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"FiBar": a Tool for Automated Analysis of Complex Biomaterials
from Microscopy Images

Abstract: The success or failure of many microbiological experiments depends on the
image analysis of microscopy images, be it determining the livelihood of bacteria by
measuring the fluorescence of individual cells or evaluating the quality of a fibrous mat
by assessing the distribution of individual fiber diameters. Often a lot of image data is
being generated from experiments, leading to a heightened demand of automated image
analysis tools. This also holds true in the creation of complex biomaterials, which contain
both fibrous textures and some other biocompound, like bacteria. Additionally, manual
image analysis is deemed to be time inefficient and biased — both issues which this work
aims to alleviate. This work presents the first version of "FiBar": a tool for the automated
analysis of complex biomaterials. The tool consists of a fiber diameter measuring and
bacteria analysis pipeline. "FiBar" was validated against other tools as well as manual
measurements taken from microscopy images. The tool showed to be useful for speeding
up the analysis while being relatively accurate.
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"FiBar": komplekssete biomaterjalide mikroskoopia piltide auto-
maatse analüüsi tööriist
Lühikokkuvõte: Mikrobioloogia katse edu või ebaõnnestumine sõltub mikroskoopia
pildi analüüsist, olgu see bakteri elulemuse hindamine fluorestsentsi järgi või fiibermati
kvaliteedi määramine kiudude läbimõõtude jaotuse põhjal. Tihti tekkib katse käigus palju
mikroskoopia pilte, ning see on suurendanud vajaduse automaatse pilditöötluse tööriista
järele. See tõsiasi kehtib ka komplekssete biomaterjalide loomisel, mis sisaldavad nii
kiulisi tekstuure kui ka muud biokomponenti, nagu bakterit. Lisaks sellele, et manuaalne
pildianalüüs on ajakulukas on see sageli ka analüüsija poolt kallutatud - probleemid, mida
selle töö lahendus püüab parandada. Töö tutvustab "FiBar"lahenduse esimest versiooni,
mis võimaldab analüüsida komplekssete biomaterjalide mikroskoopia pilte. Lahendus
koosneb kahest töövoost: kiudude läbimõõtude mõõtmine ja bakterirakkude analüüs.
"FiBar"toimimist valideeriti nii muude programmide kui ka käsitsi mõõdetud tulemuste
järgi. Lahendus kujunes kiireks ja võrdlemisi täpseks.

Võtmesõnad:
bakteri analüüs, elektroketrus, fiibri analüüs, pilditöötlus, tehisintellekt

CERCS: B230 Mikrobioloogia, bakterioloogia, viroloogia, mükoloogia; P176 Tehisin-
tellekt; T111 Pilditehnika; T490 Biotehnoloogia

Visuaalne kokkuvõte:
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1 Acronyms and abbreviations

Acronym/abbreviation Full term

CZI Carl Zeiss Imaging

DFOI Distribution-Free Overlapping Index

DM Diameter

ES Electrospinning

GUI Graphical User Interface

LIF Leica Image File

OCR Optical Character Recognition

OME Open Microscopy Environment

OS Operating System

PEO Poly Ethylene Oxide

PLC Copolymer of L-lactide and ε-Caprolactone

ReLU Rectified Linear Unit

ROI Region Of Interest

SEM Scanning Electron Microscopy

TIF/TIFF Tagged Image File Format

XML Extensible Markup Language
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2 Introduction
Visual inspection, like fluorescence microscopy has become an important tool in studying
microbiology as well as pharmaceutical biotechnology [Xie et al., 2008]. This minimally
invasive approach allows to observe bacteria in a controlled environment. Measuring the
bacterial cell size and fluorescence intensity are just some features the scientist can gather
from microscopy images. However, for research to be useful, the scientist has to generate
a multitude of images. With the state-of-art microscopes, images can be acquired in large
numbers and high quality, leading to bigger amounts of data to be analyzed.

For a higher throughput analysis, ample of methods for automatic and semi-automatic
image analysis have been developed in recent years ranging in complexity - from simple
image thresholding to deep neural networks [Eliceiri et al., 2012]. These methods have
been applied in the software of multiple imaging instruments (Image Analysis Wizard
Zeiss Microscopy), and free open-source solutions (e.g. DiameterJ/MicrobeJ plugin
for ImageJ [Ducret et al., 2016, Hotaling et al., 2015], CellProfiler [Bray et al., 2015],
ilastik [Berg et al., 2019]). Next to automation and speeding up the analysis of images,
the tools provide means to measure quantities that cannot be easily assessed by the
human eye. Considering the complexity of the microscopy images of biomaterials, no
single out-of-the-box image analysis solution fits. Hence multiple aforementioned image
analysis tools serve as inspiration in this work.

The general goal of the thesis was to design and develop an image processing tool -
"FiBar" that can be used to analyze microscopy images of complex biomaterials within
the Pharmaceutical R&D Lab at the University of Tartu. The tool consisted of two
pipelines - one for measuring fiber diameters of the complex biomaterials, the other for
the analysis of bacterial cells found in the sample. The performance of "FiBar" was
tested on synthetic data as well as actual microscopy images. Additionally, a case study
had been carried out by some of the supervisors - Marta Putrinš and Karin Kogermann -
that was solved by utilizing the bacterial cell pipeline.

This thesis is done in collaboration with the Pharmaceutical R&D Lab at the Institute
of Pharamacy which focuses on producing complex biomaterials, as well as the Biomedi-
cal Computer Vision Lab from the Institute of Computer Science at the University of
Tartu. The work is funded by the Estonian Research Council funded research project no
PRG 1507 (PI K. Kogermann): “Development of biorelevant assays for the analyses of
multifunctional antimicrobial wound dressings for the treatment of wound infections”.

The first part of the work provides an overview of what complex biomaterials are,
additionally a selection of biological image analysis tools are introduced. The second
part focuses on the image processing methods used in this work as well as the setup of
the solution. The final part of this thesis covers evaluation of the tool’s pipelines and
provides suggestions on how it could be improved further. The architecture of the neural
network used in this work, the link to the project code repository as well as the licence
is provided in the Appendix. This thesis assumes prior knowledge of image processing
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methods. In case of confusing field-specific constructs, the reader is suggested to refer
to the Digital Image Processing textbook by Gonzalez and Woods [Rafael C. Gonzalez,
2018].
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3 Background
This section aims to provide sufficient background for both the biological data used in
this thesis and available software for biological image analysis.

3.1 Complex biomaterials
As quoted from the US National Institute of Biomedical Imaging and Bioengineering’s
(NIBIB) Glossary of Terms - "A biomaterial is said to be any matter that interacts with
biological systems" [National Institute of Biomedical Imaging and Bioengineering, 2023].
Conventionally, biomaterials were considered to be non-living materials implemented in
medical devices (e.g., joint replacement, contact lenses) [Tathe et al., 2010]. Due to the
recent advancements in the field, some biomaterials are now utilized as wound dressings
where controlled cell-to-cell and cell-to-material interactions can occur [Naderi et al.,
2011]. This in turn, serves as a suitable medium for quantitative cell adhesion and growth
which is of utmost importance in wound recovery [Davis et al., 2005].

One method to produce wound dressings is electrospinning (ES). ES produces fiber
mats from polymers (such as starch, and gelatine) with fiber diameters of nano- to
micrometer range and with controlled surface morphology. This technology has proven
to be especially compatible with wound healing as the structure of the fiber mat can
mimic the skin’s extracellular matrix, which is pivotal for supporting cell growth [Haik
et al., 2017] (refer to Figure 1 for comparison of the fiber mat to natural tissue).

Figure 1. Examples of fibers in natural tissue compared to fibers in the electrospun mats
[Matrix, 2023].
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As visualized in Figure 2, the electrospinning technique can vary in multiple param-
eters: the polymer used for creating the material, humidity in the ES chamber, and the
voltage used to activate the electrospinning.

Figure 2. Representation of the experimental setup and adjustable parameters of
(monoaxial) electrospinning. The polymer solution is in blue. Q: flow rate, V: high volt-
age, D: distance from the syringe nozzle to the collector, ϕ: relative humidity (modified
[Weng and Xie, 2015])

The key points for describing the morphology of the electrospun (ES) wound dress-
ings are fiber size, pore size, and surface topography features [Lanno et al., 2020]. It has
been addressed that the fibers’ structural properties affect the wound-healing process. For
instance, the high porosity of the fiber allows oxygen and water permeability, nutrient
exchange, and removal of metabolic waste [Kamble et al., 2017]. Additionally, research
has highlighted that the fiber morphology features are connected to the mechanical
properties, for instance, due to the fiber chain orientation and fibers’ structural order,
fibers with smaller diameters tend to be stronger [Yao et al., 2014].

Unsurprisingly, the morphology of ES fibers in the fiber mat depend on the ES
process and the parameters set for ES - such as the voltage, polymer solution etc. [Preem
and Kogermann, 2018]. Thus, there is demand for fiber characterization tools that enable
to estimate the fiber properties accurately, thereby providing insights into how successful
the ES was.

The heterogeneous structure of the biomaterial is what makes the material complex:
it may consist of multiple polymers or even contains a polymer and some living matter or
other compound [Zussman, 2010]. Scientists have proved that it is possible to encapsulate
different biocompounds within the fiber, such as medications [Lanno et al., 2020, Meinel
et al., 2001], and bacteria [Klein et al., 2009], that can ultimately boost wound healing.
More specifically, the encapsulation of bacteria has been shown to improve the stability
of cell enzymatic activities and protection from environmental stresses. This is very
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beneficial when creating a wound dressing where the bacteria have been modified to
release wound healing compounds [Klein et al., 2009]. With this in mind, the interaction
between the bacteria and the material also adds to the complexity. Alongside, if not
all, then most species, the bacteria also necessitate to live in an environment supporting
their growth and metabolism for them to function properly. Research has shown that
the ES method provides a suitable enough environment for bacteria. For example, in
the works of Salalha et al., the Staphylococcus albus remains completely viable while
some Escherichia coli cells lost their colony-forming ability after they were ES into
the polymer. Additionally, all the bacterial cells retained their viability 3 months after
ES [Salalha et al., 2006]. It should be pointed out that the ES material with bacteria
applicable for wound healing is one of the main biomaterial of interest throughout this
work.

3.1.1 Imaging techniques for biomaterials

To assess the mechanical and biological properties of the ES fibers, multiple imaging
methods can be employed. These methods roughly branch into two based on the target:

• evaluation of the fibers’ properties;

• estimating the stability and viability of living cells encapsulated in the fiber.

Both of the aforementioned goals can be achieved by using various microscopic tech-
niques, such as scanning and confocal microscopy.

Scanning Electron Microscopy. Scanning Electron Microscopy (SEM) is a technique
that can provide information about the sample’s topography, chemical composition, and
electrical behavior of the upper layer (1 µm depth). The basic working principle can be
concluded as follows: the setup has an electron gun that blasts out electrons (with energies
from 2-40 keV), the interaction between the electron beam and the specimen (which is
laid on electrically conducting pads) is collected by various detectors, which signal values
are projected onto a micrograph (an example is provided in Figure 3). Depending on the
microscope, different magnifications can be acquired - ranging 10x to 500000x (from this
point onward the "x" is being omitted when referring to magnification) [Vernon-Parry,
2000].

Due to the size range of the diameters of ES fibers, this technique is often utilized to
evaluate nanofiber mats [Lanno et al., 2020, D’Amore et al., 2010]. The micrographs
enable the interpretation of the structure of the fiber - porosity, elongation, uniformity
- both qualitatively and quantitatively. For the latter approach, the micrographs are
exported as image files. The selection of the image format may vary depending on the
software that is provided with the microscope. These SEM images are then used for
measuring the diameters of the fibers, as well as the porosity and orientation of the
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surface fibers. Furthermore, attempts have been performed to also understand the fiber
mat porosity in depth using specific calculations and predicting the 3D pore volumes [Liu
and Hwang, 2012]. The approach to automatically measure these features is discussed in
the section "Assessment of fiber morphology".

Figure 3. Example of a SEM image.

Confocal Microscopy. Confocal microscopy is an imaging tool that uses fluorescent
light to display a section of the sample. To create an image of the sample, the focal
spot of the microscopy objective is scanned in the X-Y plane, and the sharp, high-
contrasted image is constructed one pixel at a time (some microscopes can handle
multiple points at once) [Zeiss, 2023]. Although the sample is not actually sectioned, it
is possible to acquire a stack of confocal image planes. For fluorescent light microscopy,
biological dyes (fluorophores) need to be added to the specimen for it to react to light at
a compatible wavelength. These fluorophores greatly improve image quality by targeting
only specific parts of the sample and as a result decreasing the overall signal-to-noise
ratio [Nwaneshiudu et al., 2012].

As confocal microscopy enables localization of specific areas of the sample, it is ideal
for assessing the viability of encapsulated cells in the fiber. This, of course, necessitates
the cells to be modified so that they emit fluorescent light when excited [Zupančič
et al., 2019]. In the case of bacterial cells, fluorescence expression does not directly
link to bacterial activity, therefore special nucleic acid coloring or fluorescent protein
plasmids encoding for the expression of fluorescent proteins are utilized. These options
enable monitoring the viability via expression of a specific fluorescence. For instance,
the LIVE/DEAD BacLight Bacterial Viability Kit by Thermofisher stains cells that are
considered to be dead or dying in red, whereas cells with an intact membrane will be
stained green [ThermoFisher Scientific, 2023]. An example of green and red stained
bacteria in a sample is provided in Figure 4.
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Figure 4. Example of a microscopy image with green and red stained bacteria and fibers.

3.2 Biological image analysis software ecosystem
This subsection focuses on the efforts made thus far for the analysis of biological images
at a fiber and encapsulated cell level.

3.2.1 Assessment of fiber morphology

Commonly, the gold standard for evaluating nanofiber morphology has been manual
measurements in SEM images using a graphical tool in image analysis programs, such as
ImageJ [Collins, 2007]. However, this approach is time-consuming and low throughput.
Additionally, selection bias is very likely [Begg and Berlin, 1988], as experimenters
may omit fibers that are non-representative - such as very thin or thick fibers. As the
distribution of fiber diameters is one of the key metrics to describing the fiber morphology
[Lanno et al., 2020], a sufficiently large number of fibers needs to be measured manually
to reduce the standard deviation to a level where meaningful statistical comparisons can
be undertaken.

To speed up the process of collecting manual measurements and decrease selection
bias, a variety of tools have been developed to assess properties, such as the nanofiber
orientation [Rezakhaniha et al., 2011], fiber length [Giusti et al., 2018], hole size [Ho-
taling et al., 2015], and nanofiber diameters [Tomba et al., 2010]. As automating fiber
diameter measurements is one of the key focus points in this thesis, the most relevant
works in this regard will be discussed in further sections.

The fiber diameter measurement process can be divided into the following parts:
image processing to extract fibers, measuring fiber diameters from the segmented image,
and validating the results.
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Image segmentation to extract the fibers. Most papers have approached fiber ex-
traction using classical or more advanced image processing methods, which are applied
to the whole image at once [Hotaling et al., 2015] or sub-images of the original image
[Tomba et al., 2010], [Chen et al., 2010].

The authors of some papers have been able to successfully extract fibers from the
image by employing only classical image processing methods. In the paper by Chen et
al., noise was filtered with kernel convolution, and Otsu thresholding was used to binarize
the resulting image. The image and fiber edges were detected using Sobel gradients
[Chen et al., 2010]. In the works of Tomba et al., nonlinear histogram equalization was
employed for enhancing the pixel contrast, which was followed by denoising using a
wavelet filter. For fiber segmentation, multiple methods were applied, such as multivariate
image analysis and straight-line approximation [Tomba et al., 2010].

DiameterJ is a diameter measuring tool deemed to be the front runner in this field,
as it provides different options to segment the fibers from the image. This is possible
because it is part of the ImageJ ecosystem, where other segmentation algorithms/plugins
can be accessed [Hotaling et al., 2015]. The thesis author’s testing revealed that the
DiameterJ’s most fruitful method to segment fibers was statistical region merging.

An example of deep learning-based segmentation can be found in a web application
named FiberDiameter which was released in November 2022. The solution runs a
pre-trained U-Net model in the back-end that segments fibers from the uploaded image.
The model had been trained on synthetic as well as real-life images provided by the
community [Fernando Cossio, 2023].

Measuring fiber diameters from the segmented image. The second part of the
pipeline, namely measuring fiber diameters, has been approached differently in the
literature. For example, in the efforts by Tomba et al, the orthogonal distance between
the segments, which represents the right and left edge of a fiber, is estimated [Tomba
et al., 2010]. In the work by Chen et al., the shortest path algorithm is adopted. For this,
a random point is chosen at the left edge (1 fixed point), another point is chosen from
the right edge (10 points chosen altogether from the opposite edge), and the distance
between the points is calculated. The shortest distance out of the 10 measurements is set
as the diameter of the fiber. Despite stating that the diameters can be measured from up
to down, the authors do not describe how this was achieved [Chen et al., 2010].

DiameterJ provides two options to assess the diameter of the fiber, either via the
superpixel diameter or using a histogram from multiple diameter measurements. The
former approach succeeds by dividing the areas of all the fibers (foreground white pixels
are summed up) by the total length of all the fibers’ centerlines. The centerlines are
obtained through thinning or the Voronoi spatial tesselation (connecting the background
black pixels). This technique assumes that fibers are long and rectangular. The second
approach for fiber diameter measurements using DiameterJ is performed by transforming
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the segmented image with the Euclidean distance transform algorithm. Thereafter, the
Voronoi centerlines are overlaid with the transformed image. Intersections between the
centerlines and values in the distance-transformed image are omitted. The grayscale
values under the leftover lines (ideally located in the middle of the fiber) are obtained
and multiplied by 2 [Hotaling et al., 2015]. While the distance transformation step
was adopted in the solution of this work, the diameter measuring part of the DiameterJ
(version 1.018) tool did not work at the time of testing.

Validation of the results. The distribution of measured fiber diameters is often visual-
ized as a histogram. Some statistical metrics, such as the mean and standard deviation,
and coefficient of variation, are also used to describe the distribution. Generally, manual
measurements are used as a reference which the automatically measured results are
compared to [Tomba et al., 2010, D’Amore et al., 2010].

3.2.2 Estimation of the viability of bacterial cells

To determine the viability of bacterial cells, the cells ought to be detected first. This is
generally achieved by thresholding. However, the structure of bacterial cells is known to
vary between different cell types (rods, coccus etc.) or even within the lifespan of one
bacterium. This directly affects the choice of parameter sizes in the segmentation process
and is one of the reasons, why multiple analysis tools have been developed. Table 1
provides a curated overview of the current state-of-art tools for bacterial image analysis.

Firstly, it should be pointed out that many file formats exist when it comes to mi-
croscopy images. One way to explain this is the ample amount of microscopy devices
on the market that have their own method for building images. Some examples of these
formats are also provided in the Table 1 - LIF belongs to the Leica Microscopes ecosys-
tem, whereas, the CZI format has been created by the Carl Zeiss Microscopy enterprise
and is most compatible with the company’s own ZEN imaging software [Collins, 2007],
[GmbH, 2011]. The disparity between formats urged the Open Microscopy Environment
(OME), to build and release Bio-Formats. This is a Java-based file conversion tool used
across many platforms (like CellProfiler as is evident in the aforementioned table) [Moore
et al., 2015]. Additionally, an OME-tiff format can be viewed in the BactMAP and Oufti
software column. This is a standardized format established by the aforementioned OME
consortium, that is essentially a multi-page TIF image. Next to the developed image
analysis software tools, the OME-TIFF format is supported by multiple microscopy
company softwares, such as the preceding Leica Inc. and Carl Zeiss Microscopy, as well
as PerkinElmer and Scientifica [Environment, 2018].
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Table 1. Comparison of features in different microscopy image analysis tools for bacteria.
(± , q represent the Linux, Mac, Windows operation systems respectively)

CellProfiler BacStalk BactMAP Oufti BiofilmQ

Suggested
use case

Different
eukaryotic

and
prokaryotic

cells

Common
and stalk-
forming
bacterial

cells

Fluorescent
bacterial

cells,
integrating
bacterial
data from

other
programs

Touching
bacterial
cells of

varied mor-
phology

Microbial
biofilm

communi-
ties

Supported
input file
format(s)

Most
imaging
formats

from Bio-
Formats

JPEG or
TIF

OME-tiff OME-tiff

Few
formats

from Bio-
Formats,
e.g. LIF,
CZI, TIF

Outputs Collected
data table

Collected
data table,

varied
plotting
options

Different
visuals for
fluorescent

cells

Collected
data table
and visual-

izations

Collected
data table
and visual-

izations

GUI Ë Ë é Ë Ë

Development
language Python MATLAB R MATLAB MATLAB

Download
require-
ments

q / 
(from

source: ±)

q /  / ±
&

MATLAB
R2014b+

q /  / ±
& R

q / 
(from

source: ±
with

MATLAB)

q /  / ±
and

MATLAB
R2017b+

Paper
reference

[McQuin
et al., 2018]

[Hartmann
et al., 2020]

[van
Raaphorst

et al., 2020]
[Pai, 2016]

[Hartmann
et al., 2021]
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The software programs in Table 1 are stand-alone tools, often purposed for specific
cases and complex to use as separate modules. Alas, not all of the tools suit the data
provided in this work or are too complicated to solve the issue at hand.

As one of the goals in this work is to create a pipeline for microscopy images with
bacterial cells, endeavours by Chiang et al. and the ImageJ’s module "Analyze particles"
have served as a source of inspiration [Chiang et al., 2015, ImageJ, 2023]. In the work
of Chiang et al., the goal was to count colonies from an image of a Petri dish. One of
the efforts of this work went into extracting the dish from the image, so it would not
be interfering with the colony counting. The extraction of the colonies, however, was
achieved through classical image processing methods, such as the bottom-hat transform,
erosion, Otsu’s thresholding and watershedding. For validation of their approach, they
compared their system to two other colony counting systems - NIST’s Integrated Colony
Enumerator (NICE) and Clono-Counter. After analyzing 21 images of colonies on Petri
dishes, the proposed approach surpassed both counting systems based on the average of
precision, F-measure and recall [Chiang et al., 2015].

Next to having an ImageJ plugin for fiber measurements (DiameterJ), a plugin for
bacterial cell detection and analysis is also existing - MicrobeJ. By using conventional
thresholding techniques, MicrobeJ can detect bacterium of any morphology and generate
subpixel resolution contours, additionally the medial axis is being extracted to determine
the geometrical and topological properties of the cell shape [Ducret et al., 2016]. As
this tool is focused more on single-cell analysis, it is also limited to having input images
of very high resolution. For this reason, ImageJ provides a module named "Analyze
Particles" for automatic particle counting. This takes a segmented image as an input
with no overlaying objects in the image. Both of these conditions can be met using
the built-in modules (Auto-thresholding, Watershed operation) of ImageJ. The particle
analysis plugin allows the user to filter out particles based on size, as well as circularity.
Finally the collected results are output as a data possible, it is also possible to obtain an
image with detected bacteria [ImageJ, 2023].
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4 Methods and materials
This part of the work discusses the methods used in the two pipelines - fiber diameter
measuring pipeline and bacterial cell analysis pipeline. Additionally, the techniques and
data used to validate the pipelines’ performance will be elaborated later. This includes
details on how the data was created as well as what metrics were considered for testing.

4.1 Fiber diameter measuring pipeline
The overview of the complete proposed fiber diameter pipeline is provided in Figure 5.
As discussed prior, SEM is a method for analyzing the diameter range of the ES fibers as
well as ES fiber mat morphology. Hence the input of this pipeline was an image of a SEM
micrograph. This image was then segmented into fore- and background via two separate
approaches - by using classical image processing methods or by utilizing a pre-trained
U-Net model. The extracted fibers in the upper layers of the SEM image belonged to the
foreground, all other parts in the image were regarded as the background. Later, the fiber
diameter measurements were obtained using a custom algorithm that took the segmented
image as input. The gathered diameters were then converted to nanometer scale by
fetching the value and scale from the source image, and a corresponding histogram of
the measured diameters was produced. This histogram was then used for the evaluation
of the pipeline. The aforementioned parts will be expanded in further detail below.
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Figure 5. General workflow of the fiber diameter measuring pipeline. The flow was
initiated with an image of a SEM micrograph (gray box), which was segmented either
classically or using a pre-trained U-Net model (boxes in green). Diameters (initial unit:
pixel) were measured from the segmented images (red box) and were then converted to
nanometers based on the scale provided and the histogram was created (blue boxes).

4.1.1 Image segmentation

Image segmentation in this application is the process where the uppermost fibers of the
SEM micrograph are considered to be foreground class, and all the rest of the image is
considered to be background class. As methods in this field have evolved significantly
over the past ten years, two distinct approaches were tested for SEM image segmentation:
classical and deep learning-based.

Classical image processing approach. In the classical image processing technique,
the raw image was first converted into grayscale. Then, a Kuwahara filter (3x3) was
applied to the image. Generally, filtering is applied to remove noise and distortion. The
filtering process entails a moving window that scans over every pixel in the image, and
based on the pixel values in the window, the center pixel will obtain a new value. The
common operation for filtering is taking the mean or the median of the pixels in the
window. However, this sort of smoothing may affect the parts of the image where edges
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are important. Such was the case for these SEM images where the edges of the fibers
marked the start points for diameter measuring, and thus, ideally, the fibers’ size on the
segmented image should not differ compared to the original image. The Kuwahara filter
is one example of smoothing that does not affect the sharpness of contours [Bartyzel,
2015]. The Kuwahara filter converges from the previous filters as the filter window
(with an odd-numbered edge size) itself is divided into 4 equal areas - meaning that
each subarea will have overlapping pixels (refer to Figure 6 for clarification). For each
subsection, the average and variance are calculated. The resulting value of the center
pixel is the average mean of the section with the smallest variance.

Figure 6. An example of a 3x3 Kuwahara filter window with 4 shaded subareas, the
black pixel signifies the central pixel of the window [Bartyzel, 2015].

To extract the fibers from the background of the filtered image, Huang thresholding
was undertaken. Compared to the infamous Otsu thresholding, Huang thresholding
considers the fuzziness of the image. In short, provided a certain threshold value, the
membership function of a pixel is defined by the absolute difference between the gray
level and the average gray level of its belonging class (foreground or background). The
larger the difference, the smaller the membership function becomes, thus minimizing the
fuzziness of the image [Huang and Wang, 1995]. The output was a binary image where
the foreground class was of white color and pixels belonging to the background class
were black. In order to remove some white artifacts in the background and smooth out
the image, a median filter (15x15 window) was applied. The intermediate results of a
sample image are provided in the Figure 7 below.
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(a) Grayscaled input image (b) Kuwahara filtered image

(c) Huang thresholded image (d) Median blurred image - output

Figure 7. Intermediate results (from a to d) of the classical segmentation approach. The
images are cropped by 200 pixels from all edges. While visually difficult to notice, the
smoothed texture of the fiber in b is what differs from a.

Pre-trained U-Net model prediction. U-Net is a well-known network for biological
image segmentation [Ronneberger et al., 2015]. The network architecture has a U-
like shape, which consists of a contractive path and an expansive path. In the final
layer, a 1x1 convolution is implemented and the output is sigmoidally activated to map
each component feature vector to the desired number of classes (e.g. foreground and
background class). The model architecture in this thesis mostly followed the original
setup, the network architecture is provided in Figure A1. Convolutional layers were
implemented with 3x3 sized kernels and the ReLu activation function. Dropout of 0.1
between the layers was used, which randomly silences 10% of all neurons in the hidden
layer, and the learning process was guided by the Adam optimizer with a learning rate of
0.0002.

This network was trained by using one SEM image (with 15k magnification) and
its corresponding segmentation map (the segmentation was manually done in Label
Studio). The grayscale input image (with shape (768, 1024)) was cut into 100 256x256
overlapping sub-images. The same procedure was done with the segmented image. The
model was trained on 90 sub-images and validated on the remaining 10 images. Figure 8
shows the training process. Since, only one SEM image was manually segmented, there
was no possibility to create an independent validation or test set for this model, instead, it
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was attempted to overfit the data purposefully, relying on the assumption that other SEM
images of fibers will be sufficiently similar to the image the model was overfitted on.

Figure 8. The learning curves of the U-Net model. The overfitting is not striking here as
the images used for validation were from the set of subimages described above.

The model was then tested with an unknown SEM image (also 15k magnification).
The test image was cut into unique patches of size 256x256. After setting these patches
as input for the model, the predictions were stitched back together. The values in
the output image were thresholded with model probabilities (ranging between 0 and
1). The pixel value in the output was set to white, if it was higher than a provided
prediction probability, and black elsewise. The probability threshold (p=0.6) was fixed by
overlapping the segmented image with a Canny edge detected input image which detects
the edges of the foreground fibers relatively well (see Figure 9 for comparison between
probabilities of 0.6 and 0.9). This allowed to evaluate how well the model predicted the
classes as well as to ensure that the dimensions of the fibers would not differ too much
compared to the original.
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(a) Prediction probability of 0.6 (b) Prediction probability of 0.9

(c) Original image

Figure 9. The output images thresholded with prediction probabilities of 0.6 (a) and
0.9 (b) with the original input image (c). The areas in black are the background class of
the image, the sections in white belong to the foreground class and the pixels in red are
the detected edges from the original image. The images are cropped by 200 pixels from
every edge.

It can be seen from Figure 9b that segmentation with high prediction probability (0.9)
reduced the amount of detail quite a lot and classified some foreground fibers (upper-right
corner) as background. Hence it was opted for a smaller probability of 0.6.

Once the model’s performance was qualitatively assessed, the model was saved as
.h5 format and thus iteratively purposed for the segmentation of SEM images. Despite
the predictions in the figure above not fully filling in the area between the edges, they
had managed to do it partially, and was sufficient for the next step of diameter measuring.
It should also be pointed out that the outputs often had a peculiar stair-like spiky artifact
on the edges that were smoothed out with a 15x15 median filter.

4.1.2 Measuring diameters

The diameter measuring process can be sectioned into three: transformations of the
image, including skeletonization, pruning and distance transform, starting point selection
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and applying the diameter measuring algorithm. The main steps of the process are
gathered in Figure 10.

Skeletonization, pruning and distance transform. Before the diameters were to be
obtained from the image, a skeletonized and pruned version of the segmented image
was generated. Skeletonization (also known as "medial axis", "thinning") of the image
allowed to find the points in the foreground class (the fiber) that are the furthest from
the background. Consequently, the connectivity of the skeleton was not so conserved,
as unwanted branches occurred, which would have interfered with the following steps.
This issue was alleviated by pruning (hairs < 50 pixels removed), a method which many
researchers, including Montero and Lang, have deemed sufficient [Montero and Lang,
2012]. It should be pointed out that pruning was not done for images of 2k and 5k
magnification, as it was not capable of pruning suitable size elements within 10 minutes
(Intel i5 8th gen processor). This is likely because of the larger density of information
in the image that leads to the difficulty to differentiate between hairs and the parts of
the skeleton. The distance transform of the image was also needed. As the distance
transform finds the closest zero pixel for each pixel of the image, it allowed to determine
the distance values along the medial axis in pixel units. For the distance transform, the
Euclidean distance with a 3x3 mask was used as a distance measure [OpenCV, 2023].

Starting point selection. The starting points are locations on an arbitrary edge of
the foreground class from which the diameter is measured (refer to Figure 10b for an
example). The point locations were chosen randomly based on the dimensions of the
image. However, the point location needed to fulfill two conditions: the point is at least
one pixel away from all image edges and the two neighboring pixels should be black. The
former condition avoided erroneous measurements taken too close to the border. At the
same time, the latter increased robustness to noise - for example, a single white pixel in
the background will not be a starting point. It also decreased erroneous measurements in
obscure situations, such as an edge pixel being in the arc of V-shaped fibers. The number
of unique starting point locations depends on the use case - generally, 100 diameter
measurements per image are considered statistically valuable.

Diameter measuring algorithm. This paragraph covers what happens once the starting
point has been established. The diameter measuring algorithm consisted of the following
stages: direction finding, finding the nearest white pixel on the skeletonized image, and
saving the diameter values. The stages are visualized in Figure 10c. Finding the direction
of the fiber was estimated from the quarter (or quarters) with the most amount of white
pixels. This was achieved by creating a 13x13 window (blue box in Figure 10c) where
the starting point was the window’s center point and the amount of white pixels in each
quarter was collected. With the direction fixed, the nearest white pixel was to be attained.
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The first step was to determine the region of interest (ROI) which reached the medial axis
from any starting point - the edge size of this bounding box was a rounded up maximum
value of the distance transform. In cases where the starting point was closer to an edge
than this aforementioned window edge value, the region’s edge size was set based on
the distance from the point to the closest edge. Based on the known direction and the
starting point, the ROI was positioned so that most of the space under the ROI (green
box in Figure 10c) would include white pixels. The location of the closest white pixel
was used to find the distance value from the same coordinate in the distance transform.
This distance value was then multiplied by two to obtain the diameter of the fiber in pixel
units.

(a) Examples of the segmented, skeletonized and distance transformed image

(b) Starting point on the segmented image and the zoomed-in region of the starting point

(c) Direction finding, closest white pixel determining from the skeletonized image

Figure 10. Main steps taken to measure diameters - transformations, starting point
assignment and closest white pixel determination. Here just one starting point is taken
to show the process (b). It can be seen (c) that the direction is towards the upper-right
quarter as this has the most white pixels. After the location of the closest white pixel is
determined, the distance value is taken from the distance transform and multiplied by 2.
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4.1.3 Visualization of the results

To comprehend the fiber diameter characteristics, the distribution of the measurements
were visualized. In case of having more than one image of a sample, the measurements
were combined into one distribution. In this thesis, the visualizations of distributions
were beneficial to understand the inter-approach (automatic vs manual) differences.
However, comparing values of these distributions assumed that they all were based on
common units, which in this case was nanometer (nm). When at first it was only possible
to estimate the diameter of fibers in pixels, while later, provided the magnification of the
image, it was possible to convert pixels to nanometers. To enable this conversion, the
scale (often at the bottom left) in the SEM image needed to be processed (see example of
scales in Figure 11).

Figure 11. Examples of scales with varied values and units fetched from the SEM data
provided.

The scale was a horizontal bar that shows how many pixels on the image correspond
to a value-unit which was usually printed at the top of the scale. As the number of pixels
per nm was never constant, the issue prompted two tasks to be solved: identifying the
value and unit using optical character recognition (OCR) and obtaining the length of the
horizontal bar.

The approach assumed the unit and value to be highlighted in black. This enabled to
segment the corresponding area (with the value and unit) using simple binary inverse
thresholding. After, contours were detected from the thresholded image. In this case,
the biggest contour was always around the value-unit part of the image - this knowledge
allowed to establish the exact location of the value-unit section in the image. This value-
unit part was then provided as input for OCR. The Python-tesseract, a Python wrapper for
Google’s Tesseract-OCR Engine was utilized for this [pyt, 2023]. Initially, Pytesseract’s
OCR system was very erroneous when the value-unit compound was provided as input,
so the value and unit were split. The splitting was achieved by determining the range of
the biggest amount of consecutive black pixels in the middlemost row of the contoured
value-unit region. The separated unit and value were then zero-padded from all sides.
Thereafter, the unit and value were determined by setting Pytesseract’s page segmentation
mode (psm) to 10 which referred to treating the whole image as one character. The OCR
process was cyclic where with every iteration the unit and value image dimensions were
increased by 1 pixel (height and width ranged from 10 pixels to 30 pixels). The output
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of the OCR was compared to a list of known values and units. If Pytesseract’s output
matched with any of the reference values, the cycle broke.

The horizontal bar was assumed to lay below the contoured value-unit compound.
Thus the region below the contour was cropped and thresholded, so that the bar (in
white) was extracted from the image. The length of the bar was determined through the
difference of the minimum and maximum column coordinate of the white pixel values.
The amount of pixels-per-nanometer was found through the division of the value in
nanometers (the µm was converted to nm) by the amount of pixels. This scalar was then
used to convert all of the diameter values in pixels to nanometers and distributions of the
measurements could be observed.

4.2 Bacterial cell analysis pipeline
The outline of the bacterial cell analysis pipeline is provided in Figure 12. The pipeline
commenced with input data in CZI format which was converted to suitable color channels
based on the file’s metadata provided in XML format. Then, a sequence of image
processing methods was applied which resulted in the determining the amount of red and
green bacteria within one sample. The count results would then be further analyzed by
researchers.

Figure 12. General workflow of the bacterial cell analysis pipeline. The flow was
initiated with a microscopy CZI file. This file was converted to stack of images and the
image arrays for the red and green channel were extracted. Images for both channels
were then used for bacteria counting.

4.2.1 CZI conversion to image files

The CZI data storage schema consists of numerous segments, one of the most important
being the metadata. Thanks to the Aicsimageio and Czifile library in Python it was
possible to access the metadata of the CZI file [Gohlke, 2023, aic, 2020]. Some of the
most useful features collected were the following: channel color names (to ensure the
colors in the file were compatible with the script), amount of planes (images) in the
z-axis in one CZI file. Provided the shape of every z-plane, it was possible to convert the
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plane to a NumPy array, reshape and split the array based on the color channels provided
in the metadata. After, the array of every color channel was converted to 8-bit and the
images were ready to be processed for bacteria counting.

4.2.2 Bacteria counting using image processing methods

First, in order to keep the amount of pixels per bacterium in the same size range, all of
the images were uniformly resized to shape 512x512. This enabled to use a constant
kernel size for morphological operations. Most of the output results of the following
intermediate steps are provided in Figure 13.

The grayscale image of a specific color channel was thresholded so that the value
below a certain threshold (pivot intensity of 200) would turn black but otherwise the
pixel value would remain the same (refer to Figure 13b for an example). This allowed to
study the intensity changes within a cluster of bacteria: the more intense regions were
used for counting the bacteria, while the lower intensity values were considered as noise.
As bacteria are considered as round or elliptical in microscopy images, the structuring
element in all of the following operations was a disk with a fixed size based on the color
of the bacterium (disk radius of 8 pixels for the noisier red channel and 7 pixels for
the green channel). First the areas with the highest intensities were obtained - a local
maximum mask was created based on the dilated image (refer to Figure 13c). The mask
value was set to True when there was a non-zero value at the overlay of the dilated and
thresholded image. This mask showed the location of potential peaks in the image with
the background noise.

In order to isolate the peaks, a background mask was created. This mask consisted
of boolean values where they were set to True when the pixel values of the thresholded
image were 0. To remove an artifact line, the background mask was eroded a by the
aforementioned structuring element. The mask for the final peaks were determined by
using the exclusive OR operation between the local maximum mask and the background
mask. In this way some of the noisy True values in the local maximum were set to
False. Thereafter, the values in the final peaks’ mask were multiplied pixel-wise with the
thresholded image, resulting in an image with the brightest intensities detected and each
region belonging to a bacterium (refer to Figure 13d).

Finally, all of the pixels of values bigger than 0 were set to white and this binarized
image was labeled so that every white cluster was counted as a separate bacterium. It
ought to be pointed out that this process happened for every plane in a color channel
separately. Additionally, in the situation where one bacterium was captured over multiple
planes, the bacterium was counted as one. That is, if a white region spanned in the
same pixel location throughout multiple planes, the bacteria were counted once. This
approach, however, created a bottleneck for the potential cases where multiple bacteria
were connected as chains along the depth of the sample.
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(a) Original grayscale image (b) Thresholded image

(c) Dilated image (d) Detected bacteria peaks in the image

Figure 13. Intermediate results of the bacterial cell analysis pipeline. Here the image
plane has been cropped so that only one cluster of bacteria is visible. This process will
be repeated throughout all the planes in one stack and the outputs (like in subfigure d)
are being overlaid to obtain the amount of bacteria in one sample.

4.3 "FiBar" orchestration, data collection
Both pipelines - the fiber diameter measuring pipeline (with the classical image process-
ing approach) and bacterial cell analysis pipeline - were set up in Windows 10 OS in a lab
computer at the Institute of Pharmacy. A task in the Task Scheduler was configured so
that it was triggered every 15 minutes indefinitely. The task checks for newly added files
in two sub-folders in the lab’s common network drive folder. Considering the system’s
constraints provided in 4.3.1, users can add their microscopy CZI format files and SEM
images to the appointed folders ("CZI_input", "SEM_input" under "Automaatika" folder).
If a file has been added to any of the sub-folders, the respective pipeline will be triggered.
All of the data collected during the procedure will be added to their separate Excel
Workbook ("CZI_analysis", "SEM_analysis"). The data collected from the fiber diameter
pipeline are the following: file path, diameter measurements, mean, standard deviation,
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median and runtime of the pipeline. Information about the file path, the number of stacks
in one CZI file, the amount of green and red fluorescent bacteria, and time it took to
obtain results from the bacterial cell analysis pipeline are gathered to the "CZI_analysis"
workbook. The Excel-based approach was designed to make it easier for the users to
use the system compared to having to learn how to prompt values from a database table.
In order to alleviate the potential issue of the workbook slowing down, the workbook
consists of monthly worksheets. In case the pipeline fails for some reason, it will be
restarted as soon as possible. The end-user will know that their image file has been
analyzed, once the file from the initial sub-folder is moved to "*_processed" folder
where * is either CZI or SEM. Refer to Figure 14 to grasp an overview of the system
orchestration.

Figure 14. General workflow of "FiBar". The functioning of the tool is governed by
the Task Scheduler (green) that checks for new files in the appropriate folders. If a new
file (.CZI/.TIF) has been added to a folder (light gray), the respective pipeline (red) is
triggered. Once the data have been added to the workbook (nodes in blue), the initial file
is moved to the processed folder (nodes in yellow). The edges in this pipeline indicate an
action or trigger.

In case the reader wants to run the pipelines, the scripts should be executed in the
Python 3.8.10 environment. All of the required libraries and their versions can be
installed from the "requirements.txt" file in the thesis Github repository (link provided in
the Appendix II. Link to the project repository). Next to having a folder for setting up
the tool, a "Quick_runs" folder was created to test the pipelines with single microscopy
images (image examples also provided in the repo). Further instructions for testing
are provided in the "README.md". Some constraints to consider when running the
pipelines are expanded in the next section.
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4.3.1 Constraints of "FiBar"

The most important aspects to acknowledge when using the tool are provided below.
These were formed based on the input data provided by the Pharmaceutical R&D lab at
the Institute of Pharmacy.

For the fiber analysis pipeline, the system assumes the following:

• the SEM input image can be TIF/PNG/JPG format;

• the file name should include "_2k_" or "_5k_" if a magnification of 2k (2000x) or
5k (5000x) was used;

• the OCR part of the pipeline assumes that the value and unit are provided in white,
highlighted in black and the horizontal bar is white on a transparent background
aligned below the value and unit;

• the scale can have values 1, 2, 3, 10, 200 or 400 and units, nm or um.

In case of the bacterial analysis pipeline, the following is expected:

• the input file is CZI format;

• the user has used red and green detectors to collect the data from the sample;

• staining dyes or fluorescent proteins have been used in the experiment (that have
resulted in filled fluorescent bacteria);

• the shape of the raw data has the shape (I,T,C,Y,X) where I (illumination) and T
(time) have values of 0;

• the input file can have up to 4 channels, but it needs to includes at least 2 channels
for the red and green color.

4.4 Validation of pipelines
The following section describes the methods and data used for validating the pipelines.

4.4.1 Fiber diameter measuring pipeline

The validation of the fiber diameter pipeline was based on research conducted by Stanger
et al. and Hotaling et al. [Hotaling et al., 2015, Stanger et al., 2014]. The pipeline was
tested on simulated two-tone images (with fibers of constant and varied diameters), as
well as actual SEM images of fibers. The simulated images were generated by using
mainly Python’s libraries NumPy and OpenCV. The synthetic dataset consisted of images
(768x1024 resolution) with 30 unordered 2-tone fibers which had diameters of:
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• the same size (10-30 pixels);

• three different possible sizes (combinations of 3 diameters with a step of 5 starting
from 5 pixels and ending with 35 pixels);

• normally distributed (mean=20 pixels, standard deviation=5 pixels) sizes.

The fibers were either curved or straight lines. As there were 30 fibers in the image, the
same amount of measurements were taken from every image automatically. Also, some
horizontal bars were generated which imitated the scale component in the SEM images.
The generated bars were of varying lengths from 60 to 100 pixels. Altogether there were
30 synthetic images. Refer to Figure 15 for some examples of the synthetically created
images.

Figure 15. Examples of synthetically created images: the leftmost image shows random
curved fibers, whereas, the rightmost image shows generated straight fibers, the middle
image is an example of a horizontal bar created.

All of the SEM (Zeiss EVO MA, Germany) images (768x1024 resolution) are
courtesy of the Pharmaceutical R&D Lab at the Institute of Pharmacy. The given dataset
was divided based on the biological experiments done. The first image set covered 5
biological samples with 33 .TIF images. The images entailed encapsulated E.coli or
L.lactis bacteria in fibers depending on the sample. The SEM images had magnifications
of 2k, 5k, 15k and 20k. The dataset of the second experiment consisted of 2 biological
samples of chloramphenicol (CAM) loaded fibers. Both samples - control and test -
consisted of 3 images with a magnification of 10k. The last dataset consisted of 2 samples
with PVA fibers with and without a medication. These samples also had 3 images with
10k magnification.

Based on the examination of the convergence of cumulative average by Stanger et
al., it was found that at least 150 measurements per sample would be needed to ensure
the reported total average was within the ±1 pixel error limit [Stanger et al., 2014]. This
is also why the data provided by the lab at the Institute of Pharmacy had at least 3
images per sample. Every sample was accompanied with manually measured diameters,
leading to a summed total of approximately 300 measurements per sample. Generally,
the automatic approach was also set up to gather 300 data points per sample.
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This being said, next to manual references (or ground truths), 2 other human ex-
perts (who used the ImageJ drawing tool) were included in measuring some of the
experiment data. All-in-all images were measured at most by 3 human operators and
2 separate results were evaluated for the automatic approach (U-Net and the classical
method approach). In order to assess the goodness of the automatized approach, the
resulting measurements were compared to a manual reference distribution-wise as well
as statistically. In some cases the distribution-free overlapping index of inter-manual and
inter-sample measurements was considered. The distribution-free overlapping index is a
normalized measure quantifying similarities (or differences) between empirical distribu-
tions, which does not assume the normality of distributions nor any other distributional
form. The overlapping aspect is termed from the overlapping area of two distributions
[Pastore and Calcagnì, 2019].

As for the synthetic 2-tone images, a one-way F-test was used for estimating the
significance between the generated and automatically obtained results.

Additionally, the stochasticity of the system and time performance was estimated on
an image magnification and automatic approach level.

Almost all of the statistical measures and visualizations were obtained in Python,
using the Stats module of Scipy as well as NumPy and Seaborn, Matplotlib. The only ex-
ception being the distribution-free overlapping index which was used in R ("overlapping"
library).

It was also aimed to compare the custom automatic approach with the ImageJ’s
plugin DiameterJ (version 1.018). However, upon the time of reviewing, the measuring
part did not work properly, so the idea was dropped.

4.4.2 Bacterial cell analysis pipeline

The validation of the bacterial cell analysis pipeline was tested in two ways: through
generated images of green and red circles and ellipses and a case study provided by some
of the supervisors of this work - Marta Putrinš and Karin Kogermann. While simulated
data were used to assess the working of the bacteria counting part of the pipeline, the
case study additionally determined the functioning of converting CZI files into image
arrays.

The synthetically created images of bacteria (see Figure 16 for examples) were
generated using Python’s NumPy and OpenCV. With the amount of points (ranging from
4 to 177) fixed per image, red or green ellipses and circles were generated based on a
provided size range (radius range from 3 to 10 pixels). Several images had a couple of
colored objects clustered together, sometimes the objects were situated at the edges of
the images. Altogether 30 images were generated.
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Figure 16. Examples of images with simulated bacteria. The left image contains 41
green circles and ellipses, the right most image shows 11 red circles and ellipses.

The generated images were converted to grayscale, Otsu thresholded and set as
input to the counting module. The amount of automatically counted bacteria were
then compared to the generated amount. Additionally, the "Analyze Particles" module
in ImageJ (version: 1.53t) was tested using the synthetically created images. The
thresholding was done using "Auto Threshold" with the default thresholding option and
watershedding was done only when there seemed to be clustered objects in the image.
The segmented image was set as input for the particle analyzer where default settings
were kept for the particle sizes. The counting results were saved and compared to the
automatic approach.

The case study provided by the supervisors covered microscopy images of electrospun
L.lactis bacteria. The microscopy images were captured using the Zeiss LSM 710
confocal microscope. The goal was to answer two research questions using the created
bacteria viability pipeline:

1. Does the addition of polyethylene oxide (PEO) have an effect on the fiber perme-
ability?

2. Are bacteria viable within the fiber?

The question whether fiber material had an effect on the results was researched using
24 CZI files of L.lactis pre-stained with FM 4-64 (red dye) and after the encapulation
of bacteria, green staining dye (SYTO-9) was added. A copolymer of L-lactide and
ε-Caprolactone (PLC) as well as combination of PLC and polyethylene oxide (PEO)
were polymers used to create the fibers. The hypothesis set by the case study creators
was that the addition of PEO to fibers will make the fibers more permeable and more
bacteria will stain with SYTO-9. In order to support or reject the null hypothesis, the
percentage of SYTO-9 stained bacteria per sample was found for mats with PLC and
PLC+PEO.
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The answer to the second question was formed based on 25 CZI files where the
bacteria were stained with SYTO-9 (green dye) and a nucleic acid stain propidium iodide
(PI) (red dye). Both stains were added only after bacteria were encapsulated into ES
fiber-mats. The question if bacteria were viable within the fiber was answered through
estimating the amount of green (alive) bacteria to the amount of red (dead) bacteria
throughout all the planes in one CZI file.

The automated counting results were compared to the manually counted results. Due
to the diversity of biological samples, it should be pointed out that a 10% uncertainty
range is still considered as successful counting.

All of the statistical measures and visualizations were obtained in Python, using the
Seaborn, Matplotlib for visuals and NumPy for calculations.
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5 Results and discussion

5.1 Fiber diameter measuring pipeline performance
The following subsections will describe in further detail the different tests that were
performed with the fiber diameter measuring pipeline - both on images with simulated as
well as with ES fibers.

5.1.1 Horizontal scale bar test

The horizontal scale bar test was a comparison test between two expert measurers and
the created algorithm. The experiment tested the algorithm’s thresholding approach to
detect the scale and compared it with human performance (one line per bar). While the
algorithm was able to estimate the correct scale lengths for all the examples, human
operators missed the actual length on average by 2 pixels (refer to Table 2).

Table 2. Comparison of manual performance and algorithm performance on measuring
horizontal bars. The averaged difference compares the average of manual measurements
to the true values.

True bar
length (px) 60 70 80 90 100

Algorithm’s
measurement

(px)
60 70 80 90 100

Manual mea-
surements

(px)

63.01,
61.00

72.33,
73.00

82.01,
76.25

91.34,
93.00

102.01,
102.01

Absolute
average

difference
(px)

2.01 2.67 1.81 2.17 2.01

5.1.2 Testing the diameter measuring algorithm

The diameter measuring algorithm was initially tested on simulated two-tone fibers
("fibers" interchangeably used with the term "lines" here).

The first round of tests was done on images with fibers of a constant diameter within
a single image. Figure 17 shows the measured values for curved and straight lines
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(simulating fibers) compared to the generated line diameters. Considering the ratio of
line diameter to the image resolution (image resolution stayed constant at 768x1024),
images with line diameters in the range of 10-30 pixels are most akin to real SEM images,
hence the results for those generated diameters were deemed to be the most important. It
can be seen that the error between the generated and measured diameters increases with
the size of the generated line diameter. Notably, the median of the measured values is
way higher than the generated line diameters of 30 pixels in that image. Additionally,
straight lines seem to have a much higher median than curved lines.

Figure 17. The box plot for automatic measurements for straight and curved lines. The
x-axis of the box plot indicates the actual line diameter of the fiber and the y-axis shows
the automatically measured values.

This behavior can be explained by visualizing the generated diameters on the original
image. Examples of automatic diameter measurement locations on straight-lined fibers
are provided by Figure 18. With increasing fiber diameter, the likelihood of randomly
selecting a point that is part of the fiber crossing increases (as there is less space for
other structures). Fiber crossings are V-shaped structures that the algorithm is not really
good at avoiding or measuring correctly (see mid-right region in Figure 18b). Therefore,
the next step to improve this solution is detecting these crossings and removing them
before points are randomly selected. One way to determine these crossings is by creating
a network from the skeletonized image and removing all intersections of the network’s
edges. This network-based approach has also been tested in the works of D’Amore et al.
[D’Amore et al., 2010].
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(a) Straight lines with diameters of 10 pix-
els.

(b) Straight lines with diameters of 30 pix-
els.

Figure 18. Measurement locations on the simulated two-tone images. The black
segments indicate the path from the starting point to the midpoint (red). The green
segments show the path from the midpoint to the end point.

Next, images with 30 simulated fibers (curved or straight lines) of 3 different diam-
eters were experimented with. The goal of having 3 different diameters in one image
was to test if multi-modality would become present within the distribution of 100 mea-
surements from the image. While Hotaling et al. generated thousands of measurements
per image for the multi-modality test, it was interesting to see if this algorithm could
overcome its stochastic effect with fewer iterations [Hotaling et al., 2015]. This did not
hold true, as can be seen from the smoothed and normalized distributions of different
images in Figures 19a, 19b. It should be noted that whatever the orientation of fibers
(curved or straight), larger diameters showed a smaller modality tendency.

A bigger number of measurements was tested as well, in fact, 750 data points were
gathered from the same two selected input images. Figures 19c, 19d show the normalized
distributions in this case. It is evident that while still not reaching the same probabilities,
the peaks are situated in the same diameter range as for the maxima in the estimated
distributions of generated values. Hence, the increase in the number of data points has
enabled to approach the expected distribution.
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(a) n=100 (b) n=100

(c) n=750 (d) n=750

Figure 19. A series of estimated distributions with generated and automatically measured
values. The blue distribution represents the generated diameters (30 values), while the
orange distribution shows the diameters measured by the algorithm. The input images in
subfigures (a) and (c) had three types of straight fibers with diameters of 10, 15, and 20
pixels, while subfigures (b) and (d) had curved fibers with diameters of 10, 15 and 20
pixels. The top row of plots shows orange distributions that were built using 100 data
points from the corresponding input image, while the bottom row displays distributions
from 750 measurements.

The fiber diameter measurement algorithm was additionally tested on simulated
fibers, which diameters were generated from a normal distribution. At first, the diameter
measuring algorithm took 30 measurements from every image. 2 sets of manual measure-
ments were also collected from these images. An example of the input image as well as
measurement results are shown in Figure 20. It can be seen that the medians throughout
all 4 sets of measurements are close to each other. The same figure indicates that all of
the manual measurements have rather differing value ranges.
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(a) Original image (b) Measurements taken from the original image

Figure 20. Example of the input image (a) with fiber diameters sampled from a normal
distribution. The box plot on the right (b) shows the interquartile range and the mini-
mum/maximum range of each measurement technique. Each box was created using 30
measurement points from the original image.

F-test was performed to validate if the distribution of generated and automatically
measured diameters were statistically similar. The null hypothesis was that the means
of the automatically measured values are the same as the means of the generated values
of that population. Having acknowledged that, 7 different images were tested against
this hypothesis and the Bonferroni correction was implemented (at significance level
0.05). Initially the p-value of the one-way F-test was not significant for all except for one
sample. However, after increasing the measured data points to 50, the p-value showed
that the measured diameters compared to the generated fiber widths were all statistically
non-significant. This indicated that there was not enough evidence to reject the null-
hypothesis, meaning the two distributions were generated by the same process. It should
be pointed out once again that due to the stochasticity of the system, a considerably
bigger amount of automatically measured data points is common practice in many works
[Hotaling et al., 2015, Götz et al., 2020, Stanger et al., 2014].

Additionally, while looking at images with automatically estimated diameters (exam-
ples in Figure 18), some aspects became outlined:

• while manually measuring, it is suggested that every fiber is measured only once,
this is not the case for the algorithm where some fibers were measured more than
once (refer back to Figure 18b);

• sometimes the endpoint of the visualized diameter did not terminate in the back-
ground, but somewhere in the fiber. This is not a distance measuring error but the
issue stems in the way the endpoint was chosen for visualization. The endpoint
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follows the initial direction provided at the starting point while the distance from
the midpoint is accurate.

5.1.3 SEM image measurement tests

The complete pipeline (segmentation and the measuring algorithm) was tested on images
from three different experiments. The pipeline had two sets of results obtained using
segmentation approaches: U-Net and classical, that were compared to the provided
manual (ground truth) measurements.

During the first experiment, it became evident that for magnifications of 2k and
5k, the diameter results were very extreme, sometimes leading to values over 4000 nm.
Hence, some adjustments were made. The most alarming aspect was how the image was
segmented for 2k and 5k images (see Figure 21 for comparison of original Figure 21a
and its segmentations Figure 21b, Figure 21c). Both segmentations had lost a lot of the
finer details of fibers from the original image. Considering that the algorithm detects the
distance to the midpoint within the white regions, it is of no surprise that in the case of
vast white areas, the diameter values were so much bigger than expected. Two different
attempts were made to improve this:

• decrease the size of subimages that were segmented by U-Net: as the model was
trained on a 15k magnification image, the model is used to predict on a 256x256
subimage with a specific amount of detail, however a smaller magnification (2k,
5k) means there are a lot more features in one subimage. Hence, taken into account
the n=15/smaller-magnification-value ratio, the image patches were decreased
by rounded n times (e.g., for 2k the subimage size will be 256/8 = 32x32). The
prediction did become more detailed, yet still not very promising, an example of
an improved segmented image is provided in Figure 21d.

• simplifying the segmentation approach to just thresholding: it seemed that the fore-
ground fibers were more uniform in color, unlike higher magnification images with
larger fibers where the intensities within one fiber change quite a lot. This meant it
was possible to test out the global Otsu’s method, which was relatively successful
in terms of maintaining more of the original detail. This was also supported by the
more sensible x-axis value range of the new histogram (Figure 21e, Figure 21f).
The histogram has small number of bins, likely because of the amount of detail the
segmentation omits.
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(a) Original 2k SEM image (b) Classically segmented image

(c) U-Net segmented image (d) Improved U-Net segmented image

(e) Otsu segmented image (f) Histogram of the Otsu segmented image

Figure 21. Different segmentation methods tested on a SEM image with 2k magnifica-
tion.

Often, experts themselves do not measure fibers from 2k and 5k magnifications due
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to the likelihood of a cumulative measuring error. Images with these magnifications are
often created to visually assess the characteristics of the imaged sample. This is why,
the comparison between the automatic and manual approach is considering images with
magnification other than 2k and 5k. Nonetheless, if the 2k or 5k magnified images are to
be used more, the author suggests to train multiple U-Net models for images of different
magnifications.

Table 3 shows the statistical comparison of diameter measurements from the first
experiment’s images with 15k and 20k magnifications. Except for sample no 4, it is
evident that the automatic approaches tend to provide bigger values on average than
manual. Initially, it was hypothesized that the issue lies in the final distance calculation,
where the covered distance to the midpoint is multiplied by 2. This could be a matter of
a few pixels, but as it was seen in Figure 18, the algorithm was finding the diameters
correctly. Yet, even a deviation of a few pixels from the ideal diameter (perpendicular
to the fiber edge), may result in many nanometers depending on the provided scale bar
of course. For instance, a scale bar of 70 pixels is considered as 2 µm (2000 nm) in
reality, this means that every pixel is around 29 nm-s. Thus, even minor differences
in the measuring process can lead to big changes in the summarized outcome. This is
also potentially the reason why the standard deviation is much bigger for the automatic
methods. However, this could also be a sign of bias on the behalf of the human expert, as
it indicates a more narrow coverage of the diameter values.

Additionally, it is worthy to mention that the median should be considered more as a
global statistical measure in the fiber diameter measuring community, as the average and
standard deviation assume the normal distribution, which is often not the case with the
amount of measurements taken.
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Table 3. Comparative statistics of the manual and automatic performance from the data
of the first experiment. Each sample had approximately 300 measurements. Samples no
1, 3 and 4 contained images of 20k magnification, samples no 2 and 5 had images of 15k
magnification.

Method Sample
no

Mean
(nm)

Standard
deviation

(nm)

Median
(nm)

Classical segmentation

1

305 170.3 270

Manual reference 242 76.2 225

U-Net 338 175.9 292

Classical segmentation

2

293 156.7 268

Manual reference 240 138.2 205

U-Net 272 103.5 238

Classical segmentation

3

287 137.6 250

Manual reference 219 72.3 207

U-Net 288 122.1 238

Classical segmentation

4

602 251.1 563

Manual reference 539 78.7 539

U-Net 442 218.5 457

Classical segmentation

5

308 136.4 273

Manual reference 274 99.8 248

U-Net 301 114.6 273
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Understanding how much of a difference between the measurements of the automatic
and the manual approach is too vast was estimated using the distribution-free overlaying
index (DFOI). Table 4 is an example of how the similarity indices were compared
pairwise between the methods. The higher the index value, the more similar the data
distribution is between the methods. It indicates that the distributions between the
Classical and U-Net methods are rather similar but dissimilar compared to the manual
dataset.

Table 4. Distribution-free overlaying index table of methods’ measurement distributions
from Sample no 1 images of the first experiment. Each distribution had approximately
300 data points.

U-Net Classical Manual

U-Net 1 0.71 0.56

Classical 0.71 1 0.49

Manual 0.56 0.49 1

As there is no ground truth in this field and the uncertainty of the automatic ap-
proaches remain, the similarity between the human experts was investigated. This called
out for the second experiment where fibers were measured by 2 people next to the man-
ually measured data provided by the lab (will be named Reference in the table below).
The DFOIs between both automatic methods and manual measurements of one sample
are provided in Table 5.

Table 5. Distribution-free overlaying index table of methods’ measurement distributions
from Sample no 1 images of the second experiment. Each distribution had approximately
300 data points.

U-Net Classical Reference Manual 1 Manual 2

U-Net 1 0.83 0.57 0.42 0.72

Classical 0.83 1 0.66 0.81 0.44

Reference 0.57 0.66 1 0.43 0.67

Manual 1 0.42 0.81 0.43 1 0.51

Manual 2 0.72 0.44 0.67 0.51 1

It can be seen above that the similarity index between the manual distributions are
not really homogeneous: Manual 1 and Manual 2 have similarity of 0.43 and 0.67 to
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the Reference respectively. Automatic approaches reached analogous similarity indices
when compared to the Reference distribution. In general, the data produced by different
approaches are not really similar except for the Classical and U-Net approach. The same
pattern was observed in the other sample of the second experiment.

At this point, it is worthy to remind the reader about the general goal of measuring
fiber diameters - to assess how different alterations (addition of drug/bacteria to the
polymer, environmental changes) in the ES process reflect in the fiber mat diameter
distribution. Thus, the difference between distributions for any method should be at
minimum the same signed deviation. Another potential aspect to consider is the inter-
sample similarity - where the similarities between the samples of one method should be
in the same range compared to the other methods. Both of these outlooks were tested in
the third experiment. Below is the conclusive table for both statistical measures as well
as the inter-sample DFOIs for the data from the third experiment Table 6.

Table 6. DFOI and statistics table of samples’ measurement distributions from all the
methods of the third experiment. Each distribution had approximately 300 data points.
The Manual Reference is the data provided by the lab, Manual 1 method signifies the
additional measurements done by a human.

Method Sample
no DFOI Mean

(nm)

Standard
deviation

(nm)

Median
(nm)

Classical segmentation

1

0.69 857 443.9 752

Manual reference 0.58 596 166.8 573

U-Net 0.8 727 312.7 695

Manual 1 0.55 716 283 677

Classical segmentation

2

1 718 303.6 638

Manual reference 1 541 93.1 536

U-Net 1 777 293 721

Manual 1 1 614 117.3 606

In the third experiment, Sample no 2 was different from Sample no 1 by having an
additive in the polymer which theoretically should decrease the fiber diameter. This
theoretical note was proven by all the medians of the measurement data of different
methods, as all of the medians did decrease in the second sample (same signed change
in Table 6). It is evident that the inter-sample DFOI between manual methods is very
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similar, reaching values of 0.55 and 0.58. The classical method was closer to the manual
methods DFOI-wise than the U-Net approach. Based on this result, the classical image
processing approach was opted to be the segmentation method in the "Fibar" tool. The
standard deviations and means were way bigger than the manual reference, so it is
reasonable to take a look at what was happening in the background. Figure 22 shows an
original image from the third experiment, the segmented versions and the original image
with diameter lines.

(a) Original SEM image (b) Classically segmented image

(c) U-Net segmented image (d) Fiber diameters (classical)

(e) Fiber diameters (U-Net)

Figure 22. The different stages of the fiber diameter pipeline - original image (a), the
segmented versions (b, c) and the fiber diameter measurements (d, e) on the original
image. All of the images have been cropped by 100 pixels from all edges. In subfigures
d, e, the black lines indicate the path from the starting point to the midpoint (red). The
green lines show the path from the midpoint to the end point.
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From the figure above, it can be seen that in some regions (e.g. bottom-right corner)
the U-Net approach (Figure 22c) is better at classifying foreground fibers than the
classical approach. At the same time, some fibers are not fully connected in the U-Net
prediction. Hence, both approaches seem to be visually on par. However, the quality
of segmentation is what determines the goodness of the fiber diameter measurements.
It can be seen that the segmentation step should be further enhanced to improve the
measurement accuracy, as some diameter are definitely not measuring the foreground
fiber (Figure 22d). It can also be observed that sometimes the diameter of the line is not
being measured perpendicular to the fiber. This is reasoned through the approach the
line to the mid-point is created. As a reminder, for finding distance, the closest white
point on the medial axis (mid-point) from the start-point is selected. However, once
the diameter line is determined, the perpendicularity with the edge of the fiber is not
considered. So, there are cases when the diameter line orthogonalizes with the fiber edge
and there are cases when the lines are not so perpendicular. This is why some diameters
are not crossing the fibers at a right angle.

In image analysis applications, performance time has often been considered as a qual-
ity metric. Although time was not as critical for the simulated fibers (30 measurements),
it is not the case when doing 300 measurements per sample. It took about 5-7 minutes
to measure 100 diameters manually from one image, whereas for the system this value
ranged between 0.75 and 1.75 minutes (Intel i5 8th gen processor) depending on the
level of detail in the image. There was an evident time difference between the U-Net and
classical image processing approach. The averaged cumulative time cost for one set of
images of both methods is provided below, in Figure 23.

(a) U-Net approach (b) Classical image processing approach

Figure 23. Averaged (10 images per magnification) cumulative time in the diameter
measuring pipeline. The x-axis shows specific actions of the fiber diameter measuring
pipeline as timestamps. The y-axis is scaled logarithmically for time. The time for 2k
and 5k magnifications were only measured using the classical image processing method.
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This shows that on average it took about 6 seconds to segment a 768x1024 image
using U-Net, while it took less than a second to segment the images of the same mag-
nification classically. It can be also seen that the starting point selection was the most
time consuming for both methods, taking a considerably more amount of time for the
classical image approach. It is likely to be due to the added complexity the classical
approach adds to the segmented image. Despite the method, this part of the pipeline
could be improved by adopting a sub-region-based approach. So far, the pixel locations
are randomly selected throughout the whole image and for every location the suitable
conditions are checked. In order to guarantee that the pixels are selected from the whole
image uniformly, the image can first be split into four sub-regions. From each sub region
a specific amount of random locations tested against conditions - this reduces the search
space for the random iterator.

Next, it was of interest to determine how the random behavior of point selection
affects the output results in the fiber diameter measuring pipeline. This being said, the
randomness of the point selection was put to the test by iterating the fiber diameter
measuring process (classical approach) 10 times for the same images and comparing
distributions of each iteration. Altogether 4 images with unique magnifications were
selected from different experiments. Figure 24 displays the iterations’ distributions of
images with different magnifications.
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(a) 2k magnification SEM (b) 10k magnification SEM

(c) 15k magnification SEM (d) 20k magnification SEM

Figure 24. Diameter measurement histograms from images of different magnifications.
Diameters from one image were measured 10 times with different starting points at
each iteration. The dark orange in the subplots indicates the overlay of all 10 iterations’
measurements.

While some minor changes are visible, no outlying peaks or aberrations occur within
the 10 iterations of fiber diameter measuring. Thus, it can be assumed that the fiber
diameter pipeline is robust.
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5.2 Validation of the bacterial cell analysis pipeline
The validation of the bacteria analysis pipeline is divided into two tests based on the
input data - synthetic data as well as real-life microscopy images in CZI format. The first
test allows to evaluate the goodness of the bacteria counting module of the pipeline, the
case study proves the functioning of the whole pipeline.

5.2.1 Simulated green and red bacteria

The images of simulated green and red bacteria were converted to grayscale, thresholded
and set as input to the bacteria counting part of the pipeline. The measurements were
then compared with the outputs obtained from the Particle Analyzer in ImageJ. The
results are provided in Figure 25. The average percent-error for the ImageJ tool was
4.5%, while the created counting approach had an average error of 5.3%. This being
said, the process of analyzing the images in ImageJ one-by-one was time-consuming and
rather mundane.

Figure 25. Automated counting of simulated red and green bacteria (values in blue)
compared with the results from the ImageJ Particle Analyzer tool (values in orange).
Most of the ImageJ values overlay with the created approach, hence some dots are not
visible. The black dashed line resembles the ideal case where all of the particles are
counted correctly.

It can be seen from Figure 25 that while the counter is pretty accurate for small
amounts of circles/ellipses in the image, while increasing the amount, the counter seems
to miss a few circles/ellipses. There can be multiple reasons for this, one of them is that
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the size of the morphological operation kernel is fixed based on the bacteria sizes in
the case-study. This creates the need to adaptively modify the size of the disk based on
the input image. This could be solved by prompting the user for a numerical parameter,
such as the average area per bacterium in pixels. This user-based calibration feature is
supported by multiple applications, like the previously mentioned CellProfiler [McQuin
et al., 2018]. Alternatively, the disk size could be determined by detecting contours on
the image and a median contour area is selected to describe the bacteria size in the input
image. This approach understandably assumes a segmented image with as little noise as
possible, as too much noise may affect the median value.

5.2.2 Case study for bacterial cell analysis

The case study consisted of two research question, to remind the reader, an overview of
the study for bacterial cell analysis is provided in Table 7.

Table 7. Case study structure and setup.

Dataset Research
topic Bacteria Additional staining

after ES

24 CZI files
(14 with

PEO)

Effect of PEO
on the fiber

permeability

L.lactis
pre-stained

with FM 4-64
(red dye)

SYTO-9 (green dye)

25 CZI files
(7 with

24h)

Bacteria
viability in

fiber
L.lactis

SYTO-9 (green dye)
+ PI (red dye) added
at 0th hour or 24th

hour

The first research question focused on determining if the addition of PEO to the
fiber polymer would improve permeability, in other words, determining if the amount of
SYTO-9 stained (green fluorescent) had increased in the presence of PEO. Figure 27
shows that in general the addition of PEO ("Fibers with PLC+PEO") to PLC does result
in more green stained bacteria compared to fibers with just PLC. The median proportion
of green bacteria in the samples with PEO was approximately 40%, whereas for the
samples without PEO, the result was around 60%. The zero values in the plot are caused
either because no signal was found in any of the channels, or there were no green dye
stained bacteria in the sample.
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Figure 26. Proportion of viable (SYTO-9 stained) bacteria in the samples with PLC
compared with samples with PEO+PLC.

The effect of PEO as conditional distributions between green and red bacteria are
visualized in Figure 27.

(a) Samples with PLC (b) Samples with PLC+PEO

Figure 27. Conditional distributions of red and green bacteria in samples with PLC
or combination of PLC+PEO. The x-axis shows the estimated amount of red bacteria,
while the y-axis displays the estimated amount of green bacteria. The negative values
are apparent because the estimations were not clipped from 0 but can be omitted in this
regard.

It can be seen that the conditional distribution with PLC samples (27a) is situated
more along the horizontal axis, while the sample with PLC+PEO (27b) is more likely to
stretch along the vertical axis. This means that the likelihood of having a bigger amount
of green bacteria is higher in PLC+PEO samples compared to samples without PEO. This
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supports the initially set null hypothesis that the addition of PEO improves permeability
of ES fibers.

The second dataset consisted of samples with SYTO-9 and PI stained bacteria, where
PI (red dye) was a signal of dead bacteria. PI and SYTO-9 were added to the fiber
mat either at the 0th hour after ES or 24 hours after ES. In the latter case, the mat was
incubated in bacteria growth enabling conditions. The second research question tried to
determine if the bacteria were viable within the fiber, i.e. evaluate the amount of green
bacteria (SYTO-9 stained) to dead bacteria (PI-stained). Figure 28 shows results for
viable bacteria in samples.

Figure 28. Amount of viable and dead bacteria in the SYTO-PI samples. Each
set ("0h_syto_PI", "24h_syto_PI") consisted of multiple sample images. The set
"0h_syto_PI" contained sample images taken right after the staining. The set
"24h_syto_PI" involved sample images of bacteria which were stained after 24h of
incubation in growth enabling conditions. The blue and yellow regression lines were
fitted on the 0h and 24h samples’ data.

As can be seen from Figure 28, the "24h_syto_PI" samples tend to follow a trend
for having more alive bacteria in the sample than dead bacteria. On the contrary, the
"0h_syto_PI" samples seem to have a smaller proportion of alive bacteria. On average
36% of green bacteria were found in samples of the set "0h_syto_PI", however, after
24h of fiber mat incubation and then staining the average proportion had increased to
51%. This indicates that bacteria are able to remain viable in the fiber for a longer period
of time. On average there were 5 green bacteria per sample in the set of "0h_syto_PI",
while approximately 6 green bacteria per sample in the "24h_syto_PI" set.

When comparing automatic results with visual observations, the proportions of green
bacteria in all samples were correctly determined, however the discrete amounts of
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bacteria varied slightly. This could be improved by restructuring the bacterial analysis
pipeline in such a way that the mean intensity value belonging to a bacterium in the
image is compared between the red and green channel. The channel with the higher
intensity would be set as the color of the bacterium. This approach would require a
better segmentation method, as the current version cuts off quite a lot of the signal in
the channel with low intensity values. This leads to having no signal in one channel,
which is not true in the case of actual images where even visually red bacteria have
small intensity values in the green channel. Additionally, the current solution contains
multiple parameters, like the threshold value, disk size for the morphological operations,
that could be more adaptive based on the input data. On top of the contour detection
suggestion provided in the synthetic test, the metadata of the CZI could be put into more
use. For example, the slice size of the physical sample could be useful to determine the
bacteria count per volume which would provide better insight of the bacteria location in
3D space.

It should also be pointed out that the trends for both research questions were estab-
lished, yet the statistical evidence to support these tendencies is missing. Hence more
microscopic data should be generated which if added to the suitable system’s input folder
("CZI_input") can now be analyzed in a matter of seconds.
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6 Conclusions
The main result of this work was the creation of "FiBar": a tool for analyzing microscopy
images of complex biomaterials. Unlike no other solution known to the author, the
tool is a suitable fit for evaluating the quality of fibrous material as well as the analysis
of encapsulated bacteria in the material. The tool consists of two pipelines, one for
measuring fiber diameters in SEM images and the other for analyzing bacterial cells in
Zeiss microscopy images.

Next to providing methods that coined "FiBar", this work also presented ways on
how to improve the tool. In terms of the fiber measuring pipeline, the segmentation
should be advanced further as it is the input for the measuring module. One way to
consider, is to train separate U-Net models for specific magnifications. The point picking
process could possibly be accelerated by selecting random points from sub-regions,
thereby guaranteeing a uniform coverage of the sample. The measuring process could
be improved by considering the angle between the fiber edge, where the measurement
is taken, and the diameter line. Additionally, the erroneous V-shaped structures can
be omitted by detecting and removing them before the starting points are selected. In
case of the bacterial cell analysis pipeline, the fixed parameters in image processing
could be made more adaptive, either by utilizing metadata from the CZI file or applying
some image processing method (such as contours) to obtain information about the
characteristics of the image.

"FiBar" has been successfully setup in the lab computer (Windows OS) at the Institute
of Pharmacy. It requires no other input from the user besides a file of suitable format (CZI
or TIF/PNG/JPG) in the designated folder. It was proved in the Results section that both
pipelines can be considered as viable alternatives for the manual analysis. Thus, "FiBar"
awaits to create value out of new microscopy images by providing a better understanding
about the samples and their possible behavior in real applications.
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Appendix

I. U-Net architecture

Figure A1. Example U-Net architecture from the original paper [Ronneberger et al.,
2015]. Each blue box is a multi-channel feature map where the number of channels is
shown on top of the box. The height and width are provided at the lower left edge of
the box. White boxes represent copied feature maps and the arrows denote the different
operations as can be seen from the legend on the right. The shape of the input image in
this thesis was 256x256x1 and the shape was 16x16 in the lowest resolution. Dropout of
0.1 was also applied to most of the convolutional layers in the network in this thesis.
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II. Link to the project repository
The link to the Github code repository is: https://github.com/marilin99/master_
thesis. The "dev" branch is for development, while the "main" branch is for users
who would like to setup the tool or test the tool out. The instructions on how to test the
pipelines out quickly is provided in the "README.md" of the main branch.
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