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Discovery and Simulation of Business Process with Multiple Data
Attributes and Conditions

Abstract: Business process simulation (BPS) is a crucial tool for organizations, al-
lowing them to forecast outcomes and assess the impact of potential changes within
their processes. This capability supports effective decision-making by enabling
"what-if" scenario analysis. However, traditional BPS models rely on a limited
number of attributes (activity names, resources, and timestamps) with probabilistic
decision-making, overlooking process-dependent data attributes. For example, in
emergency services or patient care processes, using probabilistic decisions might
miss important details about patient conditions or available resources, which could
trigger critical issues.

This thesis introduces a Data-Aware Simulation (DAS) model, designed to
incorporate dynamic attributes and enable data-aware decisions within simulations.
The DAS model addresses the limitations of traditional approaches categorising
attributes into 3 types, case, global, and event, to cover different scopes (local or
global) and behaviour (static or dynamic) of the attributes. These attributes provide
branching conditions at the decision points based on the current data state to guide
the execution flow of the process.

Another significant aspect of this research is the discovery of the DAS model
from the event logs. By incorporating the DAS model with discovery tools, organ-
isations can discover their simulation models, including the perspective of data
attributes and branching conditions that often affect the execution flow of business
processes. Following discovery, organisations can simulate the model and make
necessary adjustments and optimisations to adapt the models to reflect changes in
operational procedures or to explore different ’what-if’ scenarios, thereby main-
taining their relevance and effectiveness in dynamic business environments.

The evaluation demonstrates that data-aware models, discovered from event
logs, can accurately classify data attributes, their update mechanisms, and implica-
tions into branching conditions. These models also replicate the control flow of
the original log while enhancing cycle and event times, in contrast to traditional
non-data-aware models that depend on branching probabilities.

Keywords: Business Process Simulation, Business Process Discovery, Data-Aware
Simulation Model, Simulation Data Attributes, Data-Aware Decision Making

CERCS: P170 - Computer science, numerical analysis, systems, control
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Äriprotsessi Avastamine ja Simuleerimine Mitme Andmeatribu-
udi ja Tingimustega
Lühikokkuvõte:

Äriprotsesside simulatsioon (APS) on organisatsioonide jaoks oluline vahend,
mis võimaldab neil prognoosida tulemusi ja hinnata võimalike muutuste mõju oma
protsessides. See võime toetab tõhusat otsuste tegemist, võimaldades stsenaari-
umide analüüsi. Traditsioonilised APS-mudelid põhinevad siiski piiratud arvul
atribuutidel (aktiivsusnimed, ressursid ja ajatemplid), millel on tõenäosuslik otsuste
tegemine, jättes kõrvale protsessist sõltuvad andmeatribuudid. Näiteks kiirabiasu-
tustes või patsientide raviprotsessides võib tõenäosuslike otsuste tegemisel jääda
vajaka olulistest üksikasjadest patsientide seisundite või olemasolevate ressursside
kohta, mis võivad esile kutsuda kriitilisi küsimusi.

Käesolev töö tutvustab Andmeteadlikku Simulatsioonimudelit (ASM) mudelit,
mille eesmärk on kaasata dünaamilisi atribuute ja võimaldada andmeteadlikke
otsuseid simulatsioonides. ASMi mudel käsitleb traditsiooniliste lähenemisviiside
piiranguid, mis liigitavad atribuudid 3 tüübiks, juhtumiks, globaalseks ja sünd-
museks, et hõlmata atribuutide erinevaid mõõtkavasid (kohalik või globaalne) ja
käitumist (staatiline või dünaamiline). Need atribuudid pakuvad otsustuspunk-
tides hargnemistingimusi, mis põhinevad praegusel andmete seisundil, et suunata
protsessi täitmise voogu.

Teine oluline aspekt selles uurimistöös on ASM mudeli avastamine sündmuste
logidest. Lisades ASMi mudeli koos avastamisvahenditega, saavad organisat-
sioonid avastada oma simulatsioonimudeleid, sealhulgas andmete atribuutide per-
spektiivi ja hargnemistingimusi, mis mõjutavad sageli äriprotsesside teostusvoogu.
Pärast avastamist võivad organisatsioonid mudelit simuleerida ning teha vajalikke
kohandusi ja optimeerimisi, et kohandada mudeleid nii, et need kajastaksid muu-
datusi töökorras või uuriksid erinevaid "mis-kui-stsenaariume", säilitades seeläbi
nende asjakohasuse ja tõhususe dünaamilises ärikeskkonnas.

Hindamine näitab, et sündmuste logidest avastatud andmeteadlikud mudelid
võivad täpselt liigitada andmeatribuudid, nende ajakohastamismehhanismid ja
mõju hargnemistingimustesse. Need mudelid kopeerivad ka algse logi kontrol-
lvoolu, suurendades samal ajal tsükli ja sündmuste aegu, erinevalt traditsioonilistest
mitteandmetest teadlikest mudelitest, mis sõltuvad hargnevatest tõenäosustest.

Võtmesõnad:
Äriprotsessi Simulatsioon, Äriprotsessi Avastamine, Andmeteadlik Simulatsioon-
imudel, Simulatsiooni Andmeatribuut, Andmeteadlik Otsustamine
CERCS: P170 - Arvutiteadus, arvanalüüs, süsteemid, kontroll
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1 Introduction
Business Process Simulation (BPS) is a technique that enables companies to

evaluate the potential impact of changes in their business processes. By simulating
changes, organizations can conduct "what-if" analysis and observe the outcomes.
For example, BPS can help answer questions like, "What if we extend the operating
hours of a production line by two hours daily?" This approach allows organizations
to test the potential effects of decisions before implementing them in real life.

BPS involves two main parts: the BPS model and the BPS engine. The BPS
model includes control flow, which is described using Business Process Model
and Notation (BPMN) [1] and simulation scenario. BPMN organises the sequence
of activities and events in the business process.

In BPMN, an activity is a piece of work that needs to be done, such as checking
the inventory or approving a request. An event is something that happens instantly,
such as receiving an email or an alarm that goes off. These activities and events
are connected by sequence flows (arcs), which show the order in which they occur.
Gateways within these flows direct the process path: an XOR gateway directs
the flow to precisely one of many branches based on probability, an OR gateway
allows one or more branches to be taken, and an AND gateway enables all outgoing
branches to proceed concurrently.

The components of the simulation scenario can vary depending on the imple-
mentation of the simulation engine. Standard sections usually include: Scenario
Specification, determines the number of process instances to generate and start
date and time of the process; Arrival Calendar, dates and times when cases are ex-
pected to arrive; Arrival Rate, the frequency at which new cases appear; Resource
Calendars, dates and times when resources are available; Resource Profiles, details
about the resources such as number, cost, and schedule; Resource Allocation, how
resources are distributed to tasks; Branching Probabilities, the chances of each
flow being chosen at decision points (gateways); and data attributes, which store
additional data about the changing values of attributes during the simulation.

Key Performance Indicators (KPIs) are metrics used to measure the efficiency
of a business process managed through BPS, and these metrics can vary based on
the simulation model’s implementation. These include Waiting Time, the time from
when an activity is enabled until it starts; Processing Time, the duration from start
to finish of an activity; Cycle Time, the total time from the start of the first activity
to the end of the last activity in a process; and Resource Utilization, how much of
the available time resources are used [2].

BPS model discovery translates raw event log data into a simulation model
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by analysing patterns and correlations in the data representing organisational
operations. Discovery may cover only simulation scenarios with all components
described before if control flow has been provided or both. The extraction of a
ready-to-use simulation model allows organisations to simulate and analyse their
business processes to predict outcomes under various scenarios, thereby supporting
decision-making and optimization [3]

Employing BPS discovery is crucial for organisations that lack a predefined
model of their operations because they can reconstruct their actual workflows,
identify inefficiencies, and explore potential improvements without a clear under-
standing of the underlying business processes. For example, when an organisation
might only have access to logs generated by their IT systems.

Existing simulation models focus primarily on static event log attributes such
as case IDs, activity names, resources, and timestamps, which remain consistent
across different processes. This approach often neglects the dynamic (process-
dependent) data attributes specific to each process and can vary significantly. The
previous model [4] initially attempted to address this problem by introducing
case_attributes, which represent data attributes initialised at the start of a case and
remain unchanged throughout the simulation. These attributes are not influenced by
any activity and are isolated to their specific cases. For example, in Table 1, beyond
common attributes, an event log could include additional columns depending on
the business process, such as the loan amount (LA) and the type of client (CT) in a
loan application or hospital capacity (HC) and assigned doctor (AD) in hospital.

Table 1. Examples of Event Logs with Different Attribute Levels

Common Attributes Loan Application Hospital
Case Activity Resource Start End LA CT HC AD

1 A Res 1 8:00 8:30 500 Regular 20 Dr. Smith
2 B Res 2 9:00 9:45 1000 Premium 18 Dr. Jones
3 C Res 3 7:00 7:20 700 Regular 19 Dr. White

However, this approach does not consider dynamic changes during case execu-
tion. Consider a hospital scenario where the number of available beds is established
at the beginning of the day but needs to be updated as patients are admitted and
discharged. The static nature of case attributes does not capture such dynamic
changes. As illustrated in the referenced figure, only one out of four possible data
behaviours are covered by the existing model, focussing solely on static, local
attributes. This leaves gaps in capturing local dynamic attributes, global static
attributes, and global dynamic attributes described in Table 2. To bridge these gaps,
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we can introduce a global scope in which attributes are shared across all cases. By
establishing update rules, we can dynamically calculate new values based on the
current states of other data attributes within the simulation model.

Table 2. Attribute scopes in business process simulations.

Static Dynamic
Local Case Attributes Event Attributes

Global Global Fixed Attributes Global Attributes

Another limitation of traditional models is their reliance on predefined proba-
bilities at decision points (gateways), which do not consider actual case data. For
example, in a loan application process, decisions to approve or decline a loan might
be made without considering relevant case specifics. To address this, we can utilise
the previously mentioned dynamic and global data attributes, setting conditions at
decision points that influence both the data flow and control flow within the busi-
ness process. This allows for a more nuanced approach in which decisions, such as
performing a detailed check for regular customers requesting loans over $10,000,
are based on real-time data. Implementing data-aware conditions at decision points
improves the accuracy and relevance of simulations, ensuring that the business
process results reflect the actual operational scenarios more accurately [5].

To address the challenges in the simulation model and ensure a user-friendly
workflow in which organisations can easily discover and simulate their process
models from event logs, we established the following Research Goals (RGs):

• RG1: Design a model capable of handling data attributes and data-aware
decision-making.

• RG2: Discover the model described in RG1 from event logs, focusing on
capturing branching conditions and data attributes.

• RG3: Enable the simulation of the model designed in RG1 to assess and
validate its dynamics and decision-making capabilities.

We will utilise a specific simulation engine called Prosimos [4] and a Simod
discovery tool [6, 7] to achieve these goals. Although each tool can function
independently, they share compatible data structures facilitating their integration.
This compatibility allows for the seamless integration of the DAS model, with only
minor isolated modifications needed for each tool.
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In projects, we use the Systems Development Lifecycle (SDLC) to ensure
that our work aligns with the project’s needs. The SDLC framework allows us
to choose and adjust different stages as needed, following the guidelines of the
ISO/IEC/IEEE 12207 standard1. This approach allows us to manage the projects
in flexible stages rather than in a fixed sequence. We cover all phases of SDLC:
requirement gathering, analysis, design, development, testing, deployment, and
maintenance.

For development, we follow Agile methods, specifically the Scrum framework
[8]. This process starts with setting the initial requirements and continues through
implementation, testing, and maintenance cycles. This cycle helps us adapt and
improve the projects as they progress [1].

During thesis writing, ChatGPT-42 and DeepSeek Coder3 were employed to
debug and restructure the project code and explain complex terms and algorithms
in understandable language. In addition, we used ChatGPT-4 and Grammarly4 to
review the written text and improve the clarity and grammatical precision of the
thesis. Based on feedback and recommendations received, the text of the thesis
was adjusted and spelling errors were corrected.

The rest of the thesis is structured as follows. Section 2 covers background
information and related works, discussing essential concepts and summarising
what has already been done before. Section 3 describes the DAS model and
its components with a data-aware approach from the simulation and discovery
perspectives, respectively. In Section 4, we refer to implementation and explain
in detail the testing phase in the simulation tool, setting up experiments, and
evaluating the results of the DAS model compared to the traditional one. Section 5
summarises the work completed and explores potential improvements.

1https://www.iso.org/standard/63712.html
2https://chatgpt.com
3https://chat.deepseek.com/coder
4https://app.grammarly.com/
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2 Background and Related Work

2.1 Business Process Management
Business Process Management (BPM) combines principles, methods, techniques,

and tools to monitor and improve the life cycles of business processes. According
to [9], the life cycle of a business process includes stages such as identification,
discovery, analysis, redesign, implementation, execution, monitoring, and adapta-
tion. BPS is a key technique used in the analysis and discovery stages. It allows
the simulation of business processes to gather important numerical data, such as
performance metrics, such as cycle time and processing time, and assess potential
changes and their impacts.

We use a discovery tool to identify input parameters for the simulation engine.
The inputs for this tool include a business process model and an event log file.
An event log captures each instance of the business process, termed a "case."
Each case within the log details various attributes: case identifier (a unique ID
for each case), event name (the name of the task or event), resource (the entity
that executes the task), and timestamps such as enabled time, start time, and
end time, which indicate when a task was ready to start, began, and completed,
respectively. All previously mentioned attributes will be called fixed or common
attributes because they are present in every event log, regardless of their specific
details. Attributes that go beyond the common are called data attributes and contain
additional process-dependent information.

In our approach, we specifically examine the data attributes captured in the
event log. For example, this may include information like loan amounts, application
statuses, or any other specific data recorded during process execution. This allows
us to enrich the analysis with a broader range of data and support data-aware BPS.

2.2 Business Process Management and Notation
In Business Process Management (BPM), it is crucial to present business pro-

cesses clearly so everyone involved understands them. We use the Business Process
Model and Notation (BPMN) [1], a widely accepted standard, to create business
process diagrams that are easy to interpret. BPMN’s graphical elements help
visualise the interactions within business processes.

BPMN includes several key components:

• Activity: Represents a task within the process performed by a resource such
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as a person or a machine. Activities push the process forward by completing
the required work.

• Event: Marks a specific occurrence within the process, occurring instantly.
Events in BPMN are categorised into three types: start, intermediate, and end,
corresponding to their roles at various stages of the process. For example,
receiving a loan application form can be a start event, initiating the process,
while receiving a loan rejection letter might represent an end event, signalling
the process’s conclusion.

• Gateway: Serves as a decision point that influences the direction of the
process flow. The gateways determine which path to follow based on the
probabilities or conditions, if any, at that point.

• Arc (Sequence Flow): These lines connect the elements and show the order
in which activities, events, and decisions occur within the process.

Since our focus is not on events defined in BPMN, we will use the term event
to refer to a specific activity recorded in the event log. This includes all associated
attributes, such as timestamps, resources, and data attributes, that represent a single
event log row.

To understand how business processes are managed in BPMN, we use the
concept of a token, which helps to track the progress of each process instance.
According to [9], tokens represent the current state and move through the process
as different events and activities occur. When a process starts with a triggering
event, a token is placed on the outgoing arc of that event. This placement signals
that the next element in the sequence flow is ready to begin. If this next element
is an activity, it becomes enabled—meaning the token reaches it and waits for
a resource to become available to start the activity. The activity begins once a
resource starts working on it, moving the token into the activity. Upon completion
of the activity, the token moves to the following sequence flow, indicating the
end of one task and the readiness to start another. This movement continues until
there are no more tokens in the process, indicating the end of the process instance.
Unlike activities, events do not hold tokens for any duration; they occur instantly
and move the token immediately to the next element.

Among the types of gateways, the following are particularly significant.

• Exclusive (XOR) Gateway: This type allows only one of the possible paths
to be followed based on a specific probability or condition associated with
each path. As a result, only 1 token will be produced.
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• Parallel (AND) Gateway: Enables multiple paths to be executed simultane-
ously, regardless of probabilities or condition evaluation, and creates a token
for each executed path.

• Inclusive (OR) Gateway: Allows one or more paths to be activated based
on probabilities or evaluated conditions, allowing multiple process branches
to run concurrently. Creates one or more tokens, depending on the path
selection.

Figure 1. BPMN gateway types

This thesis will concentrate on XOR and OR gateways. Unlike AND gateways,
which operate all connected paths simultaneously, XOR and OR gateways may
use dynamic decision-making based on attributes and data-aware logic instead of
relying on probabilities.

2.3 Business Process Simulation
Improving business processes in the real world can be challenging, costly, and

time-consuming. Simulation offers a method to test various improvement strategies
without directly implementing them. This approach allows for the setting of
the desired number of cases within a simulation scenario, case execution, and
quantitative analysis of the results. Afterwards, adjustments can be made based on
simulation results to further optimise the process. Our simulations are performed
using Prosimos [4], which incorporates the Business Process Model and Notation
(BPMN) for defining process models.

Although various simulation tools are available, each implements different
strategies to handle attributes and decision-making in simulations. Some tools
offer a more flexible and configurable approach across multiple levels of a process,
while others may provide less flexibility but enhance other aspects of simulation.
We have selected two simulation tools, iGrafx and Apromore, to investigate their
approaches to data and data-aware decision-making in process modelling.
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iGrafx iGrafx 5 allows the assignment of attribute values at several key points
during the execution of a task within a process model. These points include the
entry into the task after the input has been received before the task starts after the
task completes, and as the process exits the task. This setup provides the flexibility
to modify the attributes that influence the process at multiple stages. Variables in
iGrafx can be scoped globally, affecting the entire model, or locally, impacting
only specific cases. In addition, iGrafx gateways can be based on conditions or
set probabilities. However, iGrafx can be complex to set up and might require a
steep learning curve for new users, with potential difficulties in managing global
variables, debugging complex models, and the need for precise configuration and
extensive testing.

Apromore Apromore 6 distinguishes between the case and event attributes within
its simulation framework. The case attributes remain constant throughout the life-
cycle of a case, while the event attributes can be modified by task executions.
However, Apromore primarily uses generators for these modifications, meaning
that the variables do not depend on their previous values but are instead regener-
ated based on specified distribution functions at each task execution. While this
simplifies some modelling aspects, it can also limit the tool’s ability to simulate
more complex, interdependent scenarios.

Going deeper into our model, the DAS model in Prosimos includes several
components that define the operational parameters, where Event Attributes, Global
Attributes, Gateway Branching Conditions components are extensions of the thesis.

• Scenario Specification: Specifies the number of process instances to be
simulated and the simulation’s start date and time.

• Arrival Calendar: Defines specific time intervals during which new process
instances can start, where each interval specifies a start and end time. For
example, from 7 AM to 6 PM on weekdays.

• Arrival Rate: Details how frequently new instances appear, using distribu-
tion functions to model this variability. For instance, instances might arrive
following a normal distribution with a specified mean and variance.

5https://www.igrafx.com
6https://apromore.org
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• Resource Calendars: Shows when resources, such as personnel or equip-
ment, are available to perform tasks, including time windows for resource
utilization.

• Resource Profiles: Describes the resources available for process tasks,
including details like identifiers, cost per hour, and availability, categorized
into different resource pools.

• Resource Allocation: Assigns specific tasks to resources based on their
capabilities and availability, considering scenarios where multiple resources
can perform the same task.

• Case Attributes: Initialized at the creation of each case, values set by
generators that remain constant throughout the case lifecycle.

• Event Attributes: Modified by activities during the process execution,
changes are local to the specific case.

• Global Attributes: Similar to event attributes, the value is shared across all
cases, reflecting changes that affect the entire simulation environment.

• Branching Conditions: A set of rules that evaluate the current state of data
attributes (case, event, and global) to define conditions that influence the
control-flow at gateways.

• Gateway Branching Probabilities: Manages decision points within the pro-
cess by assigning a probability to each pathway at the gateways. Each path
can also have a reference to specific branching conditions from branching
conditions component. Probabilities are used only after the branching condi-
tions have been assessed and are necessary to determine the path forward.
Probabilities range from 0 to 1, with the sum of all probabilities for a single
gateway always equaling 1.

With this approach, the DAS model can now simulate varied behaviours from
a data perspective, allowing flexible configuration of the simulation model. This
capability enables a more precise and dynamic simulation of real-life processes. For
example, a Case Attribute might be the name of a financial institution in a financial
management simulation, established at the beginning and maintained constant
throughout a specific case. An Event Attribute could be the count of customer
interactions handled by a service agent, updated each time a new interaction is
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recorded. A global attribute could represent the total sales volume in all cases,
dynamically updated as transactions occur in any of the process instances.

Branching conditions, by using simulation data, provide the ability to include a
dynamic data-driven approach in decision-making. This approach uses the values
and dynamic behaviours of the simulation data to make real-life decisions based on
actual data rather than relying fully on probabilities at the decision points. However,
the model can still use probabilities as a backup plan if the conditions do not work
as expected, ensuring that the simulation progresses without interruption.

For example, an XOR gateway directs passengers to different security checks
based on their status at an airport. Premium passengers use an expedited check, and
regular passengers pass a standard check. If a passenger is mistakenly registered
as "staff," which does not match any conditions for the available paths, they
would typically be stuck. To prevent flow interruption, the system then applies
predetermined probabilities instead of conditions to direct the passenger.

2.4 Business Process Simulation Model Discovery
The discovery of the BPS model is important for turning data from event logs

into simulation-ready models. This process helps to connect the theoretical ideas
of business models with the actual operations of real-world processes. We use tools
like Simod, which automatically configure and discover BPS models, to effectively
analyse event logs [6]. These tools help us develop detailed simulation models that
include control flows, resource allocations, and the timing of activities - important
parts that reflect actual business process actions [3].

Event logs usually record data like case_id, resources, activity names, and
the start and end times. This information is the main input for Simod, helping
to discover all the necessary components to create a precise simulation scenario
[10]. This makes simulation of business processes possible in varied operational
settings [5]. Automating this discovery process not only boosts the accuracy of
the simulation models but also cuts down the time and effort required for model
development. This capability is highly beneficial for organisations that seek to
analyse and improve their operational processes efficiently [11].

Dynamic Attribute Discovery In dynamic attribute discovery, data not cate-
gorised under traditional labels like case_id, resources, activity names or times-
tamps (start time and end time) is considered data attributes. These could include
any operational data captured in the event log. The discovery process involves
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identifying patterns and the scope of these attributes to determine their behaviour
and classification as case, global, or event attributes.

Moreover, global and event attributes can be manipulated by updating rules
beyond basic distribution functions. These rules might include mathematical
operations or functions that dynamically change the attributes’ values. For example,
such rules could modify the loan_amount by recalculating it as loan_amount =
loan_amount * rate, or they might increment the customers_served count by
updating it with customers_served = customers_served + 1 for each new customer
interaction.

For example, in Table 3 you can observe how the case, event, and global
attributes behave within a simulated business process. The caseAttr is initialised
using a random value from 1 to 10. Update rules for eventAttr and globalAttr are
applied as follows: activity A adds 1, B adds 5, and C multiplies the value by 2.
However, the results differ due to the attributes’ scope. Specifically, the eventAttr
uses its most recent value from the same case to update, while the globalAttr
updates based on the latest value from the entire simulation, including all cases.

Table 3. Example of case, event, and global attributes within event log.

Case ID Activity caseAttr eventAttr globalAttr
1 A 5 1 1
1 B 5 6 6
1 C 5 12 12
2 A 7 1 13
2 B 7 6 18
2 C 7 12 36
3 A 2 1 37
3 B 2 6 42
3 C 2 12 84

Data-Aware Decision Making Discovery For data-aware decision-making, we
focus on discovering branching rules that are influenced by attribute states at deci-
sion points. This involves replaying the event log to observe simulation states at the
decision points, allowing us to identify how different attributes influence pathway
selections at gateways. For example, a gateway may direct cases differently based
on whether a customer is marked as ’premium’ or ’ordinary.’ However, in addition
to conditions, probabilities are calculated based on frequencies and historical data.
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Thus, it ensures that the simulation model continues even when unexpected data
scenarios arise, such as all conditions at a gateway being false or the model being
unable to discover the rule due to its complexity. In such cases, the model uses
predefined probabilities to maintain continuity and prevent process disruption.
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3 Data-Aware Simulation Model and Discovery
In this section, we discuss the DAS model and its discovery. Section 3.1 explains
how the model incorporates dynamic attributes and data-driven decision-making
into business process simulations. Section 3.2 outlines the discovery process of the
DAS model, beginning with the classification of simulation data attributes and the
discovery of update rules. The section concludes by describing the discovery of
branching conditions and discussing methods to analyse and capture the decision-
making logic at decision points.

3.1 Data-Aware Simulation Model
The DAS model, detailed in Definition 3, is based on the probabilistic model [4] that
used PDM , explained in Definition 2, for decision-making in gateways, introduced
the first data attribute, namely case_attributes, to support process prioritisation [12]
and the concept of generators explained in Definition 1.

Definition 1 (Generators (GN )). GN creates new values for attributes without
considering previous values. There are two main types of generators:

• Continuous Values: Use distribution functions to produce numerical values.
The number of parameters needed varies depending on the used function
(fixed, uniform, normal, exponential distributions, etc.)

• Discrete Values: Create categorical values based on set probabilities. Each
value is required to have a probability between 0 and 1. The sum of all
probabilities for a single generator must add up to 1.

Definition 2 (Probabilistic Decision Model (PDM )). PDM in process simulation
determines the direction at the XOR and OR gateways using predefined probabili-
ties. For XOR gateways, exactly one pathway is chosen, while for OR gateways,
one or more paths can be selected. Each possible pathway from a gateway has a
probability assigned to it, where each probability is between 0 and 1, and the total
of all probabilities for a gateway must equal 1. When a token reaches a decision
point, the simulator acts as a dice roll to randomly select a pathway based on these
probabilities.

DAS integrates traditional BPMN elements with data attributes. This BPMN
model outlines the control flow perspective, which includes process activities
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and their connections. In addition to this, data attributes address organisational,
temporal, and data aspects. Although this paper primarily addresses the data
components and decision-making processes, Definition 3 also covers the resource
allocation and case-inter-arrival schemas, which are crucial for modelling the
organisational and temporal aspects within the complete simulation framework.

Definition 3. The Data-Aware BP Simulation Model (DAS) expands on typical
BPMN elements ⟨E,A,G, F ⟩ – incorporating events (E), activities (A), gateways
(G) and flow arcs (F) – supplemented with distinct simulation parameters:

• RS = ⟨TRMap,ProcTimes,RAvail⟩ represents the Resource Allocation
Schema, detailing how resources are assigned to tasks (TRMap), the duration
needed for tasks (ProcTimes), and when resources are available (RAvail).

• ATAC : P(R+) × Intervals outlines the scheduling of case creation, com-
bining AT , a function for the timing of new cases, with AC, the schedule
defining when cases can start.

• Dg = {g1, g2, . . . , gm} is a set of global attributes. Each attribute gi ∈ Dg

begins with the process and can be updated throughout its duration by any
activity across all cases.

• Dc = {c1, c2, . . . , ck} comprises case-specific attributes, where each ci ∈ Dc

starts with the case and retains its value within that case.

• De = {e1, e2, . . . , el} consists of event attributes initialized at the start of
each case, which may be altered by activities within that specific case.

• UR = {ur1, ur2, . . . , urn} includes rules for updating attributes (uri :
(Dg ∪Dc ∪De)× S → S). Each rule applies logic and functions to modify
attribute states within their domains.

• MUR : (A ∪ {’Case Creation’}) → UR connects activities a ∈ A and
the case initiation process to their respective update rules, dictating how
attributes are updated.

• HBC : G × (SDg × SDc × SDe) → F determines the path at decision
gateways G based on the attribute states, employing logic and PDM to
direct the flow through the process.
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In Definition 3, the attribute types Dg, De, and Dc outline how the data is
accessible and manipulated within the simulation model. The case attributes (Dc)
are local to each process instance and set once at the beginning of a process case,
remaining unchanged. On the other hand, global (Dg) and event (De) attributes
are dynamic, with global attributes affecting the entire process and event attributes
being local to case.

The update rules (UR) define the procedures for initialising the case attributes
and modifying the dynamic attributes. These rules adapt attribute values according
to the process conditions using specific mathematical functions and algorithms.
Essentially, update rules specify the conditions and methods for attribute changes,
while mapping (MUR) dictates which process elements (activities or events)
trigger these updates.

The term ‘data state’ in Definition 3 refers to a set of attribute-value pairs at
any given moment in the process execution. This dynamic state can be altered
by applying update rules, thus reflecting the current conditions within the process
simulation.

Consider a patient treatment process from hospital admission to discharge to
demonstrate DAS. Global attributes such as hospital capacity, which tracks the
availability of beds, play a crucial role in managing critical parts of the process,
for example, handling new admissions when the hospital is full. Case attributes
such as initial health status, which captures the patient’s health condition at
admission, and assigned doctor, indicating that the doctor responsible for the
patient remains constant throughout treatment. In contrast, dynamic event attributes
such as medication-administered and diagnostic test results document specific
medical interventions over time, while patient evolution track changes in patient
condition, such as moving from intensive care to a general ward.

Update rules modify attributes dynamically during the simulation based on
ongoing events. For instance, hospital-capacity decreases with each new patient
admitted and increases upon discharge. Changes in attributes such as the results of
diagnostic tests or medication administered can be triggered in the evolution of
the patient evolution, influencing further treatment decisions.

These data attributes and update rules introduce a data perspective to simulation
models, going beyond the traditional focus only on control flows, organisational
structures, and timing. In data-aware models, the simulation engine generates
event logs that include a wider range of process-specific data attributes, providing
a more detailed view of the process. This approach improves detailed scenario
analysis, offers insight into how data changes affect process outcomes, and aids in
identifying potential data-related bottlenecks.
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Despite the integration of data attributes and update rules, these elements alone
do not modify other aspects of the process, such as control flow or organisational
structures. To address this, Definition 3 introduces hybrid branching conditions
(HBC). These conditions allow the control flow to change based on the current
state of the data, potentially affecting the timing of the process. When the process
reaches a decision gateway, the simulation engine uses conditions to decide the
next arc based on the data accumulated up to that point. Here is a breakdown of
how decision-making at gateways is handled in a data-aware simulation engine.

• Two-Level Evaluation at Gateways: Unlike PDM that relies only on prob-
abilities, our data-aware model first evaluates conditions related to current
attribute states to determine possible paths. To solve data inconsistencies (if
any) it then uses a PDM to prevent simulation deadlocks.

• Inclusive and Exclusive Gateways: At XOR gateways, where only one path
can be taken, the model uses a PMD to choose among multiple conditionally
received flows. For example, 3 out of 5 outgoing flow conditions passed,
and we chose only 1 out of 3 via PDM . For inclusive (OR split) gateways,
which allow multiple parallel paths, the simulation proceeds with all flows
where conditions evaluated ’true’.

• Fallback to Probabilistic Evaluation: If no conditions are evaluated as
‘true’ at a gateway, the simulation uses a PMD to continue the process,
ensuring that decision-making is not blocked due to a lack of data-driven
directions.

• Preventing Infinite Loops: To stop the simulation from getting stuck in
infinite loops, if the same condition keeps being true, leading to repeated
flow execution, the model changes to using PDM after a certain number of
iterations to avoid endless loops.

• Probabilistic Decisions Independent of Data: The probabilities in sec-
ondary evaluations are independent of current data states, relying instead on
typical frequencies of path selections.

The effectiveness of DAS depends on the ability of a simulation engine to
utilise its data-aware components. Traditional simulation models often use fixed
probabilities at decision points, which can lead to unrealistic and oversimplified
scenarios [13]. For example, in a hospital process simulation, a traditional model
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might always send a fixed percentage of patients for MRI tests without considering
each patient’s specific health data. In contrast, a data-aware simulation engine
would look at the unique medical details of each patient (such as the attribute
patient evolution), leading to results that more accurately reflect real healthcare
decisions [14].

3.2 Data-Aware Simulation Model Discovery
3.2.1 Data Attributes Discovery

Attribute Classification We start by classifying the attributes based on the
observed data attribute patterns in the raw event logs. Starting with the classifica-
tion of attributes, our goal is to first identify and understand the simplest update
mechanisms proceeding with dynamic data attributes that require a more complex
discovery approach. The initial pattern we look for is attributes that maintain a
consistent value throughout the entire simulation. These attributes are identified
as global attributes with fixed values, as they are only initialised once and a
constant value stream suggests there is no change over time. To identify case
attributes we search for attributes that remain constant within a case, but set a
new value at the beginning of a new case. Real-life data often contain noise, so we
use a confidence threshold to determine how consistently an attribute must remain
unchanged within cases to qualify as a case attribute. The classification of dynamic
attributes, specifically event and global attributes, presents more complexity due
to their changing nature. To handle this, we preprocess the event log into two
versions, one assuming attributes are global (g_log) and the other treating them as
event-specific (e_log). We then attempt to identify update mechanisms for both
versions without prior classification, using machine learning models to determine
which version - global or local - better fits the data. This approach helps us both
classify the attribute type and discover its update mechanisms simultaneously.

Discovery of Update Mechanisms In the discovery of update mechanisms for
simulation data attributes, we implement different methods based on the type and
behaviour of each attribute.

1. Fixed Attribute Discovery: Global attributes with fixed value are straight-
forward to handle. These attributes do not require complex algorithms for
their discovery. For each attribute categorized under this type, we directly
extract and assign their constant value.
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2. Case Attributes: Another straightforward approach is for case attributes
due to their strict patterns and limited update mechanisms.

• For attributes with continuous values, we use curve fitting for each value
extracted from the case and discover potential distribution function that
these values fit mostly.

• For attributes with discrete values, we use frequency analysis to calcu-
late probabilities of having each observed label.

3. Dynamic Attributes: The update mechanisms for dynamic attributes are
more problematic due to their complexity and variety in update mecha-
nisms. Although discrete values are still discovered with frequency analysis,
continuous values are processed with several models simultaneously:

• Linear Regression: This model is suitable for attributes that follow
linear changes over time, effectively capturing any consistent increase
or decrease in their values.

• Curve Fitting: Still applicable for dynamic attributes to capture poten-
tial distribution functions.

• M5Prime (Regression Decision Tree): For attributes that demonstrate
complex, nonlinear changes, we use Regression Decision Tree. It
constructs a decision tree of linear functions and is therefore able to
deal with cases that cannot be discovered using simple linear regression
and do not follow any distribution function.

Once the models have proposed potential update rules, we assess their effec-
tiveness using performance metrics (Earth’s Moving Distance for continuous,
and Kolmogorov-Smirnov Statistc for discrete values). For the actual classi-
fication and model selection, we need to do that process for each activity that
modified an attribute and based on aggregated error model with the lowest
value will be selected and classified accordingly.

Before implementing any update mechanisms, it is essential to select features
for training and testing the model’s performance. Since case attributes are inde-
pendent of any values, we will use half of the dataset’s values for training and the
other half for testing, without extracting any features. In contrast, for global and
event attributes, it is critical to enhance model performance by extracting additional
features. This involves retrieving the previous value based on the type of log; for
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g_log, we arrange the entire sample by end time to ensure that the data are in
sequential order, since attributes are determined at the end of an activity. If it is the
first row or no previous value exists, we leave it blank. For e_log, the approach is
similar but applied individually to each case, each case resetting the initial value to
zero. Another vital feature is the difference, calculated by subtracting the previous
value from the current one. This feature helps to eliminate activities where the
attribute value remains unchanged. For case attributes, we solely use current values,
but for global and event attributes, we incorporate previous values as features to
predict current values. This approach yields linear functions for linear regression
and regression decision trees with linear expressions that alter the attribute value.
However, for Curve Fitting, which is also applied to case attributes, we continue to
use only current values.

3.2.2 Branching Conditions Discovery

State Capture and Data Preparation During the discovery of branching condi-
tions, we employ a replayer [15] to replicate the simulation behaviour and capture
the state of the data attributes at the precise moment when a decision is made at
the XOR and OR gateways. By simulating the decision points, the replayer allows
us to record the values of attributes that influence the pathway selections at these
gateways.

In addition, the replayer captures the pathways that are activated after each
decision point. This data provides a direct link between the attribute states and
the actual flow outcomes in the simulation. With this information, we construct
a matrix, similar to that shown in Table 4, for each gateway, which outlines the
attribute values at the moment of decision and shows if a particular pathway was
activated or not.

Decision Tree Analysis From the datasets provided by the replayer, which
include attribute values and results for all outgoing flows, we focus on analysing
each flow individually. We identify conditions where a specific flow is activated,
using decision tree analysis.
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Table 4. Example of Gateway Dataframe

attr1 attr2 attr3 Flow1 Flow2 Flow3 Flow4 Flow5
A3 B5 C2 False False False False True
A2 B3 C1 False False False True False
A4 B2 C4 False True False False False
A2 B1 C5 False False True False False
A3 B5 C2 False False False False True
... .. .. ... ... ... ... ...
A4 B1 C4 False True False False False
A3 B1 C3 True False False False False
A2 B5 C1 False False False True False
A4 B3 C5 False False True False False
A2 B1 C5 False False True False False

Table 5. Decision Tree with all Outcomes

Conditions Outcome
[(i ≤ 4000.5)] 0
[(i > 4000.5), (i ≤ 4002.5)] 1
[(i > 4000.5), (i > 4002.5), (i ≤ 4965.5), (g1 ≤ 7445.25), (g1 ≤
7311.75)]

0

[(i > 4000.5), (i > 4002.5), (i ≤ 4965.5), (g1 ≤ 7445.25), (g1 >
7311.75)]

0

[(i > 4000.5), (i > 4002.5), (i ≤ 4965.5), (g1 > 7445.25)] 1
[(i > 4000.5), (i > 4002.5), (i > 4965.5), (i ≤ 4988.5)] 0
[(i > 4000.5), (i > 4002.5), (i > 4965.5), (i > 4988.5), (g1 ≤
7490.25)]

0

[(i > 4000.5), (i > 4002.5), (i > 4965.5), (i > 4988.5), (g1 >
7490.25)]

0
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We build a decision tree, for example, like in Table 5, where each path from
the root to a leaf that indicates that a flow is activated (outcome = 1) helps us un-
derstand the conditions necessary to trigger that flow. We connect these conditions
(conditions within one row) with the "AND" operator as we move deeper into the
tree, refining the rule to be more precise. If there are multiple ways to activate
the same flow, shown by different paths in the tree, we combine these conditions
with the "OR" operator, in Table 5 it described as multiple rows. This means that
the flow can start if any of these conditions are met. For example, as illustrated
in Table 5, there are two favourable outcomes. In the final decision tree for this
process, the two primary conditions are merged using the OR operator, whereas
the components within each condition are connected through the AND operator.

We also simplify the rules by combining similar conditions afterward. For
example, if we have conditions like A > 50, A > 75, and A > 80 all leading to the
same result, we keep only the most restrictive condition, which is A > 80. If there
is an upper limit like A ≤ 100, we add that to make the final rule A > 80∧A ≤ 100.
This makes our rules easier to read and more direct. Thus, following the example
in Table 5, by filtering for true conditions and simplifying all conditions, we obtain
the definitive decision tree presented in Table 6. Moreover, note that, in the final
example, a single condition simultaneously involves two attributes (i and g1).
Attributes of any type from the log can be freely combined.

Table 6. Final Conditions

Conditions Outcome
[(i > 4000.5), (i ≤ 4002.5)] 1
[(i > 4002.5), (i ≤ 4965.5), (g1 > 7445.25)] 1

Edge Cases In the process of discovering branching conditions, we sometimes
encounter edge cases that require special handling to maintain the integrity and
functionality of our simulations.

1. Always True Conditions: Certain pathways may always activate, regardless
of the input conditions. This can happen when conditions are inherently
broad or obscured by a large number of interacting attributes. For instance,
a scenario might involve a condition like loan > 0, which is always true
due to the nature of the data when it’s becomes impossible to detect which
attribute is actually affecting the decision. In such cases, we assign a default
condition that is always true.
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2. Absence of Detectable Conditions: There are situations where decision
tree analysis fails to identify any clear conditions that dictate the flow of
a process, particularly in complex or noisy data environments. When no
attributes significantly influence the decision at a gateway, formulating a
specific branching condition becomes impossible for the discovery model.
Whenever that happens, we utilise flow probabilities captured during the
state analysis as a fallback mechanism in Prosimos using PDM . It ensures
that the simulation does not stall or generate errors due to the absence of
detectable conditions.
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4 Implementation and Evaluation
In this Section, we carried out both testing and experimental evaluation phases.
Testing ensures that the project’s functions operate correctly and perform their
intended tasks. However, to truly understand the impact of the DAS model on the
simulation environment, we need to go beyond testing. This involves conducting
experiments to assess the model directly. We used synthetic logs with known
expected values to measure how closely our results match the original data, and run
experiments on real-life logs to evaluate the model in an uncontrolled environment.
Furthermore, we conducted comparisons between the DAS model and traditional
models to assess the impact of the DAS model on KPIs.

4.1 Implementation
The simulation engine is implemented in an open source project available on
GitHub7. Prosimos requires a BPMN model and a JSON configuration file as input
parameters. The output includes an event log, a performance metrics file, and a
simulation warning file. For detailed instructions on how to use its functionalities,
refer to [4]. To access the simulation engine with the DAS model, consider using a
particular branch 8.

Simod, like Prosimos, is available as an open-source project9. It functions
by analysing event logs to discover and optimise BPMN models and to generate
simulation scenarios compatible with Prosimos. The flexibility of Simod allows
users to discover new BPMN models from logs or enhance existing models. For
details on Simod’s discovery algorithms, model optimisation capabilities, and
integration with simulation tools, please refer to [6]. However, to access DAS
model you will need to refer to another repository called PIX Framework10 which
aim is to aggregate functionalities of Prosimos, Simod and other projects in a single
code base; thus our changes are stored there as a stand-alone functions that will be
integrated in the project itself later. In addition, for Prosimos, there is functionality
that supports the DAS model stored on a separate branch11

7https://github.com/AutomatedProcessImprovement/Prosimos
8https://github.com/AutomatedProcessImprovement/Prosimos/tree/parameters
9https://github.com/AutomatedProcessImprovement/Simod

10https://github.com/AutomatedProcessImprovement/pix-framework
11https://github.com/AutomatedProcessImprovement/pix-framework/tree/

attribute_discovery
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4.2 Testing
Testing procedures are carried out in Prosimos by performing unit tests on each
functionality developed to support the DAS model. Given that the discovery
functionality adopts a stochastic approach and cannot be directly tested, we have
undertaken experiments to assess the outcomes of the discovery in subsequent
sections.

4.2.1 Data Attributes Testing

The test of data attributes involves checking how attributes are represented and
updated during the simulation process in the event log. We performed a series of
tests to ensure that different attribute types follow their patterns and update rules are
calculated correctly, considering the values of other attributes in the expressions.

Data Attribute Patterns in Event Logs We tested how different attributes—global,
case, and event—are displayed in the event log. We have 15 test cases assessing all
attribute types with different initialisation places within the log. We used a simple
model with three sequential activities: A, B, and C. During testing, we will get a
template of the simulation scenario and modify it, adding attribute generation in
different areas of the model and creating different scenarios described in Table 7.

The acceptance criteria for these tests are as follows: for attributes that are set
only once and remain constant, we directly evaluate the pattern observed after the
simulation in the event log. For instance, for case attributes, we expect to see a
pattern of A->A->A for each activity within the case, whereas for event attributes
initialised in the middle of the case, the expected pattern is NULL->A->A. In
situations where an attribute is meant to change, we examine the alteration in value
following the activity that triggers the change.

All tests can be reviewed in detail on GitHub12.

Testing Update Rules We performed unit tests on the attributes of events since
it is the only place where the attributes can be changed by activities to validate the
update mechanisms. We have several groups of tests described in Table 8 that focus
on different aspects of expressions that cover arithmetic operations, comparison,
string operation, and edge cases.

12https://github.com/AutomatedProcessImprovement/Prosimos/blob/parameters/
testing_scripts/test_attributes_interaction.py
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Table 7. Summary of Attribute Testing Configurations

Test Group Description
Single Attribute Initialisation
(6 tests)

Tests single discrete and continuous attributes ini-
tialised once globally, per event and per case to ensure
consistent values throughout a simulation.

Multiple Attributes Creation
(4 tests)

Validates that multiple attributes, both of the same
type and mixed, are correctly passed to the event log
without interference between their values.

Global Attribute Changes by
Activity (2 tests)

Checks that global attributes are changed correctly by
specific activities, either at the start of a case or by a
designated event.

Multiple Global Attributes
with Activity-Specific
Changes (2 tests)

Ensures that multiple global attributes can be updated
by specific activities without value confusion, main-
taining attribute integrity throughout the process.

Mixed Attribute Updates
(1 test)

Tests the interaction of global attributes with both case
and event updates, verifying that values change at pre-
cise trigger points and reflect expected modifications.

The acceptance criteria are established as follows: a data structure is predefined
with attribute names and their corresponding values. We compute a value through
expressions and verify if it matches the expected result. For example, employing
the math library, we evaluate the expression "sqrt(attr1)" where attr1 is set to 49,
expecting the outcome to be 7.

All tests can be reviewed in detail on GitHub13.

4.2.2 Branching Conditions Testing

We designed a set of tests for the XOR and OR gateways to evaluate the gateway
conditions. The test model in Figure 2 consists of a single gateway that leads to
three possible outcomes. We use the same model but with an OR gateway to assess
its functionality. This model allows us to simulate different scenarios of condition
evaluation and easily detect all decisions because of the simplicity of the model.

Acceptance criteria for these tests include: In the setup, we specify the number
of activities and activity names that should be executed and assess various scenarios.

13https://github.com/AutomatedProcessImprovement/Prosimos/blob/parameters/
testing_scripts/test_event_attributes.py

29

https://github.com/AutomatedProcessImprovement/Prosimos/blob/parameters/testing_scripts/test_event_attributes.py
https://github.com/AutomatedProcessImprovement/Prosimos/blob/parameters/testing_scripts/test_event_attributes.py


Table 8. Summary of Update Rule Tests

Test Category Description
Arithmetic Operations
(8 tests)

Tests basic operations such as addition, subtraction, multi-
plication, division, modulus, exponentiation, true division,
and floor division.

Comparison and Logical
Operations (14 tests)

Includes tests for equality, inequality, greater than, less
than, logical AND, OR, NOT, and comparisons involving
zero or negative numbers.

String Operations
(7 tests)

Focusses on string concatenation, multiplication, division
by zero with strings, and logical operations with strings,
including string comparisons.

Special Cases and Error
Handling (5 tests)

Tests division by zero, handling non-existent attributes,
logical not on an empty string, concatenation and multi-
plication of strings, and mixed-type addition.

Maths Functions and
Misc. Tests (8 tests)

Covers mathematical functions, complex expressions, han-
dling of special cases like exponential growth and log of
negative, single-number output, and invalid expression
handling.

For example, a single correct condition for an XOR gateway leads to just one
activity with a specific name. On the other hand, when testing incorrect conditions,
we still expect the activation of only one flow, but its name will be random due
to the use of PDM , allowing any value from the predefined list to occur in the
simulation.

We assess the functionality of gateway conditions using predefined attributes
and conditions to determine the execution paths. In total, we have 12 tests, 6 for
each type of gateway (XOR and OR), but considering their different behaviour and
expected results in some cases:

1. All conditions false: Uses PDM to select paths.

2. All conditions true: Uses all true conditions to select paths for OR or selects
one for XOR using PDM .

3. Multiple true conditions: Executes all true conditional flows for OR or selects
one true condition utilizing PDM for XOR.

4. One true condition: Executes only the true conditional flow.
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Figure 2. Branching conditions testing model

5. Only one condition available: Executes one conditional flow for both XOR
and OR gateways to evaluate the hybrid strategy when not every path has
conditions.

6. No conditions specified: Defaults to PDM path selection for both gateways.

All tests can be reviewed in detail on GitHub14.

4.2.3 Code Coverage

After creating tests, it is essential to evaluate the extent of the code covered by
these tests. This evaluation is referred to as code coverage, which helps to pinpoint
the segments of our code that were not triggered during testing. Code coverage
is a commonly used indicator for this objective, and we particularly track the
proportion of code that has been activated at least once in the tests.

We used pytest15 for this measurement, which allows testing to run and generate
coverage reports concurrently. These reports can be presented in various formats,
such as HTML, XML, or plain terminal output. We selected the HTML format for
our coverage reports because it offers a user-friendly interface and better readability,
making it easier to understand which parts of the code were covered by tests.

14https://github.com/AutomatedProcessImprovement/Prosimos/blob/parameters/
testing_scripts/test_gateway_condition.py

15https://docs.pytest.org/en/stable/
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Figure 3. Prosimos test coverage report

Figure 3 shows that we have achieved 91% statement coverage specifically
in the newly added features but not throughout the project. Although the 91%
coverage ensures that a substantial part of our new code has been tested, it does
not directly measure how the features influence the simulation’s performance.
Additional experiments are required to measure the effects of the DAS model on
the control flow and KPIs.

4.3 Evaluation
This section evaluates the DAS models implemented in Prosimos and Simod. After
developing these models, which are designed to manage dynamic data and enable
data-aware decision-making, we conducted a series of experimental evaluations
aiming to determine the impact of the models on various aspects of the simulation,
including control flow, cycle, and event times.

The evaluations for both Prosimos and Simod were conducted concurrently.
This approach is necessary because assessing Simod’s performance involves inte-
grating and simulating the scenarios it discovers, thereby testing both the discovery
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and simulation engines. To evaluate the performance of the DAS models, we have
developed a set of evaluation questions (EQs) to guide our analysis:

• EQ1: How accurately do we categorize the data attributes? This question
focuses on determining the type of attributes based on their behaviour within
the event log as a first basic step to evaluate the accuracy of the DAS model
discovery.

• EQ2: How accurately can update rules be discovered? After categorizing the
attributes, the next step is to identify and evaluate how closely the discovered
update mechanisms match the intended behaviour in the DAS model.

• EQ3: What is the impact of the discovered DAS model on business process
simulation? We evaluate the DAS model by assessing its impact on control
flow and KPIs (cycle time and event time). The goal is to determine the
accuracy of branching conditions and the advantages of using the DAS model
over traditional models.

Cycle time is defined as the total time from the start to the completion of a
process as measured within a simulation scenario. Event time refers to the duration
of individual activities within the process.

4.3.1 Datasets

We used synthetic and real-life event logs to evaluate the performance of the DAS
model. For synthetic logs, we prepare a simulation scenario and a BPMN model to
create an original event log using Prosimos. The next step will be to use Simod to
discover the simulation scenario with the traditional model (we do not rediscover
the BPMN model and use the option to use the existing BPMN model). Then,
utilising the code base from the PIX Framework, we discover data attributes and
branching conditions and extend a copy of the traditional model with these results.
After that, we use Prosimos again, passing discovered scenarios to get two more
event logs, first generated with the traditional model and second with the DAS
model. Then, we run a script to compute metrics by comparing the original log to
the traditional and DAS models in pairs. The algorithm is the same for real-life
logs, but we don’t need to make an extra step in the beginning to generate the
original log since it has already been provided.
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Data Attributes For evaluating data attributes, we utilized the loan application
BPMN model from Figure 4. The model includes 2 events(Start and End), 17
activities, 4 XOR split gateways, 2 AND split gateways, and 36 sequence flows.
The diverse types of gateways and activities create many different pathways that
a process might take, which is good for testing how attributes affect the process.
This variety allows us to place attributes in different settings and see how they play
out during the simulation.

Figure 4. Loan application BPMN model.

For our experiments, we set up 82 data attributes: 10 for case attributes, 36 for
global attributes, and 36 for event attributes. The small amount of tests for case
attributes is because they have limited flexibility and do not support update rules.
We test both old (generators) and new (update rules) features for global and event
attributes. Here is a detailed breakdown of the tests for different attribute types:

1. Case Attributes: Each case attribute is identified by a test ID and a "c"
label, which denotes a case attribute, followed by a short test name. We
conducted 10 tests for case attributes using generators to create continuous
values with different distributions—fixed, exponential, normal, and uniform
(e.g., uniform distribution ranging from 0 to 100). We also tested discrete
values with various labels and probabilities, such as having the probabilities
"A":0.8 and "B":0.2. The primary goal with case attributes is to ensure that
the generators operate correctly at the case creation level.

2. Global and Event Attributes: The naming convention for these attributes
includes identifiers for the scope (global - g, event - e) and the frequency of
update (once per case - s, multiple times per case - m), resulting in labels
like se, sg, me, mg. We tested 18 different update mechanisms for each type,
totalling 72 attributes for both global and event scopes. The tests for these
attributes include the following.

• Generators: Similar to the case attributes, we used generators for
both global and event attributes to produce continuous values (using
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distributions like uniform from 1 to 100) and discrete values with
probabilities (e.g., "A":0.8, "B": 0.2).

• Update Rules: These involve various expressions to simulate updates
following linear functions (e.g., 1.05× x+ 5), periodic functions (e.g.,
cos(x)), and complex expressions (e.g., x+ log(x+ 1) + 1). We use
linear functions to test our model on the capability to discover the
easiest linear patterns as a baseline; then we increase the difficulty of
the functions, making them periodic or adding more complex nonlinear
aspects.

The loan application BPMN model and simulation scenario with all attributes
used for the generation of synthetic logs is available in SharePoint 16.

Branching Conditions For branching conditions tests, we used a specially de-
signed BPMN model, shown in Figure 5, which we set up specifically to handle
decision-making scenarios. This model contains two events (Start and End), 19
activities, three XOR splits, and 39 flows. In that model, we clearly defined the
spots where attributes have to be generated or changed right before the decision
points and duplicated that pattern multiple times to add more weight within one
case to calculate the KPIs more precisely. The model for assessing OR gateways is
the same as in Figure 5 but with OR gateways instead.

Figure 5. Branching conditions BPMN model.

In total, we conducted 59 tests (33 for XOR and 26 for OR gateways) testing

16https://tartuulikool-my.sharepoint.com/:f:/g/personal/murashko_ut_ee/
EoamjGexw4tJg6qH3cOaQmMBFfyKtnJDlNNAy1QAAl809g?e=fu35Ka
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conditions with different complexity or levels of noise. Detailed information on
the test groups is described in Table 9

Some of the cases were created to evaluate the impact of noise on the evaluation
of conditions. We tested two noise levels, 20% and 50%, for both the XOR and
the OR gateways to analyse the results using a hybrid approach that combined
branching conditions and probabilities. The percentage of noise is achieved by
setting conditions within a specific range and omitting a certain percentage of the
data range generated by the attribute. For example, to achieve 50% noise for an
attribute with values from 0 to 100, we equally distribute the data ranges among
arcs and then remove 50% from it. If the initial range was 0-20, we cut it to 0-10,
and the next range will be 20-30. When the attribute generates a value of 10-20,
we use PDM to simulate noise.

Our experimental setup also involved generating 5000 cases for each test to
provide a comprehensive data set for analysis. We created a variety of simulation
scenarios using scripts that automated the configuration for each test and another
script to run all simulations using Prosimos to obtain all original event logs. Mod-
els and simulation scenario templates and scripts to generate configurations are
available here in SharePoint17

17https://tartuulikool-my.sharepoint.com/:f:/g/personal/murashko_ut_ee/
EsZWKkC1jQ1Ii3kc6ivii00BvabzVI8YUh0O_C4MnRJraw?e=eBrbo4
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Table 9. Experiments for XOR and OR attributes

Test Category Description
XOR Gateway: Dis-
crete (3) + noise tests (6)

Assessing conditions based on discrete values. Tests in-
clude equally distributed values, non-equally distributed
values, and scenarios where only one condition is evalu-
ated as ’true. Noise tests examine the impact of random
variations on these conditions.

XOR Gateway:
Distributions (2) +
noise tests (4)

Evaluating conditions based on normal and exponential
distributions. Noise tests assess the robustness of these
conditions under random variations.

XOR Gateway: Lin-
ear function (1) +
noise tests (2)

Testing the impact of strict, deterministic conditions based
on linear functions, and examining how noise affects the
outcome.

XOR Gateway: Com-
plex conditions (5) +
noise tests (10)

Testing scenarios with multiple expressions that must be
evaluated. These include combinations of AND and OR
operators, such as attr1 Ā AND attr2 100. Noise tests
analyze the impact of variability on these complex condi-
tions.

OR Gateway: Dis-
crete (5) + noise tests (6)

Similar to XOR discrete tests, but also evaluating cases
where 1, 2, or 5 flows can be executed. Noise tests explore
the effect of random variations in these scenarios.

OR Gateway: Distribu-
tions (6) + noise tests (4)

Testing normal and exponential distributions with condi-
tions that select 1, 2, or all 5 flows. Noise tests examine
how randomness impacts these selection conditions.

OR Gateway: Com-
plex conditions (3) +
noise tests (2)

Evaluating conditions using the AND operator with sce-
narios where 1, 2, or all 5 flows can be executed simulta-
neously. This involves intersecting branching conditions,
e.g., flow 1 for range 0-30 and flow 2 for range 20-50 from
a uniform distribution (0 to 100), creating a probability
for simultaneous flow execution.
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For each real-life log, we discovered both the BPMN model and simulation
scenario using Simod with instructions available in the GitHub repository18.

Sepsis Cases The Sepsis Cases dataset19 is derived from a real-life event log doc-
umenting sepsis cases in a hospital. Sepsis, a critical condition usually triggered by
an infection, represents a significant pathway through hospital processes, tracked
by the hospital’s Enterprise Resource Planning (ERP) system. The data set com-
prises approximately 1,000 cases, a total of around 15,000 events in 16 different
activities. The log is rich with 39 different data attributes, including information
on the group responsible for activities, test results, and checklist data. All events
and attribute values have been anonymised to protect privacy, and although the
timestamps of the events were randomised, the sequential order within each case
remains unchanged to keep the logical flow.

The corresponding BPMN model consists of 16 activities corresponding to the
various medical and administrative steps in managing sepsis within the hospital,
183 flows, 22 XOR and 21 AND split gateways. These gateways are essential for
modelling decision-making processes in clinical pathways, especially for managing
dynamic and time-sensitive conditions like sepsis. Hence, it provides a solid
foundation for applying the DAS model, allowing us to explore how dynamic
attributes and branching conditions affect the simulation of complex healthcare
processes.

The Road Traffic Fine Management Process The Road Traffic Fine Manage-
ment Process involves events related to road traffic fines, including notifications,
payments, and appeals, managed by local police in an Italian city. This data set20

allows us to explore changes in data attributes during the process of fine creation,
notification tracking, and other related activities. It contains 11 data attributes,
which are recorded only when they appear without further attribute tracing. This
log provides a valuable case for examining data attribute discovery, pre-processing,
and assessment of various types of data attributes. The model structure features
2 events (Start and End), 47 flows, 11 activities, and 18 gateways (8 XOR split
gateways and 10 intermediate events). This complexity provides a good framework
for testing branching conditions within the DAS model.

18https://github.com/AutomatedProcessImprovement/Simod
19https://data.4tu.nl/datasets/33632f3c-5c48-40cf-8d8f-2db57f5a6ce7
20https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/

12683249
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4.3.2 Experimental Setup

EQ1-2 For evaluating the accuracy of attribute classification (EQ1) and the
discovery of update mechanisms (EQ2), the used loan application model. The
experiment involved constructing a simulation scenario based on this model and
generating an event log with a predefined set of different attribute types. Also, the
classification of global and event attributes is based on the discovery of the update
mechanism. Hence, we must first evaluate the performance of the ML models. For
that, we used the following metrics:

1. Earth Mover’s Distance (EMD): is used to evaluate continuous attributes
by measuring the minimum work needed to transform one distribution into
another. This "work" involves shifting distribution mass across a distance,
capturing the differences between two distributions. It is used to check if the
distribution of attributes generated by the simulation matches the expected
distributions.

2. Kolmogorov-Smirnov Statistic (KS): is used for discrete attributes by
comparing the maximum difference between the cumulative distribution
functions of two datasets. In dynamic attribute discovery, KS verifies if the
behaviour of attributes, particularly their discrete distributions, matches the
expected behaviours. KS is non-parametric, making it suitable for situations
where data normality cannot be assumed.

After performing update mechanism discovery, we classify event and global
attributes based on the best model performance, grouping attributes of the same
type by the winning model. To address EQ1, we then gather all winning models
and calculate the percentage of all attributes that have been successfully classified.

EQ3 To address EQ3, we compared pairs of simulated logs from the traditional
and DAS models with the original logs. This analysis included examining the
impact of the DAS model on control flow and KPIs using the following metrics:

1. N-gram Distance [16]: Measures the similarity between two logs by com-
paring their sequential patterns up to n-items long. For example, if the
original log has the sequence "A -> B -> C" and the simulated log has "A
-> B -> D," the N-gramme distance helps identify the differences in these
sequences.
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2. Relative Event Distribution Distance [16]: Quantifies the differences in
event frequencies between the original and simulated logs. For example, if
the original log has event "A" occurring 30 times and the simulated log has
it 20 times, this metric highlights the frequency discrepancy.

3. Cycle Time Distribution Distance [16]: Compares the distribution of cycle
times between the simulated and original logs. For example, if the original
log shows that tasks typically take 2-4 days, but the simulated log shows 1-3
days, this metric measures the difference in these time distributions.

4.3.3 Experimental Results

Due to the extensive experimental data, we cannot present all metrics for each
model and attribute type, and thus we depict them in summary tables. For detailed
information, see the supplementary material 21.

Answering EQ1 Table 10 summarises the classification results for different
types of attributes. The case attributes were accurately identified (100%) due to the
stringent rules applied to this attribute type. For global and event attributes, 40 out
of 44 continuous attributes were correctly classified, demonstrating high accuracy
(approximately 90.9%). Discrete attributes showed lower accuracy, with 19 out of
23 correctly classified (approximately 82.6%). Misclassifications typically occur
with attributes that exhibit stochastic distributions or those that are frequently
modified within a case, reflecting the challenges in pattern recognition under such
conditions. In general, the classification accuracy for all attribute types was 89.6

The main difficulties were with classifying global continuous attributes due
to their stochastic distribution patterns. This was especially true for attributes
modified by all activities within a case, making it hard to identify a consistent
pattern. Discrete attributes faced similar challenges. In contrast, the event attributes
showed the highest accuracy because their localised nature made it easier to
generate consistent and abundant training data for model learning.

Answering EQ2 All results for EQ2 are also available here22 for continuous and
discrete values.

21https://tartuulikool-my.sharepoint.com/:x:/g/personal/murashko_ut_ee/
ES5fk1Wg309DnIxLWmZ1zF4BCLUXzBmaavM594Ba7CIoZw?e=CZ6tII

22https://tartuulikool-my.sharepoint.com/:x:/g/personal/murashko_ut_ee/
ES5fk1Wg309DnIxLWmZ1zF4BCLUXzBmaavM594Ba7CIoZw?e=CZ6tII
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Table 10. Simulation Data Attribute Type Classification Summary

Attribute Type Total Correct Incorrect % Correct
Global Continuous 22 18 4 81.8%
Event Continuous 22 22 0 100%
Case Continuous 3 3 0 100%
Global Discrete 12 11 1 91.7%
Event Discrete 11 8 3 72.7%
Case Discrete 7 7 0 100%
Total 77 69 8 89.6%

Discrete Attributes To address EQ2, we must take into account the following
aspects:

1. Significance of Update Frequency: Attributes updated more frequently
(groups "mg" and "me") showed smaller differences between the global and
event log assumptions. The frequent updates made the distributions similar
in both cases.

2. Impact of Update Location: Attributes updated at multiple points in the
process, especially under global assumptions, showed more discrepancies
due to the cumulative effects of each update. This was more noticeable
compared to event log assumptions.

3. KS Statistic Thresholds: For evaluation, a lower KS value indicates a closer
match between predicted and actual distributions. Generally, KS values
below 0.1 to 0.2 are considered good, showing little divergence, while values
approaching 0.3 or higher suggest a poor fit, indicating significant differences
between the distributions.

The selected results of our experiments are summarised in Table 11, showing
the KS statistic values for the global and event attribute assumptions in various
configurations. Attributes prefixed with "sg" showed the highest discovery accu-
racy, as their shared, modified values throughout the simulation and the fact that
they were only updated once made their patterns easier to detect. In contrast, the
attributes "mg" and "me", which had frequent updates, faced significant challenges,
leading to higher KS values and indicating poorer model performance and simi-
larity in event logs. This underscores the difficulties in accurately classifying and
discovering update mechanisms for discrete attributes, especially when updates are
frequent and distributed between multiple activities.
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Table 11. Average KS Values by Attribute Group

Group Average KS Value
Global Multiple (mg) 0.229
Global Single (sg) 0.013
Event Multiple (me) 0.245
Event Single (se) 0.129
Case (c) 0.184

Continuous Attributes Our discovery tool supported three types of models with
the hypothesis that they would effectively capture particular update rules. These
models are as follows.

• Linear Regression: Suitable for attributes with linear growth or decline,
modelling the relationship between an independent variable and a continuous
dependent variable.

• Curve Fitting: Good fit for attributes following specific distributions, accu-
rately modelling non-linear trends and periodic behaviours.

• M5Prime: A regression decision tree for complex, non-linear behaviours
where linear and simple curve models don’t fit well. It handles intricate
relationships by splitting data into manageable subsets.

Table 12 shows a selection of results that highlight the performance of different
models in discovering continuous attribute update rules. The focus is on different
attribute type groups, highlighting the average EMD values for each group: "c",
"sg", "se", "mg", and "me".

Table 12. Average EMD Values by Attribute Group

Group Average EMD Value
Global Multiple (mg) 2.6686 ×1029

Global Single (sg) 9.0784 ×1028

Event Multiple (me) 21.9372
Event Single (se) 3.6048
Case (c) 3.5474

From an attribute-type perspective, event attributes performed the best across
all function types due to their localised nature in a local scope, which allowed
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for consistent and accurate training data. Global attributes with complex growth
patterns were the most challenging. The main issue was "context loss," where
initial values are lost over time, leading to inaccuracies in long-term projections.
Although the models could classify growth types correctly, they struggled to
estimate initial values, resulting in high EMD values ‘. Excluding linear functions
from the analysis and focussing on other experimental scenarios, it is evident
from Table 13 that the average error reduces to levels comparable to those shown
in Table 12. This suggests that significant errors arise predominantly in linear
scenarios. A potential solution could involve integrating the initial values directly
into the model, ensuring that both the training and testing phases keep the context of
the initial value. The primary challenge lies in the training and testing methodology
for time-series data, which requires a slightly modified approach compared to other
data types.

Table 13. Average EMD Values for Global Attributes without Linear Functions

Group Average EMD Value
Global Multiple (mg) 39.19
Global Single (sg) 6.41

By evaluating ML models’ performance, Linear Regression excelled at handling
linear functions, as it directly models linear relationships. This model achieved low
EMD values, indicating that it closely matched predicted and actual values. Curve
Fitting was most effective for attributes following specific distributions, accurately
modelling expected distributions, and minimising EMD. M5Prime was the most
adaptable for complex growth patterns, effectively managing intricate behaviours.
However, it sometimes captured unnecessary data fluctuations, slightly reducing
its overall accuracy compared to simpler models.

Answering EQ3 The objective of EQ3 is to assess the effectiveness of the
DAS model versus the traditional (TR) probabilistic approach in various gateway
configurations using specific performance metrics: n-gram distance (NG), event
distribution (ED) and cycle time distribution (CT). This evaluation helps determine
the precision and efficiency of the simulated process flows in capturing the intended
dynamics of the modelled processes.

XOR Gateway Results
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Table 14. Comparison of DAS and traditional models across performance metrics

Test Group DAS-NG TR-NG DAS-ED TR-ED DAS-CT TR-CT
XOR Pure Disc 0.0126 0.0101 57.29 80.926 129.196 205.593
XOR Noisy Disc 0.07 0.0138 176.79 92.19 392.55 205.91
XOR Pure Con 0.0134 0.0204 81.5934 131.6806 181.7316 286.7117
XOR Noisy Con 0.0632 0.032 261.7051 148.1469 419.712 242.0827
XOR Pure CC 0.0573 0.0157 165.509 102.876 348.871 185.059
XOR Noisy CC 0.0491 0.0154 115.417 84.617 221.545 164.553
OR Pure Disc 0.0587 0.2071 721.406 18514.181 3046.362 47814.659
OR Noisy Disc 0.0786 0.0933 114.3098 2049.58 257.16 4700.79
OR Pure Con 0.0265 0.2661 983.5555 17501.6663 2907.6286 53277.5724
OR Noisy Con 0.0593 0.0975 193.3098 3300.134 332.4068 5681.9588
OR Pure CC 0.0221 0.2821 940.341 15930.793 2335.15 42980.185
OR Noisy CC 0.0248 0.0931 135.413 2795.907 264.215 6175.817

• N-Gram Distance (NG):

– Pure Discrete: The NG for the DAS model was 0.0126, only slightly
higher than the TR model at 0.0101, indicating a strong adherence
to expected control flows in noise-free conditions. This minimal dif-
ference underscores the effectiveness of clearly defined conditions in
straightforward decision-making scenarios.

– Noisy Discrete: With a significant rise to 0.07 in NG for the DAS model
under noisy conditions, the increase compared to 0.0138 for the TR
model highlights the DAS model’s sensitivity to external disturbances.
This suggests a potential area for improvement in robustness against
environmental noise.

– Pure Continuous: Here, the DAS model outperformed the TR model
with an NG of 0.0134 versus 0.0204, reflecting precise condition han-
dling in continuous data-driven environments.

– Noisy Continuous and Complex Conditions (CC): Both settings under
noisy conditions showed the DAS model struggling slightly with higher
NG values (0.0632 and 0.0491) compared to TR model (0.032 and
0.0154), indicating struggles in complex scenario management.

• Event Distribution (ED):
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– The DAS model consistently managed to maintain closer event distri-
butions in less noisy environments, as seen in the Pure Discrete and
Pure Continuous setups, with ED values significantly lower than those
of the TR model.

– In noisy scenarios, the DAS model still managed to perform compa-
rably or better than the TR model, indicating robustness in handling
disturbances.

• Cycle Time Distribution (CT):

– The CT were consistently better in the DAS model across Pure Condi-
tions, suggesting that deterministic handling of conditions can signifi-
cantly enhance process efficiency and predictability.

– Noise introduced more variability, but the DAS model generally showed
resilience by maintaining lower or comparable CT to the TR model.

OR Gateway Results

• N-Gram Distance (NG):

– Pure and Noisy Discrete: The DAS model’s performance was notably
better in pure settings (NG of 0.0587) compared to noisy ones (NG of
0.0786), but both were significantly better than the TR model’s perfor-
mance, showing the critical role of conditions in managing multiple
paths.

– Continuous and Complex Conditions (CC): Even under complex condi-
tions, the DAS model maintained lower NG values, underscoring its
capability to effectively manage multiple, overlapping conditions.

• Event Distribution (ED):

– In every case, the DAS model maintained more consistent and lower ED
values than the TR model, particularly in the Pure Complex Conditions
where they significantly influenced outcomes.

– The OR gateway’s ability to handle complex conditional logic was
evident, with the DAS model demonstrating superior management of
ED across all tests.

• Cycle Time Distribution (CT):

45



– The CT in OR gateways showed a distinct advantage for the DAS
model, especially in managing complex conditions where multiple
pathways are activated simultaneously.

– Despite the introduction of noise, the DAS model effectively minimized
CT variances, providing more stable CT than the TR model.

The close performance of the DAS model XOR gateways to the TR model can
often be attributed to the characteristics of XOR gateways. Since they only support
one specific flow at a time, the aggregated error may not be significant enough to
create a substantial difference even if the conditions do not work correctly. This
means that deviations from the expected process flow are generally minor, as the
XOR structure inherently limits the impact of incorrect or misfiring conditions.

However, OR gateways exhibit different behaviours when branching conditions
are introduced. These conditions unlock previously unavailable capabilities within
this type of gateway by enabling the execution of various combinations of flows.
For example, with precise conditions set, it is possible to consistently activate three
out of five possible flows in every process execution, but never more or less. This
level of specificity in flow activation is not achievable with a probabilistic model,
where there is always a chance that any number of paths from one to all could be
executed at any given time, depending on the probability distribution assigned to
each path.

This distinction highlights a significant advantage of incorporating conditions
into OR gateways: They allow for precise control over complex process scenarios
that probabilistic models simply cannot offer. Adjusting probabilities on the arcs
in a probabilistic model does not grant the same level of deterministic control over
which and how many paths are activated, illustrating a fundamental limitation in
handling complex workflows with multiple concurrent paths.

Real-Life Logs The evaluation results can be accessed on SharePoint 23 featuring
data attribute classification, discovery metrics, and comparisons with conventional
models.

Sepsis Cases Overall, we discovered 27 attributes, including 1 case attribute, and
the rest as global or event attributes, with 3 continuous and 23 discrete. Among
the discrete attributes, 21 showed a distinct type difference with half the error

23https://tartuulikool-my.sharepoint.com/:x:/g/personal/murashko_ut_ee/
ER2WWMfsE1dBiEu2kiilmSMBW4Tz1PZDgd0qfVk5EMBwyA?e=ABuW8q
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rate compared to the other. However, in 2 instances, the KS value was nearly or
exactly identical, possibly due to attributes being initialised at the start of each case,
making it challenging or impossible to distinguish between these two attributes.
However, most of the attributes maintained a low error rate of 0.125. Furthermore,
based on this error rate, 21 attributes were identified as global, demonstrating the
effectiveness of a global context in real data analysis, while 2 were identified as
event attributes, indicating the presence of local case-specific data. This highlights
the importance of examining every possible variation in the scope of the data.
Notable variance was observed in the continuous attributes, particularly for CRP,
where only the curve fitting proved effective, while the linear regression and
regression decision trees failed, producing nearly identical poor outcomes.

Regarding the impact of DAS on the simulation results, the N-Gramme Dis-
tance analysis did not reveal significant differences compared to the traditional
model, maintaining a similar control flow. However, the DAS model demonstrated
a notable improvement in both the cycle time and event time distribution, reducing
these metrics by approximately 30%. This indicates that the DAS model eliminated
unnecessary flows that were contributing to longer cycle times and also promoted
a more consistent control flow and activity initiation, which in turn led to a reduc-
tion in event time distribution. Furthermore, this improvement was consistently
observed in all experimental trials, suggesting that the DAS model surpasses the
traditional model in terms of KPIs.

The Road Traffic Fine Management Process We discovered 10 attributes with-
out any case attributes. This data set showed the least accuracy in the observed
distribution, with an average error of around 0.25. In addition, all attributes demon-
strated problematic behaviours similar to those seen in the Sepsis Cases and were
initialised at the beginning of the case, resulting in identical g_log and e_log met-
rics. In contrast, for continuous values, distinct attributes emerged as clear leaders
in various scopes. The curve fitting identified both event and global attributes,
achieving 30-40% lower errors in different scopes, while M5Prime excelled in
handling non-linear cases, particularly with the (amount) attribute. Given that the
current log contained no local attributes and numerous cases indicated that real
data could adhere to both local and global scopes, as well as linear, distribution,
and nonlinear patterns, our DAS model successfully identified these diverse types.

Unfortunately, the model did not discover any decisions based on the branching
conditions, so we are limited to discussing only the data attribute perspective of
the dataset without addressing how the branching conditions influence simulation
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performance. Essentially, since both models employ PDM , the results of the
simulation performance remain unchanged.
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5 Conclusion and Future Work
This thesis aimed to design the DAS model, enable its discovery from event logs
and facilitate its simulation while maintaining the integrity of all components.

We achieved the design and development of a DAS model under RG1, which
uses data attributes for decision-making, allowing dynamic adaptation to changes
in data over time. Under RG2, we created algorithms to classify data attributes and
discover their update mechanisms, along with identifying branching conditions for
simulation scenarios from the event logs. For RG3, we configured the simulation
engine to incorporate all components of the DAS model, allowing it to run simula-
tions that include dynamic data-aware features. This setup maintains high integrity,
ensuring that the models discovered by the discovery tool are ready for simulation
after discovery.

Despite these improvements, the model faces certain limitations that offer
opportunities for future research.

1. Complex Attribute Behavior: The discovery of global attributes behaving
like time-series data presents challenges due to their complexity, as was
shown in the evaluation. Future work could look into using more advanced
machine learning algorithms that are better at dealing with such attributes,
potentially making the model better at adjusting to continuous changes in
the data.

2. Attribute Update Flexibility: Integrating generators within the update rules
to enhance their flexibility will be another good enhancement. This integra-
tion could enable the use of generators for dynamic update mechanisms to
utilize random values within expressions.

3. Condition Discovery Precision: The current model sometimes struggles to
discover complex conditions accurately. Some conditions might be missing,
while others contain redundant conditions with outliers. Improving the
algorithm’s capacity to identify accurate conditions can enhance the accuracy
of the simulation, guaranteeing that all crucial decision paths are correctly
modelled.

In conclusion, all research goals have been achieved, although there are areas
where the current DAS model faces challenges. The proposed improvements will
enhance the model’s performance, helping it manage a wider variety of complex
scenarios in business process simulations.
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