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An Improvement for The Decentralized Privacy System Using Ran-
dom Linear Network Coding

Abstract:
With the constant rise of applications, there is a huge amounts of generated sensitive and
private data for each person. Hence, services need to store the generated data in a cloud
or distributed hash table. Two of the main issues with external storage is privacy and
security of the stored data. The privacy of such as data is preserved by implementing
a permission Blockchain on top of the distributed hash table that grants the access for
a user’s data to allowed services. However, the security of the data is only achieved
by symmetric cryptography which is not a strong security mechanism. In this work,
we apply a network coding scheme to this setup to achieve the goal of maintaining
the security of the stored data. Our analysis show that by implementing random linear
network coding in this setup, we achieve the security of stored data, as well as improving
resiliency and retrieval time of the stored data with the expense of storage overhead and
storage time. Our simulation results show that the expected retrieval time of the data is
increased significantly while the expected storage time is increased with respect to the
traditional setup. it also show that there is a trade-off between expected retrieval time and
expected storage time in the system. These results confirm that our framework achieves
the desired goal of making a faster, more resilient and secure setup for storing sensitive
data with the requirement of slightly more storage size.
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Detsentraliseeritud privaatsussüsteemi täiustus, kasutades juhuslik-
ku lineaarset võrgu kodeerimist
Lühikokkuvõte:

Mobiiliteenuste kasutamise pideva kasvuga on iga kasutaja jaoks loodud tohutul hul-
gal tundlikke ja privaatseid andmeid. Seega peavad teenused salvestama loodud andmed
pilve või hajutatud räsitabelisse. Kaks välise salvestuse peamist probleemi on salvestatud
andmete privaatsus ja turvalisus. Selliste andmete privaatsus säilitatakse, rakendades
hajutatud räsitabeli kohale lubade plokiahela, mis annab juurdepääsu kasutaja andmetele
lubatud teenustele. Andmete turvalisus saavutatakse siiski ainult sümmeetrilise krüp-
tograafia abil, mis ei ole tugev turvamehhanism. Selles töös rakendame sellele süsteemile
võrgu kodeerimise skeemi, eesmärgiga säilitada salvestatud andmete turvalisus. Meie
analüüs näitab, et juhusliku lineaarse võrgu kodeerimise rakendamisel selles süstee-
mis saavutame salvestatud andmete turvalisuse, samuti parandame salvestatud andmete
vastupidavust ja väljalaadimisaega, üldkulude ja säilitusaja arvelt. Meie simulatsiooni
tulemused näitavad, et andmete eeldatav otsinguaeg on märkimisväärselt pikenenud,
samal ajal kui eeldatavat andmete säilitamisaega pikendatakse võrreldes traditsioonilise
süsteemiga. See näitab ka, et eeldatava väljastusaja ja eeldatava süsteemi säilitamisaja
vahel on kompromiss süsteemis. Need tulemused kinnitavad, et meie raamistik saavutab
soovitud eesmärgi - tundlike andmete salvestamiseks kiirem, vastupidavam ja turvalisem
süsteem - pisut suurema salvestusmahu nõudega.

Võtmesõnad:
Peer-to-Peer (P2P) süsteemid, Hajutatud räsitabel (DHT), Juhusliku lineaarse võrgu
kodeerimine (RLNC), plokiahel

CERCS: CP170, Arvutiteadus
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1 Introduction
Due to recent improvements of technology people have increasingly used devices and
applications to engage in different social activities and commerce. The increasing use
of technological applications with large number of users worldwide has resulted into
generation of huge amount of data which can not be stored locally [Pes13]. Motivated
by this explosion of data, new forms of data collection has appeared by different service
provides. In these methods, the data of each user is stored in a third party cloud
or distributed hash tables [HLZ10]. The privacy and security of the data stored in the
external storage has been a major research topic in recent years. A very difficult challenge
is meeting the expectations of users regarding their data privacy, as the user’s privacy
expectation varies depending on the data type collected and context of use [Goe14]. One
of the storage systems that is used extensively in recent decade are peer-to-peer (P2P)
storage systems [Pes13]. Using peer-to-peer storage systems remove the need of a trusted
centralized storage, however, As the users do not have authority over the storage systems,
they are deprived of full control over the privacy their own data [CL11]. In this chapter,
we first take a look at peer-to-peer storage systems and then discuss the possible solutions
to enhance the privacy and the security of such storage systems.

1.1 Peer-to-peer storage systems
Peer-to-peer distributed storage systems are an alternative way to achieve a storage
solution with high reliability and lower cost compared to the traditional server-side or
cloud storage models. The advantages of using a peer-to-peer network for data archival
is that, by nature, it can distribute the information into different locations and has a high
potential to be scalable [Pes13]. for the sake of better understanding the differences
between Peer-to-Peer and client-server model of storage, a high level architecture of
both systems are illustrated in the Fig 1. One of the bold differences between these two
systems are the degree of decentralization.

Decentralization means that the architecture does not rely on a central point of
authority who has full access to the data and can control the access permissions, i.e.,
decentralization means the decision making is performed independently by all the par-
ticipating nodes, instead of relying on a single node to make the decision [Pes13].
Decentralization has been been used in many applications recently, Blockchain [Swa15]
is a perfect representation of a decentralized network, where the decision making and
governance is made by all the participating nodes in the notwork.

Each architecture has its own advantage and disadvantages. For example in the
centralized architecture the system faces a single point of failure, meaning that the
network would be unavailable in case it runs into a problem or if someone takes it
down [HLZ10]. another disadvantage for this architecture is that, by nature it poses more
security threat compared to the decentralized networks due to the fact the system has a
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Figure 1. The high level architecture of a traditional client-server vs Peer-to-Peer
Network [LLC99]

single or a few points of authority which are subjected to intrusion [LT11]. There are
various use cases in which centralized storage systems are preferred, e.g., Implementing
patient record information system, where having a central and unified authority over the
data is preferred [LT11].

Unlike the centralized architecture, the participating peers or users in the decentralized
architecture do not rely on a single point of authority. Instead, they collectively and
collaboratively form a service themselves with each peer doing a fraction of the work
to ultimately solidify a unified service [Pes13]. The decentralized networks have many
interesting advantages that can makes these systems ideal for many use cases. These
advantages come from the nature of decentralized architecture. One of the most important
advantage is the elimination of central authority which leads to more security in the
system, since the sensitive data for example is distributed among the participating peers,
it is less unlikely that an adversary can intrude the system or perform other type of
malicious activities i.e. Denial of Service (DoS) attacks [WDMS17].

As mentioned, the usage of peer-to-peer storage to store user’s data has many advan-
tages over centralized storage systems. However, the privacy of the stored data is still
a major concern as the user may not be part of the peer-to-peer storage and due to the
nature of such systems and lack of centralized authority, the user can not control its own
data in a traditional way.

1.2 Handling privacy in peer-to-peer storage systems
To address the privacy issue, many solution have been proposed both in legislation such
as GDPR [Alb16] and academic research. A promising scheme is proposed in [ZN+15].
The authors of [ZN+15] introduced a permissioned Blockchain on top of distributes
storage system where the data of users is stored. This permissioned Blockchain allows
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the users to control the access of service providers over their data, i.e., the user gives
access or revoke access to the stored data at any given time. Hence, in this system the
users ensure that their privacy is met and the system is more transparent compared to the
existing central systems where users do not know how their data is handled.

Blockchain, as the name suggests is a chain of blocks. In a Blockchain a block
represents a node where there is a cryptographic link between particular nodes. Each
block contains a hash of previous block and a transaction data. This link makes the block
immutable [Swa15]. Due to this structure of Blockchain, it is implemented in a P2P
network where all blocks adhere to a certain protocol in order to perform inter-block
communication and in case of this work, decide whether or not to grant permission to an
identity. Although Blockchain is mainly used in cryptocurrency systems [W+14], there
has been implementations of Blockchain to use for identity and access management,
such as [MJ18]. This type of Blockchain is used in this work to ensure the privacy of
data stored in the P2P storage system. Chapter 3 has more details on integration of
Blockchain and peer-to-peer storage systems and how this setup ensures the privacy of
the data stored in peer-to-peer systems.

1.3 Handling security in peer-to-peer storage systems
Using peer-to-peer systems in general add a great amount of security to the stored data as
mentioned in section 1.1. However, there are still security issues that need to be handled
in the certain setups such as the one proposed by [ZN+15]. One of the major issues in
such systems is that the system stores raw data of each user in the P2P network, which is
susceptible to certain attacks such as byzantine attacks [CT06].

Although by current advances in the computational power allows the nodes to use
cryptographic methods to increase the security of data they store in the P2P storage sys-
tem [MLFR01], the nature of peer to peer systems adds the possibility of security breach
in terms of malicious nodes [Pes13]. This issue can become a stronger problem if the
cryptographic method used for encryption of data is not unconditionally secure [LT11].

1.4 Motivation
In this work, we work on the basis of a privacy enhancing P2P storage system proposed
in [ZN+15]. The privacy of this system is preserved by implementing a Blockchain on
top of the P2P storage system. However, the security of data is preserved by a simple
symmetric cryptographic method. This method adds a weak amount of security to
the data stored in the P2P storage system, but is vulnerable to certain attacks such as
man-in-the-middle or Byzantine attacks [KL14].

In this work, we propose the usage of network coding in order to ensure the security
of the stored data in the DHT. We propose using random linear network coding, i.e.,
RLNC [HMK+06a] to code the data before storing in the DHT. As network coding is
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a weak security (is inherently secure) by itself [BN+05], it is trivial that implementing
RLNC provides increased security for the stored data. Furthermore, in the setup we use
in this work, we have the advantage that the data is transferred to DHT from the system
which is outside the DHT. Hence, we can use network coding prior to sending data to
DHT and store coded packets in DHT nodes. Using RLNC gives us two major features:

• In the case of presence of one or multiple malicious nodes in the DHT Nodes, the
data is still secure. In order to retrieve the original data, the malicious nodes must
have access to k coded packets. In other words, the malicious nodes must hold at
least k coded packets of a single data. The probability of this event is negligible.

• The nodes can perform re-coding to relocate data [HPFM11], instead of traditional
broadcasting data to neighboring nodes. In the re-coding procedure, innovative
coded packets are generated that are linearly independent to other coded packets
already stored in the DHT. Therefore, the re-coding property further increases
the reliability of storage, because increasing the number of linearly independent
coded packets increases the number of nodes that can leave the network without
eliminating the possibility of retrieving the original data.

1.5 Contribution
In this thesis, we propose an RLNC scheme on top of the system introduced in [ZN+15].
It is trivial that RLNC increases the security of the stored data. We then analyze the
performance of the system in terms of expected retrieval time, resiliency and storage. The
results show that our system improves in terms of expected retrieval time and resiliency
with the expense of larger required storage.

Our contribution is to add a layer of network coding using RLNC on top of a
Blockchain-DHT system to improve the following metrics:

• The average Retrieval speed of data from Kademlia.

• Security of the stored data in case of presence of malicious nodes or eavesdroppers.

• Balanced data load on each peer in Kademlia.

• Improved resiliency.

1.6 Outline
The outline of this thesis is as follows. In chapter 2, we first point out some related
work on peer-to-peer storage systems, Blockchain and network coding solutions for
privacy and security of big data applications. Then we propose our system model and
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theoretical framework of our proposed method in chapter 3. In chapter 4, we analyze
the performance of our system. In chapter 5 we validate our system using simulation
technique and finally chapter 6 includes conclusion of the thesis.
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2 Related works
In this chapter, we mention some related work on the peer-to-peer storage systems and
using permissioned Blockchain and network coding in peer-to-peer storage systems. The
goal of this chapter is to familiarize with the concepts we used in this thesis.

2.1 Peer-to-Peer distributed storage systems
We first look at some major characteristics of peer-to-peer storage systems, then in the
next subsection, we focus on Kademlia [MM02], which is the focused peer-to-peer
storage in this thesis.

2.1.1 P2P Architecture

Since decentralization is a major characteristic of P2P networks, based on the degree of
decentralization we can classify these networks into two categories [KMM+02]:

1. Purely Decentralized: Pure P2P systems are networks without any centralized
control. In such systems all the nodes are equivalent in functionality, In other words,
in these networks, nodes are both server and client at the same time. Gnutella
[RFI02], Freenet [CSWH01], Chord [SMK+01a], CAN [RFH+01] and Kademlia
are example of such systems. These systems are inherently scalable due to the fact
that such system try to avoid central entities or servers. These kinds of systems
are also inherently fault-tolerant, since there is not any central point of failure
and depending on architecture, changes in the network such as loss of a peer
or a number of peers can easily be recovered. They also have a great degree of
autonomousity over their data or resources. On the other hand such systems usually
suffer from slow information discovery and lack of guarantee about quality of
service. Also due to the lack of a global view at the system, it is not easy to predict
the system’s behavior [KA17].

2. Hybrid Architecture: In hybrid P2P systems, there is a central entity that contains
directories of information about the registered users in the network, these data
are in the form of meta-data. There are two type of hybrid systems - centralized
indexing and decentralized indexing [YGM03]. In centralized indexing as can be
seen in Fig. 2a, a central server keeps an index of the data that are currently being
offered by the active peers. To make a query, each peer should contact the central
server to send the query. Such systems with the central servers are simple and
operate quickly and efficiently for information discovery. On the other Because of
central servers operating in the network, they are single points of failure that make
them vulnerable to malicious attacks. These systems are not inherently scalable,
due to the limitations on the size of the central servers database and the capacity
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to respond the queries. The directories also have to be periodically updated. In
decentralized indexing, a central server is responsible of registering the users into
the network and further facilitating the peer discovery process. An example can
be seen in 2b. In these systems a number of the nodes have a more important role
than the rest of nodes. These nodes are called ”supernodes” [YGM03]. These
nodes are responsible to index the information shared by local peers connected to
them and do proxy search on behalf of these peers. The queries are thus sent to
SuperNodes, not to other peers. Kazaa[GK03] is an example of such system. In
such systems supernodes are collaboratively elected if they maintain the sufficient
bandwidth or processing power [NS06].

(a) centralized indexing (b) decentralized indexing

Figure 2. [PBV05]

2.1.2 P2P Network Discovery Mechanism:

Distributed P2P systems often require a discovery mechanism through which the nodes
can locate specific data in the system. P2P systems have evolved through three generation
of discovery mechanism as follows [KMM+02]:

Centralized indexes and repositories: This mechanism is mainly used in hybrid
systems. In this model, the peers connect to a centralized directory server, which store
all the information regarding the location of data. Upon request from a peer, the central
server will match the request against all the peers in it’s database and chooses the best
peer that matches the request (e.g., the node that has the requested data). The best peer
based on the application can be the one that is cheapest, fastest, closest or most available.
After the central server responds to the query, the data exchange will happen directly
between the two peers. Napster uses this method [AT02]. A central server keeps:

• The index with meta data (file name, time of creation and etc.) of all files available
in the network,
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• A table containing the information of the users (IP addresses, connection speeds
etc.)

• A table indexing the files each user holds in the network.

At the beginning, the new client contacts the central server and reports the list of files
it contains, Later, when the server receives a query from another peer, it looks for matches
in its index, and returns a list of users holding the matching file. The user then initi-
ates a direct connection with the peer holding the requested file, and downloads it [Pes13].

Flooding broadcast of queries: This model is mainly seen in purely decentralized
P2P models. In these networks, since no peer has the overall top view of the network, for
resource discovery, each requests from peers are flooded (broadcasted) to the directly
connected peers, the receiving peers would also flood the request to their connected peers
until the request is answered or a maximum number of flooding steps has been reached.
Different broadcast policies have been implemented to improve the search in the P2P
networks [YGM02], [KKE03], [TR03]. The early architecture of Gnutella [Rip01] uses
the flooding broadcast to locate the files in the network. There are four types of messages
in the Gnutella protocol as follows [Rip01].

• Ping: A request for a specified peer to announce itself.

• Pong: Reply to a Ping message which contains the IP and port of the responding
peer and information about files shared.

• Query: A search request. It contains the search string and the minimum speed
requirements of the potential matched peers.

• Query hits: Reply to a Query message. It contains the IP, port and the speed of
the matched peer.

After joining the Gnutella network, a node sends out a Ping message to any node in
its neighbourhood. The nodes in return send back a Pong message to identify themselves,
and also propagate the ping message to their neighbors. to prevent loops Gnutella uses
time-to-live(TTL) flooding to control the spread of these messages. At each hop the
value of the field time-to-live(TTL) is decreased by one, and the message is dropped
when the counter is reached to zero. Once a hit is found, the two peers form a direct
channel to transfer the data. These systems do not scale well and the accurate discovery
of peers is not guaranteed when using flooding. Also using TTL creates virtual regions
that limits users to it meaning that, it creates a limit that users cannot send request beyond
that reach. If on the other hand the TTL is removed, the network would be flooded with
unwanted requests [Rip01].
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Routing Model: The routing model gives more structure to the placement of infor-
mation by using a distributed hash table. These models have a clear mapping between
the resource identifier and location of the resources in the network, in the form of a
distributed routing table [Pes13]. The look-up operation is realized by organizing the
peers in a structured overlay network, and routing a message through the overlay to
the responsible peers. Several system such as Freenet , Chord , Content addressable
networks (CAN) , Pastry [RD01] and Kademlia use this model.

2.2 Kademlia
Kademlia is a decentralized P2P Distributed Hash Table based on XOR distance metric.
Kademlia has been used as the storage solution of many systems such as [ZN+15].
Kademlia offers a flexible routing table and minimizes the number of configuration
messages sent among the nodes for locating contents [MM02]. Due to this characteristic
and effective routing time of Kademlia, it is one of the best choices to use for storing
application data [Pes13]. Therefore, we use Kademlia in our system as the P2P storage
system. In this section, we point out major properties of Kademlia.

2.2.1 Kademlia system model

Kademlia is a system of interconnected nodes which are forming a P2P storage network.
The participant nodes in Kademlia each have a unique ID, which is a 160-bits long
random numbers [MM02]. Kademlia leverages this assumption to use a simple algorithm
for locating the data by treating each node as a leave in a binary tree, in which the position
of each node is determined by the shortest unique prefix of its ID as shown in Fig. 3.
This illustration helps us to understand the functionality of Kademlia in a better way.

Any value that needs to be stored in the Kademlia is assigned by a 160-bit long key.
The important aspect here is that the keys generated for each value and the node IDs
must belong to the same key space, which is the space of 160-bit long values in this case.
The <Key,Value> pair is then stored in the node whit the closest ID to key. Closeness in
Kademlia is described in the next section.

2.2.2 Notion of closeness

The particularity of Kademlia is the use of a novel bit-wise Exclusive Or (XOR) metric
in order to calculate the distance between points (the node IDs) in the key space [MM02].
Given two 160-bit identifiers, i.e., NodeID or key, x and y, Kademlia defines the distance
between them as follow:

d(x, y) = x⊕ y
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Figure 3. The ID of the Nodes in Kademlia, The black dot shows the location of the node
0011 and the grey ovals show the subtrees corresponding to different k-buckets [MM02]

XOR metric was chosen because it presents some common properties with the
geometric distance formula, in particular [MM02]:

• The distance between a node and itself is zero.

• It is symmetric, i.e., d(x, y) = d(y, x)

• It offers the triangle property: i.e., for points x, y and z, we have:

d(x, z) ≤ d(x, y) + d(y, z)

Using this notion, when we want to store a <key,value> pair in Kademlia, this
pair needs to be stored in the node p that IDp has minimum distance with key, i.e.,
min
p
d(IDp, key).

2.2.3 Routing in Kademlia and K_buckets

Every node has a routing table as can be seen in Fig. 4. This table consists of 160 rows.
Each rows consists of K entries, where each entry is information of a node in Kademlia,
stored as a triplet <INodeID, IP Address, UDP Port>. This information contains the
necessary information in order to find a node. This list is called K-buckets in Kademlia
literature [MM02]. The value of K is a system-wide replication parameter which defines
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Figure 4. Kademlia Routing Table Structure [PH]

the upper bound to which the lists can grow, i.e., maximum number of nodes that is
stored in each node.
K-buckets are filled out with respect to the distances of nodes from each other, as

seen in Fig. 4, the bucket for node P has 8 buckets each responsible for storing the
information of other nodes with respect to the distance, for example if the distance node
P and node Q is 8 based on the distance metric XOR, information about node Q is stored
in the third row of the K-bucket of node P .

When a node P receives a message from another node Q, it updates the specific
K-bucket for the sender’s node Q. The update procedure is done as follows:

• If Q is not already in the appropriate K-bucket and the bucket has fewer than K
entries, then the recipient simply inserts the new sender at the tail of the list.

• If the appropriate k-bucket is full, P pings the K-bucket’s least-recently seen node
R to decide what to do. If node R fails to respond, it is removed from theK-bucket
and Q is inserted at the tail of the K-bucket. Otherwise, if R responds, it is moved
to the tail of the list, and the information of Q is ignored [MM02].

Kademlia exploits the fact that the longer a node has been up, the higher the prob-
ability to remain up in the future [SMK+01b]. By keeping the oldest live nodes in the
routing table, we maximize the probability that the nodes contained in each K-bucket to
be up in the network.

2.2.4 Messages

Every message exchanged between the nodes in Kademlia typically include a tuple of <
NodeID, IP Adress, UDP Port>. This ways other nodes which receive the message can
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become aware of the existence of the other nodes. There are four types of messages in
Kademlia.

• PING: Used to check if a node is alive.

• STORE: Used to request for storage of a <key, value> pair.

• FIND NODE: Used mainly for routing. it takes a 160-bit ID as an argument. the
recipients of this message return the K closet nodes they know of, which have the
closet NodeID to the requested ID.

• FIND VALUE: This message functions similar to the FIND NODE message,
except that if the receiver of the request has the requested key in its storage, it
returns the associated value.

2.2.5 Joining the network

When a new node P is joined in the network, It chooses a random Node-ID from the
key space, then it contacts a Node Q, and updates the appropriate K-Bucket with the
information of node Q. Then Node P starts a Find Node procedure for its own Node-ID.
This procedure results in finding the nodes that are closest to the P . By the end of
this procedure, node P receives the information on the closest nodes to itself, i.e., its
neighbors. then P contacts its neighbors and upon receiving an answer from these nodes,
adds them to its K-Bucket [MM02].

2.2.6 Relocation

In order to prevent loss of the data in the network in the case of peers leaving the network.
After a node stores a data, it starts a timer which is defined in the system. After the timer
for that particular data expires, the node broadcasts the stored <Key, Value> to the K
closest nodes in the network, i.e., its neighbors. This relocation ensures that likelihood
of a data being missed in the network is negligible [MM02].

2.2.7 Storing a data

In order to store a file into the Kademlia network, the user does the following on the
value v it wants to store.

• The user uses a hash function H to hash the value of the value v into a key k to
form <k, v> .

• The user finds the node P whose ID is closest to the k using Find Node message.

• The data is then stored in the node P using Store message.

18



To Retrieve a data, the user must know the assigned key value k, then it executed the
following procedure.we first have to find the nodes which are closest to the key of the
data being searched.

• The user finds the node P whose ID is closest to the k using Find Node message.

• The data is then retrieved in the node P using Find Value message.

we can see that in both cases, the most important part is to find the closest node to
the mentioned key. In the following section, we illustrate how this procedure is executed.

2.2.8 Routing

The procedure of finding a node that is closest to a given key is called lookup. The search
initiator picks α nodes from the respective K-bucket. Then the initiator starts to send
parallel, asynchronous FIND NODE messages to the α nodes it has chosen. The value
of α, which defines the degree of simultaneous messages that are sent in the network
is usually defined three in practical setups. [Pes13]. Figure 5 illustrates and example in
which node P is finding Q.

Figure 5. The lookup procedure in a node P [PH]

When the recipient nodes A, B and C receive the request, each of them look in their
ownK-buckets and will similarly return theK closest nodes they know to the desired key.
Upon receiving the results from the nodes A, B and C, node P selects α nodes from the
received information as can be seen in fig. 6. In this case, M , N and O are the chosen
nodes. P will then send Find Node to M , N and O. This procedure is iterated until
either Q is found or no new nodes closer to Q are found in an iteration of the algorithm.
In the latter case, the lookup fails as Q can not be found in the network [MM02].
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Figure 6. The iterative step of the lookup procedure in Kademlia [PH]

2.3 Permissioned Blockchains
As mentioned in section 1.2, Blockchain is a decentralized network mainly used in
cryptocurrencies [W+14] A Blockchain can be perceived as a chain of blocks that are
linked with a cryptographic protocol. As this blocks are distributed between the nodes in
the network, there is no requirement for a centralized authority [Swa15]. An example of
a Blockchain structure can be seen in Fig.7.

Figure 7. An example of a Blockchain Structure[MJ18]

In a Blockchain network, the participating nodes agree on a set of rules known as
smart contracts. A smart contract is a set of functions that are executed on the entities in
the distributed ledger, i.e., Blockchain. The functions on smart contract is being agreed
on by the nodes in the Block chain and is converted to a computer code, which is then
stored and replicated in the Blockchain [MJ18]. In our work, this smart contract contains
rules for authentication and authorization . This means that when an external identity
tries to execute a certain functionality, the validation process queries the Blockchain
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for permission status and grants authority for the identity if the majority of the ledger
validate the authority of the user as positive [MJ18]. Fig. 8 illustrates this validation
protocol in a simple setup.

Figure 8. Architechture of an identity and authorization management system using
Blockchain and smart contract[MJ18]

There are three types of Blockchain based on how they control the access given to
the nodes in the ledger.

1. Public Blockchains are open for anyone to join and all transactions are visible to
anyone. Public Blockchains are secured by cryptographic validation between the
nodes [FLP85]. This transparency makes the Blockchain highly secure with the
expense of increased redundancy and cost of transactions and decreased speed of
processing [MJ18].

2. Another type of Blockchains are permissioned Blockchains. In this type of
Blockchains, a control layer runs on top of the Blockchain that controls the actions
that are executed by the participants of the ledger. This means that extrenal identi-
ties can not join this Blockchain unless they are approved [WG18]. Permissioned
Blockchains are more cost effective and faster in processing speed. However,
permissioned Blockchains are not completely distributed and therefore are less
secure with respect to open Blockchains.

3. Private Blockchains are not open to public at all, which means that only a set of pre
defined nodes are able to write and perform transactions in the Blockchain. This
type of Blockchain is more efficient and has a higher degree of privacy. However,
due to partially distributed nature of this type, it requires trust in the controlling
authority [MJ18].

By looking at the characteristics of the three types of Blockchains, it is clear that in
order to provide privacy, we need to use permissioned or private Blockchain. However,
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private Blockchain still requires trust in the controlling authority, which removes the
reasoning of using a P2P storage system. Therefore, the best choice for an identification
and authorization Blockchain is permissioned Blockchain. Using Blockchain as a privacy
preserving system is relatively new, as far as our knowledge there are very few researches
on this matter, most notably [ZN+15] and [MJ18] are the two major researches done in
this area. In this work, we are using the framework introduced in [ZN+15] in order to
preserve the privacy of data stored in P2P storage system. Chapters 3.2 and 3.3 include
more detailed explanation of this setup. However in our system, the application of
blockcahin remains intact.

2.4 Network Coding in P2P storage systems
Network coding, mainly Reed-Solomon codes [WB99] has been used in Kademlia in
order to improve the reliability of the transmission of data between peers [BKV+18]. The
authors of [DGW+10] introduced the theoretical framework of using error-correcting
codes in distributed storage systems to improve the reliability of the system in case of
presence of error in channels. In practice, error-correcting codes are used to relocate data
in distributed storage systems more reliably. Error-correcting codes improve the possibil-
ity of relocating data in a distributed storage by ensuring that the data is not lost in the case
of bit-level error in the channels between nodes in the distributed storage system.There
have been many practical research that show the improved performance and resiliency
of distributed storage systems when using error-correcting codes. [HSX+12],[KGJØ17],
[RNW+15].

In this work, we focus on Random Linear Network Coding, i.e., RLNC [HMK+06b]
as our network coding scheme. RLNC is a method to code the data into K smaller
chunks and then generating n coded packets (k < n). These coded packets are created
by combing all the K chunks using a random linear combination as shown in Fig. 9. In
the next subsection, we describe RLNC and how it works. After that we can argue how
implementation of network coding benefits our system.

2.4.1 Random Linear Network Coding

In RLNC, a value v is divided into Given k chunks, {v1, ..., v3}. the encoding algo-
rithm generates n linearly independent coded packets {c1, ..., c6} by creating a linear
combination of all the k chunks as follows:

ni =
∑
j=0

αi,jvj,

where i,j is a uniformly random variable from a Galois Field GF (q). Fig. 9 shows an
example of the encoding procedure for k = 3 and n = 6
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The outcome of encoding procedure is a set of coded packets alongside the coeffi-
cients. All coefficients are stored in a matrix M where Mi,j = αi,j . This matrix is called
the coefficients matrix and is required to retrieve the original data v from the coded
packets.

Figure 9. encoding v into coded packets using RLNC with K = 3 and N = 6

To decode the original data, we need to have the coefficients matrix and at least
K coded packets. These coded packets can be put together in a system of equations
with order k. The original chunks {v1, ..., v3} are calculated by solving this system of
equations. This procedure is called decoding. Fig. 10 illustrates the procedure to build
the original data.

Figure 10. The user can build the original data by getting 3 independent coded packets

It should be noted that the value of n is an indicator of how redundant the data is
stored in the system. More coded packets enables user to gather the required number of
packets more easily while it also demands more storage capacity in the system [HPFM11].
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This value is also a good indicator of how resilient a Peer-to-Peer storage system is. It is
trivial that the more we spread the coded packet over different peers in a P2P system, the
more system is resilient to losing or leaving nodes in the network due to the fact we only
need K coded packets to build the original data.

2.4.2 Gauss Jordan Method:

In order to decode the coded packets in the receiver and generate the original packet, we
use Gauss Jordan Method [HPFM11]. In this method, each coded packet is treated as
a equation. The system of equations is written in form the following matrix equation,
where M is the coefficients matrix , C is a vector consisted of the coded packets and v is
a vector consisting the chunks of original value.

Mk∗k × Ck∗1 = Vk∗1

we then use Gaussian Elimination for matrix Mk∗k to make up an upper or lower
triangle matrix to derive the matrix Vk∗1.

It is trivial that storing coded packets instead of the original data v adds a layer of
security to the system as any adversary will have to gain access to at least k coded packets
in order to retrieve the original data [BN+05]. However, as mentioned, the resiliency
of the system against nodes leaving the network is increased as the system can tolerate
losing some of the coded packets until the number of remaining coded packets are larger
than k. In chapter 4 we analyze the impact of using network coding on different aspects
of our system.

2.5 Summary
In this chapter we introduced the background on P2P storage systems, especially Kadem-
lia, Blockchain and RLNC. we now move forward to introduce our system model, which
integrates these three structures in a whole system to make privacy and security available
in Kademlia. In the next section, we describe the system model.

3 System Model
In [ZN+15], the authors introduce Blockchain [Nak19] to protect data privacy in an off
DHT. The basic idea behind this system is to allow the users to adjust the privacy of their
stored data by granting or provoking access to services. In this system, the permissioned
blockcahin is used to control and provide access to the data. Using this system provides
a number of benefits to users compared to the traditional data sharing system, the main
advantage gained from this system is the fact that there is no need for a trusted third
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party authority to control over access permissions. This system is the foundation of our
research in this work.

In this chapter, we introduce the backbone system which is the basis of our work.
we also explain in detail the protocols used in the system and later in this chapter we
introduce our contribution to the system and the changes that we make in order to
implement our ideas and contributions.

3.1 DHT and Permissioned Blockchain
Fig. 11, illustrates the high-level model that is proposed in [ZN+15]. As we mentioned
previously, the proposed system has addressed the aspect of security by introducing a
trustable decentralized element - Blockchain to control the access to the data generated
by the users, as opposed to the centralized control entities who had authority over the
data, which provides little transparency on how the privacy of the stored data is handled.

Figure 11. Overview of the decentralized platform. [ZN+15]

As seen in the Fig. 11, the overall system consists of five major components as
follows:

1. User: The user is defined as someone who owns the data. This user can at anytime
define the access for other services in the network.

2. Service: Defined as an entity which processes the data for the user upon users
request. The service can be a tool or an application that users use to generate data,
e.g., a word processing application is a service through which the users generate
data.
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3. Data: Defined in form of a pair of < Key, Value >. where Key is a 160-bits
identifier of the value being stored in the DHT.

4. Permissioned Blockchain: The role of this component is to control and verify
accesses to the data in DHT. In the forthcoming, we describe the permissioned
Blockchain in detail.

5. Distributed Hash Table (DHT): is a distributed storage system based on Kadem-
lia used to store the data generated by different services. In this work, we use
Kademlia as the chosen DHT implementation.

The System addresses the following aspects regarding the users’ data [ZN+15]:

• Data Ownership: The system recognizes the owner of the file, and the owner has
the control to grant or revoke access to its data. in this system, users are recognized
as the owner of the files while services are the treated as guests with delegated
access to these files.

• Data Transparency and Audibility: The users have transparency over what data
is being collected from them and also how the data is accessed.

• Fine-grained Access Control: the users can define and alter access levels to dif-
ferent users at any given time, i.e., in terms of a mobile application, an application
might only be allowed to access a certain or only a part of a certain data instead of
having access over all the users data.

There are two types of Blockchain transactions in this system namely TAccess and
TData:

• TAccess: executed when the user wants to grant access or remove an existing access
to a service.

• TData: executed when a service wants to access or write a data.

In the next section we describe the protocol used in this system to enable communi-
cation between service, Blockchain and Kademlia.

3.2 The Protocols
The mentioned system uses a protocol with four procedures to achieve a privacy enhanced
storage using Blockchain and Kademlia. Here we describe these procedure.
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3.2.1 First Procedure:

The first procedure is to create a compound identity to uniquely distinguish the pair of
(user, service) in the system. this compound identity is used by the Blockchain to validate
the requests for example to access a file. when Blockchain receives a request it should be
able to first distinguish which (user, service) does this request belong to.

The compound identity is a pair of public signature keys generated by the user and
the system. Algorithm 1 shows a high level psudocode for this procedure. We can further
break down this procedure as follows:

• User and service form a secure channel.

• User and service each generate public and private signature keys.

• User also creates an encryption key to encrypt the data.

• User and service exchange their generated public keys to each other. user also
shares it’s encryption key for the service so that the service is able to encrypt the
data it wishes to store or decrypt the data upon access.

Algorithm 1: Generating a compound identity
Input: u, s
Result: pku,ssig , pk

s,u
sig , sk

u,s
enc

1 Procedure COMPOUNDIDENTITY(u, s)
2 u and s form a secure channel
3 u executes:
4 (pku,ssig , sk

u,s
sig)← gsig()

5 sku,senc ←genc()
6 u shares < sku,senc, pk

u,s
Sig > with s

7 s executes:
8 (pks,usig , sk

s,u
sig)← gSig()

9 s shares pks,uSig with s
10 // Both u and s have sku,senc, pk

u,s
Sig, pk

s,u
Sig

11 return pku,ssig , pk
s,u
sig , sk

u,s
sig

12 End Precedure
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3.2.2 Second Precedure:

This procedure is intended for the Blockchain to check the service permission against
the requested data. The procedure can be seen at Algorithm 2. This procedure consists
of the following steps:

• The service requests the Blockchain to access a specific users data by providing
the compound identity pk(sigs, u) and xp which is a variable specifying the aspect
of access to the data, e.g., in case of the mobile application, this could specify the
access to the contacts, photos or videos.

• The Blockchain checks the policy for this compound identity by hashing the
provided key and fetching the saved policy associated with that compound key in
the Blockchain memory.

• The Blockchain parses the policy from its memory in the form of pku,sSig, pk
s,u
Sig,

POLICYu,s. By doing this step, the Blockchain extracts the permissions that are
granted to the service, therefore, the Blockchain can validate if the service has
been granted the requested permission.

• If the request is made form the user, i.e., pksig = pku,ssig , the access is granted by
setting the flag s = 1. This is because the user always has access to its own data.

• if the request is made from a service, i.e., (pksig = pks,usig , then it should also be
checked whether the service does have the required policy to access, the latter is
check by xp ∈ POLICYu,s.

• if the service meets the conditions pksig = pks,usig and xp ∈ POLICYu,s), the flag s
is set to s = 1, which means that the service is granted access to the data.

3.2.3 Third Precedure:

The third procedure can be seen in Algorithm 3. This procedure is used by the user to
add a policy or remove an existing policy stored in the Blockchain.

• The user request the invokes the HANDLEACCESSTX() function with the
its compound identity key and m which is a variable to specify the policies user
wants to add or rmeove.

• The Blockchain checks to see if the provided key is for a user, i.e., pkkSig = pku,sSig,
since a service is not allowed to add or modify any policies.
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Algorithm 2: Permissions check against the Blockchain
Input: (pkksig, xp)
Result: s

1 Procedure CHECKPOLICY(pkksig, xp)

2 s← 0
3 apolicy = H(pkksig)

4 if L[apolicy] 6= 0 then
5 pku,sSig, pk

s,u
Sig, POLICYu,s ← Parse(L[apolicy])

6 if pksig = pku,ssig or (pksig = pks,usig And xp ∈ POLICYu,s) then
7 s← 1
8 end if
9 end if

10 return s
11 End Precedure

• if the provided key is a user side compound key, then the provided policy is saved
into the Blockchain memory. it should be noted that the location index in which
the policy is saved, is the hash of the value of m. Using the Hash function in the
placement of data in Blockchain ensures consistency in the whole system.

Algorithm 3: Access Control Protocol
Input: (pkksig,m)
Result: s

1 Procedure HANDLEACCESSTX (pkksig,m)

2 s← 0
3 pku,ssig , pk

s,u
Sig, POLICYu,s ← Parse(m)

4 if pkkSig = pku,sSig then
5 L[H(pkksig)] = m

6 s← 1
7 end if
8 return s
9 End Precedure
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3.2.4 Fourth Procedure:

The forth procedure is intended to store or load the data into Kademlia. More specifically,
it is part of the TData transaction previously introduced. This procedure can be seen in
Algorithm 4 and can be further divided into the following steps.

• The service requests to store or load a data by invoking the HANDLEDTATX()
function with the its compound key and m as discussed in procedure 3.

• The system parses the input m into c, xpand rw. rw and c may differ as the service
wants to write or read data as follows:

– If reading data : c is the data and rw = 1

– If writing data: c is the key of the data and rw = 0

• The system checks if the request made is legitimate, i.e., the service has access to
the data by using the procedure 2.

• If the service has access, it can use Kademlia to read or write the data.

• in case of writing the data, the hash of the data is stored in the Blockchain to be
used for future access control.

3.3 Proposed Model
In this section, We propose an improved protocol based on the system that was introduced
in [ZN+15] and described in section 3.2 and 3.3. We first introduce our system model
which is an extension to the model of Fig. 11. Then we update the procedures of the
protocol used in this system and point out the differences with the protocol described in
section 3.2.

3.3.1 System Model

Fig. 12 illustrates the proposed system. In this system, there are a number of users and
services. The services store the data in Kademlia, while the user controls the access
of any service to the stored data that belongs to him. This system is an extension to
[ZN+15] previously introduced. The contribution in our system is the following.

Our proposed system has the following differences from the setup introduced in
[ZN+15]:

• The service divides the data into k chunks {v1, ..., vk}. Using this chunks, the
service generates n coded packets {c1, ..., cn}, where n > k. Each coded packet
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Algorithm 4: Storing or Loading Data
Input: (pkksig,m)
Result: 0 or ds[hc] or hc

1 Procedure HANDLEDATATX (pkksig,m)

2 c, xp, rw = Parse(m)
3 if CheckPolicy(pkksig, xp) = True then
4 pku,ssig , pk

s,u
sig , POLICYu,s ←Parse(L[H(pku,ssig)])

5 axp = H(pku,ssig ||xp)
6 if rw = 0 then
7 h(c) = H(c)
8 L[axp ]← L[axp ] ∪ h(c)
9 (DHT) ds[hc]← c

10 return hc
11 else if c ∈ L[axp ] then
12 (DHT) return ds[hc]
13 end if
14 end if
15 return 0
16 End Precedure

is created by using k randomly generated coefficients from a certain Galois Field
GF (q), i.e.,

ci =
k∑
j=1

αi,jvj.

• Upon granting access to read, the service sends all coded packets to Kademlia. Each
coded packet is stored with its unique key, i.e., < key1, c1 >, ..., < keyn, cn >.

• The coefficients are stored in the service who originally generated encoded packets
in order to decode the data in retrieval phase. Hence, in total, a set of n keys and
n · k coefficients are stored for retrieval of the data. These coefficients are stored
locally and is not sent to the Blockchain or Kademlia.

• If a service wishes to retrieve the data, it asks for the set of keys and the coefficients
associated with the coded packets of the data it wishes to retrieve from the service
that has stored the data.

• After the service acquires the set of keys, it asks the Blockchain for permission,
upon granting the permission to access Kademlia, the service starts to retrieve the
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Figure 12. The proposed system model

coded packets from Kademlia. The process ends where k linearly independent
coded packets are retrieved form Kademlia. The service then starts to decode the
received coded packets by acquiring the coefficients from the service that has the
coefficients.

• In Kademlia, a node that wishes to broadcast its data, Which is a common tool on
most Kademlia systems to ensure reliability, asks the Blockchain for a permission
to re-code. In this case, we have to outcomes:

1. The Blockchain grants permission, i.e., the node is trustable. In this case, the
node retrieves r coded packets from other nodes, where r is a system-wide
variable. The node chooses the closest r keys in order to increase the speed of
the function. The node then generates new coded packets using the recoding
feature of RLNC [HPFM11] and sends each coded packet to a neighboring
node. In this case, the coefficients and key value associated for each recoded
packet are sent to the respective system and user in order to ensure access to
the newly generated coded packets.

2. The Blockchain does not grant permission, i.e., the node is not trustable.
In this case, the node simply broadcasts the coded packet that it has stored
to neighboring nodes. This procedure is identical to the traditional DHT
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relocating procedure.

3.3.2 Protocol Procedures:

In this subsection, we are going to define the encoding and decoding procedure. The
encoding procedure is performed in the service before sending data to Kademlia. In this
protocol, the service acts as the encoder in the traditional encoder and decoder setup of
network coding. First, the encoder divides the data into k chucks, i.e., {v1, v2, ..., vk}.
In order to make each coded packet, for example ci, the encoder generates k random
numbers {αi,1, αi,2, ..., αi,k} from GF (q). Then generates each coded packet ci by

calculating ci =
k∑
j=1

αi,j × vj . The coefficients that are generated in this step are stored in

matrix M . The matrix M is stored in the service in order to be used for decoding the data
in the future. The output of this protocol is n coded packets {c1, c2, ...ccn}. After this
protocol is carried out, the service calls algorithm 4 for each coded packet to store them
in Kademlia. It should be noted that coded packets generated are linearly independent as
the service checks and ensures the linear Independence of these packets before sending
them to Kademlia.

Algorithm 5: Encoding
Input: Value v, int q, int N , int K
Result: Matrix M and c1, c2, ..., cn

1 Create Matrix Mn×k
2 Divide v into K chunks
3 foreach i=1 to n do
4 ci = 0
5 foreach j=1 to k do
6 Generate Random Number αj ∈ GF (q)
7 Store αj in Mi,j

8 ci += αj vj
9 end for

10 end for

In order to retrieve the data, the service needs to know the keys associated with
the coded packets generated for the data in the encoding procedure and given access to
Kademlia by the user. Upon granting access and receiving the respective keys, the service
starts to retrieve all of the n coded packets from Kademlia. In this setup, the service
acts as the decoder in a traditional network coding system. Since only k coded packets
are needed to perform the decoding procedure and retrieve the original, the process of
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Figure 13. An illustration of the encoding procedure

retrieving the coded packets halts when k linearly independent coded packets are received
by the service. This action results in lower traffic in the system and reduction in the
overhead of the unnecessary transmissions in the channels compared to the case if all the
coded packets were needed. After receiving k coded packets, the service performs the
Gauss-Jordan elimination to decode the data and retrieve the original values {v1, ..., vk}.
By knowing these values, the service can generate the original data v.

Algorithm 6: Decoding
Input: Matrix Mn×k and Key1, Key2, ..., Keyn
Result: Original Data v

1 while true do
2 Execute HANDLEDATATX(P k

Sig, (Keyi, xp, r)) in Parallel
3 if k coded packets c′1, c

′
2, ..., c

′
k are received then

4 Break;

5 Generate Matrix D =


Mπ1 c′1
Mπ2 c′2

...
...

Mπk c′k


6 Use Gauss-Jordan elimination on D to generate {v1, v2, ..., vk}.
7 Output v = v1||v2||...||vk

3.4 Summary
In summary, we proposed a method to implement RLNC on top of a Blockchain-
Kademlia system introduced in [ZN+15]. We are able to integrate RLNC in an extremely
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efficient way without decreasing the efficiency of Kademlia or the functionality of the
Blockchain. In fact, as we will address in the next section, our protocol enhances the
performance of the system in various ways other than improved security.

4 Mathematical Analysis
As we mentioned earlier, due to the nature of RLNC, it improves the security of the stor-
age of data in DHT. However, alongside improved security, there are more characteristics
that are changed by implementation of RLNC. In this chapter we analyze how RLNC
changes the expected retrieval time, resiliency and required storage of the DHT.

4.1 Retrieval Time
The first improvement of our work is the declination of data retrieval speed in the system,
to prove this claim, we use the following notions to calculate the expected data retrieval
speed in the original and the proposed system (for a random Value V ):

• TMax is the worst case scenario (upper bound) for the time it takes to retrieve any
data in the DHT system. This upper bound is determined by experience.

• In traditional kademlia, data is requested from one of the nodes in DHT, therefore,
the retrieval time to is a random variable where To ∈ [0, Tmax]

• (T1, T2, ... ,Tn) are the retrieval times of the coded packets (c1, c2, ... ,cn) respec-
tively. Without loss of generality we can assume that T1 ≤ T2... ≤ Tn and

0 ≤ Ti ≤ TMax ∀i ∈ {1, ..., n}

As mentioned, in the traditional DHT system we have:

0 ≤ TO ≤ TMax (1)

Generally, if we do not know the distribution of To, which can be determined by
experiment, we assume that To is a uniformly random variable, the expected value for
the retrieval time is:

E(TO) =
TMax

2
(2)

In our proposed system, are requests are sent in parallel and the transmission stops
once we have received k coded packets, therefore, it is easy to see that the retrieval time
in this system is equal to Tk. Using order statistic, the expected value for Tk is:
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E(Tk) = TMax ·
k

n+ 1
(3)

The proof of this equation is in Appendix A [DN04]. From Eq. 2 and 3, we can
conclude that:

E(Tk) ≤ E(TO) ⇔ k

n+ 1
≤ 1

2
(4)

Thus, with choosing n ≥ 2k − 1, the expected retrieval time in our proposed system
in lower than traditional Kademlia.

4.2 Retrieval Time with channel error
The data might get lost during the retrieval due to channel error, if the we define the
probability of loss due to channel error as ε, we can rewrite the eq. 3 as follows:

E(Tk(1+ε)) = TMax × (
k(1 + ε)

n
) (5)

This equation simply follows by the fact that if there is a loss probability of ε in the
network, we need k(1 + ε transmissions in order to receive k packets.

4.3 A tighter bound on improved expected retrieval time
The previously found bound n ≥ 2k − 1 is valid but simulation results show that the
expected retrieval time is improved when using network coding even when n < 2k − 1.
Hence, in this section, we break down the expected retrieval time to find a better theory.
The following notations are added:

• H is the Harmonic function [ABW13].

• m is the size of the P2P network (number of nodes).

• K is the size of K-buckets in Kademlia.

The expected retrieval time consists of two parts:

1. The time required to find the node containing the data, i.e., lookup time. We denote
this time by Tlookup. This time is independent to the size of the stored values so it
is identical in both traditional and network coded DHT.

2. The time required to download the data. This time depends on the size of the
downloaded so it is different in the two cases. We denote this time as Tdownload and
Tcodeddownload for traditional and network coded DHT respectively.
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To summarize, we write:

E(To) = E(Tlookup) + E(Tdownload)

E(Tc) = E(Tlookup) + E(TCodedDownload)
(6)

The authors of [CD13] have proposed an upper bound for the lookup time in kademlia as
follows:

maxTlookup =
logm

HK
(7)

The time of download has a linear relation with the size of packet [Li15]. The size
of downloaded value in traditional and coded cases is sk + sv and sk + sv

k
respectively.

Hence, if we consider the size of lookup packet to be sreq, we have:


maxTdownload =

(sk+sv) logm
sreqHK

maxTCodedDownload =
(sk+

sv
k
) logm

sreqHK

As the delay of each channel is assigned by a uniformly random distribution, the
distribution of download and lookup times is a uniformly random variable in [0,Tmax].
Therefore, using the same analysis as chapter 3.6.1 for expected time of each variable we
have:

E(To) =
logm

2 ·HK
+

(sk + sv) logm

2 · sreqHK

E(Tc) =
k logm

(n+ 1)HK
+
k(sk +

sv
k
) logm

(n+ 1)sreqHK

(8)

Using these equations, we can find the condition for which we have an improvement
by using network coding in the system. By setting E(Tc) ≤ E(To) in equation 8, we
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have:

logm

2 ·HK
+

(sk + sv) logm

2 · sreqHK
≥ k logm

(n+ 1)HK
+

(k · sk + sv) logm

(n+ 1)sreqHK

→ 1

2
+

(sk + sv)

2 · sreq
≥ k

n+ 1
+

(k · sk + sv)

(n+ 1)sreq

→ sreq + sk + sv
2

≥ k · sreq + k · sk + sv
n+ 1

→ n+ 1 ≥ 2(
k · sreq + k · sk + sv
sreq + sk + sv

)

(9)

If we set n = k in the above equation we have:

k + 1 ≥ 2(
k · sreq + k · sk + sv
sreq + sk + sv

)

→ (k − 1)sreq + (k − 1)sk ≤ (k − 1)sv

→ sv ≥ sk + sreq

(10)

This result shows that E(Tc) ≤ E(to) for all values of n ≥ k. Therefore, when using
network coding, we will always have gain in expected retrieval time.

Note that the analysis in this section is valid for large number of m as Eq. 7 is valid
when m→∞ [CD13]. However, this analysis gives an insight on how network coding
improves the performance of the p2p system in terms of average retrieval time.

4.4 Resiliency
The second improvement of our work is the improvement of resiliency, meaning that
the nodes in the DHT are less probable to lose a data in case a node suddenly leaves the
network, without loss of the generality, we use the following notions:

• α is the number of nodes that join the DHT network.

• β is the number of nodes that leave the DHT network.
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• t which is a time interval during which α and β nodes are entered and left the
network.

• h is the time period in which a node replicates its stored data with the neighbours.

The probability for a data loss during the interval t for the both scenarios, our system
and the original system is determined as follows:

For the original system the probability of a data loss at the time interval t is:

Pl(t, α, β, h) = pl (11)

For our proposed system, since we are retrieving k coded packets, loss would mean
that we lose at least n− k + 1 packets, and the occurrence of the loss are independent
from each other, we can use multiplication rule to achieve:

Pl(t, α, β, h) = pn−k+1
l (12)

Since the pl ≤ 1, it is evident that:

pn−kl ≤ pl (13)

Thus we can conclude that probability of a data loss is less in our proposed system.

4.5 Storage
To calculate the storage required for the data (Key, Value) in our proposed system, we
use the following notions:

• sk the space required to keep the key.

• sv the space required to keep the data.

• sc the space required to keep the coded packet.

• skc the space required to keep the key of coded packet.

since the data is chunked into k packets and then coded to n packets, and the size of keys
remain the same (160-bits) the overall required storage would be:

storage = n · (skc + sc)

storage = n · (sk +
sv
k
)

(14)

Using this mathematical tools, we know that implementation of RLNC improves
the performance of the system in resiliency and expected retrieval time in addition to
the security it provides. In the next chapter, we prove the validity of our analysis with
simulation results.
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4.6 Summary
In this section we analyzed how the implementation of RLNC affects the average retrieval
time, resiliency and required storage. Our analysis shows that RLNC improves the
expected retrieval time and resilience in any case, with the expense of increased required
storage. In the next section, we put our analysis to test by using a simulation technique.

5 Simulations and results
In this chapter, we describe our simulation technique as well as Peersim, the simulation
engine that we use to validate our analysis. Then we provide the results and debate on
the meaning of our simulation results and how these results approve our analysis on the
proposed method.

5.1 Peersim
The key characteristics of of peer-to-peer (P2P) networks are scalability being dynamic
thus the analysis and evaluation of a P2P protocol in a realistic environments is very
expensive and difficult. As simulation like in other areas is crucial in P2P related research
chosing the right simulater is very important. For this research we have chosen to use
Peersim which is an extremely scalable simulation environment that supports the dynamic
environment of P2P networks.

Peersim [MJ09] is a P2P simulation environment with extremely large scalablilty
(Millions of Nodes) in which the nodes join and leave continuously as in the real
world P2P networks. The simluator is written in Java and it is structured based on
java components to makes it easy to prototype a protocol by combining different Java
pluggable building blocks. There are two simulation models proposed for peersim as
follows:

• cycle-based model is a simplified model in which there is the lack of transport
layer simulation and concurrency, in other words, nodes communicate with each
other directly with each nodes having the control periodically, in a sequential order.
This model makes it possible to achieve extreme scalability and performance, at
the cost of loss of some realism while several simple protocols can tolerate this loss
without problems, care should be taken when using this model in the experiments.

• event-based model is a more complicated and realistic implementation of P2P
simulator. This model is very simulator to the cycle-based model except that since
there are no cycles in this model, the control objects, which are defined later,
should explicitly be defined when to run.
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5.1.1 PeerSim simulation life-cycle

PeerSim follows the modular programming logic based on objects which are the building
blocks of the simulator. Every block is easily replaceable by another component which
implements the same interface or functionality. The general precedure to simulate a
protocol in Peersim is as follows:

• choosing the size of network (number of nodes).

• choosing and initializing the desired protocols on the nodes.

• choosing the Control objects that monitor or modifies the desired properties during
the simulation (e.g., size of the network or the internal state of the protocols)

• Running the simulation by invoking the Simulator class with a configuration file,
which contains the information mentioned above.

The life-cycle of a cycle-based simulation is as follows:

1. The first step is to read the configuration file, given as a command-line parameter.
The configuration contains all the information regarding the simulation including
simulation parameters and the objects involved in the experiment.

2. In the second step, the simulator sets up the network (constructing the number of
nodes defined in the network, and the protocols in them.) It should be noted that
each node has the same protocol; which are the instances of a protocol, with one
instance initialized in each node. These instances are created by cloning meaning
only one instance is constructed using the object’s constructor and all the nodes in
the network are further cloned from this prototype. Due to the mentioned fact, it is
very important to pay attention to the implementation of the cloning method for
the protocols.

3. In the third step, initialization (setting the initial state of each protocol) is performed.
This phase is carried out by the initializer objects that are scheduled to run at the
beginning of each experiment. In the configuration file (explained later in this
chapter), the initialization components are recognizable by the "init" prefix at the
beginning of the line. It should be noted that initializer objects are simply controls,
but configured to run only in the initialization phase.

4. In the forth step, the cycle driven engine calls all the components (protocols and
controls) once in each cycle, until a given number of cycles, or in case a component
decides to end the simulation.

5. In the fifth step, if a Control object has to collect data, the data is formatted and sent
to standard output (which can be easily transferred to a file for further analysis.)
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Node The P2P network is made up of nodes. A node is a container
of protocols. The node interface provides access to the
protocols it holds, and also to the fixed ID of the node.

CDProtocol It is a specific protocol, that is designed for the cycle-driven
model. Such a protocol simply defines a certain operation to
be performed at each cycle.

Linkable Typically used by protocols class, this interface provides a
service to other protocols to access a set of neighbor nodes.
The instances of the same linkable protocol class over the
nodes make up an overlay in the network.

Control Classes that implement this interface can be scheduled for
execution at certain points during the simulation. These
classes typically observe or modify the simulation when it is
running.

Table 1. Main Components of Peersim

Each object in PeerSim (e.g., controls and protocols) are assigned a Scheduler object
which dictates when they are executed exactly. By default, all objects are executed at
each cycle. However, it is possible to configure a protocol or control object to run only
in certain cycles (e.g., every other cycle), and it is also possible to control the order of
the components within each cycle. The latter case is illustrated in Figure 14.

Figure 14. “C” donates a control component, and “P” donates a protocol. The numbers
under each vertical line indicate the cycle. In this figure for example, it is possible to
execute a final control object to retrieve a final snapshot of the system. [Jes05]

5.1.2 PeerSim Components

As stated earlier, all the object that are created during simulation are instances of Peer-
Sim’s classes that implement one or more interfaces. Table 1 donates some of the most
important interfaces.
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5.1.3 The configuration file

The configuration file is basically a plain ASCII text file, the lines starting with ”#”
character are regarded as comments and are ignored. The configuration file is specified
in the command line as follows:

java peersim.Simulator config-file.txt

To have better understating of the configuration files in PeerSim, we would explain
our configuration file for our simulation in Appendix B.

5.2 Simulation results
As our system only differs on the aspect of network coding before inserting data in
Kademlia, in this section we test the effect of this aspect on the expected retrieval and
storage time on Kademlia. we only implemented a Kademlia system and gathered the
results on expected retrieval and storage time on the Kademlia. The Blockchain on top of
Kademlia has negligible effect on the expected retrieval and storage time so the results
of this section can be expanded to our system model. This is because of the fact that the
application of the blockchain does not change in our system with respect to the system
introduced in [ZN+15]. The protocols and functionalities that involve the Blockchain
stay exactly the same. Therefore, if we compare the difference between a Kademlia that
uses RLNC to store the data and a Kademlia that does not use RLNC, the results can
be extended to our system and the effects that our proposed model has on the system
introduced in [ZN+15].

In order to validate our analysis and compare it with traditional Kademlia system in
which network coding is not implemented, we carried out simulations using Peersim. In
these simulations, we set number of nodes as m = {500, 1000}. Our topology is a wired
network, in which each node is connected to 5 other nodes. In order to better illustrate
the topology, figure 15 shows a setup of 10 nodes where each node is connected to 3
other nodes.

In our simulations, we first set up the mentioned topology. Then we set up the
following system characteristics:

• Minimum and Maximum Delay in the channels. In this work, we considered that
each channel in the network has a delay from a uniform distribution in the range
of [50, 100]ms. Which means that the minimum and maximum delay are set as
50ms and 100ms for all our experiments respectively.

• Drop rate. We define the drop rate in as the probability that a packet is lost in a
channel. The drop rate in our experiments is set as drop = {0.01, 0.05}, This drop
rate is set in the configuration file as can be seen in Appendix B.
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Figure 15. An example of a topology with 10 nodes where each node is connected to 3
other nodes.

• k and n. In other words, number of chunks and number of coded packets. These
variables are set inside the main program. These two variables are the main
variables in our experiments as we want to see the effect of these two on the
expected retrieval and storage time.

In order to consider the dynamic nature of P2P systems, we have also introduced a
turbulence step in our network as can be seen in the configuration file in appendix B.
The turbulence step and how it manages the dynamic nature of P2P systems is discussed
in appendix B. We make sure that this turbulence step is defined in a way to keep the
average number of nodes around a defined value of m. This is ensured by having the
probability that a node leaves the network in a turbulence step equal to the probability
that a node joins in a turbulence step.

We tested our setup for various set of network characteristics. In order to make sure
that the results are statistically bound, we carried out 1000 independent experiments for
each set of variables and reported the average result. In the figures we only include the
average result without the confidence interval, because the results were generally close
and the confidence interval is negligible with respect to the results.

5.2.1 Effect on Retrieval Time

Figures. 18 and 16 show the expected retrieval time for various values of k and n in our
system as well as in traditional Kademlia for different values of m and ε which denote
the average total number of nodes in the network and the drop rate of each channel. As
can be seen in this figures, we have significant gain by using network coding with any
value of k and n. Also these results confirms the expected outcomes as our mathematical
analysis. These results can be categorized as following:
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Figure 16. Average Retrieval Time for m = 500 and ε = {0.01, 0.05}. The size of each
data is set at 10KB.

1. By increasing the number of nodes in the P2P network, the expected retrieval time
is increased as the expected number of hops required for each retrieval is increased.

2. Increasing the drop rate on channels increase the expected retrieval time which is
intuitive as the higher probability of losing a packet requires additional transmis-
sions in the network to gather the required k coded packets. However, the effect of
drop rate is higher when network coding is not used. Our results show that when
the drop rate is increased from 0.01 to 0.05, the expected retrieval time increases by
6% in traditional Kademlia. While the expected retrieval time in network coding
enhanced Kademlia is only increased by 3% on average. This happens because
there are multiple coded packets in the network, so if any of them is dropped in
the channel, we can substitute it with another packet.

3. For a constant k, by increasing the number of n, the expected retrieval time is
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Figure 17. Average Retrieval Time for m = 1000 and ε = {0.01, 0.05}. The size of each
data is set at 10KB.

decreased. By fixing the value of k, the number of coded packets that are needed
to retrieve and the size of coded packets are constant. Higher number of n means
that there are higher number of coded packets in the network so the probability
that the coded packets are closer to the receiver node is increased, which means
faster retrieval time.

4. For a constant n, increasing k increases the expected retrieval time. By fixing n,
the total number of coded packets in the system stay the same, however increasing
k means that more packets are needed to be retrieved, therefore, the expected
lookup and download time are both increased. This can be clearly seen in Eq. 8.

5. By fixing the relation between k and n, i.e., k
n
= const., we observe the expected

retrieval time decreases by increasing the value of k and n. This can be seen trivially
in Eq. 8. The intuitive reason for this behaviour is that increasing both k and n
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Figure 18. Average Storage Time for m = 500 and ε = {0.01, 0.05}. The size of each
data is set at 10KB.

decrease the size of each coded packet and also increases the total number of coded
packets in the network, which improves the performance, this improvement is
stronger than the drawback of requiring more coded packets to decode the original
data, which describes the behaviour that we can observe from our simulation.
Theoretically, if we set k

n
= c in Eq. 8, we get:

E(Tc) '
c logm

HK
+
c(sk +

sv
k
) logm

sreqHK

Therefore, increasing k decreases the expected retrieval time by a factor of 1
k
.
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Figure 19. Average Storage Time for m = 1000 and ε = {0.01, 0.05}. The size of each
data is set at 10KB.

5.2.2 Effect on Storage Time

The plots in Fig. 19 show the results on the expected storage time for various values of
k and n in our system as well as in traditional Kademlia for different values of m and
ε which denote the average total number of nodes in the network and the drop rate of
each channel. As can be seen in this figures, Even when network coding is used, the
expected storage time is not much increased with respect to traditional Kademlia. In fact,
when n = k, the expected storage time is significantly lower the traditional Kademlia.
comparing the results for various numbers of k, n and m we get the following insights.

1. By increasing the number of nodes in the P2P network, the expected storage time
is increased as the expected number of hops required for each store procedure is
increased.

2. Increasing drop rate increases the expected storage time significantly. In retrieval
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of data, where in case of loss of any packets, we can get another coded packet from
another source until we get k coded packets. However, when storing the coded
packets, in case of data loss, we need to send the coded packet again until it is
stored in the destination.

3. For a constant k, by increasing the number of n, the expected Storage time is
increased. By fixing the value of k, the size of coded packets are constant. Higher
number of n means that there are higher number of coded packets that need to be
stored in the network so the expected storage time is increased.

4. For a constant n, increasing k decreases the expected storage time. By fixing n,
the total number of coded packets that need to be stored in the system stay the
same, however increasing k means that size of each coded packet is decreased,
therefore, the expected storage time is decreased proportional to the size of each
coded packet. This can be clearly seen in Eq. 8.

5. By fixing the relation between k and n, i.e., k
n
= const., the expected storage

time increases by respectively increasing the value of k and n. The reason for this
behaviour is that increasing both k and n decrease the size of each coded packet
and also increases the total number of coded packets that need to be stored in the
network. This behaviour suggests that the higher number of packets that need to
be stored has more effect on the expected time than the decreased size of packets,
so we have an increase in the expected storage time.

These results show that there is a trade-off between expected storage time and
expected retrieval time. This trade-off means that if we increase the total storage time,
either by increasing the value of k or n, we decrease the total retrieval time.

5.3 Summary
In this section, we validated our analysis and the performance of our system using
a simulation with Peersim environment. Our results show that RLNC significantly
increases the expected retrieval time while the expected storage time remains close to
the traditional Kademlia in most cases. Also there is a trade-off between storage and
retrieval time. This trade-off means that if we increase the storage time by increasing
the value of n or decreasing the value of k, the performance of the system in terms of
expected retrieval time is decreased.

6 Conclusion and future Work
In this work, we used the system proposed in [ZN+15] and added a network coding
feature by implementing RLNC. The original setup was proposed to preserve privacy of
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data stored in a P2P storage network. Our analysis and simulation results show that by
implementing RLNC in this network, we achieve following improvements in our system:

• The security of the stored data is increased as RLNC provides inherent security
on the data., i.e., by storing coded packets, the security is increased as proven by
multiple previous researches such as [HPFM11].

• Data recovery time, i.e., the time required for Kademlia to return the data is faster
in the proposed solution compared to traditional Kademlia.

• the system is more fault-tolerant to the removal of nodes from the system, which
means that The Kademlia requires less number of data relocations, further reducing
the traffic on channels between nodes.

Our results further shows that by implementing RLNC there is a trade-off between
storage time and retrieval time. Which means by increasing the number of coded packets
or the generation size, i.e., the number of chunks that the data is divided, the storage time
is increased and the retrieval time is decreased. Therefore, we can manage the system
characteristic depending on our expectations of the distributed storage.

As for the future works, we can focus on expanding the theoretical framework to find
the expected behaviour of the system on the expected storage time and fault-tolerance
of the system in case of nodes leaving the network. This expansion will help us better
understand such a system to help us implement the system in a more efficient way and
find more trade-offs between system characteristics.

Another feature that we can include in our analysis is the channel capacity and node
capacity which can create bottlenecks and delays in the network. This issue is a well
known and common topic in P2P networks such as Kademlia. Therefore we can analyze
the effect of network coding on systems with this characteristics.

Another interesting feature is the possibility of re-coding the coded packets in the
P2P networks. Re-coding is one of the advantages of RLNC which allows generation of
new coded packets by using the code packets already in the network without decoding.
This feature can be implemented into the P2P networks, where the a set of approved
nodes in the network can use this feature to generate more coded packets. This will
increase the performance of system by reducing the expected retrieval time and increasing
fault-tolerance of the network while keeping expected storage time intact.
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Appendix

Appendix A: Proof of Eq. 3
In this setup, we have {T1, ..., Tn}, which are uniformly random variables from [0, Tmax]
and T1 ≤ T2 ≤ ... ≤ Tn. We want to find the expected value of Tk. It is trivial that Tk
is the k − th smallest value in this sample. we can map these values into 1, ..., Un in
unit interval [0, 1] by setting Ui = Ti

Tmax
. The cumulative distribution function of Tk is

calculated as:

P (Uk 6 u) =
n∑
i=k

P (U1 6 u, . . . , Ui 6 u, Ui+1 > u, . . . , Un > u)

= P

(
n∑
i=1

[Ui 6 u] > k

)

where [Ui ≤ u] is the Iverson bracket, which is defined as follows:

[Ui ≤ u] =

{
1 if Ui ≤ u;

0 otherwise

As all Ui are uniformly random, we have:

E ([Ui 6 u]) = P (Ui 6 u) = u (15)

The sum of n independent and identically distributed random variables equals in
distribution to a binomial random variable with parameters n and u. Thus:

F (u) = P (Uk 6 u) =
n∑
i=k

(
n

i

)
ui(1− u)n−i (16)

By using the above equations, we can calculate the expected value of Uk:
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E (Uk) =

∫ 1

0

uF ′(u)du = uF (u)|u=1
u=0 −

∫ 1

0

F (u)du

= 1−
n∑
i=k

(
n

i

)∫ 1

0

ui(1− u)n−idu

= 1−
n∑
i=k

(
n

i

)
B(i+ 1, n− i+ 1)

= 1−
n∑
i=k

n!

i!(n− i)!
· (i)!(n− i)!

(n+ 1)!

= 1−
n∑
i=k

1

n+ 1
=

k

n+ 1

Now, we can use the transformation to calculate the expected value of Tk.

E (Tk) = Tmax · E (Uk) = Tmax ·
k

n+ 1
(17)
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Appendix B: PeerSim Configuration Settings
# ::::: GLOBAL ::::::

# Network size
SIZE 500

This line denote size of the network (Number of Nodes). in this case, 500 nodes.

K 5
MINDELAY 50
MAXDELAY 100
SIM_TIME 500*60*60

K is the size of the K-Buckets, MINDELAY and MAXDELAY are the minimum
and the maximum delay set for each channel and the SETTime is the total duration
of the simulation, in this case 500 hours

TRAFFIC_STEP (SIM_TIME)/SIZE

TRAFFIC_STEP denotes the step in which data is relocated in Kademlia, In this
case every hour.

OBSERVER_STEP 100000

OBSERVER_STEP denotes the step in which the observer object is executed in
order to gather the data related to the simulation, i.e., the average retrive time.

TURBULENCE_STEP (SIM_TIME)/(20*SIZE)

TURBULENCE_STEP denotes the steps in which we have a turbulence (Nodes
joining and leaving the network). This turbulence is defined using some probabili-
ties which are defined later in this code.

STORE_STEP (SIM_TIME)/SIZE*50

STORE_STEP denotes the steps in which data storage is performed in the net-
work.

FINDVALUE_STEP (SIM_TIME)/SIZE*100

FINDVALUE_STEP denotes the steps in which a node requests a find value in the
network.
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simulation.experiments 1
simulation.endtime SIM_TIME*3

These variables are related to the PeerSim Engine and define how many times the
simulation is repeated and the simulation end time.

protocol.0link peersim.core.IdleProtocol
protocol.1uniftr peersim.transport.UniformRandomTransport
protocol.1uniftr.mindelay MINDELAY
protocol.1uniftr.maxdelay MAXDELAY
protocol.2unreltr peersim.transport.UnreliableTransport
protocol.2unreltr.drop 0
protocol.2unreltr.transport 1uniftr
protocol.3kademlia peersim.KademliaProtocol
protocol.3kademlia.transport 2unreltr
#protocol.3kademlia.BITS 32

In this part, we define and set the variables for the protocols in our simulation.
There are 4 protocols in the setup, IdleProtocol indicates the foundation of the
system which stores the nodes. UniformRandomTransport is the environment in
which the channels are defined and finally KademliaProtocol is the Kademlia hash
table which is implemented over the nodes and channels defined by the other two
protocols.

# ::::: INITIALIZERS :::::
init.0randlink peersim.dynamics.WireKOut
init.0randlink.k K
init.0randlink.protocol 0link

In this part, we define the topology of the system. We set our system as nodes
connected by wired channels and each node is connected to k other nodes.

init.1uniqueNodeID peersim.CustomDistribution
init.1uniqueNodeID.protocol 3kademlia

init.2statebuilder peersim.StateBuilder
init.2statebuilder.protocol 3kademlia
init.2statebuilder.transport 2unreltr

Here we initialize the defined the protocols on our simulation.
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# ::::: CONTROLS :::::

# traffic generator
control.0traffic peersim.TrafficGenerator
control.0traffic.protocol 3kademlia
control.0traffic.step TRAFFIC_STEP

In this part and the following parts which are under the "controls" section, we
define the functions that will be executed during the simulation. In this specific
part, we define the TrafficGenerator function which handles the relocation of data
and set its variables.

# turbolence
control.2turbolenceAdd peersim.Turbulence
control.2turbolenceAdd.protocol 3kademlia
control.2turbolenceAdd.transport 2unreltr
control.2turbolenceAdd.step TURBULENCE_STEP
control.2turbolenceAdd.p_idle 0.5
control.2turbolenceAdd.p_rem 0.25
control.2turbolenceAdd.p_add 0.25

In this part , we define the turbulance in the network. The probabilities set in this
part define the probability of "no change", "add a node" and "remove a node"
respectively each time that the function turbulance is executed.

#store msg generator
control.4store peersim.StoreMessageGenerator
control.4store.protocol 3kademlia
control.4store.step STORE_STEP

#find value msg generator
control.5findvalue peersim.FindValueMessageGenerator
control.5findvalue.protocol 3kademlia
control.5findvalue.step FINDVALUE_STEP

In this part we set the store and retrieve messages and their time steps.

# ::::: OBSERVER :::::
control.3 peersim.KademliaObserver
control.3.protocol 3kademlia
control.3.step OBSERVER_STEP

In this part we set the KademliaObserver class to be executed. This class outputs
the characteristics of the system such as the average store and retrieve time after a
fixed time which is set in the beginning of the configuration file.
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