
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Kert Männik

From Legacy to Microservices: A Case Study
on Automatic Investment at LHV

Master’s Thesis (30 ECTS)

Supervisor: Fredrik Payman Milani, PhD

Tartu 2023

2

From Legacy to Microservices: A Case Study on Automatic Investment

at LHV

Abstract:

Microservices are a popular choice as an enterprise application architecture because they

offer many benefits when compared to monolithic applications. Monolithic application is a

good choice when an enterprise is small, but as the engineering department expands, the

monolithic architecture drawbacks become even more visible. Then comes a moment when

a monolithic application needs to be split to make use of the microservices architecture. This

study is a case study in a large banking enterprise where a part of monolithic application

was migrated to a microservice.

Keywords: Microservices, monolithic architecture, software architecture, system transfor-

mation, application migration

CERCS: P170 Computer science, numerical analysis, systems; P175 Informatics, systems

theory; T120 Systems engineering, computer technology

Pärandrakenduselt mikroteenustele: automaatse investeerimise juhtu-

mianalüüs LHV-s

Lühikokkuvõte:

Mikroteenused on viimastel aastal populaarsemaks muutunud, kuna pakuvad võrreldes mo-

noliitsete rakenduste ees erinevaid eeliseid. Monoliitrakendused on hea viis ettevõtte alus-

tamisel, kuna monoliitset süsteemi on lihtsam arendada. Ettevõtte kasvades aga tulevad

välja antud arhitektuuri puudused ning tekib vajadus monoliidset rakendust väiksemateks

rakendusteks tükeldada ning kasutada mikroteenuste arhitektuuri. Antud uuring sisaldab

juhtumianalüüsi panganduse suurettevõttes, kus migreeriti osa monoliidist mikroteenusesse

ning valideeriti uue lahenduse võimekust ning parendusi.

Võtmesõnad: Mikroteenused, monoliit, tarkvara arhitektuur, süsteemi ümberkujunda-

mine, rakenduste migratsioon

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine; P175 Informaatika,

süsteemiteooria; T120 Süsteemitehnoloogia, arvutitehnoloogia

3

Table of Contents

Table of Figures .. 5

Table of Tables .. 6

1 Introduction ... 7

1.1 Research Objective ... 8

2 Background ... 9

2.1 LHV Group AS ... 9

2.1.1 Growth Account .. 9

2.1.2 Pension Investment Account ... 9

2.1.3 Automatic Investment ... 10

2.2 Software Architectures ... 10

2.2.1 Monolithic Architecture .. 10

2.2.2 Microservices Architecture ... 10

2.3 Omnibus Account ... 11

2.4 Fractional Share .. 11

3 Methodology ... 12

3.1 Problem Statement .. 12

3.2 Requirements Elicitation & Specification .. 13

3.3 Artifact Development ... 13

3.4 Artifact Evaluation & Refinement .. 13

4 Artifact .. 15

4.1 Explanation ... 15

4.2 Requirements .. 15

4.3 Technological Choices ... 15

4.3.1 Back-end programming language ... 15

4.3.2 Back-end framework ... 16

4.3.3 Front-end framework .. 16

4.3.4 Database server ... 16

4.3.5 Message broker ... 17

4.4 Process Overview ... 17

4.4.1 Preparation .. 18

4.4.2 Account processing ... 19

4.4.3 Aggregation and routing ... 21

4.4.4 Finalization .. 22

4.4.5 Settlement .. 25

4

4.5 Migration .. 25

4.6 Evaluation ... 26

4.6.1 Qualitative evaluation ... 26

4.6.2 Quantitative evaluation ... 27

5 Discussion ... 34

5.1 Limitations .. 35

6 Conclusion ... 37

References ... 38

I. License ... 40

5

Table of Figures

Figure 1. Research process .. 12

Figure 2. The high-level overview of the process ... 17

Figure 3. The new artifact architectural overview .. 18

Figure 4. The new artifact landing page .. 18

Figure 5. The preparation step overview ... 19

Figure 6. The account processing overview .. 20

Figure 7. The automatic investment order aggregation and routing view 21

Figure 8. Trade order creating overview ... 21

Figure 9. The routed trade order detail page ... 22

Figure 10. The trade order routing overview .. 22

Figure 11. The trade order executions ... 23

Figure 12. The finalized fractional orders overview ... 24

Figure 13. The finalized automatic investment order overview.. 24

Figure 14. The finalization step overview ... 25

Figure 15. Migration and its steps ... 25

Figure 16. The log extraction script to extract step timestamps ... 29

Figure 17. An example of the log parsing script execution result 30

6

Table of Tables

Table 1. The old artifact data .. 28

Table 2. 19th of April 2023 account processing steps timestamps 31

Table 3. The new artifact data ... 32

7

1 Introduction

Banking has become significantly more digitalized and automated in recent decades, with

advancements in technology leading to a range of benefits for both customers and banks [1].

Online and mobile banking platforms now allow customers to access their accounts, transfer

funds, and make payments from the comfort of their own homes. Automation has also

streamlined many banking processes, reducing the need for manual labour and improving

efficiency [2]. For example, automatic bill payments, digital account opening, and online

loan applications are just a few examples of the ways in which banking has become more

automated. Furthermore, the use of AI and machine learning has enabled banks to better

understand customer behaviour and preferences, leading to personalized products and ser-

vices [3]. Overall, the trend towards digitalization and automation is likely to continue, as

banks strive to meet the evolving needs and expectations of their customers.

LHV started in the 90’s as an investment union and that is also the time period when the

first software applications were developed to support back-office operations. The initial

choice for the programming language was ColdFusion and some part of the bank still runs

on that language. Most of the code was written by selected developers and the code has

become hard to maintain. The written solutions also do not support the increased system

load which has been created by the increasing number of customers. Most of the solutions

use basic for-loops to process data, but that way of manipulating data is time consuming and

only supports linear processing. That has created performance problems and made back-

office operations time consuming [4].

Growth Account (GA) is an investment product at LHV, and it was released to customers at

the end of January 2001 [5]. Being over 20 years old, the fundamental principal is still the

same [6]: offer automated dollar-cost averaging fractional trading to customers. The process

automatically buys instruments on behalf of the customer and customer’s only actions are

to sign an agreement and keep transferring money to the bank account. Like most of the

legacy solutions at LHV, GA purchase process written over 20 years ago and it is showing

its age: as the number of customers has risen significantly in that time period, the software

solution is performing badly and needs to be rewritten and redesigned.

Monolithic and microservices architecture are two approaches to building software applica-

tions. In a monolithic architecture, the entire application is built as a single, interconnected

unit. All the components, such as the user interface, business logic, and data storage, are

tightly coupled and run on a single server or platform [7]. On the other hand, in a micro-

services architecture, the application is divided into a collection of small, independent ser-

vices, each of which is responsible for a specific function [8]. These services communicate

with each other through well-defined APIs and can be developed, deployed, and scaled in-

dependently [9].

The main difference between these two architectures is the level of modularity and flexibil-

ity they offer [10]. Monolithic architecture is simpler to build and deploy, but it can be

challenging to maintain and scale as the application grows. Microservices architecture, on

the other hand, offers greater flexibility and scalability, as services can be added, removed,

or replaced without affecting the entire system. However, microservices architecture can be

more complex to build and manage, as it requires additional infrastructure and communica-

tion mechanisms to ensure service availability and reliability. Ultimately, the choice of ar-

chitecture depends on the specific needs and requirements of the application.

8

1.1 Research Objective

The existing GA purchase process is time-consuming and cannot handle the increasing num-

ber of customers: the account processing keeps growing and is negatively affecting the back-

office workflows. The existing process has been maintained and improve several times, but

because the core logic is dated, the future improvements cannot deliver any acceptable ben-

efits. Another major reason for change is that the existing process is a part of the legacy

system and major changes are forbidden by the LHV IT-department. That rule conflicts with

LHV business need to offer customers high-quality products and services. A minor short-

coming of the existing process is that it lacks the needed transparency from the software

developer perspective to debug or analyse the process if an exception happens.

This thesis addresses the following research question: RQ. How to migrate a part of the

legacy monolith application to a microservice? To answer the research question, we fol-

lowed the design science approach. At first, we set the problem statement to understand the

system we want to improve. This was done in cooperation with a product owner. Secondly,

we identified the requirements for the new artifact. Next, the new artifact was developed

based on the requirements. After that, the new artifact was evaluated according to the re-

quirements. Lastly, a set of insights and learnings were proposed based on the findings how

to migrate an existing part of a legacy system to a microservice. This contribution will be

useful to those involved in the software engineering and architecture, for example, software

engineers, team leads, software architects, product owners, etc. The contribution of this the-

sis is a set of insights and learnings from migrating a part of the legacy system to an inde-

pendent microservice.

The rest of the thesis is structured as follows. Section 2 describes the background of this

thesis, briefly outlining LHV and its products, different software architectures, Omnibus

account logic, and fractional shares. Section 3 goes into detail how the research was per-

formed. Section 4 is about the artifact and everything related to that: explanation, require-

ments, technological choices, process overview, migration, and evaluation. Section 5 pro-

vides a discussion of the findings and Section 6 is a conclusion about the thesis.

9

2 Background

This section introduces the key concepts and notions used in this thesis, such as LHV Group

and its products, software architectures, and omnibus account.

2.1 LHV Group AS

LHV Group AS is a holding company and LHV is known for its focus on digital innovation

and customer-centric approach. Founded in 1999, the bank offers a range of services, in-

cluding banking, investment, and pension products. LHV has been at the forefront of Esto-

nia's e-government initiatives and has developed several digital solutions, such as the mobile

payment app, which has gained widespread popularity. With a strong emphasis on innova-

tion and sustainability, LHV is a leading player in Estonia's financial sector [11].

LHV has been growing rapidly in Estonia and has around 530 000 customers by the end of

January 2023 [4]. The bank has offices in Tallinn, Tartu, and Pärnu. In the last years, LHV

Group has been expanding to UK and founded a filial LHV UK Limited in October 2021.

2.1.1 Growth Account

Growth Account (GA) is a LHV investment product that enables customers to start investing

with minimum amount worth of 1 EUR on their account [12]. Customer can choose up to

10 allocations per account and after transferring money to the account, those allocations are

purchased automatically on every Wednesday. GA offers fractional share trading so cus-

tomer can use the total amount of money available on the account. The currency conversions

are automatically performed for the customer.

GA automates the maintenance of the investment portfolio and after the customer has cre-

ated their portfolio, GA utilizes its proprietary trading system to automate all their trading

activity. Customers never have to input or execute any buy trades manually. GA automati-

cally uses the available money to buy new shares proportional to the ratios. GA does not

offer portfolio rebalancing.

For the customer, the only manual part of this product is the sell orders, which must be

entered manually. Customers cannot manually enter buy orders; those are only created by

the automatic investment process. Over 50 000 customers use GA to invest in fractional

shares.

GA offers different exchange traded funds and individual stocks for the customers. By the

end of January 2023, the 3 most popular allocations are iShares Core S&P 500 UCITS,

iShares NASDAQ-100 UCITS and Vanguard FTSE All-World UCITS ETFs [13].

2.1.2 Pension Investment Account

Pension Investment Account (PIA) is a separate bank account, which customers can use to

grow their II Pillar pension assets, while making the investment decisions independently

[14]. Customer can direct their regular pension payments prescribed for II Pillar members

to their PIA. Customer cannot make any additional payments to their PIA. LHV PIA has a

feature to automatically invest customer allocations each Wednesday [15]. The setup and

business logic are the same as GA automatic investment process.

Customer can also withdraw the funds from PIA. When withdrawing money before retire-

ment age, they must pay income tax of 20% on the withdrawn amount. After withdrawing,

they can rejoin the pension system (including opening a new PIA) after 10 years.

10

The main difference between PIA and GA automatic investment feature is that PIA is part

of the Estonian pension system and customer cannot transfer additional money to the ac-

count, only Estonian Funded Pension Registry can make payments to the account. GA al-

lows customer to transfer additional money to the account.

There is around 4500 active PIA at LHV, almost 1000 of those use automatic investing. By

the end of November 2022, the 3 most popular fund allocations are iShares Core S&P 500

UCITS, iShares NASDAQ-100 UCITS and Vanguard FTSE All-World UCITS ETFs [16].

2.1.3 Automatic Investment

Automatic Investment is the name of the process which manages the purchase process of

GA and PIA automatic investment orders at LHV. For the customer, the process is fully

automated. Their only obligations are to choose allocations, sign the agreement and transfer

some money to the account. The purchase process is manually started by a broker in the

Investment Administrator Platform around 11 AM Estonian time each Wednesday.

LHV uses an omnibus account logic to hold fractional investment positions on behalf of the

customer. Automatic Investment does not have any customer user interface, the only inter-

face is for brokers in the Investment Administrator Platform. For customer, this process is

hidden behind GA and PIA fractional orders.

Automatic Investment process finds all the active automatic investment accounts and re-

serves their money for fractional orders. The process aggregates all the customers’ orders

and executes them during a single trading window. Based on the aggregated order execu-

tions, an average purchase price is found for each order and that information is synched to

customer fractional orders.

2.2 Software Architectures

2.2.1 Monolithic Architecture

Monolithic software architecture is a traditional approach to building software applications

where the entire application is built as a single, interconnected unit. In a monolithic archi-

tecture, all the components of the application, such as the user interface, business logic, and

data storage, are tightly coupled and run on a single server or platform. This architecture has

been widely used in the past, and it can be relatively simple to build and deploy. However,

it can also be challenging to maintain and scale as the application grows, since changes to

one component can affect the entire system [7]. Despite its limitations, many applications

still use monolithic architecture due to its simplicity and familiarity.

2.2.2 Microservices Architecture

Microservices software architecture is a modern approach to building software applications

that emphasizes modularity and scalability. In a microservices architecture, the application

is divided into a collection of small, independent services, each of which is responsible for

a specific function [8]. These services communicate with each other through well-defined

APIs and can be developed, deployed, and scaled independently. This architecture allows

for greater flexibility, as services can be added, removed, or replaced without affecting the

entire system. It also enables teams to work on different services simultaneously, which can

lead to faster development cycles [9]. However, microservices architecture can be more

complex to build and manage, as it requires additional infrastructure and communication

mechanisms to ensure service availability and reliability.

11

2.3 Omnibus Account

An omnibus account is a type of investment account that is held by a financial institution on

behalf of multiple clients [17]. In this arrangement, the financial institution acts as the ac-

count holder and is responsible for managing the account, while individual client holdings

are not visible. Instead, each client's assets are aggregated and held together with those of

other clients in the same account. This can be advantageous for institutions, such as broker-

dealers or investment banks, as it allows them to aggregate trades and transactions across

multiple clients, resulting in lower costs and more efficient execution. However, omnibus

accounts can also pose certain risks, such as increased complexity and reduced transparency,

as individual client transactions may not be visible or auditable [18].

2.4 Fractional Share

A fractional share is when a customer owns less than one whole share of a company [19].

Fractional shares allow investors to invest in instruments based on a fiat currency amount,

so they may end up with a fraction of a share. The main benefit for the customer is that they

can start investing with smaller amounts of money thus lowering the barrier for investing

[20]. For example, if share is priced at 100 € and customer has 10 €, then they can purchase

0.1 of that share.

12

3 Methodology

This section details the research process and describes how the input required for artifact

development was collected and analysed.

This thesis aim is to understand how to migrate a part of the legacy system to a microservice.

The research objective, formulated as RQ: How to migrate a part of the legacy monolith

application to a microservice? can be answer differently and has many acceptable answers.

To achieve this research objective, we use the design-science research guidelines [21]. This

approach is a good fit for us, because our goal is to develop and evaluate the created artifact.

We need to find a way how scale up the old artifact, separate it from the legacy system and

move it to the Investment domain. The old artifact cannot keep up with the increasing num-

ber of accounts and bottlenecks other back-office processes. There is a real need for the new

artifact as there are over 50 000 active GA accounts and almost 1000 PIA automatic invest-

ment accounts.

By following the guidelines, our first step is to understand the problem statement. We ap-

proach this by analysing the existing application and find its limitations and shortcomings.

We use the problem statement analysis result to come up with different requirements for the

artifact development. When the artifact is developed, we will evaluate it according to the

requirements created in the previous step. The research process is presented in Figure 1.

Figure 1. Research process

3.1 Problem Statement

In this design-science research guideline step [21], we define the scope of the problem that

the microservice will solve and identify the specific features or functionalities that will be

migrated. This will help to ensure that the microservice is focused on solving a specific

problem and is not overly complex or difficult to maintain.

In the problem statement phase, we will also have to determine the appropriate architecture

and design for the microservice. This should include defining the APIs and communication

protocols that the microservice will use to interact with the legacy system and other micro-

services.

We also have to identify the data that will be migrated to the microservice and determine

how it will be stored, managed, and accessed. This should include defining the data schema,

data storage mechanisms, and data access patterns.

13

3.2 Requirements Elicitation & Specification

In this design-science research guideline step, we gather and manage the requirements for

the artifact development [21]. We will identify and gather functional and non-functional

requirements for the new artifact. This should involve gathering input from different stake-

holders, including end-users, business analysts, and product owner.

The initial requirement gathering will be conducted by a product owner who is responsible

for the Automatic Investment process. They will perform informal interviews with different

stakeholders. Another method will be reviewing in-house documents about the existing pro-

cess to fully understand and replicate its main functionality.

After the initial requirement gathering, we will analysis those requirements and prioritize

them according to the feasibility and impact. We should identify any potential conflicts and

dependencies between requirements and prioritize them based on the importance on the

overall system. Also, we will have to ensure that the requirements are complete, accurate,

and consistent. This should involve reviewing the requirements with relevant stakeholders

and many event prototyping the requirements to validate their feasibility.

3.3 Artifact Development

In this design-science research guideline step, we will develop the artifact based on the re-

quirements set in the Requirements Elicitation & Specification [21]. This involves coming

up with design, implementing the design, integration with other applications and testing the

outcome.

We will design the microservice based on the requirements and scope definition, this in-

cludes designing the architecture, components, and interfaces of the artifact. During the de-

sign phase, we must think about other relevant systems or services, which the new artifact

must communicate with using different communication protocols and APIs. After that, we

will implement the microservice according to the design specifications.

The artifact will be developed by the thesis author who is a developer at LHV, because it is

more cost-effective than outsourcing the development or buying an existing solution from a

third-party company. One of the arguments to support in-house development was that the

final solution must be fully integrated to existing platform at LHV. That integration and

development knowledge would be hard to find outside of the LHV IT-department.

The artifact will be developed using different Agile software development techniques. The

main method will be Scrum which is a framework to define the guidelines with rules, roles,

artifacts and events and describe an iterative and incremental approach to software develop-

ment process [22]. The amount of work in the system will be visualized on a Kanban board

and the work will be categorized into different statuses [23].

3.4 Artifact Evaluation & Refinement

In this design-science research guideline step, we will evaluate the artifact created in the

guideline step Artifact Development [21]. We will identify the criteria that measures the

success of the microservice. These may include factors such as performance, scalability,

reliability, maintainability, etc.

The main focus will be the account processing step in the automatic investment event. The

reason is that the old artifact cannot handle the increasing number of accounts to process,

and that processing has become a major bottleneck in the old artifact.

14

We will interpret the results of the evaluation and draw conclusions about the effectiveness

of the microservice. This should involve identifying any strengths and weaknesses of the

microservice. After the evaluation, we will make recommendations for further development

or improvement of the microservice.

There are many qualitative and quantitative metrics to evaluate the new artifact. Architec-

ture, parallel processing, decoupled services, transparency, and documentation &

knowledge transfer are the qualitative metrics. The migration from the legacy system and

moving the process to a microservice is one of the main areas of this thesis so it makes

architecture evaluation relevant. Because the account processing step must process thou-

sands of accounts in a short time period, the parallel processing qualitative metric is also

relevant to this artifact evaluation. The old artifact uses several database procedures to per-

form some actions to the accounts so that makes decoupled services metric important to us.

The process transparency is another key metric because that makes the process easy to track

and debug if an exception happens. The last qualitative metric is documentation and

knowledge transfer. That is relevant to this thesis because the old artifact was developed

over 20 years ago and none of the Investment domain software developers were part of that

original software development team.

To perform the quantitative evaluation, the data will be extracted from the application log

files. The script will be written in a log parser application which is used at LHV to display

and analysis logs. The log parses applications reads and parses raw log files to return a

structured format. The entire quantitative evaluation is built upon application logs, for ex-

ample, to evaluate how long did one specific account currency conversion took, then two

log lines were written: “Starting account XXX currency conversion step.” and “Finished

account XXX currency conversion step.” Because each log was a timestamp when we sub-

tract the finishing timestamp from the starting timestamp to get the currency conversion

duration. Because the account processing step consist of several sub steps, then the entire

account processing can be thoroughly analysed.

15

4 Artifact

This section describes the development of the artifact.

4.1 Explanation

The need for a new solution arose due to several reasons. Firstly, the existing process was

written in a legacy system that had become difficult to maintain. Additionally, it was written

in a monolithic software system using practices that were no longer acceptable under the

latest software development guidelines at LHV. Furthermore, the existing process was una-

ble to cope with the growing number of customers, with processing time increasing linearly

over the past few years. In addition, the existing data model did not meet the product man-

ager's requirements, and the solution was written in ColdFusion programming language,

which is no longer the primary programming language used at LHV. The existing solution

also had an outdated user interface and was not intuitive nor user-friendly, with no data

evaluation or transparency, making it impossible to track the progress of the process.

4.2 Requirements

The following requirements were elicited from a product owner and the main focus are the

non-functional requirements rather the functional requirements:

• It should be able to process up to 100,000 accounts per event.

• It should be able to process up to 250,000 fractional orders per event.

• It should be able to process up to 500 trade orders per event.

• The solution needs to process all the accounts within 30 minutes.

• It must adhere to the latest software development standards set by the LHV IT de-

partment.

• The solution should support GA and PIA automatic investment accounts.

• It needs to work with all major stock exchanges worldwide.

• It should require minimal input from users.

• The solution should have a user interface that allows brokers to easily track the pro-

gress of the process and interact with it.

• The solution must be able to partially fill orders if a trade order was not fully exe-

cuted on the stock exchange.

4.3 Technological Choices

This section gives a brief overview of different programming and software development

technologies chosen for the new artifact.

4.3.1 Back-end programming language

Java is a popular and widely used programming language for several reasons [24]. First and

foremost, it is platform-independent, meaning that code written in Java can run on any de-

vice or operating system with a Java Virtual Machine (JVM) installed. This makes it highly

versatile and accessible. Additionally, Java is an object-oriented language, making it easier

to write and maintain complex applications. It is also a secure language, with built-in fea-

tures for handling security issues like memory leaks and buffer overflow errors. The lan-

guage has a large and active developer community, providing resources and support for

those learning and working with Java. Finally, Java is well-suited for enterprise-level appli-

cations due to its scalability, reliability, and performance. Overall, Java is a solid choice for

programmers looking for a flexible, powerful, and secure language for their projects.

16

Java programming language version 11 was chosen for the solution because it has a wide

community support, does static type checking, is object-oriented. The main reason is that

Java is the main programming language at LHV and has passed different validations and

security tests performed by the IT-department. Java also supports threads which allows an

application to operate more efficiently by processing multiple threads at the same time. This

is a useful feature to process each individual account in parallel [25].

4.3.2 Back-end framework

Spring Boot is a popular framework for several reasons [26]. First, it simplifies the process

of building and deploying web applications, providing a range of pre-built components and

templates that speed up development time. Spring Boot also uses a convention-over-config-

uration approach, which reduces the need for extensive configuration, making it easier for

developers to focus on building the application's core functionality. Additionally, Spring

Boot integrates well with other frameworks and libraries, providing a high degree of flexi-

bility and customization. The framework also has a large and active community, with ex-

tensive documentation and support available. Finally, Spring Boot is scalable and reliable,

making it well-suited for large and complex enterprise-level applications. Overall, Spring

Boot is a powerful and versatile framework that can significantly streamline the process of

developing web applications.

Spring Boot framework version 2.7 was chosen because it is one of the popular Java frame-

works, is easy to use and reduces the development time. Spring Boot also different abstrac-

tions to implement different solutions more easily. For example, Spring provides a JMS

integration framework that simplifies the use of the message brokers [27].

4.3.3 Front-end framework

Angular is a widely used framework for building web applications, and it is known for its

versatility and power [28]. One of the main advantages of Angular is that it is a fully featured

framework that offers a comprehensive suite of tools and features for building complex and

scalable applications [29]. Angular is also based on TypeScript, which adds strong typing

to JavaScript, making it easier to build and maintain large-scale applications. The frame-

work includes powerful templating and data binding capabilities, which help developers to

build rich and dynamic user interfaces. Angular also offers a wide range of third-party li-

braries and plugins, making it easy to add additional functionality and features to your ap-

plication. The framework has a large and active developer community, providing plenty of

resources and support for those learning and working with Angular. Finally, Angular is well-

suited for building cross-platform applications, with support for mobile platforms and pro-

gressive web apps. Overall, Angular is a solid choice for developers looking for a powerful

and flexible framework for building modern web applications.

Angular was chosen for the solution because it is the main standard at LHV Bank at the

moment.

4.3.4 Database server

Microsoft SQL Server is a powerful and widely used relational database management sys-

tem [30]. It offers a comprehensive suite of tools for data storage, management, and analysis,

and supports a wide range of programming languages, making it a versatile tool for devel-

opers and data analysts. SQL Server is designed to manage large-scale data processing tasks.

With its robust security features and advanced data management capabilities, SQL Server is

a top choice for enterprise-level applications.

17

Microsoft SQL Server 2019 was chosen for the solution because it is the main standard at

LHV Bank at the moment.

4.3.5 Message broker

Apache ActiveMQ is a popular open-source message broker that facilitates communication

between different applications and systems using messaging protocols [31]. It provides a

reliable and scalable messaging system that supports a wide range of messaging patterns

and protocols, including JMS, AMQP, and STOMP. ActiveMQ allows for the decoupling

of different components in a distributed system, making it easier to build and maintain com-

plex systems. It also offers advanced features like message filtering, message persistence,

and message prioritization, making it a powerful tool for building high-performance mes-

saging systems. Overall, Apache ActiveMQ is a robust and flexible message broker that is

widely used in enterprise-level applications for reliable message delivery and management.

Message broker is needed for the solution to process the accounts in parallel.

ActiveMQ 5.17 was chosen for the solution because it offers JMS API and has Spring Sup-

port so it can be easily embedded into Spring applications.

4.4 Process Overview

The process consists of several steps which are described in this section. The high-level

overview is presented in Figure 2. The new artifact architectural overview is presented in

Figure 3.

Figure 2. The high-level overview of the process

18

Figure 3. The new artifact architectural overview

4.4.1 Preparation

The process is started in the Investment domain administrator platform by a broker. The

landing page can be seen in Figure 4.

Figure 4. The new artifact landing page

19

Figure 5. The preparation step overview

As shown in Figure 5, the process starts by creating a new automatic investment event. The

event status is PREPARATION_STARTED. After the event creation, the process finds each

unique instrument what customers have chosen for their portfolio. That is done by fetching

customers’ allocations from the database and finding the instruments. Because brokers can

change instruments and their statuses then each fetched instrument is validated so it must be

active and can be bought. For each instrument, we create an automatic investment order

which is linked to the event. Each automatic investment order status is PENDING.

After the automatic investment order creation, we start finding the accounts for the process.

The process fetches the PIA and GA accounts separately, but the results are merged. For

each PIA, the user must be active, must have active PIA agreement and has enabled auto-

matic investment for their account. For each GA, the user has similar validations, but the

validated agreement is GA agreement. All of those validations are done by database queries.

After all the accounts are found for the event, the event status is changed to PRO-

CESSING_ACCOUNTS and the accounts are produced to the queue by ActiveMQ pub-

lisher.

4.4.2 Account processing

As shown in Figure 6, each account processing starts by fetching customer information from

the database. That information is needed to perform validation for the account and customer.

If the validation is negative, then the account processing is terminated.

20

Figure 6. The account processing overview

For the positive validation result, the process carries on by requesting the account balance

from an external system. There is a business requirement that to process the account, the

account balance must be worth at least 1 EUR. If there is not enough balance, then that

account processing is terminated.

In case of a positive validation result, the process continues and fetches account allocations

from the database. Each allocation is also validated because it can be inactive and cannot be

used. If that is true, then that allocation ratio is equally distributed between the remaining

allocations. If all account allocations are invalid, then the account processing is terminated.

If there is at least one valid allocation, then the allocations are used to calculate the necessary

amount of each currency. That is done by calculating the entire portfolio’s value in EUR

and multiplying it by the allocation ratio. The result is converted to the allocation currency.

That calculation is done for each allocation and the results are summed by each currency.

The result of this logic is called the necessary currencies.

The necessary currencies are then subtracted by the available balance already present on the

account. If the currency is not present in the account balance, then the necessary currency

amount remains unchanged.

After that, we have two results:

• a list of necessary currency amounts

• a list of available currency amounts

Those lists are combined into currency conversion pairs and those pairs are sent to an exter-

nal system which performs the currency conversions. If all the conversions are finished,

then the process moves on to create fractional orders for the account. Each fractional order

is linked to its automatic investment order. The link is created if they have the same instru-

ment. The fractional order status is PENDING. At the moment, each fractional order only

has monetary value. For each fractional order, a reservation is created to lock the money so

it cannot be spent in the meantime. The reservation requests are sent to an external system.

Each reservation also contains the fractional order purchase fee.

After the reservation requests, the account processing is finished.

If all the accounts are processed, then the event status is changed to ACCOUNT_PRO-

CESSING_FINISHED which signals the broker that they can move on the next step of the

process.

21

4.4.3 Aggregation and routing

Now, we have many automatic investment orders which have fractional orders.

Figure 7. The automatic investment order aggregation and routing view

For each automatic investment order, the broker must start its aggregation. The automatic

investment order list is presented in Figure 7. The aggregation contains of summing up the

monetary value of its fractional orders. Then the sum is divided by the latest market price.

The Quotient is always rounded up to the next integer. The result is the necessary quantity

which LHV must buy from the stock exchange. That information is used to create a trade

order. The automatic investment order status is changed to TRADE_ORDER_CREATED.

The entire trade order creating process is summarized in Figure 8.

Figure 8. Trade order creating overview

The trade order is routed to the stock exchange. Each automatic investment order has one

trade order. The automatic investment order nor the fractional orders are not sent to the stock

exchange. The automatic investment order status is changed to ROUTED. That result can

be seen in Figure 9.

22

Figure 9. The routed trade order detail page

If this is the first automatic investment order aggregated and routed for that event, then the

event status is changed to PROCESSING_ORDERS. The entire routing process is presented

in Figure 10.

Figure 10. The trade order routing overview

4.4.4 Finalization

If the trade order is fully filled on the market, then the process can start finalizing that auto-

matic investment order.

23

Figure 11. The trade order executions

The trade order can have one or more executions, as shown in Figure 11, so to calculate the

average purchase price, the total execution monetary amount is divided by quantity. The

average purchase price is necessary to update fractional orders.

Fractional orders are processed one at a time. When processing a fractional order, several

steps are taken to ensure that the order is executed correctly. First, the average purchase

price is added to the fractional order. Then, the quantity of the order is calculated by dividing

the fractional order's monetary amount by the average purchase price. The fractional order

reservation is then cancelled to free up the necessary funds for the transaction. The transac-

tion for the fractional order quantity and the accompanying fee is performed, and the new

purchase quantity is added to the account instrument ledger. Finally, the fractional order

status is updated to COMPLETED to reflect the successful execution of the order. These

steps ensure that fractional orders are processed accurately and efficiently, allowing for op-

timal trading outcomes.

24

Figure 12. The finalized fractional orders overview

If automatic investment order fractional orders are finalized, as presented in Figure 12, then

the automatic investment order status is changed to FINALIZED.

Figure 13. The finalized automatic investment order overview

If all the automatic investment orders are finalized, then the event status is changed to FIN-

ISHED. That result is displayed in Figure 13. The entire finalization process is displayed in

Figure 14.

25

Figure 14. The finalization step overview

4.4.5 Settlement

The settlement step is separate from the automatic investment process [32]. Securities set-

tlement is done according to the standard rules and is usually performed 2 workdays after

the purchase. The settlement step is the final step in the transfer of securities ownership.

Settlement involves securities delivery to the beneficiary, usually against payment of

money, to fulfil contractual obligations, such as those arising under securities trades.

4.5 Migration

Migration from the old solution to the new solution took place around one month time pe-

riod. The migration was done incrementally to validate the artifact reliability and system

load. The main reason for this migration logic was to avoid big bang release and minimize

the problem impact area if an exception happened or a development bug was found.

The first migration step was performed with selected accounts which belonged to the em-

ployees of the investment domain. This step helped to validate the logic in production envi-

ronment. The sample size was five accounts.

The next migrations step took place a week after the first one and this event selected all the

accounts from the beta group users. This sample size was 121 accounts.

After the first two migration steps, all GA and PIA automatic investment accounts were split

into 10 different groups of the same size and the groups were migrated over incrementally.

The size of each group was around 5000 accounts. This migration logic helped to analyse

the new artifact workload and total processing time.

Figure 15. Migration and its steps

26

During the migration, the old and new artifacts were used in parallel, but they worked on

different sample groups. For example, if the new artifact processed the beta group accounts,

then those accounts were excluded in the old artifact. This exclusion was needed to avoid

processing same account multiple times in one day.

4.6 Evaluation

4.6.1 Qualitative evaluation

4.6.1.1 Architecture

A traditional platform-based architecture generally contains all functionality in one code-

base. This kind of architecture is easy to set up; however, scaling, customizing, and main-

taining it can quickly become costly and complex. This means that platform-based architec-

ture is not agile enough to meet the constantly changing needs of companies. All of this is

solved with the new artifact because the entire logic was moved to a new microservice in

the Investment domain. Additionally, the new artifact has its own database schema and ta-

bles which makes it easy to understand and easier to improve in the future.

4.6.1.2 Parallel processing

The old solution fetched suitable accounts from the database and started to process them

linearly in a for-loop. The new solution also fetches the accounts from the database, but after

that step produces one message broker event per account and that event is consumed by a

message broker consumer. This solution is event-driven and can be more easily scaled up if

needed. At the moment, there are 30 consumers processing the accounts, but that number

can be easily increased if the number of accounts keeps growing.

In the legacy system, scaling was limited to vertical scaling due to its monolithic architec-

ture, which made it difficult to distribute resources across multiple instances. This meant

that the system's capacity was limited by the resources of a single server. The ability to

horizontally scale the microservices architecture resulted in increased flexibility and better

resource utilization compared to the legacy system. This allowed for better performance

under high traffic conditions and improved the overall resilience of the system. The migra-

tion from the legacy system to the microservices architecture demonstrated the advantages

of horizontal scaling, which can help meet the increasing demands of modern applications

[33].

4.6.1.3 Decoupled services

The old solution was a part of the legacy system and used database procedures to perform

certain activities to the account, for example transfer money, convert currencies etc. The

new solution is part of the Investments domain and is written according to latest software

development standards at LHV. If a certain activity needs to be perform, then external ser-

vices are used for that. This solution creates a decoupled architecture which is easier to

develop and maintain than using a monolith architecture.

Another key area which was improved in the new solutions is the database. The old solutions

used legacy database which uses pessimist locking and it creates potential deadlock and

increases the database operation times. The new solution mainly uses the Investment domain

database which uses optimistic locking which is better suited for parallel processing and

speeds up the overall process.

27

4.6.1.4 Transparency

The old solution had an out-of-date user interface design and had data model which was

difficult to manage. The new solution uses an entirely new data model which is easier to

understand and offers possible automation improvements for the future. The event has sev-

eral states and that helped to create a user interface for the brokers which in easy to under-

stand and use.

The old solution also did not have any logging, which made debugging complicated and

developers had to speculate about the root cause of an exception if that happened. The new

solution has happy-path and not-so-happy-path logging which makes the process easy to

follow and debug if needed.

4.6.1.5 Documentation and knowledge transfer

The existing legacy solution was transferred to the Investment development team when the

team was created around 5 years ago. Investment team was not part of the software devel-

opment team which created the old artifact. Thanks to the new artifact, the knowledge is

present in the team and process is thoroughly document.

4.6.2 Quantitative evaluation

The focus of the quantitative evaluation is on the account processing step, because that step

in the process was not able to handle the number of accounts in the process.

It is difficult to compare old solution to the new one, because old solution did not have any

metrics or any other way to track the data processing. The new solution has sufficient log-

ging to track each action and its duration. For example, each account can be independently

analysed to find shortcomings and potential bottlenecks.

4.6.2.1 Data extraction

Data extraction is done thanks to the log parser application at LHV. It aggregates different

logs from the applications and enables to display and analyse the logged information.

It was possible to extract total processing time and the total number of accounts with frac-

tional orders from the old artifact. We used application HTTP request and response logging

information to calculate the total processing time. The number of accounts with fractions

orders and the number of fractional orders were fetched from the database, because that

information was not present in the logging information.

The old artifact was analysed from the 2nd of March to 20 of April of 2022. The old artifact

extracted data is presented in Table 1.

28

Table 1. The old artifact data

Date1 Processing time in

seconds

Number of ac-

counts with or-

ders

Total amount

of orders

Average pro-

cessing time

for account

with orders in

milliseconds

02.03 3244 13 687 47 942 237

09.03 4092 15 744 54 534 259

16.03 4165 16 200 56 006 257

23.03 3018 13 909 48 315 216

30.03 4388 14 203 49 857 308

06.04 5588 18 945 64 816 294

13.04 4308 17 301 59 574 249

20.04 3233 13 138 45 455 246

To evaluate the new artifact account processing step, a lot of logging was added to the pro-

cess to extract timestamps for each account processing sub step. Those timestamps were

then used to calculate each step duration. The entire new artifact data extraction was done

in the log parser application, additional database fetching was not needed, because all the

needed information was present in logs. A log parser application script was written to extract

the new artifact account processing step information. An example of the script is displayed

in Figure 16.

1 All of the dates are in year 2022.

29

Figure 16. The log extraction script to extract step timestamps

The result of the log parser application script is a table of information. It consists of columns

which represent sub steps in the account processing step.

The following sub steps were analysed:

• Customer preparation.

• Customer and account validation.

• Balance and its validation.

• Allocation preparation.

• Currency conversion preparation.

• Currency conversion.

• Fractional order creation.

• Fractional order storage.

• Reservation.

• Conclusion.

30

Figure 17. An example of the log parsing script execution result

The account processing step was analysed from the 1st of March to 19 of April of 2023. By

that time, all the accounts were migrated to the new artifact. One example of the extracted

data is presented in Figure 17.

In Table 2, 19th of April 2023 account processing steps timestamps are displayed. There can

be seen that currency conversion and reservation steps take the longest. Those findings are

consistent in all events. That is the reason why in the result table in Table 3, only those

account processing steps are displayed and not all of them.

31

Table 2. 19th of April 2023 account processing steps timestamps

Step Median time in milli-

seconds

Average time in millisec-

onds

Customer preparation 2 3.07

Customer and account valida-

tion

4 6.95

Balance and its validation 28 31.52

Allocation preparation 14 18.72

Currency conversion prepara-

tion

0 0.19

Currency conversion 6873 6367.92

Fractional order creation 31 37.66

Fractional order storage 12 15.89

Reservation 236 251.79

Conclusion 18 20.63

32

Table 3. The new artifact data2

 01.03 08.03 15.03 22.03 29.03 05.04 12.04 19.04

Number of ac-

counts
51 948 52 069 52 193 52 263 52 381 52 483 52 645 52 746

Number of ac-

counts with

money

13 771 15 085 17 518 17 131 14 357 21 509 18 374 14 973

Number of or-

ders
49 590 59 944 62 388 61 755 52 407 76 666 65 828 54 545

Number of cur-

rency conver-

sions

1929 2577 2582 7829 2559 13 670 4077 2795

Processing time

in seconds
621 682 743 1898 749 5369 1616 1093

Median account

processing time

in milliseconds

393 400 350 552 372 6073 405 399

Average account

processing time

in milliseconds

916 862 954 4026 1124 7169 2073 1614

Median currency

conversions pro-

cessing time per

account in milli-

seconds

1753 1995 2944 6679 3285 7681 7503 6873

Average cur-

rency conver-

sions processing

time per account

in milliseconds

3460 2695 3851 8000 4036 10 193 7365 6367

Median reserva-

tions processing

time per account

in milliseconds

219 239 216 229 224 232 232 236

Average cur-

rency conver-

sions processing

time per account

in milliseconds

227 253 228 246 236 247 249 251

4.6.2.2 Data analysis findings

The old artifact was able to process one account around 250-300 milliseconds. It is 3-4 times

faster than the new artifact processing time, which was around 900 milliseconds, when the

2 All of the dates are in year 2023.

33

number of currency conversion stayed around 2000-3000. Those findings cannot be directly

compared, because the old artifact processed accounts in a for-loop which means that one

account is processed at a time and the old process cannot move forward with another account

as long it is processing the previous account. That is not relevant to the new artifact, because

the new artifact adopted an event-drive approach and can process many accounts at a time.

At the moment, the number of consumers is 30 and that means 30 accounts are processed in

parallel at the same time. Doing it this way, the total processing time is shorter and elimi-

nates the main problem of the old artifact which was the accounts processing step duration.

Another side note is that new artifact one account median processing time is 2-3 times faster

than its equivalent average processing time. This can be explained by the bottlenecks in the

process which become worse when the system load increases.

When both artifacts’ total account processing time is compared with each other, then it can

be concluded that when the number of accounts with fractional orders is about the same,

then the new artifact is able to process the accounts 5-6 times faster.

After analysing the new artifact account processing data, two potential bottlenecks were

found: currency conversion and reservation steps. Currency conversion step finds what cur-

rencies and how much is needed to carry on with the process. If a currency is missing or its

value is not enough, then a currency conversion is performed using a redundant currency

present on the account. The conversion is done using an external service in the Foreign

Exchange microservice. Those HTTP requests take a lot of time, because an external service

provider cannot service the requests fast enough. The median processing time increasing is

noticeable if the number of currency conversions is higher than usual. For example, on a

normal week the total number of conversions is around 2000 to 3000, but once in a quarter,

the number rises to around 13 000, because of the dividends paid by ETFs. When that hap-

pens, then the processing time increases, and the total processing times takes a lot longer.

The second bottleneck is the currency reservation step which reserves money for each frac-

tional orders, so customers can not spend their money which is allocated to their orders.

That service uses the legacy database which has pessimistic locking and long query times.

The reservation is done using an external service in the Accounts microservice.

34

5 Discussion

The design-science research guidelines were used to achieve the research objective, formu-

lated as RQ: How to migrate a part of the legacy monolith application to a microservice?.

The research begins with understanding the old artifact and its limitations. This thesis fo-

cuses on a legacy system and its process which does not perform as needed, because the

number of accounts in the process has increased significantly and the total time to process

all the accounts in not acceptable anymore. To overcome this limitation, the solution was a

total rewrite of the existing process and separate it from the legacy system.

The next step was requirements elicitation and specification. Informal interviews were con-

ducted by a product owner with different stakeholders and end-users to come up with func-

tional and non-functional requirements. The old process was used as an example to drive

the requirement elicitation, because the old process contained all the necessary steps to offer

automatic fractional trading to customers. The most important requirement was that the new

artifact has to be able to process 100 000 accounts in under 30 minutes. That ruled out any

linear processing flows because that would have meant the one account has to be processed

in 18 milliseconds. That is not possible by LHV IT infrastructure. The only choice was to

figure out how to process the account in parallel. LHV IT-department uses a message broker,

and it offers producing events to a queue and consuming it by one or many consumers. To

achieve the main requirement set by the product owner, this seemed the only way how to do

it.

All of the technological choices were driven by the LHV limitation that there exists some

technologies which have become standard at the company and can be used without extra

validation or approval process. That made the technological choices easy to choose. There

choices were Java and Spring Boot framework for back-end, Angular for front-end, Mi-

crosoft SQL for database, and ActiveMQ for message broker.

The new artifact also improved different qualitative parameters of the product. The new

artifact uses microservices architecture which is easier to maintain and scale. It also makes

use of message broker features to process all the accounts in parallel. The new artifact is

decoupled from other services in the domain so the services do not impact each other and

can be developed independently. Another qualitative benefit is the improved transparency:

the new artifact has decent application logging to track the process. Documentation and

knowledge transfer was achieved during the new artifact development because its features

and functionality was thoroughly analysed and documented.

There were different approaches how to migrate accounts from the old artifact to the new

artifact. The best risk mitigated solution was to slowly increase the number of accounts in

the new artifact and analyse each increase. This allowed to validate the system load and

artifact. Another plus of this approach was that if an exception happed, then the fault can be

discovered sooner, and the consequences can be kept to a minimum.

The old artifact used database procedures to convert currencies and reserve money. Both of

those were replaced with requests to external microservices. Those changes helped to high-

light a fact that external systems can become bottlenecks in a process. On average, the re-

quests to Accounts application last around 200-300 milliseconds, but the main problem area

is the Foreign Exchange application which cannot tolerate the load originating from the new

artifact. Because the new artifact processes the accounts in 30 message broker consumers in

parallel, this creates a high load on the Foreign Exchange system which they cannot handle

so many requests at a time. The third-party API used by the Foreign Exchange system to

convert currencies is not meant to be used in parallel and each request is processed slowly,

35

and the response times can last up to 30 seconds. This creates a noticeable delay in the

overall process and the total processing times of the accounts increases.

It can be said that the new artifact satisfies the requirements specified by the product owner.

The only major drawback is the long duration of requests to the Foreign Exchange applica-

tion, but this fault is not caused by the new artifact and is only be tolerated as long as the

number of currency conversions stays around 2000-3000. If the number is bigger than the

average response time grows significantly and can grow up to 30 seconds, which is not

acceptable and causes delays in the process. It was not possible to predict this problem,

because the new artifact was the first to use that Foreign Exchange service.

Here are some learnings and suggestions based on this thesis for similar software develop-

ment projects:

• Understand the existing infrastructure and its limitations.

• Incremental migration.

• Benefits of application logging.

• Unexpected bottlenecks.

The idea behind understanding the existing infrastructure and its limitations is that for the

new artifact development, the technological choices were driven by the technologies present

in the LHV IT-infrastructure. Different technologies have different features and enable to

use logics which may not be present in some other technology. For example, while pro-

cessing the accounts, ActiveMQ does not have an option to automatically start a new pro-

gramming logic when all the events in a queue are successfully consumed. Because of that

limitation, an additional account process tracking logic was added to the process.

Incremental migration is a suggestion to minimize potential problem escalation and keep

aftermath as small as possible. This is especially crucial in production environment where

customer money and data can be affected. Thanks to the incremental migration, it was pos-

sible to analyse each migration step and its impact on the systems. If a programming excep-

tion happened, it was possible to detect it sooner and keep the aftermath under control.

Application logging is a useful way to add transparency to the process. Is also offers better

debugging information to find a mistake in the programming logic. Application happy-path

logging is also beneficial to track that all the steps were performed to guarantee meeting the

business requirements.

The bottlenecks caused by external services highlighted the importance of thoroughly eval-

uating and optimizing all external services before integrating them into a microservices ar-

chitecture. Failure to do so can result in performance issues and slow down the entire sys-

tem. Despite the unexpected bottlenecks caused by external services, the migration to a mi-

croservices architecture ultimately resulted in a more scalable and flexible system. How-

ever, it was important to address these bottlenecks to ensure that the benefits of the micro-

services architecture could be fully realized.

5.1 Limitations

Firstly, there is the contextual limitation. The effectiveness of this new artifact is limited to

the specific context which the artifact was developed for. If a microservice is developed for

one specific goal, then it may not be suitable for use in other systems due to difference in

system requirements and business needs.

Another limitation was the available technologies to develop the new artifact. That limita-

tion is relevant because LHV has pre-approved technologies which can be used to develop

36

software. Technologies influence the software application design because different technol-

ogies offer different feature. At the moment, those technologies were available to develop

the new artifact and that is the reason they were chosen.

The old artifact missed application logging and any metrics to analyse its process. That made

the old artifact data extraction difficult and limited, and the extracted logging information

is not as good as the information from the new artifact. The consequence is it is not possible

to analyse the old artifact as thoroughly as the new one, for example, each account pro-

cessing sub step can be individually analysed in the new artifact, but that is not possible in

the old artifact because there is no data on that. The only logging information present was

the HTTP logs which were used to calculate the total processing time of all accounts. Be-

cause that information was not enough to evaluate the new artifact, additional database que-

ries were done to fetch the total number of accounts and fractional orders.

37

6 Conclusion

This thesis aimed to migrate a part of the legacy monolith application to a microservice. A

design-science research methodology was employed, and the new artifact was designed and

developed considering the requirements from a product owner.

Firstly, to design and develop the new artifact, the software development process started

with the problem statement to understand the old artifact and its shortcomings. The old ar-

tifact was not able to handle the increasing number of accounts in the process and the total

processing time kept rising. Secondly, requirements elicitation and specification were done

to describe the new artifact so it satisfies the set requirements and can handle the system

load and scale up if needed. Thirdly, the technologies were chosen, and the new artifact was

designed and developed. Finally, the evaluation results demonstrated that the new artifact

achieved the primary goal of improving performance and scalability compared to the old

monolithic legacy artifact. The secondary goals of parallel processing, decoupled services,

transparency, and documentation & knowledge transfer were also achieved. However, some

limitations were identified.

In conclusion, this thesis proves that design-science research methodology is an acceptable

approach to address complex software development problem and can lead to the develop-

ment of artifacts that solve real-life needs. The new artifact developed in this study can serve

as a model for future research and software development. The artifact can be applied to other

contexts with similar requirements, and further research could be conducted to address the

identified limitations and refine the artifact.

For future work, there are several improvement opportunities. It is possible to scale the ar-

tifact vertically so the number of account processing message consumer is increased, and

more accounts can be processed in parallel. Another option is to decrease the individual

account processing duration so each account is processed more quickly. To achieve that, the

artifact can be optimized internally and externally. At the moment, the internal optimization

gain would be minimal, because the external bottlenecks are too limiting. The external ser-

vices should solve their shortcomings so that the artifact internal optimization benefit would

be noticeable.

At the moment, the main focus was to speed up the account processing and allow process

to scale up if needed. Because of that focus, all the resources were allocated to make that

part of the process as good as possible. The consequence of that focus is that there are other

process steps which can be improved. In the finalization step for example, the fractional

orders are processed one at a time and that may become a bottleneck in the future.

38

References

[1] J.D. Power. U.S. Retail Banks Nail Transition to Digital during Pandemic, J.D.

Power Finds. https://www.jdpower.com/sites/default/files/file/2021-

04/2021037%20U.S.%20Retail%20Banking%20Satisfaction.pdf (22.04.2023)

[2] Oliver S. Qonto Blog. The perks of modern banking. https://qonto.com/en/blog/busi-

ness-management/banking/traditional-vs-modern-banking (23.04.2023)

[3] Deutsche Bank. How AI is changing banking. https://www.db.com/what-next/digi-

tal-disruption/better-than-humans/how-artificial-intelligence-is-changing-banking

(22.04.2023)

[4] LHV. Ettevõttest. https://www.lhv.ee/et/ettevottest(23.04.2023)

[5] Lõhmus R. Finantsportaal. Täringumäng ja kasvukonto.

https://fp.lhv.ee/news/newsView?locale=et&newsId=3969607 (23.04.2023)

[6] Pikkel S. Finantsportaal. Kasvukonto - pikaajaline investeerimine.

https://fp.lhv.ee/forum/invest/130191?postId=3027951 (22.04.2023)

[7] Lewis J., Fowler M.. Microservices. www.martinfowler.com/articles/micro-

services.html (30.04.2023)

[8] Chen L. Microservices: Architecting for Continuous Delivery and DevOps. IEEE

International Conference on Software Architecture (ICSA 2018), pp. 1-8

[9] Richardson C. Microservice Architecture. Pattern: Microservice Architecture.

https://microservices.io/patterns/microservices.html (30.04.2023)

[10] Harris C. Atlassian. Microservices vs. monolithic architecture. https://www.atlas-

sian.com/microservices/microservices-architecture/microservices-vs-monolith

(23.04.2023)

[11] Morningstar. LHV Group AS. https://www.morn-

ingstar.com/stocks/xtal/lhv1t/quote (23.04.2023)

[12] LHV. Kasvukonto. https://www.lhv.ee/et/kasvukonto (22.04.2023)

[13] Tõnisson R. Finantsportaal. Kuhu investeeriti LHV Kasvukontoga IV kvartalis

2022?. https://fp.lhv.ee/news/newsView?newsId=5649492 (22.04.2023)

[14] Pensionikeskus. Pensioni investeerimiskonto (PIK). https://www.pension-

ikeskus.ee/ii-sammas/pensioni-investeerimiskonto-pik (22.04.2023)

[15] LHV. LHV PIK ehk pensioni investeerimiskonto. https://www.lhv.ee/et/pik

(23.04.2023)

[16] Tõnisson R. LHV PIKi kasutajad ootavad turgude languse jätkumist.

https://fp.lhv.ee/news/newsView?locale=et&newsId=5643863 (22.04.2023)

[17] Nasdaq. Omnibus account. https://www.investopedia.com/terms/o/omnibusac-

count.asp (23.04.2023)

[18] Chen J. Investopedia. What Is an Omnibus Account? How It's Managed.

https://www.nasdaq.com/glossary/o/omnibus-account (23.04.2023)

[19] Majaski C. Investopedia. Fractional Share: Definition, Examples, How To Buy &

Sell. https://www.investopedia.com/terms/f/fractionalshare.asp (02.05.2023)

[20] Marquit M. How Do Fractional Shares Work?. https://www.forbes.com/advisor/in-

vesting/fractional-shares/ (02.05.2023)

[21] Gregor, S., and Hevner, A. R. Positioning and presenting design science research

for maximum impact. MIS quarterly (2013), 337–355.

[22] Boehm B., A View of 20th and 21st Century Software Engineering, Proceedings of the

28th international conference on Software engineering, 2006, pp. 12-29.

[23] Kniberg, H., Skarin, M., Kanban and Scrum: Making the Most of Both. United States

of America: C4Media. 2010.

https://www.jdpower.com/sites/default/files/file/2021-04/2021037%20U.S.%20Retail%20Banking%20Satisfaction.pdf
https://www.jdpower.com/sites/default/files/file/2021-04/2021037%20U.S.%20Retail%20Banking%20Satisfaction.pdf
https://qonto.com/en/blog/business-management/banking/traditional-vs-modern-banking
https://qonto.com/en/blog/business-management/banking/traditional-vs-modern-banking
https://www.db.com/what-next/digital-disruption/better-than-humans/how-artificial-intelligence-is-changing-banking
https://www.db.com/what-next/digital-disruption/better-than-humans/how-artificial-intelligence-is-changing-banking
https://www.lhv.ee/et/ettevottest(23.04.2023)
https://fp.lhv.ee/news/newsView?locale=et&newsId=3969607
https://fp.lhv.ee/forum/invest/130191?postId=3027951
http://www.martinfowler.com/articles/microservices.html
http://www.martinfowler.com/articles/microservices.html
https://microservices.io/patterns/microservices.html
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.morningstar.com/stocks/xtal/lhv1t/quote
https://www.morningstar.com/stocks/xtal/lhv1t/quote
https://www.lhv.ee/et/kasvukonto
https://fp.lhv.ee/news/newsView?newsId=5649492
https://www.pensionikeskus.ee/ii-sammas/pensioni-investeerimiskonto-pik
https://www.pensionikeskus.ee/ii-sammas/pensioni-investeerimiskonto-pik
https://www.lhv.ee/et/pik
https://fp.lhv.ee/news/newsView?locale=et&newsId=5643863
https://www.investopedia.com/terms/o/omnibusaccount.asp
https://www.investopedia.com/terms/o/omnibusaccount.asp
https://www.nasdaq.com/glossary/o/omnibus-account
https://www.investopedia.com/terms/f/fractionalshare.asp
https://www.forbes.com/advisor/investing/fractional-shares/
https://www.forbes.com/advisor/investing/fractional-shares/

39

[24] Java. What is Java technology and why do I need it?.

https://www.java.com/en/download/help/whatis_java.html (23.04.2023)

[25] Java Documentation. Processes and Threads. https://docs.oracle.com/javase/tuto-

rial/essential/concurrency/procthread.html (23.04.2023)

[26] Spring Framework Reference Documentation. Part I. Overview of Spring Frame-

work. https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-refer-

ence/html/spring-introduction.html (23.04.2023)

[27] Spring Framework Reference Documentation. 21. JMS (Java Message Service)

Part VI. Integration. https://docs.spring.io/spring-framework/docs/3.0.x/spring-

framework-reference/html/jms.html (23.04.2023)

[28] Angular. What is Angular?. https://angular.io/guide/what-is-angular (23.04.2023)

[29] Angular. Angular Features. https://angular.io/features (23.04.2023)

[30] Microsoft. Introducing SQL Server 2019. https://www.microsoft.com/en-us/sql-

server/sql-server-2019 (23.04.2023)

[31] Apache ActiveMQ. ActiveMQ Classic. https://activemq.apache.org/compo-

nents/classic/ (22.04.2023)

[32] Committee on Payment and Settlement Systems A glossary of terms used in pay-

ments and settlement systems (2003), 47–48.

[33] Section. Scaling Horizontally vs. Scaling Vertically. https://www.sec-

tion.io/blog/scaling-horizontally-vs-vertically/ (29.04.2023)

https://www.java.com/en/download/help/whatis_java.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-reference/html/spring-introduction.html
https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-reference/html/spring-introduction.html
https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-reference/html/jms.html
https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-reference/html/jms.html
https://angular.io/guide/what-is-angular
https://angular.io/features
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://activemq.apache.org/components/classic/
https://activemq.apache.org/components/classic/
https://www.section.io/blog/scaling-horizontally-vs-vertically/
https://www.section.io/blog/scaling-horizontally-vs-vertically/

40

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Kert Männik,

1. grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for

the purpose of preservation, including for adding to the DSpace digital archives until

the expiry of the term of copyright, my thesis

From Legacy to Microservices: A Case Study on Automatic Investment at LHV,

supervised by Fredrik Payman Milani,

2. I grant the University of Tartu a permit to make the thesis specified in point 1

available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives, under the Creative Commons licence CC BY NC

ND 4.0, which allows, by giving appropriate credit to the author, to reproduce,

distribute the work and communicate it to the public, and prohibits the creation of

derivative works and any commercial use of the work until the expiry of the term of

copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Kert Männik

05.05.2023

