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Measuring Testis Tubule Wall Thickness in Histopathology Images

Abstract

One of many causes of infertility is too thick tubule walls in male testis, locking in the sperm
cells. In this thesis we have developed a machine-learning-powered software pipeline for
analysing testis histopathology images. The software identifies the tubules and measures their
wall thicknesses, allowing medical professionals to draw conclusions and/or perform additional
follow-up analysis as needed. Our value proposition is in a clear focus on practical application.
The software is designed and trained for usage on large-format (50 000 megapixels) testis tissue
samples, measuring specific abnormalities. It is the author’s desire that the software pipeline
could be used by medical facilities in Estonia on real patients, providing real value, actually
helping people and making a difference.

Keywords: Deep learning, Medical image segmentation, Computer Vision, Image processing

CERCS: P170 Computer science, numerical analysis, systems, control; P176 - Artificial
Intelligence; T111 - Imaging, image processing; T115 Medical technology
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Tuubuliseinte paksuse mõõtmine munandikoe histopatoloogia piltidel

Lühikokkuvõte

Üheks meeste viljatuse põhjuseks on munandites paiknevate tuubulite liiga paksud seinad, mis ei
lase seemnerakkudel sealt väljuda. Käesolevas magistritöös arendasime välja masinõppel
baseeruva tarkvarapaketi munandite histopatoloogia piltide analüüsimiseks. Tarkvara tuvastab
piltidelt tuubulid ja mõõdab nende seinte paksused, hõlbustades meditsiinipersonalil otsuste
langetamist ja vajadusel täiendavate uuringute läbiviimist. Töö põhiliseks väärtuseks on selge
fookus praktilisel rakendatavusel. Tarkvara on disainitud ja treenitud töötama suureformaadiliste
(50 000 megapikslit) koepiltide peal, otsides sealt kitsalt määratletud spetsiifilisi anomaaliaid.
Autori sooviks on, et loodud tarkvara on võimalik juurutada Eesti meditsiiniasutustes, tuues
patsientidele reaalset kasu.

Märksõnad: Tehisnärvivõrgud, meditsiini piltide segmenteerimine, masinnägemine, pilditöötlus

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria) ;
P176 - Tehisintellekt; T111 - Pilditehnika; T115 Meditsiinitehnika
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1 Introduction

Infertility affects 8–12% of couples worldwide, of which 40-50% is due to the “male factor”
(Kumar and Singh, 2015). It has many causes, such as low sperm concentration, poor sperm
motility, or abnormal morphology. In case of low sperm concentration, one of the next steps is
taking a tissue sample of the patient’s testis to check for abnormalities. Medical imaging such as
histopathology plays a central role in this diagnosing process.

However, analysing the images has been done manually by expert humans, mostly pathologists.
Due to the size of the slides and the amount of information, a pathologist only investigates a
small portion of the whole image slide. This introduces subjectivity and loss of precision. Even
with these shortcuts it is a long laborious process.

Due to the high workload and limited resources, a large number of images cannot be thoroughly
analysed. One must carefully assess the necessity and cost of such a procedure beforehand. This
can lead to long waiting times and missed diagnosis. It also prevents widespread screening of
patients for early signs of diseases. There is also an opportunity cost: the time spent on analysing
images is not spent on other necessary medical tasks (and vice versa).

1.1 Contribution

In this thesis we have developed a machine-learning powered software pipeline for automatic
processing of testis tissue histopathology images. Our focus is limited to searching for and
identifying one particular abnormality, namely too thick tubule walls.

The software, once trained, does not require additional work to operate. Compared to the manual
labour by the expert, it only takes minutes to analyse one huge slide and can be scaled up much
more easily as it can be run 24/7 with additional computing resources. Ideally it could be
integrated into automatic workflows, where every testis slide-scan is processed by the proposed
software. This is in stark contrast with the state-of-the-art which requires manual human labour,
where it takes 30 minutes for one human to analyse a small portion of one slide, in addition to
time spent training the medical professionals.

Using machine learning in medical imaging is not new. There are many existing models suitable
for analysing various medical images (such as computed tomography scans, X-rays, etc.).
Although the thesis does not introduce any new machine learning models nor architectures, it
presents a thorough pipeline for applying deep learning in solving a particular real world
problem.

The value proposition is in a clear focus on practical application. It is the author’s desire that the
software pipeline could be used by medical facilities in Estonia on real patients, providing real
value, actually helping people and making a difference.
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At the time of writing the author is not aware of comparable fully automated solutions that
analyse testis tissue being deployed to real-world usage.

The software is made available in a public GitHub repository and can be found at
https://github.com/arnelism/testis_thesis/.

1.2 Outline

Chapter 2 (Background) gives a short overview of the histopathology process, introduces
existing computer-aided solutions for analysing testis tissue and defines the scope and motivation
of our work.

Chapter 3 (Methods and Data) describes the whole software pipeline from pre-processing to
post-processing in high detail.

Chapter 4 (Experiments and results) describes the hyperparameter space we explored in tuning
the model, explains which configurations worked best and presents the wall thickness
measurement results of the whole pipeline.

Chapter 5 (Discussion and Conclusions) assesses the success of the software pipeline, admits the
shortcomings of current work and proposes follow-up work that should be undertaken in order to
deploy the software to real-world usage.
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2 Background

According to our clinical collaborators, testis tissue contains tubules where sperm cells are
“born”. If the tubules’ walls are too thick (5.3 +/- 1 micrometres is normal), sperm cells cannot
exit them, thus reducing their count and leading to infertility (Figure 1). The goal of a pathologist
is determining how many tubules are “unhealthy” in that regard.

In the process of histopathology, tissue samples are collected and processed in several steps into
glass slides. They are then analysed under a microscope, scanned and converted into large digital
images. In the samples made available to us, one slide is over over 50 000 megapixels, (i.e. 350K
x 150K pixels in resolution), contains several thin extracts of the tissue and includes hundreds of
tubules. The pathologist identifies them, measures their wall thicknesses and derives statistical
conclusions. Every single slide requires about 30 minutes to investigate according to our clinical
collaborators.

Figure 1: visualisation of different kinds of tubules. Left: healthy tubule with a moderately thin wall Right: thick
tubule walls, hence the sperm cells cannot exit..

If the tubule walls’ thickness is the sole cause of infertility, then there is hope - healthy sperm
cells can be extracted and used in artificial fertilisation (Godart and Turek, 2020). Conversely - if
the tubules are healthy, it might be a bigger problem for a patient: for an infertile patient this
indicates that the diagnosis is something else and potentially incurable, such as an inability to
create viable sperm cells.

Pathologists are measuring more than just tubule wall thicknesses in those images. According to
our clinical collaborators, they are also interested in the size and number of the tubules as well as
the amount of sperm cells inside them. Our pipeline can be adapted to measure those
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characteristics as well but is not a focus of this thesis (although it is a great candidate for further
research and development).

There is a wide body of research on using machine learning for medical image analysis. In
particular, U-Net (Ronneberger, Fischer and Brox, 2015) is a well-performing model created
specifically for medical image segmentation tasks that has been successfully used in a range of
biomedical applications from microscopy image segmentation (Siddique et al., 2021), to cancer
detection in computed tomography scans (Saood and Hatem, 2021). Similarly to autoencoders, it
has an encoder-decoder architecture. The encoder portion of the network reduces the input’s
dimensionality, while the decoder portion upscales it and constructs a segmentation mask.
However, unlike autoencoders, U-Net also has multiple skip connections between the encoder
and decoder (concatenated together), allowing the network to retain high-resolution information
(Figure 2).

Figure 2: U-Net Architecture

In (Fakhrzadeh et al., 2023) the authors describe a ResNet based alternative to U-Net for
segmenting the testis tissue in sexually mature minks. However, their paper is focused only on
the proposed model and not in end-to-end application. Also, the fidelity of their images was
orders of magnitude lower: according to the article, image dimensions were at 1200×1600 pixels
and 0.4 mm per pixel. In contrast, our slides measure 150 000 x 450 000 pixels, and 0.0001 mm
per pixel.

Alternatively, in (Sziva et al., 2022) the authors describe a quantitative mathematical
methodology for the analysis of testicular tissue, without using deep learning (but the authors
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concluded that their technique is apt to be subjected to further automation with machine learning
and artificial intelligence).

We did not find any existing literature focused on measuring tubule wall thicknesses in
segmentation maps of testis tissue. Since our proposed algorithm (which works on the
segmentation masks) is relatively simple and straightforward (less than 100 lines of code), we
theorise that such algorithms are an implicit part of similar software pipelines and not separately
published.

Our focus is on building an end-to-end solution which receives full-resolution (50K megapixels)
microscopy images as input and reports tubule walls’ thicknesses as output. Thus, in our work
we have developed a software pipeline to automate that process. The software uses U-net to
identify the tubule structures, measures their wall thicknesses and reports the measurements.
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3 Methods and Data

In this chapter we are describing all the steps of the software pipeline in great detail and discuss
the design tradeoffs where applicable. We are putting a particular emphasis on pre-processing of
the images because in our opinion it is the most critical component.

The software pipeline proposed in this work consists of multiple steps. First, pre-processing
converts the huge image sources into a form suitable for further analysis. Secondly, a neural
network creates a segmentation map from the pre-processed images. This is followed by
post-processing and cleanup of the model output. Finally, tubules’ walls are measured on the
clean segmentation and the final results are reported.

3.1 Dataset

The inputs to the software are digital microscopy images from clinical collaborators of East
Tallinn Central Hospital (figure 3). They consist of digital scans in MIRAX Virtual Slide File
(.mrxs) format and ground truth annotations in geojson files. An .mrxs file is an image file
created by MIRAX-compatible microscope digital slide scanners (‘MIRAX Virtual Slide File’,
2020). It consists of an index and a thumbnail stored in .mrxs file, accompanied by the raw data
in numerous .dat files. It stores images of specimen samples from glass slides on a digitised
virtual slide. It allows extracting images in 11 different zoom levels (level 0: the original image,
typically thousands of megapixels; level10: tiny thumbnail). The difference between each
adjacent zoom level is 2x in both dimensions.

We are using QuPath software for working with the .mrxs files and annotations. QuPath is an
open-source software for digital pathology image analysis (Bankhead et al., 2017). It allows
exploration (viewing, zooming, panning) and annotation of the digital slides. We are also using
QuPath for defining training, validation and test regions of the slides. In addition to providing
annotation capabilities, the usage of the software is necessary because standard operating system
tools do not support .mrxs files nor the size of the images in question (one slide is over 50 000
megapixels, i.e. 350K x 150K pixels in resolution).
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Figure 3: Screenshot of an annotated tubule slide in QuPath. Tubule bodies (blue) and borders(green) are annotated
by clinical collaborators. “Test region A” is an area defined by the author for model validation. Tubules outside the
test region are used as training data.

3.2 Pre-processing

Pre-processing was the main emphasis of our efforts because we believed that is what determines
the success of the project. An important part of the pipeline is image segmentation performed by
a neural network. Machine learning models consume small images (from 256px to 512px) as
input. However, the images we needed to analyse were somewhat larger: around 50 000
megapixels (150 000 x 350 000 px). It is infeasible to alter the U-Net model to accept inputs of
that dimensionality. Instead, we implemented a pre-processing pipeline which allows us to
bypass that limit and process the slides.

We were using “openslide” Python library (OpenSlide, 2015) for reading and extracting images
from the MIRAX virtual slides in our software code. Since geojson libraries are in JSON format,
Python standard library is sufficient for working with them.

Since the original images are too big to be processed directly by the neural networks, we split
them into thousands of patches (512x512px) which are then used as an input for the
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segmentation model. The model is trained to segment these small regions. In order to increase
the quantity and variety of training data, input patches are generated randomly from the slides (as
opposed to a regular grid) (Figure 5). In addition to providing a larger amount of training data, it
ensures that the model does not learn to depend on any particular slicing of the source image
(any tubule structure can appear at any part of an image). Both training and validation data was
sampled the same way, but from distinctly separated regions.

Figure 4: Original histopathology image (left) and the corresponding ground truth segmentation map (right), where
green regions indicate tubules, the red pixels correspond to the tubule walls ( and white means background).

Additionally, several augmentations are applied to the training patches such as horizontal and
vertical flips and 90, 180 or 270 degree rotations. The augmentations reduce overfitting by
increasing the amount and variety of training data available. Without using them it is common to
experience low training but large validation errors during model fitting.

While there are numerous image augmentation options available, one must carefully pick which
ones are suitable. For example, flipping and rotating images result in pictures that are similar to
the original training data. However, augmentations such as zooming in and out (cells have
relatively stable size for a given zoom level), adjusting brightness (scans have very uniform and
well specified lighting) or object occlusion (model is consuming a 2d slice of a specimen sample,
not a photographic image) would not be useful (likely even harmful) when working with
histopathology slides, because they introduce non-realistic variety to the training data which is
not found in actual images.

Obtaining annotated training data was one of the largest challenges. We received three tissue
slides (henceforth referred to as alpha, beta and gamma). Two of them were fully annotated by
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the clinical collaborators and one only partially. We continued annotating that one by ourselves
and after 12 hours of effort the slide was still less than 50% complete.

Thus, an additional pre-processing strategy was introduced: avoid generating training patches
from non-annotated regions, because that would confuse the model (ground truth would indicate
that there is no tubule where in reality there actually was). This was confirmed by initial training
results. At first, when the slides were more sparsely annotated, generating patches with higher
minimum annotation overlap (every random patch must be at least 60% tubule by area) yielded
lower validation loss while later models trained with more thoroughly annotated slides
performed better with 10% minimum tubule area.

Training slides from three separate histopathology slides were collected into a single training set
of 12 000 patches (4000 images from each, with augmentations). Validation set was collected
similarly and consists of 1200 patches.

Figure 5: Random sampling from one of the slides. Validation patches are drawn in red colour, training ones in blue.
Data sampled only from annotated areas, strict separation between training and test data. Due to the randomness, the
same tubule can appear in multiple distinct patches, increasing the model's performance.

Random-slicing described above is not used during inference. For that purpose, the patches are
generated from a regular grid placement because the model’s outputs are joined back together to

12



make one large image. Patches used during inference have been extracted with a certain
adjustable overlap (Figure 6). Predictions from only the middle part are used during
reconstruction and the edges are discarded. The assumption was that predictions near the edges
are less precise. The whole patch is used by the model in order to saturate its perceptive region,
because predictions at the edges have lower quality. Using overlap adds a buffer around each
patch, thus moving the edge further away. Similar strategy for improving segmentation
performance was described in the U-Net paper (Ronneberger, Fischer and Brox, 2015). In that
paper, the authors cloned a buffer around the edges of the input image which improved
segmentation accuracy at the (original) edges.
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Figure 6: Grid placement of inference patches.. They are denoted in light blue with black borders. Usable region
from each patch is marked by the red border. Two adjacent images have 25% overlap, but their used regions touch
precisely. Patch sizes are not to scale with regards to the pathology image below.

Figure 7: Single inference output image (left). Raw model output joined back together (right). Black lines added
for reference. Even with overlap the predictions are not perfect and the tiling effect is visible in some regions.
Tubule bodies are drawn in green colour and their borders in red.
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2.4 Segmentation model

Pre-processed images are consumed by a multiclass-segmentation model (tubule body, tubule
wall and background). We chose the U-Net architecture for performing image segmentation.

Alternatively, one could use different models such as U-Net++ (Zhou et al., 2018), Fully
Convolutional Networks (FCN) (Roth et al., 2018), Feature Pyramid Network (FPN) (Lin et al.,
2016) or LinkNet (Chaurasia and Culurciello, 2017) . We are using the Segmentation Models
library (Iakubovskii, 2019) written in Python programming language which makes U-Net’s usage
trivially simple. There may be benefits to using one of the mentioned architectures over U-Net,
though the author thinks the difference will be very minor, if at all. Still, testing that assumption
is a good candidate for follow-up work. However, in our opinion it is the preprocessing, data
volume and augmentation, not model selection, that leads to better results.

While encoder sub-network (backbone) could consist of a simple collection of convolutional
layers, more advanced backbones (such as ResNet without the last layer) are often used instead.
In our model we chose Resnet-34 as the encoding backbone because it is relatively lightweight
while still being powerful enough. Deeper variants (such as ResNet-101) are not expected to
improve results while being much slower to train and require more memory (Wang, Li and Xu,
2022). In the author's opinion even ResNet-18 might have been sufficient (this assumption was
not tested because this occurred to us after training the models).

ResNet is a convolutional neural network architecture that has been shown to work well on
many image recognition tasks (He et al., 2015), (Minaee et al., 2020). Their main idea is adding
skip-connections between non-adjacent layers, skipping 2 or 3 layers at a time. Without
skip-connections the accuracy of deeper networks rapidly drops (even in training). The
shortcut-connections counteract this, which allows for training deeper neural networks than
before. It was introduced in 2015, winning the Imagenet classification competition..

Therefore, the chosen U-Net model had two separate groups of skip-connections: within the
encoder (inputs are summed) and also between encoder and decoder (inputs are concatenated).

Segmentation model’s performance is measured by intersection-over-union (IoU, also known as
the Jaccard Index). It is a metric which compares the predicted and ground-truth areas in images,
dividing their overlap size by their union size. It results in a score between 0 and 1. In case of a
perfect match (both areas align flawlessly), the intersection and union are exactly the same and
the score equals 1. In all other cases the overlap is smaller than the union, leading to a lower
score (Figure 8). The method does not differentiate between false positives (model predicts a
tubule where there is none) and false negatives. It penalises both equally.

In binary classification the calculation is straightforward. In multi-class segmentation the IoU
may be calculated separately for every class and results are averaged. There are multiple
averaging strategies available (Sklearn.Metrics.Jaccard_score, no date).
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● Calculate IoU globally by counting the total true positives, false negatives and false
positives.

● Calculate Iou separately for each class and use either weighted (accounting for class
imbalances) or unweighted (discarding class imbalances) averaging

Figure 8: Quality metrics of segmentation maps. IoU (left) and F1 score (right) calculations (Tiu, 2019) both
compare the areas of predictions and ground truths.

The model’s performance could also be measured by F1 score (Dice Coefficient). It is very
similar to IoU (Eelbode et al., 2020) but calculated slightly differently. While IoU divides
overlap by the union, F1 divides overlap (multiplied by two) by the sum of the areas. Both
metrics work well and behave similarly. Either one is preferable over simple pixel accuracy
because they work well with class imbalance. For example, pixel accuracy would report an
artificially good score for a model that classifies everything as tubule body or background since
tubule borders have a much lower area.

U-Net with resnet-34 backbone was chosen for segmentation. Categorical cross-entropy loss
with Adam optimizer were used for training. Training progress was measured with IoU
(intersection over union) and F1 scores.

In software, the Tensorflow-backed U-net from Segmentation-Models library was used, which
made setting up the model relatively easy:
model = Unet(

'resnet34', encoder_weights=None, input_shape=(512, 512, num_channels),
classes=3

)
model.compile('Adam', loss=categorical_crossentropy, metrics=[iou_score,
f1_score])

Pixel values in both source images and ground truth segmentation maps were normalised to 0…1
range. Since there are exactly 3 classes, it was convenient to visualise the segmentation maps as
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RGB images, where red channel is used for tubule borders, green for tubule bodies and blue for
background. This made debugging and correctness verification much easier. Image loader
converts input images and segmentation maps to tensors with shape (512,512,3) which are
loaded into the model during training.

3.4 Post-processing

The raw model outputs were pieced back together, resulting in a single large image (6979 by
6817 pixels for test slide Alpha). However, the raw result was unconfident and needed
post-processing (figure 9). Since the model is seeing small patches of a single huge image, a
single patch sometimes contains elements from all three classes but sometimes only one class
(tubule body or background). There are also instances of fully hyalinized tubules (just the border,
tubule body is missing) which the model has not learnt very well. Moreover, differentiating
between tubule body and border is often subtle and difficult even for a human annotator with full
context (which the model does not have). This led to the presence of undesirable artefacts on the
output which need to be removed. We are leveraging Otsu thresholding and image labelling, as
well as morphological dilation, -erosion, -opening and -closing.

Figure 9: Raw model output of slide alpha (left) versus final post-processing result after thresholding, morphological
opening & closing, labelling, removal of small tubules and borders (right)

3.4.1 Thresholding

First, we are making the raw output more confident. The three channels in the model’s emitted
segmentation map are not mutually exclusive and more than one channel may contain non-zero
values, particularly around regions where changes occur (figure 10).
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Figure 10: Segmentation map with multiple channels having non-zero values at the same time

We devised two strategies for handling this. One option is treating each class independently and
accepting the model’s low confidence in some areas. We used Otsu thresholding to split every
channel into a binary map. Alternatively, we also used argmax to derive a clean and confident
image, where for every pixel, the channel with the highest value was set to 255 and others to 0.
Both approaches result in a binary map in each channel, but the former can have more than one
class being activated for the same pixel.

Otsu thresholding (Otsu, 1979) is a simple technique used to separate the pixels of a grayscale
(one-channel) image into foreground and background classes based on their intensity. The
method determines a single threshold value which separates pixels into two classes in such a way
that variances (of intensity) are minimised within the same class and maximised between the
classes. Using this method, thresholding can be done automatically, without needing to
pre-determine a suitable intensity value.

3.4.2 Morphological opening and closing

After thresholding we processed images using combinations of morphological dilation and
erosion techniques (opening and closing). This allowed us to “fill in” the holes of tubule bodies
and borders.

Morphological dilation is an image processing technique which sets every pixel to the maximum
value in its neighbourhood (determined by kernel size). In binary images, if at least one pixel in
the neighbourhood is 1 (white), the pixel is set to 1 (irregardless of its initial value).
Morphological erosion is the opposite, setting every pixel to a minimum value in its
neighbourhood (Figure 11).

By combining the two methods it is possible to perform morphological opening and -closing.
Opening of an image is defined as an erosion followed by a dilation. It can remove small bright
spots and connect small dark cracks. Closing is the opposite: dilation followed by erosion,
allowing to remove dark spots and connect bright areas.
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3.4.3 Labelling

We further processed the image by labelling and removing labels with small areas. Labelling
assigns every distinct contiguous region of an image to a separate class (Figure 12). This allows
for detecting tubules from the segmentation map and also removal of small false-positive ones
which are likely to be noise. We used the tubule body class (without tubule border) for this task

Figure 11: morphological dilation (above) and erosion (below) (Robert Fisher, Simon Perkins, Ashley Walker and
Erik Wolfart)

Figure 12: Labelling of contiguous areas
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3.5 Measuring wall thickness

Measuring the tubule wall’s thickness was relatively straightforward on the clean segmentation
maps. First we tried using the “distance-maps” library, which worked but extremely slowly,
taking over 10 seconds for a small 400x400 px image. It became clear that it will not scale up to
images which are tens of thousands pixels wide and tall.

Thus we developed our own algorithm. As a first step, we detected border edges by applying 1px
morphological dilation to the background and tubule bodies. We then subtracted the original
background and tubule body areas from the result, leaving us with only the pixels altered by the
dilation. The net result was two distinct lines: the edges where background and tubule bodies
became tubule borders.

We then proceeded to measure the distances between these lines. For every point along the inner
line, the algorithm measured a distance to the closest point on the outer one (Figure 13). We
accomplished that by fitting a circle centred on the inner line that would touch or overlap the
outer one. The radius of that circle is the distance at that point. The algorithm also displayed a
useful characteristic: it is possible to get more precise results by increasing the circle’s radius by
1 px at a time, or speed up the measurement process by increasing it in bigger steps (at the cost
of accuracy). In our code, we chose to increase the radius in 5px steps, which dramatically
increased the speed while still remaining relatively accurate. The algorithm spent 8 seconds on
measuring an image sized 7000 by 7000 pixels, which constitutes a significant improvement over
the algorithm implemented in the “distance-maps” library.

Figure 13: Calculating distances between the lines by fitting a circle centred at the inner line that touches the outer
line. This was performed at every point along the inner lines.
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4 Experiments and results

To find the best strategy for preprocessing images and training the model, we performed a grid
search over the hyperparameter values. Each candidate setup was trained for 100 epochs which
took roughly 4 hours for grayscale models and 8-12 hours for RGB ones.

Below are the hyperparameters that we have explored in attempting to improve our model
performance:

● Minimum tubule area on each slide (1%, 10%, 30%)

● RGB or grayscale source images

● Slide zoom level (level 1 or level 2)

This resulted in 12 different possible combinations. In order to measure statistical significance of
the results, we trained each configuration three times, leading to a total of 36 models being
evaluated.

4.1 Model IoU Scores

We measured the models’ performance after post-processing using an IoU score. The differences
between models are far smaller than the score differences between different slides (Table 1). This
indicates that the amount of data and quality of annotations are much more important than tuning
hyperparameter values.

Slide Best Model IoU Worst Model IoU Std Deviation

alpha 0.950 0.938 0.004

beta 0.770 0.636 0.047

gamma 0.913 0.900 0.004
Table 1: IoU scores between the best and worst performing configurations are relatively similar.

To further test that hypothesis, we assessed the statistical significance of different
hyperparameters with Welch’s t-test. It is a variant of independent Two Sample t-test which does
not assume that both variants share the same variance. Since the score differences between slides
were greater than between models, we are evaluating each hypothesis slide-by-slide.

When we compared scores by colour vs grayscale input patches, the former performed better
(Table 2). These results matched our expectations because RGB images contain more
information than grayscale pictures. On the other hand, surprisingly, the differences were much
less dramatic than initially anticipated and not always statistically significant. We explain this by
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the nature of the biomedical images: even in grayscale the images are clear enough to detect
patterns. Also noteworthy is that grayscale models took roughly 3 times less time to train.

Slide IoU Colour
Images

IoU Grayscale
Images

P-Value Statistically
Significant?

alpha 0.947 0.944 0.019 TRUE
beta 0.708 0.692 0.175 FALSE

gamma 0.908 0.906 0.034 TRUE
Table 2: IoU scores of colour input image models are better than that of grayscale images, but the differences are

barely statistically significant.

We are unsure whether level 1 images (more zoomed in, elements on pictures are 4x larger) are
better suited than level 2 images. It is a tradeoff between the number of details (level 1 are more
detailed) versus context (level 2 image, being zoomed out, can contain 4x more elements). The
results were inconclusive on this hyperparameter as well. There were many level-2 models that
performed better than some level-1 models (and vice versa, Table 3). Combining several models
trained on different zoom levels into an ensemble could likely lead to improvements.

Slide IoU Zoom
Level 1

IoU Zoom
Level 2

P-Value Statistically
Significant?

alpha 0.944 0.947 0.115 FALSE
beta 0.742 0.658 0 TRUE

gamma 0.91 0.904 0 TRUE
Table 3: IoU scores of models trained on level 1 images performed better on slides beta and gamma but not on slide
alpha.

Minimum required tubule area present on the training patches had little effect. We performed 3
T-tests to measure the effect of tubule area: 1% vs 10%, 10% vs 30% and 1% vs 30%. Only 10%
vs 30% comparison was statistically significant. It only made any difference on the beta slide.
The result was surprising because initially (when the training slides available were not fully
annotated) the minimum tubule area had a large impact. However, once the training data quality
was improved, this compensation technique became less important.
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Slide IoU Tubule Area 1% IoU Tubule Area 10% IoU Tubule Area 30%

alpha 0.946 0.947 0.944

beta 0.696 0.709 0.695

gamma 0.907 0.908 0.906
Table 4: IoU scores of different tubule areas. Different configurations only had an effect on the results of slide beta..

In conclusion, while the model ranking and the T-tests showed that models trained with zoom
level 1, colour images, and minimum tubule area 10% performed best, it was not the
single-best-performing model for any of the slides. However, it was in the top-3 for two of the
three slides.

4.2 Wall thickness measurement results

More accurate raw and post-processed model outputs do not necessarily lead to more accurate
wall thickness predictions. For example, holes in tubule bodies, or elongated tubule walls do not
affect the final measurements while both of them do affect the IoU scores.

We measured the tubule walls’ thicknesses on the post-processed images and ground truth
segmentation maps, using accuracy of 5 pixels (1.2 micrometres for level 1 and 2.42
micrometres for level 2). The outputs include wall thickness values percentiles-wise (5, 25, 50,
75, 95, 99 and 99.9th percentiles). This allowed us to assess the distribution of the thicknesses.
For example, if a relatively small number of tubules have extremely thick walls while there are
also healthy tubules, the situation is different when compared to a slide where most of the tubules
have relatively thick walls while not containing any with extremely thick ones.

While the differences in IoU scores were small, they made a large difference in wall thickness
measurement accuracies (Table 5). We discovered two root causes for this where post-processing
left artefacts which caused wall-thickness measurements to report wrong results, even though the
model IoU score was relatively high.
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Slide RMSE Best Model Mean RMSE RMSEWorst Model Std Deviation

alpha 3.273 26.290 58.002 13.560

beta 9.063 32.643 72.973 14.183

gamma 10.69 28.878 76.788 15.530
Table 5: RMSE values of best-performing and worst-performing configurations

One cause for high errors was borders within tubule bodies (Figure 14). This caused our
algorithm to find the closest distance to the background which was very far away. To remedy
this, we need to either improve post-processing to remove such phantom-borders or introduce
additional heuristics which would require that the path from tubule-border-boundary to
background-border boundary not contain any tubule pixels.

Figure 14: Errorrenous borders within the tubules confuse the border measuring algorithm.

Another cause was low quality in segmentation model output exacerbated by Otsu thresholding.
There were regions of dark red (unconfident border) and dark green (unconfident tubule body) in
the segmentation map (Figure 15). In case of argmax thresholding this would not have been an
issue, but Otsu thresholding processed each channel independently and set the threshold values
such that there occurred regions where neither of the channels was present. This caused the wall
thickness algorithm to report artificially low border thicknesses. Unfortunately we had chosen
Otsu thresholding because the initial IoU scores were higher when using that method. This is
easily remedied by switching to an argmax segmentation.
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Figure 15: Unconfident raw model output combined with Otsu thresholding led to gaps between tubule bodies and
borders.

The problems above serve as a good example where model IoU scores can be misleading.
Despite the issues above, we present the impacts of the different hyperparameter values on the
final wall thickness measuring accuracies. However, these results can change once the
underlying post-processing issues are resolved.

Slide RMSE colour RMSE grayscale P-Value Significant

alpha 23.057 29.523 0.043 True

beta 32.775 32.511 0.938 False

gamma 30.230 27.526 0.464 False
Table 6: Colour images performed better on the alpha slide while having little effect on other ones.

Slide RMSE level 1 RMSE level 2 P-Value Significant

alpha 35.201 17.379 0.000 True

beta 26.366 38.920 0.000 True

gamma 32.233 25.523 0.068 True
Table 7: Strong statistical significance of zoom level. Unfortunately the best configuration differs slide by slide.
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Slide RMSE overlap 25% RMSE overlap 50% P-Value Significant

alpha 27.191 25.389 0.576 False

beta 32.634 32.652 0.996 False

gamma 28.675 29.081 0.913 False
Table 8: Slide patch overlap during inference did not make a difference. Using smaller overlap works faster
however.

Luckily, not every model suffered from these problems. This allowed us to present the output of
the following configuration: zoom level 1, minimum tubule overlap 30%, colour images,
inference slide overlap 25% (Figure 16). We chose to showcase it because it performed
reasonably well on all slides.
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Figure 16: Wall thickness ground truth vs predictions by percentiles. The model predicts average thicknesses
relatively accurately but performs slightly worse on both extremes (very thick and very thin sections).

27



5 Discussion & Conclusions

The initial results are promising. The segmentation model is successful in separating the image
pixels into tubules and their borders. More importantly, out of the three slides we received one
had enlarged tubule walls’ thicknesses (slide beta), which is exactly what the software
determined (figure 17).

Figure 17: Slide beta (left) contains tubules with enlarged wall thicknesses in comparison to slide alpha (right)

To increase the usefulness even further, we wish to report measurements tubule by tubule, which
would allow easier determination of the ratio of healthy and pathological tissue.

We could also have done more thorough exploration of segmentation models. Given more time,
we would like to investigate if using a simpler (such as ResNet-18 backed U-Net) or a different
(U-Net++, FPN) model would lead to a different accuracy. Our (unverified) assumption is that it
does not and using a much simpler segmentation model would lead to the same accuracy with
much faster training time.

We believed that the most important differentiating effort lies in pre-processing the images and
post-processing the model outputs. While we still believe in the importance of pre-processing,
the exact hyperparameter values do not make a huge difference and should be optimised for
computation speed. Post-processing, however, may not be important at all. Even though the IoU
scores improved dramatically between the raw model and post-processed output, it may not
necessarily lead to more accurate wall thickness measurements. On the contrary - we noticed that
the post-processing is sometimes too aggressive and could even have detrimental effects. Testing
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the pipeline’s performance with reduced post-processing is one of the top priorities for the work
going forward.

Comparisons between colour and grayscale models may not have been just. Colour models took
3 times more time to train than grayscale ones. The grid search should be repeated with equal
training time. That would lead to the grayscale models being trained for roughly 3 times more
epochs and could make the measured performance differences disappear (or even reverse them).

There was no overwhelmingly best set of hyperparameters. On the contrary: multiple very
different models appeared in the top ranking and the best performing models differed
significantly between the slides. This indicates that ensembling the models could lead to
noticeable improvements in performance and should be investigated. One of the highest
priorities should be fixing post-processing issues. Luckily the root causes are understood and
relatively easy to remedy.

For real world adoption and trustworthiness the model should be trained with more than 3
histopathology slides. We were surprised how well the segmentation model performed with the
limited training data being available to us, but 3 specimens is clearly insufficient for an
application in biomedical and clinical domains, where sample sizes are usually in the thousands.

One of the main contributions of this work is the software pipeline. While the thesis is solely
focused on measuring tubule walls’ thickness in testis tissue, the pre-processing codebase can be
reused for training the model on other tissue types and/or for detecting other abnormalities. The
software’s architecture can be made dynamic, in order to facilitate different models and
post-processing modules while retaining the pre-processing functionality.

The software is also not yet ready for adoption. It currently consists of multiple scripts which are
run separately by hand. Ideal solution would be a deployable web application which is interfaced
with medical facility’s imaging equipment and include a graphical user interface for further
results analysis. For example, the application could display the unhealthy tubules it has identified
along with the statistical measurements. It is the author’s hope that the work towards this goal
could continue and the software be deployed. It could prove to be a valuable tool in widespread
screening of common ailments.
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IoU vs F1 Score

Appendix Figure 1: IoU and F1 scores from one of our model training logs. The scores correlate perfectly (spearman
correlation coefficient 0.998). Even though the latter is always greater, they report the same information and either
one could be used.
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Model IoU Scores

level
tubule
area

colour
mode generation

model iou
alpha 25

model iou
alpha 50

model iou
beta 25

model iou
beta 50

model iou
gamma 25

model iou
gamma 50

1 1 colour 0 0.532 0.542 0.513 0.516 0.592 0.595

1 10 colour 0 0.522 0.534 0.488 0.493 0.569 0.571

1 30 colour 0 0.558 0.569 0.520 0.523 0.496 0.521

1 1 grayscale 0 0.519 0.524 0.435 0.437 0.538 0.533

1 10 grayscale 0 0.495 0.513 0.423 0.436 0.530 0.541

1 30 grayscale 0 0.543 0.547 0.514 0.519 0.490 0.484

2 1 colour 0 0.419 0.427 0.418 0.419 0.544 0.549

2 10 colour 0 0.551 0.563 0.536 0.540 0.601 0.602

2 30 colour 0 0.528 0.543 0.502 0.504 0.580 0.582

2 1 grayscale 0 0.429 0.432 0.408 0.418 0.520 0.524

2 10 grayscale 0 0.488 0.500 0.392 0.401 0.569 0.572

2 30 grayscale 0 0.466 0.490 0.442 0.444 0.543 0.552

1 1 colour 1 0.500 0.508 0.493 0.498 0.579 0.582

1 10 colour 1 0.445 0.464 0.462 0.463 0.550 0.559

1 30 colour 1 0.552 0.558 0.457 0.463 0.564 0.564

1 1 grayscale 1 0.415 0.419 0.314 0.317 0.493 0.496

1 10 grayscale 1 0.490 0.501 0.419 0.432 0.533 0.539

1 30 grayscale 1 0.514 0.531 0.472 0.476 0.551 0.561

2 1 colour 1 0.420 0.424 0.423 0.429 0.554 0.558

2 10 colour 1 0.512 0.530 0.540 0.541 0.601 0.602

2 30 colour 1 0.516 0.543 0.459 0.460 0.575 0.577

2 1 grayscale 1 0.602 0.622 0.542 0.540 0.641 0.644

2 10 grayscale 1 0.587 0.592 0.519 0.519 0.599 0.600

2 30 grayscale 1 0.485 0.502 0.494 0.494 0.557 0.564

1 1 colour 2 0.498 0.506 0.499 0.507 0.583 0.586

1 10 colour 2 0.513 0.523 0.479 0.485 0.580 0.586

1 30 colour 2 0.432 0.443 0.403 0.414 0.417 0.412

1 1 grayscale 2 0.502 0.510 0.404 0.422 0.554 0.560

1 10 grayscale 2 0.574 0.580 0.456 0.465 0.571 0.576

1 30 grayscale 2 0.539 0.547 0.411 0.425 0.543 0.549

2 1 colour 2 0.449 0.454 0.421 0.424 0.562 0.563

2 10 colour 2 0.504 0.521 0.499 0.503 0.583 0.586

2 30 colour 2 0.486 0.509 0.455 0.455 0.566 0.569

2 1 grayscale 2 0.468 0.478 0.417 0.419 0.557 0.562

2 10 grayscale 2 0.572 0.579 0.496 0.499 0.599 0.600

2 30 grayscale 2 0.551 0.562 0.453 0.458 0.567 0.571

Appendix Table 1: Raw model output IoU scores
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level tubule
area

colour
mode generation postp iou

alpha 25
postp iou
alpha 50

postp iou beta
25

postp iou
beta 50

postp iou
gamma 25

postp iou
gamma 50

1 1 colour 0 0.947 0.947 0.773 0.769 0.914 0.914

1 10 colour 0 0.946 0.946 0.760 0.758 0.912 0.913

1 30 colour 0 0.946 0.949 0.751 0.749 0.912 0.914

1 1 grayscale 0 0.943 0.944 0.721 0.742 0.909 0.911

1 10 grayscale 0 0.942 0.944 0.762 0.765 0.906 0.907

1 30 grayscale 0 0.943 0.947 0.738 0.733 0.911 0.911

2 1 colour 0 0.952 0.952 0.637 0.637 0.901 0.901

2 10 colour 0 0.951 0.950 0.665 0.667 0.908 0.908

2 30 colour 0 0.945 0.947 0.685 0.685 0.903 0.904

2 1 grayscale 0 0.947 0.947 0.676 0.677 0.901 0.902

2 10 grayscale 0 0.939 0.938 0.641 0.642 0.902 0.904

2 30 grayscale 0 0.944 0.945 0.637 0.634 0.903 0.903

1 1 colour 1 0.954 0.955 0.747 0.747 0.912 0.912

1 10 colour 1 0.942 0.943 0.718 0.696 0.910 0.909

1 30 colour 1 0.948 0.945 0.739 0.743 0.910 0.910

1 1 grayscale 1 0.927 0.928 0.667 0.693 0.908 0.910

1 10 grayscale 1 0.942 0.945 0.767 0.775 0.906 0.906

1 30 grayscale 1 0.945 0.946 0.725 0.754 0.907 0.909

2 1 colour 1 0.938 0.940 0.649 0.649 0.898 0.898

2 10 colour 1 0.945 0.946 0.650 0.650 0.905 0.905

2 30 colour 1 0.949 0.949 0.657 0.658 0.904 0.904

2 1 grayscale 1 0.952 0.954 0.660 0.660 0.909 0.909

2 10 grayscale 1 0.952 0.953 0.655 0.656 0.906 0.906

2 30 grayscale 1 0.939 0.939 0.621 0.620 0.894 0.894

1 1 colour 2 0.943 0.944 0.746 0.748 0.912 0.913

1 10 colour 2 0.950 0.953 0.772 0.771 0.912 0.913

1 30 colour 2 0.948 0.944 0.734 0.732 0.910 0.911

1 1 grayscale 2 0.941 0.945 0.703 0.699 0.909 0.911

1 10 grayscale 2 0.939 0.945 0.771 0.782 0.908 0.910

1 30 grayscale 2 0.937 0.942 0.725 0.720 0.903 0.905

2 1 colour 2 0.952 0.953 0.717 0.711 0.904 0.904

2 10 colour 2 0.955 0.956 0.685 0.685 0.909 0.910

2 30 colour 2 0.930 0.935 0.668 0.667 0.905 0.905

2 1 grayscale 2 0.942 0.945 0.633 0.633 0.907 0.908

2 10 grayscale 2 0.954 0.953 0.661 0.662 0.906 0.906

2 30 grayscale 2 0.943 0.945 0.650 0.654 0.904 0.903

Appendix Table 2: Post-processed model Output IoU Scores
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Zoomed in view of the U-Net model with multiple skip-connections

Appendix Figure 2: Excerpt from the Segmentation Model’s U-Net. Reverse engineered from the compiled
model.
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