
A short introduction to PIR and batch codes

Henk D.L. Hollmann *

February 25, 2022

Abstract

We present a short introduction to PIR and batch codes and their applications.

*Institute of Computer Science, University of Tartu, Tartu 50409, Estonia (henk.d.l.hollmann@ut.ee)

1

1 Introduction

Binary PIR and batch codes both encode blocks of data bits into code words and both fa-
cilitate the recovery from a code word of multiple data bits simultaneously, by inspecting
disjoint parts of the code word. PIR codes are designed to handle multiple requests for
the same data bit, while batch codes can handle requests for arbitrary sequences of data
bits. t-PIR codes have applications for example in Private Information Retrieval (PIR),
where they allow to reduce the storage overhead in t-server PIR schemes by emulating the
t servers. Batch codes are employed for example in network switches for load-balancing
purposes. Typically, problems on PIR and batch codes need techniques from combina-
torics, linear algebra, and coding theory. The field is relatively new, so there are lots of
interesting questions to work on, and there are also opportunities to write smart software
for explorative purposes, or to survey parts of the literature. Research problems concern
for example the understanding of the known examples of such codes and using these in-
sights to generalize known examples or to investigate variants of these codes for scenarios
where some parts of the data are in higher demand than other parts. For non-binary or
for nonlinear PIR or batch codes, not much, respectively almost nothing is known.

2 Finite fields and codes

In this short introduction, we consider elements v = (v1, . . . , vn) of {0, 1}n as vectors ,
where all the usual computations on vectors now done modulo 2. That is, we consider
such elements as vectors over the finite field F2 consisting of 0,1, with addition and
multiplication modulo 2. The inner product (a, b) of two vectors a = (a1, . . . , an) and
b = (b1, . . . , bn) in {0, 1}n is defined by (a, b) = a1b1+ · · ·+anbn (again with all operations
modulo 2). We will use ei to denote the i-th unit vector , having a 1 in position i and a 0
in the other positions.

A code of length n is a subset of Fn
2 ; the code is linear of dimension if it is a k-

dimensional linear subspace of Fn
2 . A generator matrix of a linear k-dimensional code is

a k × n matrix G with entries in F2 such that the rows of G form a basis for C. Such a
generator matrix serves as an encoder for C, where a vector of k data bits a = (a1, . . . , an)
is encoded into the code word c = aG. We say that a generator matrix is systematic if
(possibly after a permutation of the columns) it is of the form (IkP), where Ik denotes
the k × k identity matrix . Note that when a systematic generator matrix is used as
an encoder, then the data vector a encodes into a code word of the form c = aG =
(a1, . . . , ak, ck+1, . . . , cn), so the data itself appears within the code word.

3 PIR-codes

In the classical model for Private Information Retrieval (PIR), a user wishes to extract
one bit of information from a database stored on a set of t servers in such a way that

1

no individual server gains any information on which bit the user was interested in. A t-
PIR-code can be used to implement a given (linear) t-server PIR scheme with less storage
overhead than the original scheme, where the t-PIR code is employed to emulate the t
servers involved in the t-server PIR scheme [1], [2]. See also [7] for a nice introduction to
this subject.

Example 3.1 A 2-server PIR scheme.
Servers S1 and S2 both store the data record x = (x1, ..., xn) in {0, 1}n. To retrieve

a bit xi, choose a uniformly random query vector q in {0, 1}n, uniformly at random, and
send q to S1 and q′ = q + ei to S2. A server responds to a query by returning the inner
product of the query with the data it holds. So we get back r1 = (q, x) from S1 and
r2 = (q′, x) from S2. Now we compute

r = r1 + r2 = (q, x) + (q′, x) = (q + q′, x) = (ei, x) = xi

to retreive bit xi. Note that by the uniform randomness of q, servers S1 and S2 both learn
nothing about in which bit we were interested. 2

Example 3.2 To reduce the storage overhead of the 2-server PIR scheme in Example 3.1,
we can use the 2-PIR code with generator matrix

G =

(
1 0 1
0 1 1

)
.

To use this code, partition the data x as x = (x(1), x(2)), and store x on three servers
T1, T2, T3, where T1 stores x(1), T2 stores x(2), and T3 stores x(1) + x(2). Suppose we want
to retreive bit xi with xi = x

(1)
j . We have two copies of x(1) available, one on T1, and one

by combining the data on T2 and T3. So send q to T1 and q + ej to both T2 and T3. We
receive back

r1 = (x(1), q), r
(2)
2 = (x(2), q + ej), r

(2)
3 = (x(1) + x(2), q + ej).

Now by combining the information received from T2 and T3, we obtain

r2 = r
(2)
2 + r

(2)
3 = (x(2), q + ej) + (x(1) + x(2), q + ej) = (x(1), q + ej);

and we are in the position to obtain bit xi = x
(1)
j as

r = r1 + r2 = (x(1), q) + (x(1), q + ej) = (x(1), ej) = x
(1)
j = xi.

It should by now be clear what to do to retreive a bit xi when the i-th bit is contained in
the second part x(2) of x, that is, if xi = x

(2)
j .

Note that this magic could not be done with a non linear 2-PIR code: if the recon-
struction of x1 from the server content c2 of T2 and c3 of T3 Is not linear, then there seems
to be no way to compute an inner product (q, x1) from the inner products (q, c2) and
(q, c3), so it is not sufficient for the servers T2 and T3 to simply execute the PIR scheme
protocol for server S2. 2

2

4 Batch codes

A t-batch code is a method to store a data record in encoded form on multiple servers
in such a way that the bit-values in any batch of t positions from the record can be
retrieved by decoding the bit-values in t disjoint groups of positions. Batch codes were
initially introduced in [3] as a method to improve load-balancing in distributed data
storage systems. Later, so-called switch codes , a special type of batch codes, were proposed
in [8] as a method to increase the throughput rate in network switches.

Example 4.1 Here we present an example of the use of a batch code in a switch, see
Figure 1 (figure and example taken from [8]).

Figure 1: A switch with data uncoded, replicated, and batch-encoded

In every clock-cycle, two bits of incoming data are written on two servers (left), and two
users attempt to read a bit of data. However, each server can only deliver one bit per clock-
cycle. So if both users attempt to read the same data, only one request can be granted.
One solution to this problem is replication: simply employ four servers (middle), and
write each bit on two servers. A smarter solution is to use a 2-batch code with generator
matrix

G =

(
1 0 1
0 1 1

)
,

employing just 3 servers (right). Now, every request of the users can be served. Indeed, if
user 1 requests bit A and user 2 requests bit B, then they just read it form the first two
servers; if both user 1 and user 2 request bit A, then user 1 reads A from the first server
and user 2 reads B and A+B from the second and third server, and simply computes A.
In this way, storage overhead is reduced, at the cost of some additional communication
and some computations. 2

3

5 Definitions of PIR- and batch-type codes

We now give a precise mathematical definition of PIR- and batch-type codes. This section
can be skipped on first reading, but can be consulted when a certain notion is in doubt.
For later use, we initially keep our definitions slightly more general, later we specify
these definitions to the cases of PIR and batch codes. First, we need the notion of
an encoder . Let Σq denote an alphabet consisting of q distinct letters. Often,we let
Σq = {0, 1, . . . , q − 1}, but any set of size q will do. If q is a prime-power, then often we
identify the alphabet with the set of elements of the finite field Fq of q elements, and for
integers n ≥ 1, we identify the set Fn

q with the vector space of dimension n over Fq.

Definition 5.1 A q-ary k-to-n encoder is a on-to-one map ϵ : Σk
q → Σn

q . A decoder for
the encoder ϵ is a map δ : Σn

q → Σk
q such that if ϵ(a) = c, then δ(c) = a. The encoder is

said to be linear if q is a prime power, Σq = Fq, and ϵ is an Fq-linear map on Fk
q . In that

case, the encoder ϵ can be identified with a k × n generator matrix G over Fq, and the
encoder map takes the form ϵ : a → aG for all vectors a ∈ Fk

q .

PIR- and batch-type codes are characterized by the property that given the encoded data,
certain types of simultaneous requests for specific data symbols can each be handled by
reading and decoding data from a set of positions called a recovery set , where there is
limited overlap of these recovery windows. The next definition makes this precise. First we
recall some terminology. Let I = {i1, . . . , is} be a subset of {1, . . . , n} with i1 < · · · < is.
If c = (c1, . . . , cn) ∈ Σn

q , then the restriction cI of c to the positions in I is the word
(ci1 , . . . , cis).

Definition 5.2 Let ϵ : Σk
q → Σn

q be an encoder. We say that a subset I of {1, . . . , n} is
a recovery set of ϵ for the i-th data symbol if for every a ∈ Σk

q , the i-th symbol ai of a
is uniquely determined by the restriction cI of the code word c = ϵ(a); that is, if there

exists a decoding function δI,i : Σ
|I|
q → σq such that if c = ϵ(a), then δI,i(cI) = ai.

Definition 5.3 A query for an encoder ϵ : Σk
q → Σn

q is a sequence i1, . . . , it of (not
necessarily distinct) elements of {1, . . . , k}. Given a code word c = ϵ(a), the query
i1, . . . , it should be considered as a request to obtain the data symbols ai1 , . . . , ait .

Definition 5.4 Let ϵ : Σk
q → Σn

q be an encoder. We say that a sequence of subsets
I1, . . . , It of {1, . . . , n} serves a query i1, . . . , it for ϵ if for every j = 1, . . . , t, the set Ij is a
recovery set of ϵ for the ij-th data symbol. We say that I1, . . . , It serve the query i1, . . . , it
for ϵ with width w and multiplicity µ if |Ij| ≤ w for all j and if every i ∈ {1, . . . , n} occurs
in at most µ of the sets Ij.

Now we are ready for a definition of batch-type codes.

Definition 5.5 Let ϵ : Σk
q → Σn

q be an encoder, let Q be a collection of queries for ϵ, and
let w, µ be positive integers. We say that ϵ is a (R, w, µ)-batch code if ϵ can serve every

4

query from Q with width at most w and multiplicity at most µ. If no constraint is posed
on the width (or on the multiplicity) then we set w = ∞ (or µ = ∞). Similarly, we say
that a code C = Σn

q is a (R, w, µ)-batch code if it has an encoder that is a (R, w, µ)-batch
code.

In particular, a t-PIR code is is a (Q,∞, 1) code where Q consists of all sequences
i, i, . . . , i (t times), and a t-batch code is a (Q,∞, 1) where Q consists of all sequences
i1, . . . , it of (not necessarily distinct) elements from {1, . . . , n}.

A (linear) functional t-batch code is an encoder that can serve any sequence of t
requests for arbitrary linear combinations of the data symbols with mutually disjoint
recovery sets.

We end this section with a discussion of a relation between the strength of a code as a PIR-
code and its minimal Hamming distance. Recall that the Hamming distance between two
vectors v, w is the number of coordinates in which v and w differ; the minimum (Hamming)
distance of a code is the minimal Hamming distance between two distinct code words.

In what follows, an (n,M, d)q-code C is a subset of Σn
q of size M , with minimum

Hamming distance d. For q a prime power, an [n, k, d]q code is an Fq-linear code of
length n and dimension k over the finite field Fq, with minimum distance d. Part of the
research into batch-type codes is motivated by the following simple result.

Theorem 5.6 Let C be a (possibly nonlinear) (n, qk, d)q-code, Suppose furthermore that
C has an encoder ϵ : Fk

q → C that turns C into a (t,∞, µ)-PIR code. Then ⌈t/µ⌉ ≤ d.

Proof. Let c(1) = ϵ(a(1)) and c(2) = ϵ(a(2)) be distinct code words from C. Then there

is an i such that a
(1)
i ̸= a

(2)
i . By our assumption, there are sets I1, . . . , It that serve the

query i, . . . , i with multiplicity at most µ. So for every set Ij, the restrictions c
(1)
Ij

and c
(2)
Ij

determine distinct data symbols, hence Ij must contain a position ij for which c
(1)
ij

̸= c
(1)
ij
.

By the multiplicity condition, every position is contained in at most µ of the sets Ij; hence
there must be at least ⌈t/µ⌉ distinct positions among i1, . . . , it, and as a consequence, c(1)

and c(2) differ in at least ⌈t/µ⌉ positions. Since the code words were arbitrary, we conclude
that d ≥ ⌈t/µ⌉. 2

6 Some further examples

A PIR-code can be a complicated thing of beauty. Here is an example based on 2-designs.

Example 6.1 The 10 subsets

{0, 1, 2}, {0, 2, 3}, {0, 1, 4}, {1, 2, 5}, {0, 3, 5}, {2, 3, 4}, {0, 4, 5}, {1, 3, 4}, {1, 3, 5}, {2, 4, 5}

of {0, 1, 2, 3, 4, 5} form a 2−(v, k, λ) design with v = 6, k = 3, and λ = 2: it is a collection
of b = 10 subsets of size k = 3 (the “blocks”) of a set of size v = 6 (“the points”) with the

5

property that every pair of points is contained in precisely λ = 2 blocks. Suppose that
a certain point p is contained in rp blocks. By counting pairs (q, B) of points q ̸= p and
blocks B for which p, q ∈ B in two different ways, we see that

(v − 1)λ = rp(k − 1),

hence rp = λ(v−1)/(k−1) does not depend on the particular point p. So every point is on
r blocks, for some constant r. Next, by counting pairs (p,B) of points p and blocks B with
P ∈ B in two different ways, we obtain that bk = vr, hence b = vr/k = λv(v−1)/k(k−1).

Construct a matrix G that has the form G = (I6A) with A the 6×10 incidence matrix
of the design: we index the row with the points, the columns with the blocks, and we let
Av,B = 1 precisely when v ∈ B, and Av,B = 0 otherwise. So we find

G =


1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1


It can be checked thatG is the generatormatrix of a 6-dimensional 6-PIR code of length 16.
Indeed, we see for example that the collection containing the single set {0} and the
collections of three sets {1}, {0, 3, 5}, {1, 3, 5}; {2}, {0, 4, 5}, {2, 4, 5}; {3}, {0, 1, 4}, 1, 3, 4};
{4}, {0, 2, 3}, {2, 3, 4}; {5}, 0, 1, 2}, {1, 2, 5} all have the property that 0 occurs in the union
and all other elements occur twice in the sets in the collection.

It is a nice problem to try to figure out what properties of a 2 − (v, k, λ) design are
needed to obtain a PIR code in a similar way as here. 2

And here is an example of a batch code based on a simplex code.

Example 6.2 Consider the 3×7 binary matrix G that has as its columns all the nonzero
binary vectors of length 3. So

G =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

This matrix can be used to encode a datavector a = (a2, a1, a0) into a code word

c = aG = (a0, a1, a0 + a1, a2, a2 + a0, a2 + a1, a2 + a1 + a0).

It can be checked that every request ai1 , ai2 , ai3 for three of the data symbols can be served
by three disjoint set of column positions I1, I2, I3, where aij is recovered by adding the
code word bits (modulo 2) in the positions of Ij. for example, the request a0, a0, a0 can
be served by the recovery sets I1 = {1}, I2 = {2, 3}, I3 = {4, 5} and the request a0, a0, a1
by the recovery sets I1 = {1}, I2 = {4, 5}, I3 = {2}. Moreover, for such requests, the size
of the recovery sets can always be chosen to be 1 or 2.

Again, it is a nice problem to figure out what exactly makes this example work. 2

6

7 Some research questions and/or project proposals

Here we give a brief summary of a number of research topics, and we propose some
research questions and some concrete research problems.

1. Find systematic constructions for known examples of binary linear PIR and batch
codes, see, e.g., [1, 2], [10, 9], [4] for a large amount of PIR codes described just by
a computer-generated generator matrix, and construct new examples.

2. Find lower bounds for Pq(k, t) and Bq(k, t), the shortest length of a q-ary k-
dimensional t-PIR and t-batch code, respectively. Except for the lower bound im-
plicit in Theorem 5.6 and the lower bound in [4] resulting from the bound in [5] for
the binary case, almost nothing is known here. The lower bounds for P2(k, 3) and
P2(k, 4) in [5] are in fact tight (for the statement of these bounds, see also point 7
below). It would be desirable to find a better proof. There are also some general-
izations of techniques known for locally repairable codes, see, e.g., [6], but these are
only good when q is large. It would be interesting to try to find other lower bounds.

3. Find further values of Pq(k, t) and Bq(k, t); this needs both lower bounds and con-
structions. For tables for q = 2, see [4]; for q > 2, (almost) nothing is known.
This would probably also require some programming work to find examples of good
codes.

4. Find interesting good nonlinear PIR or batch codes, that is, with better parameters
than any linear code. In fact, although there must exist very many, there is not a
single example known! It would be nice to find such a code with small parameters.
One approach would be to exclude possible candidate sets of parameters. Some
initial work in this direction has just started.

5. The strength of a code as a PIR or a batch code is the largest t for which the code is a
t-PIR or a t-batch code. It can sometimes be quite tricky to determine the strength
of a given error-correcting code when used as a batch code. An interesting problem
could be to take a specific linear or nonlinear code and investigate its strength.
Since some of the good nonlinear codes are best understood as codes over Z4, that
would also require understanding of codes over non-finite-field alphabets such as Z4.
Depending on your taste, you could investigate some of these problems.

6. We know that a t-PIR code has minimum Hamming distance at least t; this bound
can sometimes be attained and it would be nice to know more examples of these
so-called distance-optimal PIR-codes. No example of a nonlinear PIR or batch code
is known that beats the existing linear ones; it should be possible to find an example
of reasonably small size.

7

7. Generalize the bounds for P2(k, 3) from [5] to nonlinear codes. For linear 3-PIR
codes, the bound states that

P2(k, 3) ≥ k +min{r | r(r − 1) ≥ 2k},

and in fact
P2(k, 3) = k + ⌈(1 +

√
1 + 8k)/2⌉,

and in addition, if t is even, then P2(k, t) = P2(k, t − 1) + 1. This may be quite
difficult.

8. In the theory of error-correcting-codes, there exist so-called unequal-error-protecting
codes. In analogy, we could investigate PIR or batch codes especially designed for
cases where some parts of the data are more in demand, more popular, than other
parts; can we do better than just using a combination of two codes? This question
is completely new. It should be quickly possible to discover at least examples where
something better can be done than combining two codes, or showing that combining
codes is always optimal. A separate document is now available in which this problem
is discussed in more detail.

9. A k×n generator matrix is systematic if the columns of G can be permuted so that
the first k columns form the k × k identity matrix. There is the question if there
exists a code with a non-systematic generator matrix that gives a stronger PIR or
batch code than any systematic generator matrix for that code. This has recently
been solved for PIR-codes: the answer is yes. However, the proof is by computer
and exhaustive search. We could try to find a methodical construction, or at least
try to understand why this worked. For batch codes, this problem is still unsolved.

10. No encoder (linear or nonlinear) for the binary linear code with length n = 2k − 1
and dimension 2k − 1 − k can produce a 3-PIR code for k ≥ 3. Linear codes with
these parameters are unique (these are the binary Hamming codes), but for k > 3
there exist also nonlinear codes with these parameters. Can such a code ever be a
3-PIR code?

11. For possibly nonlinear (n, qk, d)2 codes with locality r (essentially systematic pos-
sibly nonlinear codes where every information symbol can be recovered from r
other positions) there is a generalization of the Singleton bound stating that
n ≥ k + (k/r) + d − 2. Is it possible to generalize such bounds to the case of
possibly nonlinear PIR or batch codes? This should certainly be possible for sys-
tematic nonlinear codes.

All of these problems could be discussed in much more detail, but to keep the size of this
document within reasonable bounds, the reader is referred to the author for more details.

8

Acknowledgments

This research was supported by the Estonian Research Council grant PRG49.

References

[1] A. Fazeli, A. Vardy, and E. Yaakobi. Codes for distributed PIR with low storage
overhead. In Proc. IEEE Symp. Information Theory (ISIT), pages 2852–2856, Hong
Kong, 2015.

[2] A. Fazeli, A. Vardy, and E. Yaakobi. PIR with low storage overhead: coding instead
of replication, 2015. [Online] Available: https://arxiv.org/abs/1505.06241.

[3] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their appli-
cations. In Proc. 36th ACM Symposium on Theory of Computing (STOC), Chicago,
pages 1057–1061, June 2004.

[4] S. Kurz and E. Yaakobi. PIR codes with short block length. Des. Codes, Cryptogr.,
89:559–587, June 2021.

[5] S. Rao and A. Vardy. Lower bound on the redundancy of PIR codes, 2017. [Online]
Available: http://arxiv.org/abs/1605.01869.

[6] V. Skachek. Batch and PIR codes and their connections to locally repairable codes.
In M. Greferath, M. O. Pavčević, N. Silberstein, and M. Ángeles Vázquez-Castro,
editors, Network Coding and Subspace Designs, pages 427–442. Springer, 2018.

[7] A. Vardy. Private Information Retrieval: Coding instead of Replication. Talk at
the Institate Henri Poincaré, March 25, 2016. [Online] Available: https://www.

youtube.com/watch?v=WU2-6Da8IyE&t=934s.

[8] Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck. Codes for network switches. In
Proc. 2013 IEEE International Symposium on Information Theory (ISIT), pages
1057–1061, Istanbul, 2013.

[9] Y. Zhang, T. Etzion, and E. Yaakobi. Bounds on the length of functional PIR and
batch codes. IEEE Trans. on Inform. Theory, pages 4917–4934, 2020.

[10] Y. Zhang, E. Yaakobi, and T. Etzion. Bounds on the length of functional PIR and
batch codes. In Proc. 2019 IEEE International Symposium on Information Theory,
pages 2129–2133, Paris, 2019.

9

