the program as these devices on the cloud have much more
computational power available at their disposal in comparison to the general
smart phones available.

Next, we will brie�y explain and compare some of the code o�oading frameworks
currently available.

2.1.2 Related Work

A brief comparison of some of the prominent code o�oading frameworks is
shown in table 1. MAUI [5] is a framework that uses code annotations to
indicate which methods should be o�oaded. It's primarily designed to reduce the
energy consumption of the device. It uses code and system pro�lers to decide if a
code should be o�oaded or not. MAUI helps to bring down the energy
consumption of the device and also increases the performance of the programs
but it's not very scalable as we have to create a new server proxy for every new
application developed on the MAUI framework.

CloneCloud [6] is another code o�oading framework. It uses static analysis to
dynamically partition the code into resource intensive tasks and normal tasks
and then the tasks are run seamlessly on either local device or remote surrogate

12

device based on their identi�ed status by the framework. CloneCloud also
encapsulates the whole app into a virtual machine on the cloud and syncs the
state of the application on both ends. Whenever the thread on the smart phone
end reaches a resource intensive task, it's execution is migrated to the remote
server where it executes in a similar thread on a surrogate device and once the
execution is done, the thread is migrated back to the smart phone.

Like MAUI, ThinkAir [7] is another code o�oading framework that uses code
annotations to indicate the method that should be o�oaded at run-time. This
limits it's adaptability as each new application developer needs to explicitly
identify the method that should be o�oaded. On the other hand, it solves the
scalability issues of MAUI as it allows to create, destroy and reallocate VM as
needed.

COMET [8] is another code o�oading framework. It focuses more on how to
o�oad instead of what and when. COMET allows multi-threaded applications to
run on multiple machines and allows the threads to migrate freely between
di�erent machines. This creates resilience against network failures, even if one
machine's network fails, other machine's have enough information to carry on the
task.

Similarly, there are other code o�oading frameworks like Odessa [9], EMCO [10]
and COSMOS [11] that provide the same kind of bene�ts. Looking at all the
o�oading frameworks available, we can identify that there are mainly two types
of o�oading frameworks currently available namely method based and thread
based. Method based frameworks o�oad the code on function or method level
and usually use techniques like annotations combined with dynamic pro�ling.
Thread based frameworks, on the other hand, split the programs into threads
and works by syncing thread on both the client and server end. They use
techniques like static analysis to identify resource intensive tasks and usually
work by migrating threads between client and server for performing o�oading.

Despite the technical di�erences, one thing that's common in each of these
frameworks is the presence of central server that contains virtual machines
running mobile device images, which is the integral part of any code o�oading
framework. This central server is the one that drives the cost of the code
o�oading up. So, if somehow this central server is removed or at-least the
dependence of the whole system is reduced on this server, we can bring down the
cost of the process. In section 2.3, we will also see some D2D o�oading
frameworks identi�ed during research and we will also discuss their pros and cons
and how they can be adapted for our purpose of making the o�oading process
economical.

13

Figure 2: High-level RAPID architecture [1]

2.2 Rapid Code o�oading framework

Many of the components of this thesis are built on top of the Rapid code
o�oading framework [4]. We've used it to test our hypothesis and also built our
prototype on top of this framework. So, in this section we will brie�y explain the
components of the code o�oading framework and we'll also look at how those
components interact with one another.

Rapid is a framework which provides code o�oading services for heterogeneous
devices, but for the purpose of our testing we only focused on mobile devices,
speci�cally android devices. The high level RAPID architecture is shown in
Figure 2.

It has �ve major components:

• Acceleration Client.

• Acceleration Server.

14

• Directory Server.

• Service Level Agreement Manager.

• VM Manager.

2.2.1 Acceleration client (AC)

Acceleration client (AC) is a runtime library that enables code o�oading on
Android applications. It enables android applications to �nd devices to which to
o�oad code and also decides whether the tasks de�ned by the programmer
should be executed locally or o�oaded remotely. As can be seen in Figure 2 AC
is further composed of 3 major sub-components.

2.2.1.1 Design Space Explorer (DSE)

This module's main responsibility is to decide the execution location of the code
- whether it should be executed locally or remotely. A simple approach is used to
make this decision by keeping the history of the executions of any particular
task. So, whenever a task is o�oaded, DSE records it's performance parameters
like execution time and energy consumption etc and every time it needs to make
a decision it will look at the performance results of the previous executions of the
task. Consequently, when the task is being o�oaded for the �rst time, it simply
o�oads it to the server to see how it performs.

2.2.1.2 Registration Manager

The main task of the Registration Manager at the acceleration client side is to
register the device to the Directory Server (DS). Directory Server allocates a
unique ID to the device and provides the list of all the acceleration servers
satisfying user's requirements. RM's responsibilities also include selecting one
remote node from the list provided by DS and connecting to the VM of the
selected entity through VM manager so that the devices can communicate and
o�oading can be done.

2.2.1.3 Dispatch and Fetch Engine

On the client side, this module is responsible for transferring the task's data to
the acceleration server or executing the task on the local device, depending on
the decision taken by the DSE. When client connects for the �rst time, DFE will

15

send the application's bytecode to the server. Afterwards, Java re�ection is used
to execute the methods on the server whenever o�oading is done from the client
side.

2.2.2 Acceleration Server (AS)

AS is an android application that runs on the VM and is responsible for
executing the o�oaded tasks. It's composed of more or less the same components
as AC but their responsibilities di�er a little.

2.2.2.1 Design Space Explorer (DSE)

On server side, DSE's responsibility is to decide if the task should be executed
locally or if it should be o�oaded to some other server. If enough resources are
available, o�oaded tasks are executed locally, otherwise they are o�oaded to
some other server. In either case, DFE is informed about the decision which
takes the relevant action.

2.2.2.2 Registration Manager

Like on the client side, on server side Registration Manager is responsible for
registering the Acceleration Server and the VMs hosting them to the Directory
Server (DS). When the VM for the server starts, it informs the VMM about the
availability of the VM for task o�oading after which the registration manager
registers the server with DS so that it is discoverable by the client applications.
More detailed description of the interaction between the components can be
found in the o�cial documentation here [1].

2.2.2.3 Dispatch and Fetch Engine

On server side, DFE takes the code o�oaded to the server, runs it on the VM on
the server and passes the results back to the device from which the code was
o�oaded. In cases the DSE on server end decides that code should be o�oaded
to another device, it takes care of transferring the task to the other server as well.

2.2.3 Directory Server (DS)

Directory Server keeps track of all the computational resources available in the
cloud infrastructure so that the mobile clients can easily �nd the available

16

Figure 3: RAPID task execution �ow [1]

resources for task execution.

Finally, SLA Manager ensures that the o�oading to the remote machines will
respect certain prede�ned Quality of Service (QoS) parameters whereas VM
Manager manages the computational resources of the VMs participating in the
system.

To sum up, the interaction between the di�erent components in the system and
the complete task execution �ow through the RAPID framework is shown in
Figure 3.

2.3 Literature Review

In this section we will explain our research methodology and will summarize the
material reviewed during the literature survey.

17

2.3.1 Research Methodology

To identify the state of the art for incentive models for economical code
o�oading, we loosely followed the Systematic Literature Review methodology
proposed by Kitchenham [12]. Search terms were derived from the research
questions. Terms used were "Code o�oading incentive", "computational
o�oading incentive", "economic code o�oading", "cyber-foraging" etc. These
terms were mostly used to search on Scopus and IEEE/ACM websites and papers
were selected based on their relevance with the research question, number of
citations and publish date. We only selected papers published in the last 2 years
(2016 & 2017). None of the papers found dealt directly with economical aspect of
code o�oading. However, we identi�ed di�erent code o�oading frameworks and
techniques and also found some research that dealt with incentive model for code
o�oading in the context of autonomous and D2D networks. So initially, papers
were selected for reading that dealt with di�erent approaches for code o�oading
process. Then, based on the ideas of these papers and personal idea about the
possible technique to be used to make code o�oading economical, search has
been done on �nding social sharing approaches in game theory and social
networking. The result of the survey is summarized below.

2.3.2 Reviewed Material

Chen et al. [13] focuses on context aware o�oading. As the context of the device
changes, it needs to decide to which cloud instance to o�oad the code. Most of
the code o�oading frameworks assumes that the code will be o�oaded to a �xed
server. In contrast, this paper uses an dynamic approach. So, if the mobile
device has a strong network connection, it can o�oad the code to the server but
if the device has poor internet connectivity, o�oading to the server will not be a
good idea. In such a case, following the approach proposed in the paper, it will
o�oad the code to a nearby cloudlet.

The paper has three elements.

1. A Design Pattern which implements the techniques to o�oad code from
mobile device. It divides the main program into two modules - main
module and movable module. Any method that is using speci�c device
hardware is a main module as such modules cannot be o�oaded while rest
of the modules are movable module.

2. An Estimation Model which calculates the reduced execution time and
network delay and decides the appropriate resource for o�oading. It

18

consists of two components - information models and selection algorithms.
The information models calculate the reduction in execution time that can
be obtained from o�oading and selection algorithm decides the optimal
cloud resource for code o�oading

3. And �nally Framework which implements the design pattern and
estimation model to provide o�oading support for mobile devices under
context aware situation.

Our goal with this research is to reduce the costs associated with code o�oading
and this paper can be helpful in this regard as it helps reduce the dependency of
the framework on the online server(major cost element) by providing
context-aware o�oading. So, whenever the context allows the device to o�oad to
a nearby device (mobile, computer or a cloudlet), it will do so and will only
o�oad to the server when no other node is available nearby and when it's
absolutely necessary to do so. But the drawback of this approach is that the
server running mobile virtual machine images is still up even if the user device
decides to o�oad to the nearby cloudlet. So, irrespective of the o�oading
decision of the end user, the system is still incurring the cost of hosting virtual
images of devices. This technique helps the end user but doesn't help the
developers of the system much in reducing their infrastructure cost.

Flores et al. [14] developed a social aware hybrid code o�oading system called
HyMobi. The idea is to increase the availability of the code o�oading system.
As mobiles are almost always nearby some kind of network, so by providing code
o�oading opportunities to the nearby cloudlet, devices and remote server, we
increase the possibilities to do code o�oading. It's a kind of social network of
o�oading devices. The system also incorporates reward and credit system. So,
whenever someone provides one's device for code o�oading, one gets credits
which one can later use to o�oad code from one's device to someone else's
device. Users are also given reputation points to build trust in the network.

The proposed system has two components - peers and super-peers. Peer can be
any node in the system. It includes cloudlets, remote server and any mobile
device. Super-peers are the nodes that provide system level services to the other
nodes. Remote server and cloudlets are the natural candidates to be a super peer
but any device can become a super peer if it is running system level service on it.
Super-peers keep the information about all the peers available in a certain
locality and also acts as a mediator between code o�oading resource provider
nodes and consumer nodes. So, whenever some node wants to o�oad the code, it
contacts the nearest super-peer and get's the list of all the nodes available. After
o�oading is done, the same super-peer performs the actual transaction between

19

provider and requester of code o�oading service in terms of addition or
deduction of credits

This framework helps to increase the e�ectiveness of the code o�oading process.
It aims to create a partially autonomous code o�oading community of devices
that works on trust system and also encourages it's users to participate more in
the community by o�ering them rewards and reputation points. This type of
community can be a helpful in creating a cost incentive model for code o�oading
as it reduces the dependency on online servers which brings in the major costs
associated with the whole process.

Jedari et al. [15] provides a novel incentive game theoretic model to encourage
sel�sh nodes in mobile social networks to forward data in relay services. This
paper deals with bundle delivery in mobile social networks. Mobiles can have
limited resources due to which some nodes in the MSN can behave sel�shly by
not participating in bundle delivery in the network. This paper provided a game
theory model to encourage the sel�sh nodes in the network to forward the packet
and act as a relay.

The system has two main components:

1. Virtual currency: Each node in the system has a virtual currency.
Whenever a node provides it's services for bundle delivery, it earns the
currency and whenever a node uses some other node to deliver a bundle to
some destination, it loses currency.

2. Nodes: Each node in the system is a electronic device that have limited
resources like power and memory. Nodes in the system are divided into two
categories namely cooperative nodes and sel�sh nodes. Only the
cooperative nodes (the one's which transfer the bundle) gets paid and
sel�sh nodes (the one's which drop the bundle) cannot earn any currency
units

The process employs a bargain game strategy between the bundle carrier and the
relay node. There are a couple of factors that can a�ect the node's willingness to
transfer the bundle such as node's battery state, memory state (bu�er), and time
to live (TTL) of the bundle itself. So, both the bundle carrier node and the relay
node calculates their reserve prices for the service based on the parameters above
and then based on those reserve prices, a game is played which decides the �nal
cost of the service.

This paper, while not directly related to code o�oading at all, explains a process
that can be adapted for creating an incentive model for code o�oading

20

frameworks. The paper helps to increase the contributions of the sel�sh nodes in
the system by providing them an incentive in the form of a virtual currency,
which can help increase the performance and reliability of the message transfer in
MSNs. By employing the same techniques in the code o�oading framework, we
can create an e�ective community of o�-loaders which can help bring down the
server costs involved in the process.

Similarly, Gan et al. [16] proposed a game-based approach for multi-resource
sharing among friends in social networks. The approach uses
Vickrey-Clarke-Groves (VCG) based approach to o�oad the computation to the
friends of any particular user in a certain social network. For giving users an
incentive to participate in the system, the system gives monetary rewards to the
user who handle the o�oaded computations and there's also reputation rewards
in the system. For every successful handling of code o�oading request,
reputation points were given to the users. Higher reputation users earn more in
the system as compared to low reputation user. Real world traces from Facebook
has been used to prove that the proposed algorithm satis�es the game theoretic
properties of truthfulness and individual rationality.

Chen et al. [17] proposed a scheme for multi-user computation o�oading in the
context of mobile-edge cloud computing. Mobile edge computing [18] is network
architecture where cloud computing services are provided at the edge of the
mobile network. Despite the subtle di�erences, mobile edge computing is also
sometimes referred to as fog computing [19]. Bene�t of edge computing is that it
helps reduce the large latency delay for o�oading the code to remote cloud.
Unlike other approaches which deal with o�oading the code to just one device,
this paper proposes a scheme for o�oading to multiple devices. It's been proved
through calculations that the system reaches Nash equilibrium and also gives
superior computational o�oading performance.

2.3.3 Summary

To wrap the review up, we found that there are no models or papers available
previously that deals speci�cally with economical aspect of code o�oading
directly. But, as explained in the previous sections, there are a number of
techniques and models available for o�oading. Some rely on cloud servers [5], [6],
[7], [8], some work by o�oading code to nearby cloudlets [20], [21], [22] and some
frameworks are completely device-to-device [23]. In the cloud and cloudlets case,
there's central infrastructure that involves setting up and running multiple
virtual machine images depending on application requirements. In a complete
D2D system, there's no network infrastructure involved and all the mobile

21

devices communicate directly with one another. Usually WiFi-Direct or
Bluetooth is used for such techniques. D2D o�oading is certainly bene�cial for
cutting central server cost but this technique introduces extra challenges due to
discontinuous connectivity between devices due to user mobility and maintenance
of the whole o�oading infrastructure on client devices. So, for our purposes, we
resorted to a middle way of creating a partially D2D model where the central
server is responsible for the connection between the 2 devices but the code is still
o�oaded to user devices and not to any central server. A dedicated
mathematical model was also developed to provide incentive to the user. This
will be explained in the subsequent sections.

3 Hypothesis Testing

In order to test our hypothesis that code o�oading is indeed economically not
feasible, we tested the code o�oading process using Rapid code o�oading
framework [4] and Genymotion cloud instances on Amazon AWS [24]. Rapid is a
framework which provides code o�oading services for heterogeneous devices, but
for the purpose of our testing we only focused on mobile devices, speci�cally
android devices. The framework has 2 components - a client component and a
server component. Client part of the framework was installed on a Nexus 5
device and server part of the framework was installed on Amazon AWS
Genymotion instances. AWS Genymotion is a cloud based android emulator that
provides all the services you can get on a local Genymotion android instance but
it does it on the cloud. So, the instances are readily available and can be made
accessible to anyone, anywhere in the world.

Genymotion AWS instances also come in di�erent variants [2] optimized for
di�erent types of tasks. For instance, there are compute optimized (C5)
instances which are designed for computationally intensive workloads. Similarly,
there are memory intensive workloads (X1e) which are designed for memory
intensive tasks and applications like high-performance or in-memory databases.
For our purposes, we used general purpose (T2) instances which provide baseline
level of CPU performance. Within general purpose (T2)instances, there are
multiple sub instances. Their brief description is given in Figure 4.

N-Queens algorithm was used to test the hypothesis with 7 queens. N-Queens is
a puzzle of arranging N queens on a N by N chess board so that no two queens
can attack each other. In other words, there should be only one queen in a given
row, column and diagonal. For each machine instance on the Genymotion cloud,
algorithm was run 10 times and it's mean was recorded. Figure 5 shows the

22

Figure 4: T2 instances speci�cations [2]

results.

As evident from test results, code o�oading provided clear increase in the
throughput of the algorithm. Algorithm was tested locally on Nexus 5 and
remotely on four cloud instances of Genymotion devices and the execution time
in each of the cloud instances is clearly much shorter than when the algorithm
was run locally. The price structure for various cloud instances is given in Figure
6 [25]:

As can be seen in Figure 6, the cheapest cloud instance (t2.small) costs 0.151$
and if we have to make the instance available 24/7, the costs per month comes
up to be 109$. Such a cost for a single, most basic level cloud instance is
certainly not economically feasible. If we have to provide a code o�oading
solution for an industrial level application, such a cost for a single instance can
become substantial as in industrial level applications we may have to provide
higher end instances of the android devices with higher computational
capabilities and also we will have to provide multiple instances not just a single
one. Hence, we have validated our hypothesis that with the solutions available so
far, code o�oading is not economically viable.

23

Figure 5: Hypothesis Testing Results

Figure 6: Cloud instance rates

24

4 Mathematical Modeling

In this chapter, we will derive our game theoretic model for incentive mobile code
o�oading and will also explain the process of code o�oading we are trying to
propose.

4.1 System Modeling

The system we are trying to propose is the peer to peer network of o�-loaders
where each node can o�oad its tasks to some other node and can also perform
operations for some other nodes. In the context of our system, the node
o�oading its tasks is the buyer of the service and the one executing the o�oaded
tasks is the seller of the service. To ensure fairness in the system and to provide
incentive to the node to open their devices for o�oading, we introduced a virtual
currency in the system. Each time some node has to o�oad a task, it has to pay
certain amount of currency units to the node to which it is o�oading. The seller
node can then use that currency units later to buy services of some other device.
A competition based game theoretical model is used to calculate the price. A
central server is there that keeps track of all the devices in the system. The
devices continuously update their status like memory availability, battery state,
network bandwidth etc to the central server. Every time a device needs to
o�oads it's code, it asks the server for the ip of the device to which to o�oad.
Server, upon receiving the request, will return the most suitable device and will
also calculate the price of service based on the mathematical model that will be
explained in the next section. Pictorial description of the interaction between
devices in the system is shown in Figure 18 and the system will be described in
more detail in section 5.2.

4.2 Game theoretic model formulation

Before deriving the game theoretic model for code o�oading, we'll explain the
game theory concepts a bit, specially the techniques used in our mathematical
analysis.

4.2.1 Background

Game theory is the study of mathematical modeling of cooperation or con�ict
between two or more rational decision makers. It has applications in economics,

25

politic science and in computer science.

Games can be of many types. There are cooperative and non-cooperative games.
As their names indicate, cooperative games deal with the situations where an
alliance can be formed between the players and the problem in such a games is
often to �nd out the conditions under which the coalitions will form, which
coalitions will form and what will be the payo�s of each individual player under
those coalitions. On the other hand, non-cooperative games focuses on predicting
individual player's strategies and payo�s under those strategies.

Similarly, there are simultaneous games and sequential games. In simultaneous
games, all the players take turns simultaneously or are not aware of the actions
taken by the other players hence making their turns e�ectively simultaneous
whereas in sequential games players take turns in sequence and each latter player
knows about the turns taken by the players before him. These two games di�er in
their representations. Quite often normal form is used to represent simultaneous
games. In normal form, games are represented by a matrix indicating the
individual strategies and payo�s for all those strategies for all the players in the
game. On the other hand, extensive form is used to represent sequential games.
In extensive form, graphs are used to represent the game with each node
indicating a certain player and edge representing the action taken by that player.
Every leaf node contains a tuple of payo�s for all the players for that particular
set of actions i.e if that particular path in the tree is followed. Sequential games
are further divided into perfect information and imperfect information game. In
perfect information games, each player knows about the set of actions taken by
the players before him whereas in imperfect information games all players need
not have that information about the previously made moves of other players.

4.2.1.1 Elements of a game

Each game in game theory consists of some basic elements or entities. Every
game contains two or more players, the set of possible actions available to those
players also known as strategies and the payo�s for each player as a function of
their strategies. Payo�s are represented in the form of functions called utility
functions. These functions take the strategies or user action as input and return
the payo� of that action or strategy as output.

Game models also have a notion of equilibrium most commonly known as Nash
equilibrium [26] named after the American mathematician who coined it. A
non-cooperative game is said to be in Nash equilibrium for a given set of
strategies if no player can attain a gain in his payo� by deviating from his
strategy given the other players stick to their strategies. A sub-game perfect

26

Nash equilibrium is a subset of Nash equilibrium used in sequential games. A set
of strategies is said to constitute sub-game perfect Nash equilibrium if it is in
Nash equilibrium for every subset of a larger sequential game. A common
method used for determining the sub-game perfect Nash equilibrium in a
sequential game is called backward induction. In backward induction we reason
backwards starting from any step of the game and moving backwards, �nding the
optimal action for each player at every step of the game.

4.2.1.2 Summary

To sum up, in order to derive a game theoretic model for any problem, following
steps are required:

1. Identify the players. Who are they and how many?

2. Identify the set of actions available to all the players.

3. Identify the payo�s associated with those actions and derive a utility
function for each player.

4. Calculate the condition for Nash equilibrium to see under which actions the
payo�s of each player is optimal.

4.2.2 Incentive Scheme

In our system, at any given time, there are n number of o�-loaders and m
number of nodes willing to accept o�-loaded computation. To keep the model
simple, we formulate the game as a competition between 2 nodes only, a single
buyer and seller. The selection of the seller of the service is done before hand
depending on factors like computation required, time constraints etc.

The interaction between the buyer and the seller of the service is modeled using
the Rubinstien-Stahl bargaining game model [27]. The process starts with seller
making an initial o�er to the buyer. The buyer can either accept the o�er in
which case the game ends or buyer can make a counter o�er to the seller. The
game continues in this fashion until one of the nodes accept the o�er. To make
an initial o�er, both seller and buyer needs to calculate their reserve prices. In
seller's case it's the bare minimum price it requires for the service and in the case
of buyer it's the maximum price it is willing to pay for the service. A number of
factors a�ect the reserve prices which are given below:

27

4.2.2.1 Node Memory

Each node has limited amount of memory and it a�ects the node's willingness to
accept the tasks for o�oading or to hold it during the process. Let M i denote the
average remaining memory of a particular node. Then it can be represented as

Mi =
Mrei

Mmaxi

× 100% (1)

Here M rei
represents the remaining or free memory of the node i and Mmaxi

represents the maximum available memory of the node.

4.2.2.2 Node Battery

Node battery status is another factor that plays a part in determining the reserve
price of the nodes. We will represent the average remaining battery by B i.

4.2.2.3 Node Computational Power

Node's computational capability is another factor that a�ects the reserve price of
the node. Greater the available computational power of the device, greater is it's
willingness to open it's device for code o�oading and lower it's price. Let P i

denote the average remaining processor speed of a particular node. Then it can
be represented as

Pi =
Prei

Pmaxi

× 100% (2)

Here P rei
represents the remaining or free processor speed of the node i and

Pmaxi
represents the maximum speed of the node.

The above three factors - memory available, battery state and processing speed
a�ects the code o�oading decision of any device at any given time. So, we de�ne
a status metric out of these parameters.

SMi = α log2(Mi) + β log2(Bi) + γ log2(Pi) (3)

Here SM i is the status metric of the node i and α , β and γ are the weighing
factors of the individual parameter used to adjust their importance. Here, α + β
+ γ = 1

28

4.2.2.4 Reserve prices of nodes

Given the status metric of the nodes, we can calculate the reserve price of the
nodes. For the buyer node it is given as

RP t
B =

{
CB

SMB
if htavg = 0

htavg if htavg > 0 & htavg <= CB

Here, RPB
t denote the reserve price of the buyer node for the task t and CB

denote the currency units buyer node has at the moment. As can be seen, there
are two di�erent conditions for the calculation of the reserve price for any given
task. If the task is being o�oaded for the �rst time then the reserve price will be
calculated on the basis of currency units available to the buyer node and the
status metric as calculated in the previous section. It can be seen that greater
the amount of currency available to the buyer the higher is it's willingness to pay
more for the service. Conversely, the higher the remaining memory, the remaining
battery and the computational power of the node, the lower is the reserve price,
because the device can a�ord to retain that computation for some time.

This calculation for the case when the task is being o�oaded for the �rst time
can be problematic as there's a chance that the buyer will set it's reserve price
pretty high in case it has accumulated a lot of currency units. To rectify that,
every time the task is being o�oaded, we record the cost of the task and every
subsequent reserve price for the o�oading of the similar task will be calculated
as the average of the previous reserve prices of the task. So, the device may
overpay for the �rst few times but gradually it will learn the price.

In the above equation havg is calculated as

havg =

∑n
i=1 hi
n

(4)

In this equation, ht represents the price payed for a task in the past and n is the
number of times payment is done for a particular task in the past.

Similarly, for seller node, we have the equation:

RPS =

{
CS

SMS
if havg = 0

havg if havg > 0

Here, RPS denote the reserve price of the seller node, CB denote the currency
units seller node has at the moment and havg is the average of the prices o�ered

29

to the node in the past. It can be seen that greater the amount of currency
available to the seller, the lower is it's willingness to take o�oading request and
hence higher the reserve price. Conversely, the higher the remaining memory,
remaining battery, or the remaining computation power of the device the lower is
the reserve price, because the device can easily a�ord to perform some code
o�oading requests in contrast to the situation where node's memory or battery
is low, in which case reserve price of the node will be high.

Here again we have two scenarios. When starting out, the seller will determine
it's price based on the currency units it has but this can create a problem if seller
gathers a lot of currency because then the reserve price set by the seller will be
pretty high and there's a chance that it will stop receiving the o�oaded code
completely. Presence of such seller devices in the system with lots of currency
units available can also clog the system as there's a chance that the buyers will
not be able to pay for the service at all. To cater this problem, every time a
seller device receives the o�oaded code, the price will be recorded and the
subsequent prices will be set on the previous prices o�ered, so gradually the seller
node will adapt it's price to the market trend going on at any particular moment.

4.2.3 The bargain game

The bargain game is essentially the game to determine the division of the
di�erence between the reserve prices of two nodes which is given by:

D = RPB −RPS (5)

As nodes in the code o�oading network are sel�sh, they will try to get as much
proportion of the division for themselves as possible. Their utility functions
under this condition are given as:

uS(xS) = xSD −RS (6)

uB(xB) = xBD − TB (7)

Here, uS and uB are the utility functions of seller and buyer respectively. x S and
xB are the proportions of the price di�erence they will receive and RS and TB

are the costs of receiving and transmitting the code o�oading task respectively.

In the above equations, we have to calculate the values of RS and TB. As these
are the costs of transferring and receiving the packets, they are directly

30

proportional to the size of data that needs to be transferred between the buyer
and the seller node. The greater the amount of data, the longer it will take to
transfer it and hence greater will be the associated cost.

Another factor that a�ects these parameters is the connectivity speed of the
buyer and seller node. The faster the speed of connection, the shorter is the time
to transfer the data and lesser will be the cost of it. Hence those costs are
inversely proportional to the connection speed.

So, RS can be expressed as follows

RS ∝
Ps

ds
(8)

Here, P s is the packet size and d s is the download speed of the seller node. To
change it into an equation, we introduce a constant, let's call it t, so now RS can
be written as

RS =
Ps

ds
t (9)

Here, t should be a factor of the currency units. To calculate that, we have to
consider the reserve price equation again, which, in general terms, is given by

RP =
C

SM
=

C

α log2(M) + β log2(B) + γ log2(P)
(10)

We want to base the cost of transferring the data on the minimum possible
reserve price, because we want the transferring cost in the system to be minimal.
RP will be smallest when the status metric(SM) will be highest. SM will be
highest when all the parameters(memory, battery and processing power) are at
100%. Putting all those parameters to hundred percent and solving the above
equation gives us:

RPmin = 0.152C (11)

So, for one currency unit available, the reserve price would be 0.152. We'll use
this factor in equation 9. Hence, the packet receiving cost for sender will be

RS = 0.152
Ps

ds
(12)

Similarly, for the buyer node, TB can be calculated as

31

TB = 0.152
PB

UB

(13)

Here, PB is the size of the code that's o�oaded from the buyer node and U B is
the upload speed of the buyer node.

In the given game, the game can go on as long as no node accepts the other
node's o�er. This means that the game may never end. So, in order to ensure
that the game will end each node has a discount factor or a patience factor
denoted by δ. If we incorporate this discount factor in the system , the equations
become:

urS(xS) = δr−1
S (xSD −RS) (14)

urB(xB) = δr−1
B (xBD − TB) (15)

Here, r represents the bargaining round number. Discount factor is directly
linked to the factors a�ecting the reserve price of the nodes as well. So, in case of
buyer of the service, it's discount factor will be lower if the remaining memory or
the remaining battery is low. Same is the case with the seller. Discount factor's
value ranges from 0 to 1. 0 being the worst and 1 being the best. So, the
discount factor for node i can be given with the following formula:

δi =
αMi + βBi + γPi

100
(16)

Here, M i, B i and P i are the remaining memory, battery and processing power
percentages of the node i as calculated previously.

Next, we have to make sure that the game stops in �nite steps otherwise the
proposed scheme will have no utility. For that purpose, we'll try to �nd the
sub-game perfect Nash equilibrium in the system using backward induction.
We'll assume that the game end in third round when seller makes an o�er and
buyer accepts it.

We'll assume x to be the proportion of di�erence received by seller so xS = x and
xB = 1− x
Starting from round 3, let's assume the proportion o�ered to buyer from seller is
1− x3, so the proportion received by seller is x3.

Moving one step back to round 2, buyer has to make an o�er x2 to the seller. In
order for the seller to accept the o�er, it's utility in second round against that

32

o�er should be greater than or equal to the utility seller is going to receive in
round 3. This is given as:

u2S > u3S (17)

δS(x2D −RS) > δ2S(x3D −RS) (18)

Solving this for x2 gives us:

x2 >
δSx3D − δSRS +RS

D
(19)

Moving one step back to round one, seller will make an o�er to the buyer. If
seller takes x1 for itself in round one, then the proportion o�ered to buyer will be
1− x1. In order for buyer to accept this o�er, it's utility in round one should be
at-least equal to the utility received in round two.

u1B > u2B (20)

((1− x1)D − TB) > δB(x
2
BD − TB) (21)

Here, x2B = 1− x2. Now, in round 2 as the buyer was o�ering the proportion to
the seller, it wanted to maximize it's proportion while still making the seller
accept the o�er which is only possible when x 2 o�ered by buyer is the minimum
acceptable one. So the inequality above changes into an equality.

x2 =
δSx3D − δSRS +RS

D
(22)

Now, plugging this value into equation x2B = 1− x2 and solving equation for
round 1 gives us:

x1 6
D − δBD + δSδBx3D + δSδBRS − δBRS + δBTB + TB

D
(23)

We've assumed that the proportions in round three are in state of equilibrium.
Then x1 = x3 = x

Putting x into equation 23 and solving for x gives us

33

x =
D − δBD + δSδBRS − δBRS − δBTB + TB

D(1− δSδB)
(24)

It should be noted here that this analysis is only for D2D o�oading and we have
not considered remote clouds and cloudlets in our system for now. As we will see
in chapter 7, as part of the future work we intend to include remote clouds and
cloudlets to cater for the special case where the device is not able to �nd any
other mobile device to o�oad in the system. In short, o�oading to clouds and
cloudlets will only be done in case o�oading is not possible to any mobile device
and the user will have to pay for it outside the system of our code o�oading
framework.

4.3 Code o�oading framework

Now that we have the mathematical model in place, we can list down the steps
involved in the whole code o�oading process. The interaction between the buyer
and the seller node will take place in the following manner:

1. Whenever a node wants to o�oad the code, it sends the request to the
central server along with all the parameters of the device and o�oading
task needed for price calculation as done in the previous section.

2. Central server containing the list of all the seller nodes along with their
device parameters searches for the appropriate device for o�oading task. It
goes through the list of all the nodes available to which code can be
o�oaded and selects the �rst one with whom the deal can be made which
means the reserve price di�erence is a positive number. The computational
capability of this node should still be higher than the computational
capabilities of the buyer node or should at least be equal, otherwise there
would be no bene�t from o�oading the code. Also, the remaining memory
should be higher than the memory requirements of the code to be o�oaded
to the node.

3. Once the central server selected seller node for o�oading, it sends the
device info back to the buyer node along with price information.

4. Buyer device then connects to the seller node using it's ip address and
sends the o�oading task to it.

5. Once the buyer device receives the result of the o�oading task, it informs
the server that the task is completed. The server then performs the

34

transaction, taking money from the buyer's account and putting it in
seller's account. At this point the o�oading task is considered completed.

5 Implementation

Once we have the mathematical model and the general �ow of the code
o�oading framework in place, we went on to create the simulation to validate
our mathematical model and see how it performs in terms of saving overall
execution time when o�oading is done. Another important factor to check was
how reliable the system is in terms of o�oading device availability and given a
device needs to o�oad a certain piece of code, how often will it �nd a suitable
device to do so. We've also run the simulation multiple times with increasing
number of o�oading devices to check the scalability of the system.

5.1 Simulation

For creating the simulation, �rst we needed to pro�le the task that is fairly
resource intensive. N-Queens algorithm with 7 queens was chosen for the task.
For pro�ling, the algorithm was run on an android device and Android Studio's
pro�ler tools [28] are used to log the running time and memory consumption of
the algorithm.

Simulation is done as a java project which mimics the whole code o�oading
framework. Devices are represented as Java classes which contains all the
necessary data required for the code o�oading. Every device also contains
information about the bandwidth available to the device using which the time
required for transferring the data during code o�oading is calculated. For
simulation, 1000 instances of 'buyer' and 'seller' nodes are created. All the
devices contain randomly generated internal parameters. Those parameters
include 'total memory', 'remaining memory', 'remaining battery', 'currency units
available', 'network bandwidth available' and MIPS (Million instructions per
second). The bounds of the data are chosen depending on the general parameters
of the android devices available in the market. So, the total memory of the
device is randomly generated between 1GB and 8GB. The processing power is
randomly generated between 1.5 and 2.5 GHz. Available memory can also be any
value from 0 to 8GB. Remaining battery level is in percentage so it's from 1 to
100. Currency units are upper bounded by 1000. Network bandwidth speeds are
generated between 0.5 Mbps to 4Mbps. And MIPS are generated between 5000
and 1995000.

35

The simulation scenario is that each of the 1000 buyer nodes will try to o�oad to
1000 available seller nodes. For the simulation purposes, it is assumed that all
the devices are o�oading the code simultaneously. This also helps mimicking the
high competition environment between the devices. A device will try to o�oad
even if the local execution time is pretty less, as it could still get the bene�t of
saving battery life and computational power even if the remote execution time is
a bit longer than local execution time. Each device will check the parameter of
the available seller nodes one by one until it �nds a suitable seller node. It then
tries to o�oad the code to that seller node. If it's successful i.e the deal is
reached between the buyer and seller based on the game theory model we
developed, the job is considered done and timings for execution and transfer of
the code are logged. Also, the device that received the o�oaded code is removed
from the list of available nodes, because for the sake of simulation we assumed
that one node can only serve one request at a time. If the deal is not reached, the
buyer node moves on to search among other available nodes until it �nds one or
runs out of available nodes. If that happens, the code is considered to be not
o�-loadable at that instance and the result is logged.

Below are the high level results of the simulation:

5.1.1 Execution time analysis

Results were obtained from running the experiment 5 times in succession to test
how the system behaves in real world scenario. After every o�oading, device's
currency and status metric parameters are changed accordingly. The comparison
of the running time on local and remote nodes is as given below:

Figure 7 shows the scatter plot of local execution times against remote execution
times. This graph shows a single instance of the simulation, so individual graphs
may di�er slightly if simulation is run again but the distributions are more or less
the same. It is evident from the �gure that the processes took more time on the
local machines as compared to the remote machines. Remote execution times
here also include the data transfer time between buyer and seller nodes.
Similarly, Figure 8 shows the density plot of the two execution times with local
execution time density shown in red color. Here also we can see that more
processes are centered around lower execution times for remote execution and in
comparison the curve for local execution time density is more spread out.

Hence, the simulation results show that the suggested code o�oading framework
works and it's also viable in terms of reducing the execution time of the resource
intensive task. According to the results from running simulation multiple times,
on average it takes 10.23 seconds to execute the task on remote machines as

36

Figure 7: Scatter plot comparison Figure 8: Density plot comparison

compared to taking 21.1 seconds on average on the local machine.

5.1.2 Reliability analysis

Just looking at the reduced execution time doesn't give us the complete picture
about how reliable the system is. In order to test that, we ran the simulation
with varying number of o�oading devices available in the pool and for each
scenario logged the cases where the buyer node was not able to �nd any seller
node suitable for code-o�oading and hence the buyer node had to perform the
resource intensive task locally. The result of the analysis is shown in Figure 9.

It can be seen that as the number of devices increase in the system, the failure
rate decreases pretty sharply. So, if the system has only 100 devices which are
acting as seller, the failure rate would be 32% but if we have 25,000 devices in
the system the failure rate goes down to 8.5%. This is a good number given that
there's no central server involved in the system and the o�oading results depend
on the devices available to the o�-loader at the time he's trying to o�oad the
code.

37

Figure 9: Reliability Analysis

5.1.3 Scalability analysis

Similar to reliability analysis, in order to test if our proposed approach is scalable
or not, we again ran the simulation with varying number of o�oading devices
available in the pool and calculated the average time taken by the central server
to �nd the device for o�oading. It's important for our system to �nd the seller
device for the buyer e�ciently because otherwise our approach will result in
increasing the execution time of the process and hence decreasing the bene�ts of
the o�oading system. The result of the analysis is shown in Figure 10.

Figure 10 shows the graph between number of o�oading devices available and
the time taken to get the o�oading device from the server. It can be seen that
the server processing time is pretty low and as the number of devices increase,
the processing time also increases linearly. Hence the system is pretty scalable
and will be able to �gure out the device to which to o�oad code pretty
e�ciently. But still if there are too many devices in the pool, it can result in long
processing time. To resolve that, we intend to implement user device clustering
on server end as a future work which is discussed further in chapter 7.

38

Figure 10: Scalability Analysis

5.2 Prototype implementation

In order to see how our proposed system performs in a real world environment,
we developed a small prototype of the system. The prototype has 3 main
components, a central server and 2 android applications, one for client end (buyer
node) and one for server end (seller node). First, we will describe the individual
components and then the interaction between the components will be explained.

5.2.1 Central Server

Central server is the place where we keep track of all the buyer and the seller
nodes currently present in the system. All the buyer and the seller nodes
periodically update their node statuses to this server. The server is developed
using Java Spring Framework [29] and is backed by H2 database engine which is
a Java SQL database [30]. H2 is an in-memory database meaning that it only
exists for a session when the application is running. Once the application is down
or stopped, the database is gone as well. We've chosen H2 over general SQL or
PostgreSQL due to the simplicity of it's use. Unlike PostgreSQL, we don't have
to create any separate database and create references in application

39

Figure 11: Central server DB Schema

con�guration. We just have to include a dependency for h2 and it creates a
database from scanning available Spring entities [31]. This serves our purpose for
developing a prototype, but for an industrial level application, SQL or
PostgreSQL is recommended.

5.2.1.1 Database Schema

Database schema for the central server is given in Figure 11 below. It consists of
2 tables -Devices and O�oadingTasks.

Devices table contains all the information associated with the devices, their total
and remaining memory, battery and processor info, balance, their current ip
address and device modes (Buyer or Seller), and other parameters required for
the calculation of reserve prices and other factors in our game theoretic model.

O�oadingTasks contains info about the o�oading tasks that are being
performed right now or being performed in the past in the system. It contains a
reference to the buyer and seller devices and also contains the cost of the
o�oading task and the status of the task (in-progress, completed, unsuccessful).

5.2.1.2 Spring web services

The central server provides access to the underlying database through Spring web
services. Web services are RESTful and provide couple of endpoints to access

40

Figure 12: API endpoints

and change the status of the database. The web services are implemented in
general Spring MVC pattern [32]. Database tables are created as spring entities,
entities are wrapped by spring repositories [33] which exposes JPA CRUD
functions to be performed over the entities. These repositories are accessed from
spring services, which contains all the business logic of the code o�oading
framework and �nally, we have RestController classes which are an initial point
of contact for nodes in the system and exposes the endpoints of the system to the
outside world. These controllers use services to perform business logic and return
the results to the user. Results are returned in the JSON format.

For documenting the API, Swagger [34] has been used. Swagger is an API
documentation software that also enables you to test your endpoints by sending
the requests to your server. A snapshot of the swagger API documentation of the
endpoints available in our central server is given in Figure 12.

As can be seen in the �gure, the API provides endpoints for updating the status
of the devices, getting list of all the devices, getting device for o�oading and
marking o�oading tasks complete or failed.

41

This web service is hosted on Heroku [35]. Heroku is a cloud platform as a
service (PaaS) that allows application developers to build, run and manage their
application completely on the cloud. Web services are openly accessible and the
Swagger documentation of the web service can be accessed here [36].

5.2.1.3 Implementation details of central server

Platform Lines of code
Number of

�les

Central Server 819 32

Android client 648 10

Android Server 470 5

Simulation 529 6

Total 2466 53

Table 2: Software e�ort for developed platforms

The software e�ort for all the developed platforms is shown in table 2.

The application structure of the central server is shown in Figure 13. Application
starts at the main class which is CentralServerApplication. Spring framework
works on inversion of control principle(IoC) also known as dependency injection
[37]. Under this principle, Java Beans [38] de�ne their dependencies on other
objects or beans through their constructor arguments and the Spring framework
instantiates them for the dependent bean. So the user doesn't have to instantiate
all the objects. A brief description of all the packages are as follows:

• entities: These are the �rst classes that you develop when working on any
Spring application. It contains entities corresponding to the database
tables in the application. There are two entities in our system - Device and
O�oadingTask. This package also contains mapper classes that are
responsible for converting entity classes into DTOs and vice versa.

• repositories: These are the Spring wrapper classes for entities and allow
us to perform database operation like INSERT, GET, DELETE etc on the
the underlyng entities. In our case, we just have 2 repositories -
DeviceRepository and O�oadingTaskRepository corresponding to the two
entities we have.

42

Figure 13: Central server application structure

• services: These are the classes that contain business logic of the
application and also calls repository functions to perform database
operation. We have 2 services for either one of our repositories.

• dto: This package contains the data transfer objects for our entities.
Whenever the result is returned from any endpoint, we convert our entities
into the corresponding dto through the mapper classes and pass it back to
the user.

• controllers: These are the classes that expose the endpoints to the user of
the web service. They are all annotated with @RestController annotaion
that indicates that these are rest controllers. They use the functions from
the service classes to get the required results and then pass those results
back to the user. We have two controllers - DeviceController and
O�oadingTaskController

• con�g: It just contains Swagger con�g �le.

• exceptions: All the handled exceptions are de�ned in this package.

43

Figure 14: Buyer app main page Figure 15: O�oading page

5.2.2 Mobile client app

The client or buyer end of the android app is based on the sample provided by
the rapid framework [39]. The underlying logic for code o�oading is the same as
the original sample application but we added additional modules to make the
app talk to our server and update it's status and ask the server for feasible
devices for o�oading.

The screen-shots of the application are shown in Figures 14 and 15.

On the main page, there's an update button that gets all the data required for
price calculation like memory, battery, processor state etc and sends it to the
server. For networking, Square's Retro�t networking library [40] is used. It
controls the communication between the mobile app and the server and also
converts the result from JSON into POJOs using the underlying GSON library
[41]. GSON is a Java serialization/deserialization library that converts Java
objects into JSON and vice versa.

Whenever a user wants to o�oad a task, he can press the Start button. This will
result in a web call to the server which will return the device suitable for
o�oading(more on this in the coming sections). Once the application receives the

44

Figure 16: Android client application structure

results, it populates the text-box with Seller device's ip and moves to the second
screen.

On second screen (Figure 15), the connection is established with the seller device
and now the user can tap the Solve Queens buttons to send the N-Queens task to
the seller device for execution. Resulting time of the tasks is also logged on the
screen for user's information.

5.2.2.1 Implementation details of mobile client app

Project structure for the android client application is shown in Figure 16. The
project contains lots of �les and dependencies but we will just brie�y explain the
one's that are directly associated with our prototype.

• Demo: This package contains the android activity [42] classes that are the
main classes responsible for showing UI on the screen. The application
starts with the MainActivity and then transitions to DemoActivity when
Start button is pressed.

• Rest: This package contains the classes resposible for doing web calls to
our server, getting the result from the server and passing it back to the

45

activities from where the operation is requested. It contains ApiService
which is an interface that de�nes all the REST endpoints available.
RestClient implements the ApiService endpoints and contains the logic for
interacting with the server and handling response messages from the server.

• Bus: This package contains just one �le - BusProvider. It's an interface on
top of Otto's [43] Bus class. Otto is an event bus for android that allows
easy communication between di�erent parts of the application. It is helpful
as it let's the developer decouple di�erent parts of the application while
still allowing the communication between them. In our application we are
using it to pass results from our central server from RestClient class to the
Activity classes in the demo package.

• dtos: Like central server, we have data transfer objects on mobile end as
well and since they are used to communicate with the server, they are the
same as on the server.

• storage: This package contains Preferences class. This class is responsible
for storing app speci�c data locally. We are using android's
SharedPreferences [44] interface for that. SharedPreferences allow us to
save and access data as a key value pair. We are using it to save and retrive
device id and balance of the user.

5.2.3 Mobile server app

The server or seller end of the android app is based on the application server
component of the rapid framework [45]. Like buyer app, it also updates the
central server with the device status periodically but in the background and uses
Retro�t and GSON for networking and data parsing. The application doesn't
have a UI and works in the background using Android Services [46].

5.2.3.1 Implementation details of mobile server app

Project structure for the android server application is shown in Figure 17. From
our prototype's perspective, server part contains almost the same classes as the
client part as seller devices are also updating their status on the server in the
same way as buyer devices. The only class worth mentioning here is the
AccelerationServer class. This is an android service [46] class that is responsible
for listening to the incoming connections and o�oading requests and creating
separate threads for each of the connecting clients. Being an android service, it
runs in the background and doesn't have a UI.

46

Figure 17: Android server application structure

5.2.4 Interaction of components

In this section we will explain how all the components of the system interact
with each other. Complete �ow of the interaction between all the components is
summarized in the Figure 18. Both the mobile client app and the server app
update their device status on the server. In case of client application, for demo
purposes, this is done by tapping an Update button as shown in Figure 14. In
case of server application, this is done in the background. On the client end, the
result of the update call is also logged on screen for testing purposes. If the
device's status is getting uploaded for the �rst time, server assigns an id to the
device and also assigns an initial credit of 500 to the user(buyer or seller). Upon
receiving the result back, the id and the balance of the device is saved locally. In
each subsequent update request, this id is sent to the server so that the server
knows what device is updating it's status. So, at any given moment all the buyer
and seller devices are supposed to be updating their device statuses to the
central server.

Now, the code o�oading process starts when a device wants to o�oad the code
and presses the Start button in our prototype. This �res up a web call to our
server asking to get the most appropriate seller device for o�oading based on the

47

Figure 18: Prototype �ow diagram

device and task parameters. All the game theoretical mathematical calculations
done in the previous section are implemented on the central server. Upon
receiving the request, the server looks through the list of all the seller devices and
�lters out the one's which have higher computational power than the one from
which the o�oading request is received. It then goes through the list of those
�ltered nodes and calculates the reserve prices if each of them and compare them
with the reserve price of the buyer node until a suitable match is found which
means until a seller device is found whose reserve price is lower than the reserve
price of the buyer. When such a seller node is found, the server calculates the
cost of the service and creates an o�oading task in O�oadingTasks table
mentioned in previous section. This task's initial status is set to
'IN-PROGRESS'.Finally, the result is sent back to the buyer device. No
payment is done until this point.

Upon receiving the seller device's information from the server, buyer device tries
to connect to the device directly using it's ip address. This is done on the
O�oading page and the status of the connection is shown on screen. Once the
buyer device is connected to the seller device, it can o�oad the code to the seller
device by taping Solve NQueens button. This will o�oad the code to the seller
device and will wait for the result. Once the buyer device gets the result back

48

Figure 19: Payment noti�cation

from the seller device, it informs the central server that the job is completed
successfully which, in turn, will mark that o�oading job as Completed and also
performs the transaction by deducting the amount of o�oading task from buyer's
account and crediting them in the seller's account. This information is shown to
the user on the buyer end of the device by a �oating dialog window as shown in
Figure 19. At this point, the whole code o�oading �ow is considered completed.

5.2.5 Testing of Prototype

Device
Processing
power

Memory

Motorola Moto G 1.2 GHz 1 GB

LG Nexus 5 2.3 GHz 2 GB

Table 3: Testing Devices

The devices used for testing the prototype are listed in table 3. Testing was done
on a local private network with central server running locally as well as testing

49

Figure 20: Prototype �ow diagram

devices connected to the local network as well. Moto G was used as a buyer
device due to it's inferior speci�cations as compared to Nexus 5 which has better
speci�cations as evident from table 3. N-Queens algorithms was used again with
7 queens as the task to o�oad. The prototype corroborated our results from the
simulation. The server was able to select the device for o�oading successfully
and o�oading resulted in 78% decrease in processing time in this case. Locally
on Moto G the task took around 40 seconds on average to run whereas remotely
on Nexus 5 it took only 2.7 seconds on average to run.

6 Conclusion

In this thesis we identi�ed the factors that are a�ecting the adaptability of code
o�oading frameworks in the research and industry. We identi�ed how the
presence of central infrastructure on the cloud consisting of multiple instances of
VM devices brings the cost of the system up. We've looked at various techniques
of code o�oading currently used in the industry. In order to make code
o�oading economically viable so that it can be adapted in the industry, we
suggested to remove the central infrastructure from the cloud and recommended
a partial D2D approach for o�oading. Instead of hosting surrogate VM instances

50

on the server, the server now just acts as a mediator between di�erent devices
and the actual o�oading is done on user mobiles. We've also derived a game
theoretic mathematical model to provide incentive for the user to open up their
devices for o�oading. In order to test our mathematical model, simulations were
done. A small prototype was also developed to augment our simulations and
mathematical model. Both the simulation and the prototype shows that the
mathematical model works and it doesn't a�ect the code o�oading bene�ts
(shorter processing time, battery saving etc) in any way. Although the model is
tested on Rapid framework, it can easily be adapted to any other framework as
well as it doesn't require any changes on the framework level. Our system just
adds an extra layer on top of any framework where it looks for the devices and
decides the appropriate device to o�oad. The o�oading is done by the
underlying framework itself. So, our proposed solution is easily adaptable as well.

In order to give a brief overview of how much cost can be saved by our proposed
approach, the price comparison of some of the available web hosting services is
given in Figure 20 [47]. It can be seen in the graph that the most expensive web
hosting service costs 27$ per month. In comparison, using cheapest android
instance on AWS costs us 109$ and this is the cost for just one instance. In case
of our solution with web server, we can support any number of devices as it just
holds the current status of all the devices available in the code o�oading
network. Hence, we can see that our solution results in clear decrease in the cost
of the whole process.

7 Future Work

Moving on, we intend to implement clustering of devices on our server end. Right
now, the server selects the device for o�oading from the pool of all the available
devices from across the world. Once the system is deployed online we could have
millions of devices worldwide. So, it would be feasible to do clustering based on
device location and whenever a device requests the services for o�oading we only
look for devices in the same cluster in which the requesting device is. This will
also help to reduce the network latency as the two devices will be closer to each
other.

Moreover, we saw in the simulation section that in 8.5% of the cases the
requesting device couldn't �nd any device to o�oad (assuming 25000 seller
devices in the system). At the moment, in such a scenario device has to run the
code locally. In the future, we will consider introducing some central VM server
that can handle those failed cases. This will certainly increase the cost of

51

o�oading again as central server with VM instances is exactly what we were
trying to remove from the system. But in this case, the cost of the whole process
will still be lower as we will not have to create a lot of instances because now
only 8.5% of the devices will be o�oading to the central server. Previously all
the devices were o�oading the code to the central server and hence we required
VM instances for all of those devices. This o�oading to the cloud will incur
extra fee to the user of the service. So, in case mobile user is not able to �nd any
other mobile device to o�oad, he will have an option to o�oad to the VM
instance on the remote cloud by paying extra fee. Note that this extra fee will be
the real cost and not the virtual currency of our D2D system. Once this user
acquires the cloud resources, he will have the option to delegate o�oaded code
from other devices in the system to the cloud. This will increase the
multi-tenancy on the server and will also provide the chance to the user to gain
some virtual currency in the system.

52

References

[1] [Online]. Available: http://www.rapid-project.eu/_docs/RAPID_D3.1.pdf

[2] �Amazon ec2 instance types - amazon web services (aws).� [Online].
Available: https://aws.amazon.com/ec2/instance-types/

[3] S. N. Srirama, �Mobile web and cloud services enabling internet of things,�
Jan 2017. [Online]. Available:
https://link.springer.com/article/10.1007/s40012-016-0139-3

[4] �Rapid project - welcome.� [Online]. Available:
http://www.rapid-project.eu/

[5] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, �Maui: Making smartphones last longer with code
o�oad,� in Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys '10. New York, NY,
USA: ACM, 2010, pp. 49�62. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814441

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, �Clonecloud:
Elastic execution between mobile device and cloud,� in Proceedings of the
Sixth Conference on Computer Systems, ser. EuroSys '11. New York, NY,
USA: ACM, 2011, pp. 301�314. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966473

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, �Thinkair:
Dynamic resource allocation and parallel execution in the cloud for mobile
code o�oading.� in INFOCOM, A. G. Greenberg and K. Sohraby, Eds.
IEEE, 2012, pp. 945�953. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/infocom/infocom2012.html#KostaAHMZ12

[8] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen, �Comet:
Code o�oad by migrating execution transparently,� in Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI'12. Berkeley, CA, USA: USENIX Association, 2012, pp. 93�106.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2387880.2387890

[9] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan,
�Odessa: Enabling interactive perception applications on mobile devices,� in
Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys '11. New York, NY, USA: ACM,

53

http://www.rapid-project.eu/_docs/RAPID_D3.1.pdf
https://aws.amazon.com/ec2/instance-types/
https://link.springer.com/article/10.1007/s40012-016-0139-3
http://www.rapid-project.eu/
http://doi.acm.org/10.1145/1814433.1814441
http://doi.acm.org/10.1145/1966445.1966473
http://dblp.uni-trier.de/db/conf/infocom/infocom2012.html#KostaAHMZ12
http://dblp.uni-trier.de/db/conf/infocom/infocom2012.html#KostaAHMZ12
http://dl.acm.org/citation.cfm?id=2387880.2387890

2011, pp. 43�56. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000000

[10] F. H. H. P. N. P. L. E. T. S. M. J. K. V. L. Y. S. Xiang, �Evidence-aware
mobile computational o�oading,� p. 18, 2017-11-23. [Online]. Available:
http://urn.�/URN:NBN:�:aalto-201804042037

[11] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
�Cosmos: Computation o�oading as a service for mobile devices,� in
Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, ser. MobiHoc '14. New York, NY, USA: ACM,
2014, pp. 287�296. [Online]. Available:
http://doi.acm.org/10.1145/2632951.2632958

[12] B. Kitchenham, � c© kitchenham, 2004 procedures for performing systematic
reviews,� 2004.

[13] X. Chen, S. Chen, X. Zeng, X. Zheng, Y. Zhang, and C. Rong, �Framework
for context-aware computation o�oading in mobile cloud computing,�
Journal of Cloud Computing, vol. 6, no. 1, May 2017.

[14] H. Flores, R. Sharma, D. Ferreira, V. Kostakos, J. Manner, S. Tarkoma,
P. Hui, and Y. Li, �Social-aware hybrid mobile o�oading,� Pervasive Mob.
Comput., vol. 36, no. C, pp. 25�43, Apr. 2017. [Online]. Available:
https://doi.org/10.1016/j.pmcj.2016.09.014

[15] B. Jedari, L. Liu, T. Qiu, A. Rahim, and F. Xia, �A game-theoretic incentive
scheme for social-aware routing in sel�sh mobile social networks,� Future
Gener. Comput. Syst., vol. 70, no. C, pp. 178�190, May 2017. [Online].
Available: https://doi.org/10.1016/j.future.2016.06.020

[16] X. Gan, Y. Li, W. Wang, L. Fu, and X. Wang, �Social crowdsourcing to
friends: An incentive mechanism for multi-resource sharing,� IEEE Journal
on Selected Areas in Communications, vol. 35, no. 3, p. 795�808, 2017.

[17] X. Chen, L. Jiao, W. Li, and X. Fu, �E�cient multi-user computation
o�oading for mobile-edge cloud computing,� IEEE/ACM Transactions on
Networking, vol. 24, no. 5, p. 2795�2808, 2016.

[18] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, �A survey
on mobile edge networks: Convergence of computing, caching and
communications,� CoRR, vol. abs/1703.10750, 2017. [Online]. Available:
http://arxiv.org/abs/1703.10750

54

http://doi.acm.org/10.1145/1999995.2000000
http://urn.fi/URN:NBN:fi:aalto-201804042037
http://doi.acm.org/10.1145/2632951.2632958
https://doi.org/10.1016/j.pmcj.2016.09.014
https://doi.org/10.1016/j.future.2016.06.020
http://arxiv.org/abs/1703.10750

[19] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, �Fog computing and its role
in the internet of things,� in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC '12. New York, NY,
USA: ACM, 2012, pp. 13�16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[20] Y. Zhang, D. Niyato, and P. Wang, �O�oading in mobile cloudlet systems
with intermittent connectivity,� IEEE Transactions on Mobile Computing,
vol. 14, no. 12, p. 2516�2529, Jan 2015.

[21] Y. Li and W. Wang, �Can mobile cloudlets support mobile applications?�
IEEE INFOCOM 2014 - IEEE Conference on Computer Communications,
2014.

[22] P. A. Rego, P. B. Costa, E. F. Coutinho, L. S. Rocha, F. A. Trinta, and
J. N. D. Souza, �Performing computation o�oading on multiple platforms,�
Computer Communications, vol. 105, p. 1�13, 2017.

[23] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, �Serendipity,�
Proceedings of the thirteenth ACM international symposium on Mobile Ad
Hoc Networking and Computing - MobiHoc 12, 2012.

[24] �Genymobile inc.,.� [Online]. Available: https://aws.amazon.com/
marketplace/seller-pro�le?id=933724b4-d35f-4266-905e-e52e4792bc45

[25] �Genymotion on-demand : Android 5.1 (lollipop).� [Online]. Available:
https://aws.amazon.com/marketplace/pp/B06XC9L8F3?qid=
1511795324048&sr=0-3&ref_=srh_res_product_title

[26] J. F. Nash, �Equilibrium points in n-person games,� Proceedings of the
National Academy of Sciences, vol. 36, no. 1, pp. 48�49, 1950. [Online].
Available: http://www.pnas.org/content/36/1/48

[27] M. J. Osborne and A. Rubinstein, �Bargaining and markets.� Economica,
vol. 58, no. 231, p. 408, 1991.

[28] �Measure app performance with android pro�ler,� Mar 2018. [Online].
Available:
https://developer.android.com/studio/pro�le/android-pro�ler.html

[29] �spring.io.� [Online]. Available: https://spring.io/

[30] [Online]. Available: http://www.h2database.com/html/main.html

55

http://doi.acm.org/10.1145/2342509.2342513
https://aws.amazon.com/marketplace/seller-profile?id=933724b4-d35f-4266-905e-e52e4792bc45
https://aws.amazon.com/marketplace/seller-profile?id=933724b4-d35f-4266-905e-e52e4792bc45
https://aws.amazon.com/marketplace/pp/B06XC9L8F3?qid=1511795324048&sr=0-3&ref_=srh_res_product_title
https://aws.amazon.com/marketplace/pp/B06XC9L8F3?qid=1511795324048&sr=0-3&ref_=srh_res_product_title
http://www.pnas.org/content/36/1/48
https://developer.android.com/studio/profile/android-profiler.html
https://spring.io/
http://www.h2database.com/html/main.html

[31] O. Gierke, T. Darimont, C. Strobl, and M. Paluch. [Online]. Available:
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/

[32] [Online]. Available: https:
//docs.spring.io/spring/docs/current/spring-framework-reference/web.html

[33] [Online]. Available: https://docs.spring.io/spring-data/data-commons/docs/
1.6.1.RELEASE/reference/html/repositories.html

[34] �World's most popular api framework.� [Online]. Available:
https://swagger.io/

[35] �Heroku.� [Online]. Available: https://www.heroku.com/

[36] [Online]. Available:
https://thesis-central-server.herokuapp.com/swagger-ui.html

[37] [Online]. Available: https://docs.spring.io/spring/docs/3.2.x/
spring-framework-reference/html/beans.html

[38] [Online]. Available: https://docs.spring.io/spring/docs/current/
spring-framework-reference/core.html#beans-de�nition

[39] RapidProjectH2020, �Rapidprojecth2020/rapid-android-demoapp.� [Online].
Available: https://github.com/RapidProjectH2020/rapid-android-DemoApp

[40] �Retro�t.� [Online]. Available: http://square.github.io/retro�t/

[41] Google, �google/gson.� [Online]. Available: https://github.com/google/gson

[42] �Activities,� Feb 2018. [Online]. Available:
https://developer.android.com/guide/components/activities/index.html

[43] �Otto.� [Online]. Available: http://square.github.io/otto/

[44] �android.content.sharedpreferences,� Apr 2018. [Online]. Available: https:
//developer.android.com/reference/android/content/SharedPreferences.html

[45] RapidProjectH2020, �Rapidprojecth2020/rapid-android.� [Online]. Available:
https://github.com/RapidProjectH2020/rapid-android

[46] �Services,� Mar 2018. [Online]. Available:
https://developer.android.com/guide/components/services.html

[47] �A list of the fastest web hosting companies,� Jan 2018. [Online]. Available:
https://howtogetonline.com/web-hosting/fastest-web-hosting

56

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://swagger.io/
https://www.heroku.com/
https://thesis-central-server.herokuapp.com/swagger-ui.html
https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition
https://github.com/RapidProjectH2020/rapid-android-DemoApp
http://square.github.io/retrofit/
https://github.com/google/gson
https://developer.android.com/guide/components/activities/index.html
http://square.github.io/otto/
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://github.com/RapidProjectH2020/rapid-android
https://developer.android.com/guide/components/services.html
https://howtogetonline.com/web-hosting/fastest-web-hosting

Non-exclusive licence to reproduce thesis and make thesis
public

I, Talha Mahin Mir,

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to:

1.1. reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until
expiry of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the
University of Tartu, including via the DSpace digital archives until
expiry of the term of validity of the copyright,

of my thesis Incentive model for mobile code o�oading to
increase it's adaptability supervised by Prof. Satish Srirama

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the
intellectual property rights or rights arising from the Personal Data
Protection Act.

Tartu, 20.05.2018

57

	Introduction
	Problem
	Research Questions
	Structure

	State of the art
	Background
	Code offloading architecture
	Related Work

	Rapid Code offloading framework
	Acceleration client (AC)
	Design Space Explorer (DSE)
	Registration Manager
	Dispatch and Fetch Engine

	Acceleration Server (AS)
	Design Space Explorer (DSE)
	Registration Manager
	Dispatch and Fetch Engine

	Directory Server (DS)

	Literature Review
	Research Methodology
	Reviewed Material
	Summary

	Hypothesis Testing
	Mathematical Modeling
	System Modeling
	Game theoretic model formulation
	Background
	Elements of a game
	Summary

	Incentive Scheme
	Node Memory
	Node Battery
	Node Computational Power
	Reserve prices of nodes

	The bargain game

	Code offloading framework

	Implementation
	Simulation
	Execution time analysis
	Reliability analysis
	Scalability analysis

	Prototype implementation
	Central Server
	Database Schema
	Spring web services
	Implementation details of central server

	Mobile client app
	Implementation details of mobile client app

	Mobile server app
	Implementation details of mobile server app

	Interaction of components
	Testing of Prototype

	Conclusion
	Future Work

